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Abstract

Embodied agents designed to assist users with tasks must possess the ability
to engage in natural language interactions, interpret user instructions, execute
actions to complete tasks and communicate effectively to resolve issues. However,
collecting large-scale, diverse datasets of situated human-robot dialogues to train
and evaluate such agents is expensive, labor-intensive, and time-consuming. To
address this challenge, we propose building a large language model (LLM)-based
user agent that can simulate user behavior during interactions with an embodied
agent in a virtual environment. Given a specific user goal (e.g., make breakfast), at
each time step during an interaction with an embodied agent (or a robot), the user
agent may "observe" the robot actions or "speak" to either proactively intervene
with the robot behavior or reactively answer the robot’s questions. Such a user
agent assists in improving the scalability and efficiency of embodied dialogues
dataset generation and is critical for enhancing and evaluating the robot’s interaction
and task completion ability, as well as for future research, such as reinforcement
learning using AI feedback. We evaluate our user agent’s ability to generate human-
like behaviors by comparing its simulated dialogues with the benchmark TEACh
dataset. We perform three experiments: zero-shot prompting to predict the dialogue
act from history, few-shot prompting, and fine-tuning on the TEACh training subset.
Our results demonstrate that the LLM-based user agent can achieve an F-measure
of 42% in mimicking human speaking behavior with simple zero-shot prompting
and 43.4% with few-shot prompting. Through fine-tuning, we achieved similar
success in deciding when to speak but much greater success in deciding what to
say, from 51.1% to 62.5%. These findings showcase the feasibility and promise of
the proposed approach for assessing and enhancing the effectiveness and reliability
of robot task completion through natural language communication.

1 Introduction

Embodied agents or robots designed to assist users with tasks should be able to engage in natural
language interactions and communicate effectively with their users to resolve issues that arise during
task completion. It is costly and labor intensive to collect datasets to train such agents, as also
supported by the few datasets available [Thomason et al., 2019, Shridhar et al., 2020, Gervits et al.,
2021, Padmakumar et al., 2022, among others]. Furthermore, interactive datasets are needed to
evaluate the task completion abilities of these agents.

In this work, we propose an LLM-based user proxy agent that simulates user behavior in human-robot
interactions using a virtual environment, AI2Thor Kolve et al. [2017]. While the use of user simulators
for task-oriented dialogue systems (TODS) is well-established (see Section 2), the application of
conversational embodied AI user simulators that leverage LLMs is relatively unexplored. Addressing
this gap is significant given the increasing capabilities of LLMs in generating natural and contextually
appropriate dialogue. Embodied agents must interact with their users due to various reasons, such as
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Figure 1: A depiction of the framework that includes a user simulator interacting with an embodied
agent to complete a task given as a user goal.

resolving ambiguous requests, seeking further clarification, and requesting confirmation, and hence
the user simulator should be able to handle each of these cases, in addition to proactively providing
feedback or clarifications to the robot. Figure 2 includes an example of a robot requesting additional
information in the TEACh dataset Padmakumar et al. [2022].

The simulated user agent can interact with the embodied agent to synthesize dialogue datasets,
evaluate the embodied agent and help in refining the embodied agent’s abilities for task completion
through reinforcement learning using AI. Given a concrete user goal (e.g., make breakfast), at each
time step during the interaction, the user agent may "observe" the robot actions or "speak" in order to
either proactively intervene with the robot behavior or reactively respond to the robot when needed.

In TODS, turn-taking for a user simulator is arguably simpler, as the user agent typically produces a
turn after each system turn until the conversation ends. However, in the case of embodied AI, users
can produce utterances to instruct the embodied agent, to answer questions the embodied agent asks
or to correct, provide feedback for embodied agent’s actions, or simply observe the robot actions.

