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Abstract

The role of hidden units in recurrent neural networks is typically seen as modeling
memory, with research focusing on enhancing information retention through gating
mechanisms. A less explored perspective views hidden units as active participants
in the computation performed by the network, rather than passive memory stores.
In this work, we revisit bilinear operations, which involve multiplicative interac-
tions between hidden units and input embeddings. We demonstrate theoretically
and empirically that they constitute a natural inductive bias for representing the
evolution of hidden states in state tracking tasks. These are the simplest type of
tasks that require hidden units to actively contribute to the behavior of the network.
We also show that bilinear state updates form a natural hierarchy corresponding to
state tracking tasks of increasing complexity, with popular linear recurrent networks
such as Mamba residing at the lowest-complexity center of that hierarchy.

1 Introduction

State tracking is a fundamental requirement for performing sequential decision-making tasks, in
which future actions depend on the consequences of past actions. The consequences of past actions
are usually not directly observable, making state tracking a key ingredient in virtually every real-
world multi-step interaction between an agent and its environment. This includes multi-hop dialogue,
end-to-end learned robot control, and recent “agentic LLM” use-cases, in which a language model is
trained to interact with an API.

While state tracking is an ill-defined concept in general, a common way to define it formally, which
shall suffice for the purpose of this work, is to treat it as the task of correctly representing the
arbitrary-length sequence of states that a state machine takes on in response to observing a given
sequence of inputs. This is equivalent to modeling Finite Automata (FA), or regular languages, in the
Chomsky hierarchy of formal languages (Chomsky, 1956; Hopcroft et al., 2006).

Although state tracking is a seemingly simple task for neural networks to learn, many models are
surprisingly bad at learning it from data. The reason for its simplicity is that the task admits a
simple inductive decomposition: For each input in the sequence, it suffices to update an internal
representation of the state inferred from all inputs seen previously. As a result, it is possible, in
principle, to learn state tracking for sequences of arbitrary length by simply learning the appropriate
state transitions for every (input, state)-pair from the training data.

However, in practice, this requires an inductive bias towards the input-by-input state update, which is
not present in many models. For example, many popular sequence models, such as the Transformer
cannot learn to perform state tracking (Dziri et al., 2023; Anil et al., 2022; Abbe et al., 2024) on
sequences longer than the training data. This includes very large, pre-trained Transformer-based
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Figure 1: Taxonomy of bilinear RNNs studied in this paper, along with example regular language
tasks they can learn (in blue).

language models, and it is the case even when trained to use chain-of-thought reasoning (“inference-
time compute”) (e.g., Ebrahimi et al. (2024)).

Similarly, as shown by Merrill et al. (2024), many linear recurrent networks fail to learn arbitrary-
length state tracking tasks, which include large RNN-based pre-trained language models, such as
Mamba (Gu and Dao, 2024), or the mLSTM (Beck et al., 2024). Recent work has shown that certain
linear RNNs can learn some state tracking tasks, if the hidden-to-hidden transition matrix satisfies
two conditions: (i) it is a function of the input (and thus not time-invariant), and (ii) not all of its
eigenvalues are positive (Sarrof et al., 2024; Grazzi et al., 2025). However, the tasks that can be
learned under these conditions are highly restricted as we shall show. A benefit of linear models,
besides being amenable to analysis, is that they can be trained efficiently on parallel hardware (e.g.,
Martin and Cundy (2018)). This is in contrast to standard (non-linear) recurrent networks (RNNs),
due to the linear dependence between hidden states across time-steps.

In this work, we revisit recurrent networks with bilinear hidden-to-hidden transitions. The transition
matrix in these models is a simple bilinear function of inputs and hidden activations of the previous
time-step. Various types of bilinear recurrent models have been investigated in the past (e.g., Sutskever
et al. (2011); Downey et al. (2017); Wu et al. (2016)), but they have not caught on as widely used
models. This is in part due to instabilities and optimization difficulties owed to their inherent
three-way multiplicative interactions.

We show that bilinear RNNs are highly effective at learning state tracking tasks if one leverages a few
simple tricks to avoid instabilities during training and inference. This includes removing any additive
components (“bias terms” and other additive contributions to the hidden state), such that the hidden
state is a true bilinear not an affine function of the previous time-step hidden state and input. We
also show that bilinear models form a natural hierarchy of decreasing complexity, ranging from fully
unconstrained but parameter-inefficient models to highly constrained and parameter-efficient models.
The different model classes within the hierarchy correspond to increasingly narrow subclasses of
regular language modeling tasks that can be learned from data (see Fig. 1). Several existing linear
RNNs, such as Mamba (Gu and Dao, 2024), are at the center of the hierarchy, with no state tracking
capability at all.

A task that has received significant attention as a testbed for learning state tracking behavior with
sequence models in the past is the task of computing the parity of a binary bit string. We show that a
notable special case of learning bilinear state transitions without additive terms is that it can learn the
parity task with a frozen (untrained) recurrence and only training final readout layer on as few as two
training examples.

Figure 1 shows an overview of bilinear models along with task classes we study in this work, ranging
from simulating arbitrary state machines (the broadest class learnable by unconstrained bilinear
models) to parity (the most narrow class, which can be learned even by models with real-valued
diagonal transition matrix). Further constraining the transition matrix to positive diagonal impedes
a model’s ability to perform state tracking (see, e.g., Grazzi et al. (2025); Sarrof et al. (2024)). We
summarize our contributions as follows:

• We revisit bilinear state transitions in RNNs and present an extensive study, showing that they
can learn state tracking tasks, unlike many existing linear recurrent models, albeit with the caveat
that they can have a very large number of parameters.
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• We show that it is always sufficient (and in some cases necessary) for the hidden state to be a
pure linear not affine function of the hidden state at the previous time-step. The absence of any
additive terms makes hidden states scale-invariant, which in turn allows us to normalize hidden
states during training and/or inference without sacrificing the linear recurrence.

• We show that a pure linear (not affine) RNN with frozen random weights and a trained linear
readout layer can learn parity with perfect accuracy from only two training examples.

• We show that linear RNNs with diagonal transition matrices are a special case limited to learning
state tracking tasks with commutative structure. This restriction is true even for complex-valued
diagonal transition matrices. Hence, linear RNNs with block-diagonal transition matrices of
size 2× 2 are not able to learn general state machines (negative result).

Related work: Bilinear models have been studied extensively for unsupervised learning of trans-
formations and relationships from data (Tenenbaum and Freeman, 1996; Olshausen et al., 2005;
Memisevic and Hinton, 2010). Bilinear state transitions have also been discussed in the context of
recurrent networks by Sutskever et al. (2011); Downey et al. (2017); Wu et al. (2016); Michalski et al.
(2014). Besides the analysis, a key novelty in our practical results is the importance of using pure
bilinear, not affine, state transitions. As a special case of bilinear state transitions, we study the use of
two-dimensional subspaces in which hidden units are transformed through rotations only. This is
similar to existing, but non-linear, networks with complex-valued or unitary transition matrices (e.g.,
Arjovsky et al. (2016); Wolter and Yao (2018)).

