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Abstract

Recent proposals for regulating frontier AI models have sparked concerns about the
cost of safety regulation, and most such regulations have been shelved due to the
safety-innovation tradeoff. This paper argues for an alternative regulatory approach
that ensures AI safety while actively promoting innovation: mandating that large
AI laboratories release small, openly accessible “analog models"—scaled-down
versions trained similarly to and distilled from their largest proprietary models.
Analog models serve as public proxies, allowing broad participation in safety
verification, interpretability research, and algorithmic transparency without forcing
labs to disclose their full-scale models. Recent research demonstrates that safety
and interpretability methods developed using these smaller models generalize
effectively to frontier-scale systems. By enabling the wider research community to
directly investigate and innovate upon accessible analogs, our policy substantially
reduces the regulatory burden and accelerates safety advancements.
This mandate promises minimal additional costs, leveraging reusable resources like
data and infrastructure, while significantly contributing to the public good. Our
hope is not only that this policy be adopted, but that it illustrates a broader principle
supporting fundamental research in machine learning: deeper understanding of
models relaxes the safety-innovation tradeoff and lets us have more of both.

1 Introduction

AI safety necessitates transparency and public oversight to mitigate risks posed by increasingly
powerful frontier models. However, these regulations have faced harsh criticism, primarily regarding
their impact on innovation. Such criticisms have killed many pieces of safety regulation, including
California’s Safe and Secure Innovation for Frontier AI Models Act (SB-1047) [California State
Senate, 2024], Executive Order 14110 (on Safe, Secure, and Trustworthy Development and Use of
Artificial Intelligence) [Biden, 2023, Trump, 2025a,b], and the proposed “6-month AI pause" [Future
of Life Institute, 2023a,b]. Indeed, even regulations which have been passed (e.g. transparency
articles in the EU AI Act [European Parliament and Council, 2024]) and requests for public comment
(e.g. requests for comments from the NTIA [Telecommunications and Administration, 2024]) have
seen criticism on the basis of a safety-innovation tradeoff.

However, emerging research suggests a promising resolution to this tension: smaller, openly accessible
models can effectively substitute for large proprietary models in developing robust safety interventions.
Recent work from both industry [Oozeer et al., 2025] and academia [Lee et al., 2025], have shown
how safety interventions designed using smaller models can be transferred to larger models. This
is an example of weak-to-strong alignment [Burns et al., 2023], and has a theoretical basis in the
similarity of representations between models [Huh et al., 2024, Li et al., 2016, Jha et al., 2025],
demonstrating consistency in the generalization of safety interventions from modest-sized models to
significantly larger systems.
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Figure 1: The Analog-Model Mandate and Its Effect on the Safety–Innovation Frontier. (A) Frontier
AI models are distilled into small, openly released “analog” models, enabling broad participation
in safety testing, interpretability research, and algorithmic transparency; insights from this open
loop are then transferred back to improve the safety of the original large model. (B) By providing
a public proxy for each proprietary system, the analog-model mandate (dashed curve) shifts the
attainable safety–innovation frontier outward, relaxing the traditional tradeoff (solid curve) between
rapid capability development and robust safeguards.

Motivated by this evidence, we propose a targeted regulatory approach: any laboratory releasing
frontier AI models must also publicly release a distilled “analog model” trained with identical
data and objectives, but capped at a small fraction of the frontier model’s size. This policy
allows safety oversight without imposing undue economic or competitive burdens. Key policy details
include a specified release lag to address dual-use and security concerns, enforceable compliance
hooks tied to existing regulatory mechanisms (such as the U.S. Export Control Reform Act), and
clear guardrails around model scale and accessibility.

This position paper contributes to ongoing policy discussions by:

• Introducing the analog-model mandate as a pragmatic middle-ground regulation.
• Synthesizing empirical evidence showing the reliable transferability of insights across model

scales.
• Quantifying the compliance burdens of our proposal, positioning them favorably relative to

existing requirements such as compute audits mandated by Executive Order 14110.
• Anticipating common objections—economic impacts, security risks, IP concerns—and

providing actionable safeguards and mitigation strategies.
• Arguing that fundamental research into AI will expand the middle-ground by relaxing the

safety-innovation tradeoff.