In our work, we propose prompting an LLM with a user goal and few-shot in-context examples,
to predict user actions throughout an interaction session with a robot. Figure 1 depicts the overall
framework, where the user agent observes the actions of the embodied agent in the environment and
its natural language utterances and determines when to speak and what to say in terms of higher level
dialogue acts.

To evaluate the user simulator, we assess its ability to mimic the actual user actions using the
TEACh dataset Padmakumar et al. [2022]. Our results demonstrate the feasibility of our approach
to enhance the effectiveness and reliability of human-robot interactions in achieving tasks through
natural language communication.

The novel contributions of our work include the development of an innovative framework that predicts
user dialog actions in user-robot interactions, which includes determining a user dialog act as well
as its appropriate timing and an investigation into the performance of LLMs in executing these
tasks. This provides insights into the accuracy of LLMs in simulating realistic user behavior when
interacting with embodied agents, thereby enhancing the capabilities of embodied conversational AI
systems in real-world scenarios.

2 Related Work

In this work, we represent the actions of the conversational user actions in terms dialogue acts.
Annotations of dialogue acts are frequently found in task-oriented dialogue datasets and are often
utilized to determine the next action for the agent in dialogue management or the next action for the
user in user simulation. Gella et al. [2022] presents a dialogue act annotation schema for embodied
task completion utilizing dialogues of the TEACh dataset and then extends it by fine-tuning language
models to tag dialogue acts (see Appendix A for a list of dialogue acts used in this work and their
explanations), predict the next dialogue act given a dialogue history, and guide the agent’s non-
dialogue behavior. Our user simulator approach works similarly, except, in addition to dialogue acts,
we also predict the turn taking behavior of the user agent.

Many previous studies proposed methods for building user simulators for TODS [Schatzmann and
Young, 2009, Gür et al., 2018, Asri et al., 2016, among others]. For instance, Davidson et al. [2023]
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Figure 2: A sample session from TEACh dataset. At each step, either the user or the embodied agent
takes an action. Images at the bottom show the egocentric views captured by the robot after the action
of that time step is executed.

developed a user simulator using in-context learning with LLMs that generates linguistically diverse
and complex utterances similar to natural real-world user inputs to TODS. Using a predefined set
of goals aligned with the schema of the target TODS, they used a user simulator for interactive
evaluations. However, to our knowledge, fewer studies focused on user simulation for embodied
agent interactions. Padmakumar et al. [2023] developed a framework for generating synthetic
embodied dialogues to train agents. Their dialogues are produced using an agenda-based user
simulator Schatzmann and Young [2009], Gür et al. [2018], Shi et al. [2019], which simulates
human conversations through a predefined set of expected user actions. These actions include natural
language instructions, task-related information exchange, and environment-based actions. In contrast,
our work relies on instructing LLMs to generate synthetic dialogues for this task, offering a more
flexible approach. Gao et al. [2022] employed an oracle-based system to simulate human-like
interactions for embodied instruction-following tasks. The oracle provides predefined responses to
queries posed by agents. While this user simulator represents a viable initial approach, it may not
fully capture the intricacy and heterogeneity inherent in real-world human interactions. In contrast,
an LLM-based agent can offer richer, more adaptable simulations. Dai et al. [2023] simulate users to
evaluate embodied agents in interactions. Their framework utilizes a pre-trained LLM to generate
user responses based on the given context, including dialogue history and task-related information,
but the LLM-based user simulator does not model turn-taking for the user.

3 Approach
A session, S = {(s1, a1), ..., (sT , aT )}, of interactions between a user and an embodied agent can
be represented as a sequence of pairs, (si, ai), where si represents the agent that performed an action
at step i, si ∈ {robot,user}, and ai represents the action that the agent si performed at that step.
The set of possible actions A is the union of the set of possible dialogue acts, D, for conversational
actions that the robot or the user can execute and the set of navigation and object manipulation actions,
P , that the robot can execute. Then, building a user simulator involves predicting whether the user
should not perform a conversational action and simply "observe" (i.e., the robot is performing an
action at the next time step) or whether the user should perform a conversational action and what
should be the dialogue act of that action, for each time step, given all the interaction history until that
time. Hence, the input to the user simulator for step i, xi, is the sequence (s1, a1), ..., (si−1, ai−1),
and the goal of simulation is to predict yi ∈ {”observe”} ∪D. In this work, similar to Padmakumar
et al. [2023], the user simulator produces dialogue acts (e.g., Instruction or Confirm) which can then
be converted to natural language user responses using templates formed from the examples of the
training dataset.