Recent work has shown that a dependence of hidden state transitions on the inputs is necessary for
a recurrent network to learn any state tracking behavior (Grazzi et al. (2025); Sarrof et al. (2024);
Fan et al. (2024)), although the connection to bilinear models is absent in that work, and transition
matrices are defined as neural network layers and include input-dependent additive terms (which
we show to be detrimental to learning). Terzić et al. (2025) propose a variant of state-space models
where the transition matrix is constructed from an input-dependent linear combination of learned (but
fixed) dense matrices, enabling some degree of length generalization on a set of regular language
tasks. Bilinear models learn to encode hidden-to-hidden transitions as linear functions of the input,
making them reminiscent of observable operator models and predictive state representations (Jaeger,
2000; Littman and Sutton, 2001).

2 Modeling hidden state dynamics using bilinear state transitions

A linear recurrent neural network represents a sequence of observations xt ∈ RD via the temporal
evolution of a vector of hidden variables (the “hidden state”) ht ∈ RH . The most common form for
modeling the temporal evolution is:

ht = Aht−1 + Bxt + b, (1)

where A ∈ RH×H is a hidden-to-hidden matrix, B ∈ RH×D is an input-to-hidden matrix modeling
input-dependent additive terms, and b ∈ RH is a vector of additive input-independent biases.

Recently, it has been remarked that for a recurrent network of the form Eq. (1) to be able to learn state
tracking tasks, the hidden-to-hidden transformation A needs to depend on the input x (Gu and Dao,
2024; Sarrof et al., 2024; Fan et al., 2024; Grazzi et al., 2025). The necessity for input-dependence
has been motivated by showing, both theoretically and empirically, that models fail to learn state
tracking tasks in the absence of the input-dependence. The exact form of the dependence of A on x
has been left open. Instead, it has been suggested to parameterize A(x) as a neural network.

We argue that a natural alternative for this dependence, while keeping the recurrence linear, is to
make it multiplicative, such that a hidden unit ht

i at time t is a function of the products ht−1
j · xt

k of
the components of the hidden state at the previous time-step and the inputs at the current time-step.
The reason is that this makes explicit the input-dependent transformations between hidden states
across time-steps, and thereby makes it natural to simulate a state machine, as we shall discuss below.

2.1 Simulating finite-state machines and group structures

A finite-state machine (FSM), or finite automaton (FA), can be formally defined as a tuple S =
(Q,Σ, δ, q0), where Q is a finite set of states, Σ is a finite input alphabet, and δ : Q × Σ → Q is
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the state transition function. The machine starts in an initial state q0 ∈ Q. Given an input sequence
σ = {σ1, σ2, . . . , σT }, the FSM undergoes a sequence of state transitions {q1, q2, . . . , qT }, where
each state qt is determined by qt = δ(qt−1, σt). We shall define state tracking formally as the task
of simulating a state machine. A model is said to simulate state machine S if, after observing the
complete input sequence σ, it can produce the final state qT (see Deletang et al. (2023); Liu et al.
(2023)).

As a special case, we can consider state machines representing a group structure. In this context, a
group (G, ·), where · denotes the group operation, can be modeled as an FSM where the set of states
and the input alphabet are identical to the set of group elements, i.e., Σ = Q = G. The transition
function is defined by the group operation itself: δ(g1, g2) = g1 · g2 for all g1, g2 ∈ G, representing
the associative group operator with corresponding inverse and identity group elements.

Another important special case is that of an abelian group, where the group operator is commutative.
We consider integer groups under addition modulo m, denoted as Zm. In this case, the state set and
input alphabet are Q = Σ = Zm = {0, 1, . . . ,m− 1}. The transition function δ : Zm ×Zm → Zm

is defined by addition modulo m: δ(a, b) = (a + b) (mod m), for all a, b ∈ Zm. Specifically,
simulating the group Z2 is equivalent to computing the parity of a binary input sequence. It is
important to note that the operation of integer addition modulo m is the canonical commutative
operation to consider, as all finite abelian groups are structurally similar (isomorphic) to direct
products of subgroups of Zm.

2.2 Bilinear RNNs can learn arbitrary state machines

Formally, we consider the hidden state ht to be a bilinear function of the previous hidden state ht−1

and the current input xt. As such, we model state transitions as:

ht
i = (ht−1)⊤ Wi x

t =
∑
jk

Wijkx
t
kh

t−1
j , (2)

where Wijk are the components of a three-way parameter tensor W ∈ RH×H×D, with matrix
Wi ∈ RH×D denoting the i-th slice of the tensor. Note that Eq. (2) is equivalent to using an
input-dependent transition matrix Ax such that:

ht = Axh
t−1, (3)

with (Ax)ij =
∑

k Wijkxk. In other words, the state transition matrix A is fully parameterized
through a linear transformation of the input x. RNNs with bilinear state transitions (albeit typically
in affine, not pure multiplicative form) have been studied previously (e.g., Sutskever et al. (2011);
Downey et al. (2017); Wu et al. (2016)).

We note that the multiplicative dependence, in particular in the absence of any additive contributions
from the input, allows the inputs to “route” the information flow in the hidden states, or conversely
represent transformations acting on them. The ability for layers in a network to elicit transformations
acting on other layers has been a common motivation for studying trainable bilinear models in the
past (e.g.,Olshausen et al. (2005)). In the context of Eq.(2), it allows inputs to determine the temporal
evolution of the hidden state (or elicit “computations” to be performed by the hidden layer), which is
different from the somewhat more common view of the role of RNN hidden units as memorizing
information. In the following we shall now make this perspective more concrete by showing that a
bilinear RNN can simulate any state machine.
Proposition 1. The bilinear state transition model defined in Equation (2) is capable of simulating
any finite state machine S = (Q,Σ, δ, q0).

We refer to Appendix A.1 for the proof. Besides allowing inputs to encode transformations on hidden
units, the absence of any additive terms in Eq. (2) makes the hidden units scale-invariant. In other
words, (up to floating point accuracy) one can multiply a hidden state vector by a constant at any
time-step and divide by the same constant at a later time-step without any effect on the final result. In
Section 3 we shall show that the scale-invariance allows us to keep hidden activations stable during
training and inference.

2.2.1 Factorized state transition tensor

The bilinear state update in Eq. (2) utilizes a three-way parameter tensor W , whose H2D parameters
often necessitate low-rank factorization for a more parsimonious model. One of the most common
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factorization methods proposed in the literature is the Canonical Polyadic (CP) decomposition, also
known as Parallel Factor Analysis (PARAFAC) (Hitchcock, 1927), which was used, for example, in
the bilinear RNNs discussed in Sutskever et al. (2011); Downey et al. (2017). The CP decomposition
approximates the tensor as a sum of R rank-1 tensors W =

∑R
r=1 w

(h1)
r ⊗ w

(h2)
r ⊗ w

(x)
r , which in

terms of individual components, is expressed as: Wijk =
∑R

r=1 W
(h1)
ir W(h2)

jr W(x)
kr . Here, ⊗ denotes

the outer product, and vectors w(h1)
r , w(h2)

r , and w
(x)
r are the component vectors for the r-th rank-1

term. These component vectors are collected as columns in the factor matrices W(h1) ∈ RH×R,
W(h2) ∈ RH×R, and W(x) ∈ RD×R, respectively. As a result, the total number of parameters
is reduced to R(2H +D). The input-dependent state transition matrix Ax can then be expressed
compactly as:

Ax = W(h1)diag
(
(W(x))⊤x

)
(W(h2))⊤, (4)

where input vector x ∈ RD and diag(·) constructs a diagonal matrix from a vector. As shown in
Appendix C.3, an increasing number of factors (R), enables simulating state machines with larger
states, as factored models with a larger R provide a better approximation of a full bilinear model.