The remainder of the paper proceeds as follows: Section 2 surveys evidence supporting cross-
scale transferability of safety and interpretability methods; Section 3 details the specific policy
mechanisms, compliance timelines, and regulatory enforcement pathways; Section 4 analyzes the
broader impacts, potential risks, and strategic benefits of the analog-model mandate; Section 5
concludes with recommendations for policymakers and frontier labs.

2 Technical Background

The efficacy of an analog-model policy hinges on a fundamental technical claim: Safety and inter-
pretability interventions discovered in small, openly released models reliably transfer to their much
larger, proprietary counterparts. This section supports this claim through three lines of evidence.
First, we present concrete experimental demonstrations showing successful cross-scale transfer of
interventions. Next, we provide theoretical and empirical backing from representation similarity and
scaling law research that elucidates why such transfers consistently work. Finally, we review broader
results across alignment research to underscore the generality and reliability of this phenomenon.
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2.1 Empirical Demonstrations of Cross-Scale Safety Interventions

Oozeer et al. [2025] showed that a steering vector, learned in minutes on a 0.5 B–1 B open-source
model, can reliably neutralise hazardous behaviours in much larger systems. For a sleeper-agent
back-door planted in QWEN-0.5B, the vector drove the trigger rate to almost zero; when the same
vector was ported with a two-layer auto-encoder to QWEN-1.5B and to a different architecture
(LLAMA3-3B), trigger rates likewise collapsed from ≈100% to <5%—matching native vectors
within two percentage-points. The mapper generalises across seven safety-critical behaviours (back-
door removal, refusal, toxicity, hallucination, sycophancy, corrigibility, myopic reward); transferred
vectors typically track native ones to within 5–10% on success metrics.

Lee et al. [2025] complement these findings. They show that token (un)embedding spaces remain
almost isometric across 1 B–70 B checkpoints (Pearson r > 0.9), and that a closed-form least-squares
map fitted on 105 random tokens can translate any steering vector between models of different sizes.
Porting seven Llama-3 steering directions from 1 B or 3 B into 8 B reproduces the full dose–response
curves of an 8 B-native vector, while an anti-toxicity vector from GPT-2 LARGE cuts Perspective-API
toxicity in GPT-2 XL by the same 20–25 % margin.

Both experiments were conducted using <$80 of GPU time.

2.2 Why Interventions Transfer: Representational Convergence and Scaling Laws

Two complementary explanations from recent literature clarify why small-model findings reliably
generalize:

Representational Convergence. Recent empirical evidence indicates that as models scale, their in-
ternal representations become increasingly similar. This is explained by the “Platonic Representation
Hypothesis" [Huh et al., 2024], proposing that neural networks of varying scales and architectures
converge to a shared, underlying representation space, shaped by universal statistical regularities
in training data. Similar alignment has also been observed in traditional neural networks [Li et al.,
2016] and in embedding models [Jha et al., 2025]. Interventions identified in smaller models thus
naturally map onto larger counterparts due to this representational alignment.

Smooth Scaling Laws. Contrary to prior assumptions about abrupt capability emergence [Wei et al.,
2022], extensive empirical studies show that capabilities scale continuously and predictably with
model size [Kaplan et al., 2020, Hoffmann et al., 2022, Schaeffer et al., 2023]. Continuous scaling
implies that interventions tested and verified in analog models predictably influence larger models,
reducing uncertainty around the scalability of safety findings.

Representational alignment across different model scales is supported by work on superposition.
Small networks cram many more features than they have neurons by storing them in superposi-
tion—multiple features per axis—while larger models gradually give each feature its own direction.
Toy-model experiments quantify this phase transition and show that the underlying feature vectors
remain stable across scales [Elhage et al., 2022]. Follow-up work with sparse dictionary learning
recovers thousands of shared, interpretable features in both 70 M- and 1 B-parameter LLMs, estab-
lishing a near one-to-one mapping between scales [Bricken et al., 2023]. Because interventions act
on these stable feature directions, we expect an intervention discovered in a 1 B model continues to
steer the same concepts in a 70 B (or 700B) model.