These steps in a session are not supposed to be regularly distributed over time, and their duration
would differ depending on the action. To tackle this issue, if an "observe" action is predicted for
the user, we expect the user simulator to wait until the robot performs an action, and after that, user
simulator outputs its next action. However, this may result in an infinite loop, in case the robot also
doesn’t take an action. Hence, during inference, we introduce a maximum time to observe, and then
the user simulator is forced to predict a conversational action. In this work, we experiment with zero-
and few-shot methods that instruct an LLM to predict the next user action.
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3.1 Instructing LLMs for Simulating Users

The first thing presented to the LLM is a description of the role it should play. In the description of
the problem, dialogue acts are introduced and explained in order to be guide the LLM in the examples
and the answers to the tasks given. Dialogue acts are explained using the descriptions in Gella et al.
[2022] (See Appendix).

In experiments labeled "FS," for few-shot, we included five example scenarios. Examples were
selected as variable-length sequences from the randomly selected sessions of the training dataset.
The examples all began at the beginning of that session, and continue for a random length of turns.
Examples were re-drawn from the dataset if too many of the user turns (i.e., greater than 35%) had
the "OBSERVE" answer, in an effort to represent more of the conversational turns to the LLM. In
this case, up to two examples can be answered "OBSERVE."

Each example began with the user goal:

Goal: make me a sandwich

Then, continued with a sequence of "COMMANDER" and "DRIVER" action pairs, i.e.:

COMMANDER: <observe>
DRIVER: <pickup Bread>

Non-dialogue actions were surrounded by angle brackets, signifying that they are not text. Actions
with a target, such as pickup actions, had it enclosed within the angle brackets. Dialogue actions were
written in plain text, followed by the dialogue act(s) enclosed in pairs of angle brackets, i.e.:

COMMANDER: i would like the remote put on the side table «Instruction»
DRIVER: <observe>

Each example ended with a request for the user agent’s response, followed by the answer to the
example problem, formatted like the following:

COMMANDER response:
Instruction

Experiments labeled "ZS," for zero-shot, skipped directly from the dialogue acts to the task, and did
not include examples. The task was then described to the LLM, where the LLM was instructed to
respond with either "OBSERVE" or a dialogue act. After, the scenario was described to the LLM, in
the same format as the examples, except the answer is omitted for the LLM to predict.

4 Experiments

4.1 Dataset

For experimental validation, we use the TEACh dataset Padmakumar et al. [2022] of situated dialogues
between human annotators playing the role of a user (Commander) or a robot (Follower/Driver). The
annotators interact to complete a high level task from a given set of tasks in simulated household
environments, such as making coffee or watering a plant. Each interaction session includes the
definition of the high-level task (presented only to the Commander) and the sequence of actions
performed by the two sides during that session. The robot engages in a dialogue with the user to
learn the task to be completed, obtain information about objects involved in the task, and perform
navigation or object manipulation actions in the simulated environment to achieve the task. The
user can observe the actions that the robot is taking in the environment and interact with the robot
in natural language. In this work, we use the dialogue acts for user and robot utterances annotated
in Gella et al. [2022].