2.2.2 Block-diagonal state transition tensor

An alternative method for controlling the parameter count in the bilinear model involves imposing
block structures on the effective state transition matrix Ax. This is achieved by utilizing B distinct
three-way parameter tensors, denoted as W(b) ∈ RH′×H′×D, one for each block b ∈ {1, . . . , B}.
Here, H ′ = H/B represents the dimensionality of each block’s corresponding state subspace,
assuming H is an integer multiple of B.

Consequently, the overall state transition matrix Ax adopts a block-diagonal structure, where each
diagonal block, A(b)

x ∈ RH′×H′
, is generated from its respective tensor W(b) via the relation

(A(b)
x )ij =

∑
k W

(b)
ijkxk. As a result, the total number of parameters is reduced by a factor B. This

block-diagonal parameterization can be conceptualized as employing B independent “heads”, each
processing a distinct subspace of the hidden state vector using its own dense transition dynamics. It
is reminiscent of block-diagonal transition matrices studied by Fan et al. (2024), albeit defining them
as a bilinear, non-additive function of the inputs.

2.3 Complex diagonal bilinear RNNs

In Section 2.2, we established that the bilinear state-transition form defines an input-dependent
state-transition matrix Ax, whose entries are linear functions of the input x, parameterized by a
third-order tensor W . In this section, we discuss how diagonalizing the state-transition matrix, a
common simplification in many linear RNN variants, reduces a model’s expressive capability to
commutative operations.

First, consistent with common practice in the linear RNN literature (e.g., Orvieto et al. (2023)), we
consider state-transition matrices that are diagonalizable over the complex numbers. This focus is
justified because the set of non-diagonalizable matrices has measure zero (Axler, 2024); consequently,
any matrix A ∈ RN×N can be made diagonalizable over C through an arbitrarily small perturbation
of its entries (Zhinan, 2002). This implies that, based on the real Jordan Normal Form, the state-
transition matrix Ax can be expressed as:

Ax = PxDxP−1
x , (5)

where Px ∈ RH×H is an invertible matrix and Dx ∈ RH×H is a real block-diagonal matrix with

blocks of size 1×1 (for real eigenvalues) or 2×2 of the form C2 =

(
a −b
b a

)
(for complex conjugate

pairs of eigenvalues a+ ib). Both Px and Dx are generally parameterized by the input x.

A particularly important special case is when the state-transition matrix Ax is orthogonal. This is
highly desirable for linear RNNs, as it ensures stability by guaranteeing that all eigenvalues of Ax

have unit norm, preventing exploding or vanishing states during recurrent updates. In this scenario,
the diagonal matrix Dx will be entirely composed of 2-dimensional rotation matrices, which we

denote as R2 =

(
cos θ − sin θ
sin θ cos θ

)
.
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A common simplification is to assume that the transformation matrix Px is independent of the input x
(i.e., Px = P). This fixed matrix P can then be canceled out in the recurrence steps and absorbed into
the input and output transformations of the recurrent layer. The state dynamics are thus governed by
Ax = Dx, which remains input-dependent and retains its block-diagonal structure, often simplified
to purely diagonal with real, or even non-negative entries, e.g., in Mamba (Gu and Dao, 2024). 2

It is important to recognize that fixing P while Dx varies with the input implies that the overall
state-transition matrices Ax = PDxP−1 and Ay = PDyP−1 for different inputs x and y will
commute if and only if their corresponding block-diagonal components Dx and Dy commute. Thus
this architectural choice inherently restricts the model to commutative transition dynamics (Terzić
et al., 2025). In fact, a model whose transition matrix Ax is directly parameterized as such a block-
diagonal matrix Ax = Dx (i.e., effectively P = I) can naturally represent operations from any
abelian group, as we show in the following proposition:
Proposition 2. A linear RNN of the form in Eq. (3) with orthogonal state-transition matrices Ax

that share a common, input-independent eigenbasis (i.e., Ax = PDxP−1 with fixed P) can simulate
any abelian group (commutative operation).

We refer to Appendix A.2 for the proof. In Section 3.5, we also present a visualization of the invariant
subspaces and rotation angles learned by the model.

2.4 Real diagonal bilinear RNNs

Finally, the block-diagonal transition matrix, Dx, is often further simplified to be purely diagonal
with real values; e.g., the RG-LRU cell utilized in the Hawk architecture (De et al., 2024). However,
as noted by Grazzi et al. (2025), such models are incapable of learning modular addition.

Contrary to this limitation, we will show that learning parity is not only straightforward, but that it is in
fact trivial for a linear RNN with real-valued diagonal state transitions which depend multiplicatively
not additively on x. Length-generalization on the parity task is widely used to test the state tracking
capabilities of sequence models (e.g., Anil et al. (2022); Grazzi et al. (2025)).
Proposition 3. A random network with frozen real-diagonal transition matrix (without additive
terms) and learnable linear readout layer learns parity with probability 1 − 2−H , for arbitrary
sequence length from only 2 training examples of odd and even parity.

Freezing the recurrent weights turns the network effectively into a bilinear variant of an echo state
network (Jaeger, 2007; Maass et al., 2002). Our result shows that an echo state network with state
transitions depending only multiplicatively on the input can learn parity. We shall show experimental
results confirming this result in practice in Section 3.4. This is in contrast to models like Mamba (Gu
and Dao, 2024), in which state transitions are diagonal and positive, and which can therefore not
learn parity even when adapting recurrent parameters during learning (Grazzi et al., 2025).

3 Experiments

Tasks: To evaluate the state-tracking capabilities of the bilinear RNN model variants introduced
previously, we use the following three tasks: modular addition, random state machine, and modular
arithmetic. In the modular addition task, the model processes a sequence of integers, each randomly
drawn from the set Zm = {0, · · · ,m − 1}, and is required to predict their sum modulo m. For
the random state machine task, the model must simulate a randomly generated finite-state machine
where both the input alphabet Σ and the set of states Q are identical to Zm; and for each q ∈ Q, the
transition function is set to δ(q, σ) = πq(σ), where πq is a random permutation of Σ. Finally, the
modular arithmetic task involves processing a sequence alternating between integers from Zm and
arithmetic operators (from the set {+,×,−}); the model must compute and output the result of these
operations, applied sequentially, with all calculations performed modulo m. For all tasks, multi-digit
integers are tokenized into single tokens. We refer the reader to Appendix B.1 for examples and
additional details on each task.

Models: We compare full, factored, and block-diagonal bilinear models against several baseline
architectures: non-linear RNNs including LSTM (Hochreiter and Schmidhuber, 1997) and Elman

2Note, however, that this restriction may not be as problematic when additive terms are present.
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RNN (Elman, 1990), Mamba, and Transformer models. All RNN-based models (including the
bilinear, and non-linear ones) have a single recurrent layer followed by a linear classification head
over the hidden states. For the Mamba and Transformer baselines, we evaluate configurations with
1, 2, and 4 layers. A consistent hidden and input dimensionality of 256 is used across all models.
Further details of the experimental setup are provided in Appendix B.