2.3 Generality Across Alignment Research

A broad set of alignment research validates the utility of analog models:

Weak-to-Strong Label Transfer. Analog models also enable inexpensive generation of alignment
data. Burns et al. [2023] showed that using outputs from a small model (124M GPT-2) as supervision
for fine-tuning GPT-4 recovered over 90% of GPT-4’s performance on standard alignment benchmarks
(MMLU, APPS, TruthfulQA). Somerstep et al. [2025] provided theoretical guarantees that the risk
of distilled large models is proportional to the risk of the smaller supervising model, ensuring the
robustness of this approach. Such weak-to-strong label transfer methods reveal analog models’ utility
as cost-effective tools for open and verifiable data generation, echoing real-world precedents like
Reinforcement Learning from Human Feedback [Christiano et al., 2017] and Direct Preference
Optimization [Rafailov et al., 2023].
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Interpretability Tools. Methods such as sparse Crosscoders [Lindsey et al., 2024] and Universal
Sparse Auto-Encoders [Thasarathan et al., 2025] highlight representational universality across dif-
ferent model sizes and architectures. These tools mature faster and are more robustly validated on
open-source analog models, making them ideal for rigorous interpretability research.

Additional evidence from cross-model audits [Minder et al., 2025] and Rome-style factual edits
[Meng et al., 2022] further demonstrate the efficacy of interventions transferring across models.

Compression and Distillation. Techniques like Low-Rank Adaptation (LoRA) [Hu et al., 2021] and
knowledge distillation [Hsieh et al., 2023, Hinton et al., 2015] effectively compress trillion-parameter
models into smaller analog equivalents with minimal capability loss (<2%), demonstrating again that
small analog models encapsulate the core knowledge and capabilities of their larger counterparts.
Extensions to multilingual alignment [Li et al., 2024] and vision-language models [Sun et al., 2024]
further underscore analog models’ versatility across modalities.

2.4 Synthesis: Technical Foundations for Policymakers

The following empirical and theoretical findings form the technical backbone supporting the analog-
model policy:

1. Predictability: Model capabilities and representations scale smoothly and predictably.

2. Transferability: Safety interventions, labels, and interpretability insights reliably generalize
from small analog models to large frontier models.

3. Cost-Effectiveness: Small analog models enable economical, scalable research and valida-
tion efforts, dramatically reducing the burden of regulatory compliance.

Taken together, these results strongly justify an analog-model regulatory framework that enhances
innovation, transparency, and safety in frontier AI development.

3 Policy Mechanism

We propose a straightforward regulatory requirement: any laboratory that releases a frontier AI model
must also release a small, openly accessible “analog model"—a distillation of the larger system,
trained on the same data and objectives but constrained to a fraction of its scale. This section details
the scope, structure, compliance requirements, and enforcement pathways of this mandate.

3.1 Overview and Objectives

The analog-model mandate aims to reconcile safety and innovation by creating public proxies for
frontier AI models. These proxies enable open safety testing, interpretability research, and community
oversight without requiring labs to relinquish their proprietary systems. By mandating analog models
at minimal cost, the policy stimulates the creation of public goods while respecting commercial
incentives.

3.2 Definitions and Scope

We do not propose a novel definition of “frontier model," but rather defer to existing frameworks
such as those articulated in the EU AI Act, OECD guidance, and NTIA’s request for comment on
frontier AI capabilities. These definitions typically rely on thresholds of computational expenditure,
model size, or deployment scope, and serve as a stable basis for regulation.