TEACh dataset consists of about 3K interaction sessions split into 5 subsets: training, validation
seen, validation unseen, test seen, and test unseen. Since the test sets are not publicly available, we
report our results on the validation seen subset. This subset includes 181 sessions and 7923 steps. In
these steps, either the user issues a conversational turn (17.6%), the robot issues a conversational turn
(13.2%), or the robot issues a navigation or object manipulation action (69.2%).
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4.2 Experiment Details

Our experiments evaluated the user simulation model’s capability across different prompting methods
and configurations to replicate human-like interactions with embodied agents. We tested two primary
prompting approaches: zero-shot, where the model predicts actions without prior example guidance,
and few-shot, where selected in-context examples help orient the model’s responses. Additionally, to
assess the influence of non-verbal actions, we compared model performance on datasets both with
and without move actions, examining how these configurations impacted turn-taking (Speak-F1) and
Dialogue Act accuracy. A baseline model was established for comparison, reflecting simple reactive
turn-taking and majority class assignments for dialogue acts. Fine-tuning was applied to Llama 3.1
8B and RoBERTa-base models over multiple epochs, providing a comparison to zero- and few-shot
approaches and offering insight into performance gains achievable through model adaptation.

4.3 Metrics

To compute how well our models mimic the actual user behavior, we compute two metrics: the
F-measure for the prediction of "speak" turns (Speak-F1) and the F-measure for the prediction of
the dialogue actions (DA-F1). Speak-F1 aims to answer the question of whether the simulator can
mimic the actual user’s behavior to determine when to talk, and DA-F1 aims to answer the question
of whether the simulator can mimic the user’s behavior to determine what to say, assuming the model
has spoken when expected to.

4.4 Results and Discussion

Condition Baseline GPT4-ZS GPT4-FS

P: R action 0.0% 21.3% 23.7%
P: R observe 0.0% 27.7% 33.4%
P: R speak 68.4% 78.0% 78.2%

Overall 37.7% 42.0% 43.4%

Table 1: Speak-F1 results showing the accuracy of predicting when the user should take a turn, broken
down by the previous robot (R) action: movement, observation, or speech. The baseline assumes the
user simulator only speaks when spoken to, while GPT4-ZS and GPT4-FS represent zero-shot and
few-shot GPT-4 models.

In experiments, we first computed the quality of the prediction of conversational user turns with the
zero- and few-shot prompting of GPT4, as shown in Table 1. We compared these with a baseline
inspired from TODS user simulators, where the user is predicted to speak every time after the robot
issues a conversational turn. In addition to overall performance results, we also breakdown scores
according to the previous robot action (e.g., "P: R speak" denotes the Speak-F1 results only after the
robot utterances.) Our results indicate that both methods surpass this baseline and the GPT4 with
few-shot examples perform the best, obtaining an Speak-F1 score of 43.4%.

Table 2 shows the DA-F1 scores, where a simple baseline of assigning every predicted user turn
the majority dialogue act class (i.e., Instruction) has been used. These results seem inferior to the
full fine-tuning approach of Gella et al. [2022] that obtains an F-measure of 59.26% on this subset,
however, RoBERTa has the advantage of being limited to these labels. It seemingly outclasses
the other models in the DA-F1 measure. This advantage, however, limits the ability to generate a
user-response.

4.5 Dialogue Act level Analysis

The distribution of F1 scores across dialogue acts as shown in Figure 3 reveals notable patterns in the
performance of GPT-4 and Llama 3.1 models under zero-shot (ZS) and few-shot (FS) approaches.
GPT-4 consistently outperforms Llama 3.1, with its few-shot implementation showing the highest F1
scores across most dialogue acts. This suggests that GPT-4 benefits significantly from task-specific
examples. Both models demonstrate strengths in common dialogue acts such as ’Instruction’ and
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Approach Model DA-F1

Instruction-Only Baseline 26.53%

Zero-shot GPT4 35.15%
Llama 3.1 10.7%

Few-shot GPT4 51.13%
Llama 3.1 12.4%

Fine-tuned Llama 3.1 36.70%
RoBERTa-B 62.48%

Table 2: DA-F1 results for zero-shot, few-shot, and fine-tuned approaches. Zero-shot (ZS) and
few-shot (FS) results are shown for GPT-4 and Llama 3.1 8B, while fine-tuned results include Llama
3.1 8B (2 epochs) and RoBERTa-B (10 epochs). The baseline assigns the majority class (Instruction)
to all turns. DA-F1 results show the prediction accuracy of user-turn dialogue acts.