Recurrence stability: The absence of additive terms in recurrent formulation of Eq.(2) makes the
introduced bilinear hidden states scale-invariant as discussed above. For inference, we can therefore
normalize hidden states during the recurrence, while not doing so during training, without introducing
any inconsistency between training and inference.

3.1 Main results

We trained the models described above on the three tasks, on instances of lengths 2-10, and evaluated
on instances of length 500. The training is done for 100,000 steps, where at each step 64 samples
(of length 2-10) are generated for the task. Each model is trained using three different learning rates
and picked the best-performing model. Table 1 summarizes the main results. In all tables, we scale
accuracy values such that 0 represents random chance, and 1 is perfect accuracy.

We observe that bilinear models generally perform best across all tasks. Bilinear block-diagonal
variants exhibit improved performance as the block size increases. Notably, the real-diagonal model
(a bilinear block-diagonal model with block size 1) can only learn parity (i.e., modular addition with
m = 2); however, increasing the block size to two enables the learning of modular addition for
larger values of m, as demonstrated in Proposition 2. Also, the R2 block-diagonal model explicitly
parametrizes the state transition matrix as rotation blocks of the form R2, with angles parameterized
by inputs. In contrast a block-diagonal bilinear with block size of 2 parametrizes 2D-blocks freely
from the input.

Non-linear recurrent models, such as LSTM and simple RNN, also perform well on these state-
tracking tasks. It can be speculated that multiplicative interactions between hidden states and inputs
arise from the gating mechanisms and non-linear activation functions within their recurrent structures.
While Mamba can learn the tasks in-distribution for small state sizes m, it largely fails to generalize
to longer sequences. Also, the failure of transformers in length-generalization is a well-known
observation in the literature.

Note that in Table 1, we used a consistent hidden dimension of 256 across all models. In Appendix C.1,
we report the performance of models matched in parameter count by adjusting their hidden dimensions.
In addition, Appendix C.2 presents results for simulating dihedral groups with various models.

3.2 Data Efficiency

We showed in the previous section that bilinear models are effective at learning state tracking
tasks. However, since the number of parameters grows as the product of the input embedding and
hidden dimension, their parameter counts can be extraordinarily large. While this may prove to be
unproblematic in large-scale multi-task and language modeling tasks, data efficiency is a concern.

To gain insights on the data efficiency of bilinear models, we train and evaluate the models on the
tasks discussed in the previous section, using fixed training set sizes. We also compare to LSTM. All
models were trained on an input sequence length of 10, using the optimal learning rate found in the
previous experiment. The results are shown in Figure 2. They show that despite the large number of
parameters, the models are not less data efficient than the LSTM. This is true even of the full bilinear
model (denoted “Bilinear” in the figure).

3.3 Multiplicative versus additive interactions

Our results on bilinear models are based solely on pure bilinear transformations, such that hidden
units do not have any additive bias terms or any other additive dependencies on the inputs. Our results
imply that such pure bilinear transformations are sufficient for learning state tracking tasks. In the
following experiment, we study the performance of models with and without additive terms, and we
show empirically that for some models, the absence of additive terms is also necessary (performance
degrades in the presence of additive terms).
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Table 1: In-distribution and length-generalization performance (normalized such that 0 indicates
random chance) of various models on three state tracking tasks: modular addition, simulating random
state machines, and modular arithmetic. Bilinear models outperform others, with block-diagonal
variants improving as block size increases. Non-linear recurrent models (LSTM, RNN) also perform
well, whereas Mamba and Transformer struggle with long-sequence generalization.

Validation Accuracy (Length 2-10) OOD Accuracy (Length 500)

Modulus / State Size 2 3 5 10 25 50 2 3 5 10 25 50

Modular Addition

Bilinear 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Factored Bilinear 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95

Block Diag.
(block size)

1 1.00 0.96 0.88 0.85 0.45 0.32 1.00 0.00 0.00 0.10 0.00 0.02

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

R2 Block Diag. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.66 0.37 0.00

LSTM 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 1.00 0.00 0.02

RNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.37 0.07

Mamba
(layers)

1 0.99 0.92 0.96 0.85 0.74 0.61 0.00 0.01 0.01 0.00 0.00 0.00

2 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.02 0.01 0.00 0.00 0.00

4 1.00 1.00 1.00 1.00 1.00 0.47 0.01 0.01 0.00 0.01 0.00 0.00

Transformer
(layers)

1 1.00 1.00 1.00 0.47 0.98 0.19 0.03 0.01 0.01 0.00 0.00 0.00

2 1.00 1.00 1.00 0.99 0.89 0.00 0.01 0.02 0.00 0.00 0.00 0.00

4 1.00 1.00 1.00 0.99 0.92 0.02 0.04 0.00 0.00 0.00 0.01 0.00

State Machine

Bilinear 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Factored Bilinear 1.00 1.00 1.00 1.00 1.00 0.19 1.00 1.00 1.00 1.00 1.00 0.01

Block Diag.
(block size)

1 1.00 0.28 0.20 0.14 0.09 0.07 1.00 0.03 0.00 0.00 0.00 0.00

2 1.00 1.00 0.84 0.49 0.25 0.15 1.00 0.34 0.16 0.06 0.06 0.02

8 1.00 1.00 1.00 1.00 0.48 0.21 1.00 1.00 1.00 0.41 0.13 0.04

64 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

R2 Block Diag. 1.00 0.29 0.19 0.11 0.07 0.02 1.00 0.00 0.00 0.00 0.00 0.01

LSTM 1.00 1.00 1.00 1.00 1.00 0.30 1.00 1.00 1.00 1.00 0.64 0.09

RNN 1.00 1.00 1.00 1.00 0.41 0.18 1.00 1.00 1.00 0.99 0.19 0.07

Mamba
(layers)

1 1.00 1.00 0.96 0.55 0.34 0.19 0.00 0.99 0.87 0.31 0.16 0.07

2 1.00 1.00 1.00 0.79 0.44 0.30 0.00 1.00 0.96 0.42 0.18 0.09

4 1.00 1.00 1.00 0.99 0.62 0.41 0.03 0.99 0.97 0.47 0.24 0.10

Transformer
(layers)

1 1.00 0.94 0.83 0.46 0.27 0.18 0.03 0.01 0.02 0.01 0.00 0.00

2 1.00 1.00 0.97 0.61 0.39 0.17 0.01 0.01 0.01 0.01 0.00 0.00

4 1.00 1.00 1.00 0.84 0.49 0.17 0.00 0.02 0.01 0.00 0.00 0.00

Modular Arithmetic

Bilinear 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Factored Bilinear 1.00 0.34 0.90 0.09 0.03 0.03 1.00 0.24 0.37 0.06 0.04 0.03

Block Diag.
(block size)

1 0.60 0.30 0.24 0.27 0.16 0.14 0.19 0.15 0.09 0.11 0.04 0.03

2 0.99 0.77 0.53 0.52 0.27 0.21 0.37 0.00 0.08 0.12 0.03 0.05

8 1.00 1.00 1.00 1.00 0.54 0.47 1.00 1.00 0.41 0.24 0.06 0.08

64 1.00 1.00 1.00 1.00 1.00 0.66 1.00 1.00 1.00 1.00 0.40 0.21

R2 Block Diag. 0.61 0.34 0.21 0.23 0.03 0.04 0.02 0.00 0.04 0.04 0.02 0.03

LSTM 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.99 0.64

RNN 1.00 1.00 1.00 1.00 0.82 0.22 1.00 1.00 1.00 1.00 0.55 0.16

Mamba
(layers)