The analog model is defined as a small model derived from the same training run or distillation
pipeline as the frontier model, using:

• Identical or closely matching architecture families;

• Identical training data and optimization objectives;

• Post-training via distillation from the frontier model;

• A size cap between 0.5% and 5% of the frontier model’s parameters.
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This range allows companies to preserve strategic ambiguity about their largest systems while
ensuring that the analog remains lightweight, low-cost, and broadly useful.

3.3 Release Requirements

To ensure timely public oversight, analog models must be released within 1–3 months following
the deployment of their corresponding frontier model. This modest lag balances two needs: giving
labs time to apply additional safeguards (e.g., RLHF, watermarking, red-teaming) to the full model
before releasing a related analog, while ensuring the analog becomes available early enough to guide
oversight and safety research during high-impact deployment windows.

Each analog release must include:

• The model weights, hosted on an accessible platform;
• A model card documenting architecture, training setup, and intended research use;
• A general description of the training data (e.g., sources, modalities, known limitations);
• Distillation or training scripts (or equivalent documentation) to enable reproducibility.

3.4 Licensing and Accessibility

Analog models must be released under a permissive open-source license (e.g., Apache 2.0, MIT, or
equivalent), enabling broad use for academic, safety, and interpretability research. Licenses may
include limited safeguards against misuse (e.g., prohibiting military or surveillance use), provided
these do not obstruct core research freedoms.

3.5 Regulatory Oversight and Enforcement

Compliance will be overseen through existing regulatory channels. In the U.S., enforcement can be
tied to authorities established by the Export Control Reform Act (ECRA), which already governs the
disclosure and transfer of sensitive AI systems. In Europe, enforcement can dovetail with transparency
requirements in the EU AI Act.

Regulatory bodies may impose proportionate penalties for non-compliance, such as:

• Financial fines scaled by model impact;
• Temporary suspension of future model releases or public deployments;
• Publication of non-compliance notices, creating reputational accountability.

Labs must submit standardized compliance reports documenting analog creation and release timelines.
These may be independently verified through audits administered by national AI safety institutes
(e.g., NIST in the U.S. or similar bodies internationally).

3.6 Security and Dual-Use Mitigation

To guard against dual-use risks, analog release may be delayed up to three months post-deployment,
allowing time to assess and mitigate any dangerous emergent behaviors in the frontier model. Prior
to release, labs must perform a security evaluation to ensure the analog does not enable capability
extraction, jailbreak training, or other misuse.

Where appropriate, regulators may issue guidelines for safe analog release practices, including
parameter count ceilings, output filtering, and secure documentation formats.

3.7 Implementation Timeline and Pilot Program

We recommend a phased implementation:

• Year 1: Voluntary or incentivized analog releases, coordinated via interagency working
groups or multistakeholder consortia.

• Year 2+: Mandated compliance for all models crossing established frontier thresholds.
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Pilot programs would allow regulators and labs to co-develop best practices, refine licensing norms,
and validate that analog models serve their intended oversight functions without creating leakage or
misuse risks.

3.8 Intellectual Property and Competition Safeguards

The analog-model mandate is designed to protect proprietary interests while enabling broad public
benefit—much like regulatory frameworks in other high-impact, innovation-driven sectors. By
requiring the release of a small, non-commercially substitutable proxy, the policy achieves a balance
between openness and competitive integrity.

Releasing an analog model:

• Preserves proprietary methods: Labs are not required to disclose sensitive training
infrastructure, proprietary optimizers, or fine-grained training data.

• Maintains strategic ambiguity: The 0.5–5% size window avoids disclosing the precise
scale or architecture of the underlying frontier system.

• Constrains capability exposure: Analog models are designed to lack the full performance
envelope of the frontier model, limiting misuse or commercial substitution.

This design draws clear precedent from two sectors that have successfully reconciled public access
and private innovation:

Pharmaceuticals: Generic Drug Disclosures In pharma, regulatory frameworks (e.g., the Hatch-
Waxman Act in the U.S.) require firms to disclose chemical formulations and clinical trial results
to facilitate generic production after patent expiry. These disclosures enable competition and pub-
lic access to life-saving treatments while respecting the commercial lead time granted by patent
exclusivity. Similarly, analog models offer the public a scientifically useful version of the frontier
system—enabling safety audits, tool development, and public understanding—without undermining
the economic value of the full-scale proprietary model.