Figure 3: Distribution of F-1 Scores across different Dialogue Acts. Robot-only dialogue acts are
omitted.

’InformationOnObjectDetails’, indicating their proficiency in task-oriented communication. However,
there’s a marked performance drop for more nuanced or less frequent acts. ’AlternateQuestions’,
’RequestForInstruction’, and ’RequestForObjectLocationAndOtherDetails’ prove particularly chal-
lenging, especially for Llama 3.1, highlighting the difficulty in capturing complex query structures.
Interestingly, ’Acknowledge’ and ’Greetings/Salutations’ show high variance across models and
training approaches, suggesting that seemingly simple acts can be context-dependent and thus harder
to predict consistently. The acts ’RequestMore’, ’RequestOtherInfo’, and ’OtherInterfaceComment’
have near-zero F1 scores for all models, as expected because these dialogue acts are typically reserved
for the robot, as shown in Section A.0.1. The zero-shot performance of GPT-4 is notably robust,
often rivaling its few-shot counterpart, which underscores its strong pre-training and generalization
capabilities. This variance in performance across dialogue acts suggests that future improvements in
dialogue systems may benefit from act-specific optimization strategies, particularly focusing on the
more challenging and nuanced dialogue acts.

4.6 Impact of Move Actions

The impact of move actions on GPT-4’s performance is strikingly illustrated in Figure 4. When
move actions are included, the Speak F1 scores remain relatively low and consistent between zero-
shot (27.04%) and few-shot (26.79%) approaches, indicating that the presence of move actions
significantly hampers the model’s ability to accurately predict speaking turns. However, the exclusion
of move actions leads to a dramatic improvement in Speak F1 scores, jumping to 42.03% for zero-shot
and 43.39% for few-shot scenarios. This substantial increase suggests that move actions introduce
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Figure 4: Impact of Move Actions on GPT-4 Performance. The figure illustrates the effect of including
move actions user behavior modeled by GPT-4 in this case. The results are evaluated using Speak-F1
(blue) and DA Accuracy (green) metrics.

noise that confuses the model’s decision-making process for speech prediction. The impact on
Dialogue Act (DA) Accuracy is even more pronounced, with few-shot learning showing considerable
advantages. In the presence of move actions, few-shot learning improves DA Accuracy from 29.04%
to 41.68%, while in their absence, it rises from 40.82% to an impressive 54.06%. We also looked at
the selective removal of move acts in a heuristic fashion; for more analysis of the impact of move
actions and their selective removal A.2

5 Conclusions and Future Work

We present an LLM-based user simulator for embodied AI research. Our approach leverages zero-shot
and few-shot learning techniques, using LLMs to predict user actions during task-oriented dialogues.
The experimental results demonstrate that the proposed method effectively simulates user behavior,
achieving a Speak-F1 of 43.4% and a DA-F1 of 51.13% in the best-case scenario. This is a significant
improvement over traditional baselines, where the user simulator only speaks when spoken to or
defaults to a majority class for dialogue acts. We consider this paper as the first step towards building
a more comprehensive model. For example, an open LLM like Llama-3 can be fine tuned with the
TEACh data. The current model does not incorporate visual information, which is a crucial aspect of
embodied AI. Future work could explore integrating visual cues into the user simulator, enabling it to
initiate dialogue based on observations of the environment and the agent’s actions. For instance, a
visual LLM such as GPT-4V or LLaVa could enable the model to determine when to initiate dialogue
based on visual cues, like observing the robot wandering around. Furthermore, we plan to plug in
this simulator to a state of art embodied agent, such as the HELPER system Sarch et al. [2024], to
enable researchers to perform many potential experiments for robot self-play.