1 0.99 0.83 0.56 0.59 0.24 0.14 0.74 0.55 0.29 0.32 0.08 0.08

2 1.00 0.99 0.80 0.93 0.35 0.33 0.85 0.38 0.41 0.29 0.11 0.07

4 1.00 1.00 0.99 0.99 0.55 0.29 0.92 0.75 0.48 0.51 0.17 0.09

Transformer
(layers)

1 0.88 0.63 0.46 0.32 0.10 0.08 0.19 0.02 0.04 0.01 0.03 0.01

2 1.00 0.97 0.81 0.32 0.11 0.08 0.19 0.15 0.05 0.04 0.02 0.01

4 1.00 0.99 0.75 0.32 0.07 0.08 0.19 0.12 0.03 0.03 0.02 0.03
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Figure 2: Data efficiency comparison between bilinear models and LSTM/RNN on state tracking
tasks. All models were trained on sequences of length 10 and evaluated on length 500, with varying
training set sizes. Despite their large parameter counts, bilinear models including the full variant,
exhibit better data efficiency compared to LSTM.

Figure 3 (left) shows the OOD performance of real diagonal, 2D block-diagonal, and full bilinear
models on the modular addition tasks discussed previously. As observed, and in line with the proposed
hierarchy, the diagonal model is only capable of learning the parity task (only when the additive terms
are excluded), and the 2D block-diagonal model can learn modular addition (again only without the
additive terms). In contrast, additive contributions do not affect performance for the bilinear model.
For a more comprehensive set of experiments and additional discussion on the effect of additive
terms, refer to Appendix C.4.

3.4 Learning parity with a random network

Figure 3 (right) shows the OOD performance (testing length 400, best across 3 seeds and 2 learning
rates) of this type of model, after training on sequences of lengths 10− 50. It shows, in line with the
theoretical result, that the pure bilinear model can solve the task, even though recurrent parameters
are frozen during training (only the readout layer is trained). It also shows the detrimental effect of
additive terms for comparison.

Figure 3: (Left) Effect of (input-dependent) additive terms in the hidden state update rule on the
OOD accuracy of modular addition task. (Right) Length generalization performance on parity with a
random multiplicative RNN with and without additive terms.

Effect of Additive Terms in Recurrence

Dataset Parity Modular Addition

Modulus 2 3 5 10 25

Model Additive Terms

Real Diag.
Yes 0.00 0.00 0.01 0.00 0.00

No 1.00 0.01 0.00 0.00 0.00

2D Block Diag.
Yes 0.00 0.30 0.00 0.00 0.00

No 1.00 1.00 1.00 1.00 0.98

Bilinear
Yes 1.00 1.00 1.00 1.00 1.00

No 1.00 1.00 1.00 1.00 1.00

Performance of a Frozen Random Network on Parity

Training Examples 2 100

Training Length 10 20 50 10 20 50

Additive Terms

Input Dependent 0.05 0.07 0.05 0.03 0.05 0.04

Input Dep. + Constant 0.06 0.06 0.02 0.03 0.04 0.06

Constant 0.04 0.06 0.05 0.87 0.74 0.01

None 1.00 1.00 1.00 1.00 1.00 1.00
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3.5 Representing commutative tasks by rotating phase angles

Figure 4 illustrates the rotation angles learned by the R2 block-diagonal model for the modular
addition task with m = 10. The figure displays these angles for each input integer (0, 1, . . . , 9) across
several 2-dimensional hidden state subspaces (12 out of 128). These subspaces are ordered based on
the magnitude of the weights associated with these in the linear readout layer. The harmonic value,
reported for each subspace, is calculated as θ1/(2π/m), where θ1 is the learned rotation angle for the
input integer 1 (rotation angles for other integers are multiples of θ1 in the representations learned
by the model). This harmonic value indicates how closely θ1 aligns with an integer multiple of the
fundamental angle 2π/m required for ideal cyclic group representation.
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Figure 4: Visualization of the rotation angles learned by the R2 block-diagonal model for each input
integer in the m = 10 modular addition task. Each subplot corresponds to a distinct 2-dimensional
hidden state subspace. These subspaces are ordered based on the magnitude of the classifier weights.
The “harmonic” is θ1

2π/m , where θ1 is the learned rotation angle for the integer 1.

4 Discussion

Our work shows that models in which hidden states depend bilinearly on previous hidden states and
inputs can learn state tracking tasks. This is in contrast to many linear RNNs, such as Mamba (Gu
and Dao, 2024), LRU (Orvieto et al., 2023), and others. It can also be viewed as extending upon
the studies by Grazzi et al. (2025); Sarrof et al. (2024); Fan et al. (2024) to improve state tracking
behavior beyond that work. However, it is important to note that bilinear models come at the cost of
a parameter count that grows roughly cubically in the number of hidden states. Whether there are
ways to reduce the number of parameters while retaining strong performance across a wide range of
state tracking tasks is an important question for future research. A closely related question is whether
such a reduction may be counterproductive (or conversely the large number of parameters even be
beneficial) in massive multi-task scenarios such as language modeling, which is possible with linear
models due to the possibility for efficient, parallel training.
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
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technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
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Answer: [NA]
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generated data.
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12. Licenses for existing assets
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• The answer NA means that the paper does not use existing assets.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research in this work does not involve LLMs as any important, original, or
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Proof of Proposition 1

Proposition 1. The bilinear state transition model defined in Equation (2) is capable of simulating
any finite state machine S = (Q,Σ, δ, q0).

Proof. Given any state machine S = (Q,Σ, δ, q0), and for all inputs σ ∈ Σ, we define the state
transition matrix ∆σ ∈ {0, 1}|Q|×|Q| with the (i, j)-th element given by:

(∆σ)ij =

{
1 if δ(qj , σ) = qi,

0 otherwise.
(6)

This means that if the state machine is in state qj , and and receives input σ, the one-hot representation
of the next state is precisely the j-th column of ∆σ . Consequently, if qt ∈ Q is the state at time t and
ht ∈ {0, 1}|Q| is its one-hot encoded representation, the state dynamics can be expressed as:

qt = δ(qt−1, σt) ⇔ ht = ∆σt
ht−1 (7)

To demonstrate that the bilinear state-transition form from Eq. (2) can represent any state machine, it
suffices to show that the third-order tensor W can be constructed such that its resulting state transition
matrix Ax equals ∆σ for every σ ∈ Σ, where x is the embedding corresponding to σ.

Without loss of generality, let the input alphabet be Σ = {1, 2, . . . , |Σ|}. We define the input
embedding x ∈ {0, 1}|Σ| as the one-hot vector for the current input symbol σ ∈ Σ (thus, the input
dimension D is effectively |Σ|). The third-order tensor W is then constructed such that for each
σ ∈ Σ, the slice W··σ is set equal to the state machine’s transition matrix ∆σ . From Eq. (3), we will
have:

(Ax)ij =
∑
k

Wijkxk = Wijσ = (∆σ)ij . (8)

This is because x is the one-hot vector for input symbol σ (meaning xk = 1 if k = σ, and
xk = 0 otherwise). Therefore, this construction yields Ax = ∆σ . Consequently, the state-transition
dynamics of the bilinear model, ht = Axt

ht−1, become equivalent to those of the state machine,
ht = ∆σt

ht−1.