Telecommunications: Public Protocol Standards In telecom and networking, companies fre-
quently participate in the development of open protocols (e.g., TCP/IP, 5G standards), releasing
reference implementations and technical specifications to ensure interoperability. Despite this open-
ness, firms retain competitive advantages through superior implementation, proprietary extensions,
and integration. Analog models play a similar role: they provide a shared substrate for oversight,
tooling, and ecosystem development without disclosing the full competitive edge embedded in the
frontier model’s scale, tuning, or infrastructure.

In both analogies, regulated openness supports a common public good—access to medicine or
interoperable communication—while preserving the innovation incentives necessary for continued
investment. Frontier AI development exhibits the same structural tension. The analog-model
mandate borrows the best of both worlds: it creates a public proxy for high-impact systems, while
preserving competitive differentiation at scale. This approach encourages healthy competition around
performance, safety, and social responsibility—without forcing labs into a zero-sum disclosure battle.

4 Risks & Benefits

4.1 Overview

The analog-model mandate aims to balance the safety-innovation tradeoff inherent in frontier AI
regulation. This section transparently evaluates the mandate’s strategic benefits against its potential
risks, directly addressing viable alternative views to ensure rigorous consideration of opposing
perspectives.

4.2 Benefits

Accelerated Safety and Interpretability Research. Openly accessible analog models enable
broad, independent safety verification and oversight, fostering rapid iteration cycles. Analog models
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Table 1: Break-down of the direct costs required to produce and publish an 8 B-parameter analog
model, using AWS on-demand pricing. Estimate based on procedure from Shen et al. [2024]. This
estimate is about 0.1% the cost of training a foundation model [Knight, 2023]. Although scaling laws
such as Hoffmann et al. [2022] would suggest a linear relationship between model size and cost when
holding the data the same, training an analog model can piggyback on shared infrastructure with the
frontier training run (e.g. data annotation, training pipelines, etc.) At under $100,000, analogs cost
∼0.1% of a frontier model’s training budget.

Step GPU-hours Cost (USD) Source
Train analog model from scratch 5700 $70,053 Services [2025a]
Distill frontier model→analog 1000 $12,290 Services [2025a]
Safety fine-tune/RLHF 700 $8,603 Services [2025a]
Weight hosting and bandwidth (3 yr, 20 TB egress) — $1,813 Services [2025b]

Total analog cost — $92,759

streamline regulatory processes by providing standardized and transparent benchmarks for safety
methods. This accelerates the discovery of effective interventions, benefiting both the research
community and frontier labs.

Public Goods and Knowledge Spillovers. Analog models constitute public goods, creating positive
externalities through shared methodologies, datasets, and tools. They democratize access to advanced
AI research by substantially lowering barriers to participation, thus expanding the pool of researchers
contributing to safety advancements.

Improved Trust and Transparency. By publicly releasing analog models, labs foster greater
transparency and accountability, enhancing public trust. External scrutiny facilitated by analog
models significantly reduces opacity risks, improving societal confidence in AI deployments.

Enhanced Competitiveness and Innovation. Analog models stimulate healthy industry competi-
tion by providing fair performance benchmarks, motivating continuous improvement. By lowering
entry barriers, they foster innovation from smaller companies, startups, and academia, enriching the
AI ecosystem and diversifying innovation sources.

Acceleration of AI Progress via Open Source. Historical precedents demonstrate the substantial
benefits of openness in AI, as evidenced by frameworks such as PyTorch, TensorFlow, and Hugging
Face’s Transformers. Meta’s strategic open-sourcing of LLaMA models illustrates how open-source
initiatives can catalyze rapid, broad-based innovation without undermining commercial viability,
suggesting that analog models could similarly enhance innovation trajectories.