6 Impact Statement

This work advances the field of embodied AI by demonstrating a scalable and efficient approach
to simulate user interactions with embodied agents. The potential applications of this research
are wide-ranging, from enhancing task efficiency in human-robot collaboration to providing robust
test environments for developing embodied agents that can learn from AI-generated user feedback.
Enhanced capabilities in LLM-based agents may inadvertently facilitate misuse, particularly in
sensitive domains where autonomous actions could be manipulated for harmful purposes. We urge
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further exploration into the ethical and security implications of such advanced AI systems to ensure
responsible deployment and robust mitigation of associated risks.
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A Appendix

A.0.1 Dialogue act explanation

Dialog Act Category Example

Instruction Instruction fill the mug with coffee
ReqForInstruction Instruction what should I do today?
RequestOtherInfo Instruction How many slices of tomato?
RequestMore Instruction Is there anything else to do
InfoObjectLocAndOD Object/Location knife is behind the sink
ReqForObjLocAndOD Object/Location where is the mug?
InformationOther Object/Location Mug is already clean
AlternateQuestions Object/Location yellow or blue mug?
Acknowledge Generic perfect
Greetings Generic hello
Confirm Generic Should I clean the cup?
MiscOther Generic ta-da
Affirm Generic Yes
Deny Generic No
FeedbackPositive Feedback great job
FeedbackNegative Feedback that is not correct
OtherInterfaceComment Interface Which button opens drawer
NotifyFailure Interface not able to do it

Table 3: List of dialogue acts from the Dialogue Act Annotation done on TEACh by Gella et al.
[2022].

A.1 Example Prompt

Prompts used were made of a few manually written components, and a few randomly generated
components.

A.1.1 Initial Instructions

Imagine you, the COMMANDER, are an embodied agent in a simulated world. Your purpose
is to instruct a robot, named DRIVER, to do tasks for you by telling it what to do and
interrupting it to give further instruction when necessary. Your job here is to predict
when you should be giving instructions to the DRIVER based on turn history with the DRIVER.
If there is nothing to do or say, you should just observe.

A.1.2 Task to the user agent

Your job is to respond to a given dialogue/action history with only one Dialogue act or

OBSERVE.

Either return the dialogue act, or return the OBSERVE action. Return only one

word/phrase.

Goal: Prepare coffee in a clean mug.

COMMANDER: <observe>

DRIVER: hi,what should i do today?«Greetings/Salutations,RequestForInstruction»

COMMANDER: Add coffee to a mug «Instruction»

DRIVER: <observe>

COMMANDER: Mug is in the coffee maker already «InformationOnObjectDetails»

DRIVER: <observe>

COMMANDER: <observe>

DRIVER: should i rinse the mug or not? «AlternateQuestions»
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COMMANDER: <observe>

DRIVER: <toggle on CoffeeMachine>

COMMANDER: dont «Deny»

DRIVER: <observe>

COMMANDER: its clean «InformationOther»

DRIVER: <observe>

COMMANDER: <observe>

DRIVER: <toggle off CoffeeMachine>

COMMANDER: <observe>

DRIVER: done «Acknowledge»

COMMANDER: <observe>

DRIVER: what should i do next? «RequestForInstruction»

COMMANDER: the mug doesnt have coffee yet «InformationOther»

DRIVER: <observe>
COMMANDER response:

A.1.3 Example answers

Examples are randomly selected from the data.

Example :

Goal: Prepare breakfast.