A.2 Proof of Proposition 2

Proposition 2. A linear RNN of the form in Eq. (3) with orthogonal state-transition matrices Ax

that share a common, input-independent eigenbasis (i.e., Ax = PDxP−1 with fixed P) can simulate
any abelian group (commutative operation).

Proof. We show by construction that a bilinear model with state transition matrix that is block-
diagonal with R2 rotation blocks can represent modular addition, and hence any cyclic group. Based
on the fundamental theorem of finite abelian groups, every finite abelian group can be expressed as
the direct sum of cyclic groups (typically of prime-power order) (Kurzweil and Stellmacher, 2004).
Therefore, any model capable of simulating modular addition can, in principle, simulate any finite
abelian group.

First, let’s clarify how an orthogonal transition matrix simplifies to a block-diagonal form composed
of 2-dimensional rotation blocks. (Further details are available in Section 2.3). Based on the Real
Jordan Normal Form, an orthogonal matrix Ax is similar to a real block-diagonal matrix Dx (Axler,
2024). This means:

Ax = PxDxP−1
x , (9)

where Px ∈ RH×H is the invertible transformation matrix, and Dx ∈ RH×H is a real block-diagonal
matrix composed entirely of 2-dimensional rotation matrices (assuming H is even), which we denote
as

R2(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (10)
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Now, if the transformation matrix Px is independent of the input x (i.e., Px = P), the fixed matrix P
can be canceled out in the recurrence steps and absorbed into the input and output transformations
of the recurrent layer. Therefore, for an orthogonal transition matrix with such input-independent
transformations, we can effectively model Ax as being block-diagonal, with its blocks being 2-
dimensional rotation matrices R2(θ(x)), where the rotation angles θ(x) are parameterized by the
input x.

Next, we present a simple construction with H = 2 (i.e., Ax = R2(θ(x))) that simulates modular
addition. Let xσ be the embedding corresponding to an input integer σ ∈ Zm = {0, 1, . . . ,m− 1}.
We define the rotation angle for input σ as θ(xσ) = 2πσ/m. Consequently, after observing a
sequence of inputs σ1, σ2, . . . , σT , the hidden state vector h ∈ R2 (with initial state h0) evolves as
follows:

hT = AxT hT−1 = Ax1Ax2 · · · AxT h0 (11)

= R2

(
θ
(
x1
))

R2

(
θ
(
x2
))

· · ·R2

(
θ
(
xT
))

h0 (12)

= R2

(
T∑

t=1

θ
(
xt
))

h0 (13)

= R2

(
T∑

t=1

2πσt

m

)
h0 (14)

R2 (ϕ) = R2 (ϕ mod 2π) = R2

((
T∑

t=1

2πσt

m

)
mod 2π

)
h0 (15)

(2π σ
m
) mod 2π = (σ mod m)( 2π

m
) = R2

(
2π

m

(
T∑

t=1

σt mod m

))
h0 (16)

Let y = (
∑T

t=1 σ
t) mod m be the target sum modulo m. This means hT is h0 rotated by 2π

m y:

hT = R2

(
2π

m
y

)
h0. (17)

Finally, since this rotation is unique for every possible value of y ∈ Zm, a linear readout layer (i.e.,
an m-class linear classifier) can perfectly extract y from hT :

y = argmax
k∈Z

w⊤
k h

T , (18)

with

wk = R2

(
2π

m
k

)
h0, ∀k ∈ Zm. (19)

A.3 Proof of Proposition 3

Proposition 3. A random network with frozen real-diagonal transition matrix (without additive
terms) and learnable linear readout layer learns parity with probability 1 − 2−H , for arbitrary
sequence length from only 2 training examples of odd and even parity.

Proof. For the parity task, the model observes an input sequence σ1, σ2, . . . , σT , with each σt ∈
{0, 1}. The objective is to output the parity of this sequence, which is

(∑T
t=1 σ

t
)
mod 2.

Let A[0] and A[1] be the diagonal state-transition matrices corresponding to inputs 0 and 1, with
emba[0] and emba[1] denoting the diagonal elements:

A[0] = diag(a[0]), A[1] = diag(a[1]) (20)

The hidden state evolves according to ht = A[σt]ht−1. For the i-th component of the hidden state,
this evolution is:

hT
i = a

[σt]
i hT−1

i = h0
i

T∏
t=1

a
[σt]
i , (21)
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where a
(σ)
i denotes the i-th diagonal element of A(σ) (i.e., the i-th element of a[σ]).

Crucially, the sign of the product
∏T

t=1 a
[σt]
i can encode parity. If, for a given component i, we

have a
[0]
i > 0 and a

[1]
i < 0, then sgn

(∏T
t=1 a

[σt]
i

)
will be positive for an even number of 1s (even

parity) and negative for an odd number of 1s (odd parity). This is because the number of negative
terms (a[1]i ) in the product matches the count of 1s in the input sequence. Conversely, if a[0]i < 0

and a
[1]
i > 0, the sign of the product becomes (−1)T−count of 1s, which also encodes parity, albeit

in a manner dependent on the sequence length T . Since sgn
(∏T

t=1 a
[σt]
i

)
= sgn(hT

i h
0
i ), if h0

i is

initialized with a fixed sign (e.g., positive), then in either case where a[0]i and a
[1]
i have opposite signs

(i.e., a[0]i a
[1]
i < 0), the sign of hT

i contains sufficient information to determine the parity of the input
sequence. The model then only needs to update its read-out layer (e.g., with one example of even and
one of odd parity) to decode parity from hT

i ; all other recurrent parameters could remain fixed.

Assuming that the elements of a(0) and a(1) are i.i.d. and symmetrically distributed around 0 at
initialization, we analyze the probability of finding such a suitable component i. The probability
that an arbitrary component i has a

[0]
i and a

[1]
i with opposite signs is 0.5. Therefore, given the

independence across the H components, the probability that there exists at least one component i for
which a

[0]
i a

[1]
i < 0 is 1− (1− 0.5)H = 1− 2−H .

Remark: For the model to learn parity for arbitrary sequence lengths using a simple sign-based
readout from a single component i, the ideal condition is a[1]i < 0 and a

[0]
i > 0. Under the same

i.i.d. symmetric initialization assumptions, this specific configuration for a component i occurs with
probability 1/4. Therefore, the probability that at least one such ideally suited component i exists is
1− (1− 1/4)H = 1− (3/4)H .
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B Implementation details

B.1 Tasks

For all tasks, to generate a training sample, we first randomly select the number of inputs n ∼
U(2, N), where N is the maximum training sequence length. We then select n input symbols from
{0, 1, . . . ,m−1} uniformly at random with replacement. For the modular arithmetic task specifically,
we also sample n− 1 operators uniformly with replacement from the set {+,−,×}, which are then
interleaved with the n input symbols.