4.3 Risks and Mitigation Strategies

Intellectual Property (IP) and Commercial Risks. A plausible concern is that analog models
might inadvertently expose proprietary training data distributions, architectures, or strategic method-
ologies. This risk can be mitigated through rigorous constraints on analog model scale, delayed
release timelines, careful sanitization of documentation, and controlled information disclosures.

Security and Dual-Use Concerns. Open access to analog models could potentially enable misuse,
such as jailbreak research or misinformation campaigns. This risk is addressed through security
assessments, enforced lag periods before model release, limitations on model capabilities, and
guidelines mandating output filtering to reduce dual-use vulnerabilities.

Regulatory and Compliance Burden. The requirement to release analog models may impose
additional regulatory overhead, including reporting and audits. This burden can be minimized by
standardizing compliance reporting, phased policy implementation, and leveraging existing regulatory
frameworks like the EU AI Act or the Export Control Reform Act to streamline compliance processes.
To provide a first order estimate of the compliance cost, we look at the cost of creating an analog
model. Table 1 breaks down the line items for training an analog model, focusing on compute.
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We anticipate that this would form the majority of the compliance burden – and even doubling our
estimates to account for personnel costs puts this burden at 0.2% the cost of training a frontier model.

Substitution Risk to Frontier AI Labs’ Revenue. Analog models might partially substitute
proprietary frontier models, potentially reducing revenues. This economic risk is significantly
curtailed by deliberately constraining analog models’ capabilities, ensuring they serve strictly as
research proxies rather than commercially competitive products.

Second-Order Effects from Displacing Alternative Safety Policies. Focusing regulatory attention
primarily on analog-model mandates may inadvertently diminish resources or momentum from other
safety initiatives. To mitigate this, policymakers should position analog-model mandates explicitly as
complementary to other regulatory efforts, advocating for integrated, multifaceted safety strategies.
Simultaneously, however, such second-order effects are difficult to predict. It could be the case that
second-order effects point in the opposite direction: successful passage of effective safety policy
could lead to momentum for the AI safety movement and accelerate the passage of further legislation.

Uncertainty and Potential Limits to Transferability. A critical assumption underpinning the
analog-model mandate is the reliable transferability of safety interventions from smaller analog
models to larger frontier models. Emergent behaviors unique to frontier-scale systems may not
manifest similarly in analogs, potentially limiting the effectiveness of transferred interventions. The
foundational research supporting weak-to-strong transferability remains nascent and underexplored.

Beyond behavioral differences, several representational limits qualify this assumption. Evidence
from sparse crosscoders [Lindsey et al., 2024] suggest that analog models capture only a subset of the
latent features present in larger systems—some representational subspaces are shared, while others
are disjoint. Moreover, vanilla output-level distillation does not necessarily need to align internal
geometries [Aguilar et al., 2020]: it can reproduce input–output mappings without preserving the
embedding-space topology or feature-level semantics of the frontier model.

Recent “stitching” studies [Bansal et al., 2021] also highlight that representation quality scales
smoothly with training time, width, and data—larger or longer-trained models tend to express more
complete versions of the same latent factors. As a result, analog models may under-represent complex
or high-level abstractions (e.g., compositional reasoning) that arise only in frontier regimes.

This risk underscores the necessity for ongoing empirical validation, structured feedback loops involv-
ing frontier labs, academia, and regulators, and adaptability within the policy framework. Incremental
deployment paired with continuous validation and regular policy reviews ensures responsiveness to
emerging evidence and the ability to refine the policy dynamically. For these reasons, we believe
further research on transferring safety interventions across model scales is highly valuable and could
have substantial policy impact.

Brown-Field Case Study: Meta’s LLaMA Release (2023–2025)

Since Meta released the LLaMA family of weights in 2023[Touvron et al., 2023], the community
uptake offers a natural experiment of an analog-first strategy:

• Rapid scholarly impact: The original LLaMA paper has accrued ~15.8k Google Scholar ci-
tations—ranking first among 2023 AI papers—while follow-ups (Code Llama, LLaMA-2/3)
add another ~7k citations.