COMMANDER: <observe>

DRIVER: hello what are my tasks «Greetings/Salutations,RequestForInstruction»

COMMANDER: hii «Greetings/Salutations»

DRIVER: <observe>

COMMANDER: prepare coffe in clean mug «Instruction»

DRIVER: <observe>

COMMANDER: <observe>

DRIVER: <pickup Mug>

COMMANDER: <observe>

DRIVER: <putdown CounterTop>

COMMANDER response:
OBSERVE

A.1.4 Variations

Variation of the dialogue history without Driver <move> acts:

Goal: Put all Book on any Furniture.

COMMANDER: <observe>

DRIVER: hello how may i help

«Greetings/Salutations,RequestForInstruction»

COMMANDER: hi «Greetings/Salutations»

DRIVER: <observe>

COMMANDER: put the cook on furniture «Instruction»

DRIVER: <observe>

COMMANDER: book «Instruction»

DRIVER: <observe>

COMMANDER: <observe>

DRIVER: <pickup Book>

COMMANDER: <observe>

DRIVER: <putdown Desk>

COMMANDER: the book is in the small room «InformationOnObjectDetails»

DRIVER: <observe>

11



COMMANDER: <observe>

DRIVER: <pickup Book>

COMMANDER: <observe>

DRIVER: <putdown Desk>

COMMANDER: <observe>

DRIVER: done «Acknowledge»

COMMANDER: <observe>

DRIVER: how else can i help you «RequestMore»
COMMANDER response:

A.2 To Speak or Observe? Impact of Action Dynamics on GPT-4’s User Behavior Simulation

The confusion matrices illustrate the performance of GPT-4 in predicting when to speak and when to
observe across four different experimental conditions, simulating user behavior in a human-robot
interaction scenario. In the zero-shot setting with move actions, the model demonstrates a high rate
of false positives (2107 instances), indicating a tendency to speak excessively even when it should be
observing. This suggests that the model, without prior training examples, struggles to balance its
actions, leading to inappropriate conversational behavior. Comparatively, in the zero-shot without
move actions condition, there is a noticeable improvement in model performance, with a reduction
in false positives (1408 instances) and an increase in true positives (752 instances). This indicates
that the absence of move actions reduces the complexity of the decision-making process, allowing
the model to identify appropriate moments to speak more accurately. When transitioning to the

Figure 5: Confusion Matrices illustrating GPT-4’s performance in simulating user behavior across
four conditions: zero-shot and few-shot learning with and without move actions.
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few-shot learning scenarios, the model shows mixed improvements. In the few-shot with move
actions condition, while there is a slight increase in true positives (583 instances), the number of
false positives (2352 instances) remains high, reflecting continued over-talkativeness. This suggests
that few-shot learning alone may not be sufficient to mitigate the confusion introduced by move
actions. On the other hand, in the few-shot without move actions condition, the model achieves its
best performance, with the highest true positive rate (788 instances) and the lowest false negative
rate (630 instances). This demonstrates that the combination of few-shot learning and the removal of
move actions enables the model to better emulate user behavior, accurately deciding when to speak
and when to remain silent.

A.2.1 Selective Removal of Move Actions

To see if move actions provided meaningful context to the LLM despite often causing noise, we
added a method of selective removal of move actions. The criteria for removing a move turn was
whether it directly followed a question asked by the robot. In this case, the robot was expecting a
response from the user, and in most cases the user responded. Often, however, the TEACh dataset
contained a move turn directly following these questions, most likely caused by simple human error,
but when the LLM sees this move, it decides not to answer after that, causing an error in evaluation
for two moves.

Speak-F1 DA-F1
Approach Moves Excluded Selective Removal Moves Excluded Selective Removal

Zero-shot 0.344 0.435 0.292 0.433
Few-shot 0.399 0.537 0.361 0.528

Table 4: F1-measures for Speak and Dialogue Act metrics for GPT-4, run on the dataset without
moves and the dataset with moves selectively removed.

Results from running on this modified dataset were mostly similar to excluding the move turns
entirely, but in some cases the selective removal performed noticeably worse than before. Thus,
the move turns do not provide meaningful information to the user, most likely due to a lack of
environmental context.
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