Each sample is structured with special tokens: it begins with a [BOS] (beginning of sequence) token
and the input portion concludes with an [EOI] (end of input) token, immediately followed by the
TARGET, as shown:

[BOS] INPUT1 INPUT2 INPUT3 · · · INPUTn [EOI] TARGET

Each input symbols (including multi-digit integers and potentially operators), and special tokens
[BOS] and [BOI] are tokenized as single tokens. During training and inference, all model outputs
are disregarded except for the output corresponding to the [EOI] token; this output is taken as the
model’s prediction for TARGET. Consequently, during training, the loss is calculated only on this final
target prediction.

We evaluate the models on the following three tasks:

Modular addition: The target is the sum of input integers modulo m. For example, with n = 5 and
m = 20:

[BOS] 8 0 12 18 5 [EOI] 3

Modular arithmetic: This task involves processing a sequence alternating between n integers from
{0, 1, . . . ,m− 1} and n− 1 arithmetic operators from {+,×,−}. The target is the result of these
operations applied sequentially from left to right, with all calculations performed modulo m. For
example, with n = 5 and m = 20:

[BOS] 3 * 9 - 17 + 6 + 12 [EOI] 8

The target is calculated as:

(3× 9) mod 20 = 7

(7− 17) mod 20 = 10

(10 + 6) mod 20 = 16

(16 + 12) mod 20 = 8

Simulating state machines: The objective is to simulate a randomly generated finite state machine
(FSM). Both the input alphabet Σ and the set of states Q are identical to {0, 1, . . . ,m− 1}. For each
state q ∈ Q, the transition function δ(q, σ) is defined as πq(σ), where πq is a random permutation of
Σ. This transition function δ is generated once per FSM definition and remains fixed for all samples
related to that FSM. The first input symbol in the sequence, INPUT1, determines the initial state of the
FSM. Subsequent symbols INPUT2, . . . , INPUTn are processed as inputs to the FSM, and the target is
the FSM’s final state. For example, consider m = 6 and the following randomly generated transition
function:
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Input Symbol (σ)
0 1 2 3 4 5

C
ur

re
nt

St
at

e
(q

) 0 3 0 4 5 1 2
1 2 1 0 3 5 4
2 5 0 2 1 3 4
3 5 0 1 2 4 3
4 1 0 3 4 2 5
5 5 4 0 3 1 2

An example sequence for this FSM would be:

[BOS] 4 1 2 5 5 [EOI] 2

The initial state is the first input (4 in this example), and upon observing each input, the state
transitions occur based on the transition table:

State: 4, Input: 1
δ(4,1)=0−−−−−→ New State: 0

State: 0, Input: 2
δ(0,2)=4−−−−−→ New State: 4

State: 4, Input: 5
δ(4,5)=5−−−−−→ New State: 5

State: 5, Input: 5
δ(5,5)=2−−−−−→ New State: 2 (Target)

B.2 Experiment Setup

For the experiments discussed in Section 3.1 and reported in Table 1, all models were trained using
the ADAM optimizer with three learning rates (10−3, 10−4, 10−5), and the configuration yielding
the best performance was selected for reporting. All models were trained from random initializations,
without learning rate scheduling, weight decay, or dropout. In addition, the parameters of bilinear
models (and variants) were initialized from a uniform distribution U(−0.01, 0.01). Training was
conducted for 100,000 steps with a batch size of 64. An early stopping criterion was applied if the
validation loss fell below 10−5. For these experiments, training examples were randomly sampled at
each training step with input sequence lengths ranging from 2 to 10, while models were evaluated on
inputs of length 500.

For the data efficiency experiments detailed in Section 3.2 (results in Figure 2), we used the optimal
learning rate identified for each model and task from the previous experiment. We constructed fixed
training sets of specified sizes and trained models for 1000 epochs over each set. Other settings were
kept consistent with those in the previous experiment.

Regarding the baseline models in Table 1, the Transformer baseline is based on the GPT-2 architecture
(Radford et al., 2019) with configurations of 1, 2, and 4 layers, and a model (embedding/hidden)
dimension of 256, consistent with other models. Other parameters, such as an MLP inner expansion
factor of 4, followed default GPT-2 (small) settings. We also used Mamba-1 (Gu and Dao, 2024)
with 1, 2, and 4 layers, setting its model and hidden dimensions to 256. For other configurations, we
adopted default values of Mamba-130M, including an intermediate expansion size of 512, a state
space dimension of 16, and a convolution kernel size of 4.

All experiments were conducted on a cluster of A100 GPU nodes. A single training and evaluation
run for a given model configuration, task, and setting typically completed on a single GPU within an
hour in most cases, or up to a few hours in the worst case.
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C Additional experiments

C.1 Parameter-matched models

The large parameter counts for some of our models (e.g., the full bilinear variant) are a direct result
of matching hidden dimension (256) rather than parameters in experiments presented in Section 3.
To address the concern about parameter efficiency, we conducted another set of experiments, similar
to those in Table 1, in which models were matched in parameter count by adjusting their hidden
dimension. In Table 2 we report the validation and OOD test accuracy on sequences of length 500,
with training performed on sequences up to length 10. These new results still show superior state-
tracking performance of bilinear models in most tasks (a slight degradation for modular arithmetic).

Table 2: Validation and OOD test accuracy for models matched by parameter count via adjusted
hidden dimensions. Bilinear models maintain superior state-tracking performance across most tasks.

Model Spec. Hidden Dim. Layers Parameters

Bilinear 80 1 513,207

Factored Bilinear Rank 700 256 1 541,447

Block Diag. Bilinear 4 Block of Size 32 128 1 526,215

Block Diag. Bilinear 32 Blocks of Size 8 256 1 528,135

LSTM 256 1 529,927

RNN 512 1 532,487

Mamba 128 4 549,376

Transformer 4 Heads 96 4 546,528

Validation Accuracy (Length 2-10) OOD Accuracy (Length 500)

Modulus / State Size 2 3 5 10 25 50 2 3 5 10 25 50

Modular Addition

Bilinear 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Factored Bil. (700 factors) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Block Diag. (Block Size 8) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Block Diag. (Block Size 32) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LSTM 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.98 1.00 0.00 0.02

RNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.36 0.11

Mamba 1.00 1.00 1.00 1.00 1.00 0.98 0.01 0.00 0.01 0.01 0.00 0.00

Transformer 1.00 1.00 1.00 0.97 0.63 0.01 0.03 0.04 0.00 0.00 0.00 0.00

State Machine

Bilinear 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Factored Bil. (700 factors) 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.18

Block Diag. (Block Size 8) 1.00 1.00 1.00 1.00 0.60 0.31 1.00 1.00 1.00 0.39 0.11 0.02

Block Diag. (Block Size 32) 1.00 1.00 1.00 1.00 1.00 0.73 1.00 1.00 1.00 1.00 1.00 0.11

LSTM 1.00 1.00 1.00 1.00 1.00 0.30 1.00 1.00 1.00 1.00 0.66 0.09

RNN 1.00 1.00 1.00 1.00 0.67 0.22 1.00 1.00 1.00 1.00 0.25 0.08

Mamba 1.00 1.00 1.00 0.99 0.61 0.33 0.00 1.00 0.96 0.48 0.24 0.08

Transformer 1.00 1.00 0.99 0.74 0.38 0.17 0.00 0.02 0.02 0.01 0.01 0.00

Modular Arithmetic

Bilinear 1.00 1.00 1.00 1.00 1.00 0.70 1.00 1.00 1.00 1.00 0.35 0.19

Factored Bil. (700 factors) 1.00 1.00 1.00 1.00 1.00 0.28 1.00 1.00 1.00 1.00 0.33 0.29

