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Abstract—This paper proposes FIne-Grained Sparsification
(FIGS), a novel architecture for accelerating attention-based
models using N:M structured sparsity. Existing hardware accel-
erators focus on optimizing compute to achieve ideal processing
element (PE) utilization but ignore the implications of higher
input bandwidth. FIGS overcomes this challenge by leveraging
techniques like grouping and reusing input data to reduce
required input bandwidth, achieving high PE utilization while
minimizing on-chip interconnect area. The paper also proposes
FIGS-Train, a sparsity training recipe that improves the accuracy
of N:M structured sparse attention models.

I. INTRODUCTION

Attention-based models have become increasingly popular
in recent years due to their ability to focus on relevant
information while processing input data. They are particularly
effective in natural language processing (NLP) [3], [7], [10],
image recognition [25], and speech recognition, code gener-
ation [4]. The attention mechanism allows these models to
assign varying levels of importance to different parts of the
input data, resulting in improved accuracy and efficiency.

Despite their effectiveness, attention-based models have be-
come increasingly complex and computationally demanding,
with some models containing billions of parameters [23].
This growing size of the models has led to longer training
and inference times, limiting their applicability in practical
settings. Various techniques, such as parallel processing, model
compression, and low-precision arithmetic, have been pro-
posed to overcome these challenges. However, these tech-
niques have their limitations and often come at the cost of
reduced accuracy [2], [5], [11]–[13], [18], [21], [22], [24],
[28], [29].

Sparsity is an increasingly prevalent technique for accel-
erating attention-based models [6], [26] . Sparsity aims to
reduce the number of parameters and computations required by
the model by identifying and removing redundant or less im-
portant connections. N:M structured sparsity is a particularly
interesting technique as it removes a fixed number of weights
for each block of weights in the model [29]. This approach is
more hardware-friendly and easier to implement in hardware
accelerators than other sparsification techniques, such as ran-
dom or magnitude-based pruning. By using this technique, it is
possible to accelerate the execution of attention-based models
while maintaining high accuracy levels [1], [20], [22].

Although N:M sparsity has been shown to be an effective
technique for accelerating attention-based models, the existing

Fig. 1. Growing cost of supporting higher on-chip bandwidth in 7nm.

hardware accelerators, such as S2TA [21], STA [20], and
VEGETA [15], focus primarily on optimizing the compute
to achieve ideal processing element (PE) utilization, while
ignoring the implications of higher input bandwidth. Recent
research [27] has shown that the required input bandwidth for
N:M accelerators scales up with M, which can lead to sig-
nificant challenges in designing hardware that can effectively
support this higher bandwidth. Figure 1 shows the increase
in the on-chip interconnect area as the bandwidth required
increases [16], [17].

Thus we propose FIGS: FIne-Grained Sparsification, novel
architectures that can improve PE efficiency without increasing
the on-chip bandwidth requirement. Our architectures leverage
techniques like grouping and reusing input data to reduce
the required input bandwidth. By doing so, they can achieve
high PE utilization while minimizing the on-chip interconnect
area. We also, show a potentially promising training approach,
FIGS-Train, that helps improve the accuracy of an N:M struc-
tured sparse attention model. We develop even more efficient
accelerators for attention-based workloads by combining fine-
grained sparsity with FIGS hardware architectures designed to
improve PE efficiency.

To summarize, we make the following contributions:

• We propose a new hardware microarchitecture, FIGS, that
helps accelerate N:M structured sparse models without
increased input BW requirements.

• We propose a new sparsity training recipe, FIGS-Train,
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that can be accelerated using N:M structured HW.
• We compare FIGS microarchitecture, with current SOTA

N:M accelerators.
• We train attention-based models using FIGS-Train,

achieving better accuracy than current state-of-the-art
N:M structured sparsification techniques.

II. FIGS ARCHITECTURE

A. Processing Elements(MAC PE)

Each processing element comprises of β multiplier units.
The FIGS architecture works in a systolic array-inspired
weight-stationary format, storing all sparse weights in a MAC
PE register and metadata. We have bitmask as metadata, as that
would result in the lowest overhead for the structured sparse
case. The MAC PEs send out β metadata to its corresponding
Swap Reg, and it gets the appropriate input activation input.
Each multiplier and adder completes the MAC operation and
forwards an output to the downstream MAC PE. We position β
as a configurable parameter, as with newer technology nodes,
it is possible to have fewer registers between PEs [14], [17].
This helps in reducing the area of the complete engine.