• Vibrant tooling ecosystem: The inference repo meta-llama/llama boasts 58k GitHub
stars and 9.8k forks, spawning safety-specific forks (e.g., LlamaGuard) and evaluation
harnesses like llama-stack-evals.

• Mass adoption: The most-downloaded variant on Hugging Face exceeds 7.7M pulls, with
over ten community checkpoints each surpassing one million downloads.

• Safety research dividends: More than 60 peer-reviewed studies use LLaMA derivatives
to prototype red-teaming, jailbreak defence, or interpretability tools (e.g., LLAMAGUARD,
LLAMAFUZZ, sparse auto-encoders), several of which later transferred to proprietary frontier
models.
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• Negligible substitution: Despite openness, Meta reports no measurable cannibalization of
its commercial API revenue, supporting the claim that capped analogs do not erode primary
business lines.

These data points support the mandate’s central thesis: small, open checkpoints catalyze an outsized
safety-innovation flywheel while imposing minimal direct costs.

4.4 Risk–Benefit Synthesis and Strategic Assessment

Weighing identified risks against proposed mitigation strategies reveals that the analog-model mandate
offers substantial benefits with manageable residual risks. It represents a high-leverage intervention
that concurrently enhances AI safety, innovation, transparency, and public trust. Given robust
safeguards, clearly defined policy adaptability, and compelling evidence from open-source precedents,
the analog-model mandate emerges as an effective and strategically sound policy proposal.

5 Conclusion

Policy debates around AI safety often frame safety and innovation as a dilemma: tighten oversight and
progress slows, loosen reins and risk soars. Our proposal – requiring a small, open “analog model"
alongside each frontier deployment – shows this is a false dilemma. An analog model mandate would
improve safety by allowing open oversight that transfers to large models, improve innovation by
allowing more open research, and have minimal costs.

Solow [1957] presents technology as a multiplier A that shifts the entire production-possibility
frontier outward – more of every output becomes feasible with the same capital and labour. Arrow
[1962] then points out that invention is a public good: because ideas can be copied, private actors
invest less in them than society would prefer, so policy that spreads knowledge moves the realised
economy closer to the true frontier.

A mandatory, openly released “analog” checkpoint plays exactly that public-good role for frontier
AI. It is small enough to run on commodity GPUs yet faithful enough to act as a proxy for its larger
sibling. Unfettered access lets independent researchers generate safety interventions, interpretability
tools and benchmark data that spill back to the proprietary model. In Solow’s terms, the policy raises
the effective A for safety research; in Arrow’s terms, it overcomes the under-investment that would
occur if each lab guarded its weights behind NDAs.

The mandate costs labs little (one extra distillation run) but unlocks a compounding stream of
public knowledge. Each new red-teaming script, steering vector or interpretability probe discovered
on the analog becomes immediately useful to every frontier deployment of the same architecture
family—expanding the set of Pareto-improving policy choices. The result is a net outward shift of the
AI innovation–safety frontier: regulators and developers can simultaneously demand higher safety
bars and enjoy faster downstream progress.

Future Work

Looking forward, several important directions can extend and refine the analog-model mandate:

• Broaden technical validation: Systematic studies of analog-to-frontier transfer for emer-
gent behaviors (e.g., CoT reasoning) to ensure safety interventions is scalable.

• Multi-modal analogs: Release analog versions of vision, audio, and multi-modal models to
generalize the policy beyond text.

• Standardized benchmarks: Develop community-driven challenge suites and metrics for
assessing analog fidelity and intervention generality across architectures.

• Policy experiments: Pilot alternative release-lag windows, size caps, and licensing terms to
identify optimal regulatory parameters. We believe it would be particularly fruitful for large
labs to adopt the polict voluntarily.

• Ecosystem infrastructure: Build open repositories and governance frameworks for collab-
oratively curating, updating, and maintaining analog checkpoints across labs, academia, and
regulators.
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