Block Diag. (Block Size 8) 1.00 1.00 1.00 1.00 0.66 0.60 1.00 1.00 0.12 0.20 0.03 0.07

Block Diag. (Block Size 32) 1.00 1.00 1.00 1.00 0.94 0.79 1.00 1.00 1.00 1.00 0.09 0.13

LSTM 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 0.94 0.64

RNN 1.00 1.00 1.00 1.00 1.00 0.35 1.00 1.00 1.00 1.00 0.98 0.29

Mamba 1.00 1.00 0.97 0.99 0.38 0.23 0.95 0.78 0.36 0.37 0.18 0.07

Transformer 1.00 0.58 0.26 0.25 0.07 0.09 0.19 0.04 0.01 0.02 0.01 0.01
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C.2 Simulating dihedral groups

Consider a finite state-machine with Q = {0, · · · ,m − 1} × {−1,+1} and input alphabet Σ =
{advance, reverse}. The state consists of a "value" and a binary "direction". Upon receiving input
advance, the value will be incremented or decremented by 1 (modulo m) depending on the current
direction. The input reverse flips the direction while leaving the value unchanged. Formally, the
transition function is defined as follows:

δ((s, d), advance) = ((s+ d) mod m, d)

δ((s, d), reverse) = (s,−d)

See Example 6 in Liu et al. (2023) for more details on dihedral groups. Table 3 reports the in-
distribution and length-generalization performance of various models when simulating dihedral
groups with different moduli. As before, all models were trained on sequences of length 10 and
evaluated on sequences of length 500.

Table 3: In-distribution and length-generalization performance of various models on simulating
dihedral groups with different moduli.

Validation Accuracy (Length 2-10) OOD Accuracy (Length 500)

Modulus 2 3 5 10 25 50 2 3 5 10 25 50

Bilinear 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Factored Bil. (256 factors) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Block Diag. (block size 64) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

R2 Block Diag. 0.78 0.32 0.35 0.42 0.40 0.41 0.02 0.03 0.00 0.07 0.01 0.01

RNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.07

LSTM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.21 0.24

Mamba 1.00 1.00 1.00 1.00 1.00 1.00 0.15 0.01 0.00 0.00 0.00 0.00

Transformer 1.00 1.00 1.00 1.00 1.00 1.00 0.23 0.02 0.01 0.00 0.01 0.01

C.3 Effect of number of factors

Similar to the results presented in Section 3.1, Table 4 presents the validation and out-of-distribution
accuracy of factored bilinear models on the state machine simulation task, considering an increasing
number of factors (R) across various state space sizes (m). As these results indicate, increasing the
number of factors enables the simulation of larger state machines, as a factored model with a higher
R more closely approximates a full bilinear model.

Table 4: In-distribution and length-generalization (normalized) accuracy of factored bilinear models
with different number of factors, on the state machine simulation task.

Validation Accuracy (Length 2-10) OOD Accuracy (Length 500)

# States 2 3 5 10 25 50 2 3 5 10 25 50

Model # Factors

Factored
Bilinear

1 0.00 0.02 0.00 0.02 0.01 0.00 0.03 0.00 0.00 0.00 0.01 0.00

2 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01

4 1.00 1.00 0.65 0.02 0.01 0.00 1.00 0.97 0.29 0.01 0.00 0.00

8 1.00 1.00 0.92 0.17 0.01 0.01 1.00 1.00 0.58 0.04 0.00 0.00

16 1.00 1.00 1.00 0.44 0.06 0.01 0.95 1.00 1.00 0.26 0.01 0.01

64 1.00 1.00 1.00 1.00 0.26 0.04 1.00 1.00 1.00 1.00 0.08 0.00

128 1.00 1.00 1.00 1.00 0.68 0.10 1.00 1.00 1.00 1.00 0.26 0.00

256 1.00 1.00 1.00 1.00 1.00 0.19 1.00 1.00 1.00 1.00 1.00 0.01

512 1.00 1.00 1.00 1.00 1.00 0.45 1.00 1.00 1.00 1.00 1.00 0.10

1024 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.78

2048 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Bilinear 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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C.4 Multiplicative vs. additive recurrence

In a model with bi-linear state transitions, the role of the inputs is to represent transformations on
the hidden state, effectively acting as computations performed by hidden units. This contrasts with
the conventional role of hidden units in an RNN, which primarily involves information retention.
Therefore, for fully bilinear models, multiplicative interactions without additive contributions are
sufficient for learning state transitions. In fact, for rotational and (block-)diagonal models, the
inclusion of additive terms can even be detrimental.

We trained models under four configurations: with and without input-dependent additive contributions,
with and without bias, and without any additive terms. Table 5 reports the OOD (sequence length 500)
accuracy for the diagonal, 2D block-diagonal, and full bilinear models on parity, modular addition,
and state machine simulation tasks.

As observed, and in line with the proposed hierarchy, the diagonal model is only capable of learning
the parity task (only when the additive terms are excluded), the 2D block-diagonal model can learn
modular addition (again only without the additive terms). In contrast, the full bilinear model is able to
learn both modular addition and the non-commutative task, regardless of whether the additive terms
are included.

Interestingly, in line with prior work by Terzić et al. (2025), we find that additive terms sometimes
improve performance on tasks outside a model’s hierarchy (e.g., the 2D block-diagonal model on
non-commutative tasks), although overall accuracy remains low in such cases.

Table 5: Out-of-distribution (sequence length 500 for training sequence length of 10) accuracy of
real diagonal, 2D block-diagonal, and full bilinear models on parity, modular addition, and state
machine simulation tasks with and without additive terms in the recurrence.

Dataset Parity Modular Addition State Machine

Modulus/State Size 2 3 5 10 25 2 3 5 10 25

Model Additive Terms

Real Diag.

Const. 0.00 0.02 0.00 0.00 0.00 0.13 1.00 0.57 0.19 0.11

Input Dependent 0.00 0.01 0.00 0.00 0.00 0.03 1.00 0.75 0.24 0.11

Input Dep. + Const. 0.00 0.00 0.01 0.00 0.00 0.00 1.00 0.74 0.24 0.11

None 1.00 0.01 0.00 0.00 0.00 1.00 0.01 0.00 0.00 0.00

2D Block Diag.

Const. 0.00 0.00 0.66 0.77 0.73 0.00 1.00 0.84 0.28 0.13

Input Dependent 0.00 0.00 0.02 0.00 0.00 0.04 1.00 0.95 0.32 0.12

Input Dep. + Const. 0.00 0.30 0.00 0.00 0.00 0.00 1.00 0.96 0.31 0.11

None 1.00 1.00 1.00 1.00 0.98 1.00 0.34 0.16 0.08 0.05

Bilinear

Const. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Input Dependent 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Input Dep. + Const. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Our observation is consistent with work of Terzić et al. (2025), where it is shown that a complex
diagonal model can generalize to longer sequences on a commutative automaton, but only when the
additive term is removed and a linear readout is used. However, they also show the same model fails
to learn a non-commutative automaton. In that case, the best performance is achieved when additive
terms are included and a non-linear readout layer is used. Even then, generalization remains limited,
although the additive terms offer a slight improvement.
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