B. Swap Reg

Swap Reg acts as input staging unit. It takes in γ input
words from the engine input or the previous swap reg. Each
Swap Reg registers these γ input words in flops. The Swap
Reg’s main task is to provide appropriate data to the MAC
PEs. Using the meta-data provided by the MAC PEs, the
Swap Reg would generate β corresponding output words.
Multiple neighboring Swap Regs can also talk to each other
and exchange their stored input words. Depending on the
architectural parameter,α, a single Swap Reg takes all the input
activation of the α Swap Regs, making a total of α · γ input
words. This means each Swap Regs has to select the β output
activation words from (α + 1)γ inputs. Thus a bigger α/β/γ
value results in a bigger Swap Reg.

C. The FIGS Engine

We build the complete FIGS engine using MAC PEs and
Swap Reg as building blocks. A FIGS engine has NRows = R
and NCols = C. All the MAC PEs are accompanied by a
Swap Reg at their input. Thus the whole FIGS engine has R
* C MAC PEs and Swap Regs.
γ depends on the maximum allowable on-chip bandwidth

capacity and required sparsity support. β will depend on
the engine’s required running frequency and the synthesis
technology node. Theoretically, this can be any value between
1 and R. Finally, α depends on the maximum sparsity support
required. We calculate α = Mmax

Nmin·γ .
Once, we have all the configuration parameters of the FIGS

engine, we get an engine with the total number of MAC units
= R ∗ C ∗ β. The engine takes in C ∗ γ words as input per
cycle and generates R ∗ β output words per cycle.

D. Dataflow

With the full FIGS engine now described, we move on
to how the FIGS accelerates flexible N:M sparsity without
changing the input BW. In Figure 3, we show 2:4 sparse matrix
with input BW twice of the dense architecture. Each row of
A matrix with 2:4 structured sparsity is mapped to a single
column of MAC PEs. Each column of MAC PEs takes β of
rows of matrix A and generates β partial sum. To support 2:4
sparsification, with have need α = M

N ·γ = 1.
In the current configuration, two neighboring Swap Regs can

exchange the input activations. We can see this in action, when
in row 1 of the engine, the First MAC PE, takes Element 3 as
input based on the metadata. This element has been provided
by the Swap Reg of row 2. In each cycle, the Swap Reg
forwards γ = 2 input activation to the next Swap Reg but gives
out β = 4 activations to the MAC PE. Using this mapping, we
ensure, that PEs are fully utilized while allowing higher N :M
sparsity, for the same γ. The full execution of this would take
’T’ cycles.

Now, in order to execute 1:2 or 1:1 sparsity, we can still
use the same mapping; just the Swap Regs would not need to
swap data at that time.

III. FIGS-TRAIN

A. The Recipe

Now that we understand the abilities of the FIGS accel-
erator, we propose FIGS-Train, a specialized training recipe
capable of efficient sparsification. Figure 4 shows the training
schedule for FIGS-Train. The intuition is that by keeping the
same number of non-zeros in the row, we keep reducing the
block size. It is important to understand each progressive step
would be a subset of the previous sparsification. For example,
in the figure, we 1:4 ∈ 2:8 ∈ 4:16 ∈ 8:32. Thus, this approach
helps the gradients gather locally before pruning which helps
achieve better accuracy.

B. Training methodology and results

We applied this technique for weight sparsification at var-
ious locations in two attention-based models(ViT [9] and
Swin V2 [19]. We trained these models on imagenet-1k [8]
dataset with various amounts of sparsity. Table I summarizes
the results for the 2 models at different sparsity levels. We
compare the results with SR-STE [29], the current SOTA
technique of N:M structured sparsification.

We found the two feed-forward layers in each layer are the
most robust. Hence we always sparsified the weights in those
layers. Next, we also pruned the weights of Query and Key
matrices. We found pruning the weights of the Value matrix
had the biggest impact on the network accuracy; Hence we
did not prune the Value layer’s weights.

IV. EVALUATIONS

A. Experimental Setup

We convert the feed-forward layer of the encoder block of
2 attention-based models to GEMM operations. We analyze
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Fig. 4. Breakdown of training epochs for FIGS-train recipe.

the training time for the layer when trained with the FIGS-
Train recipe. We compare the runtime of these operations on
a systolic array, SOTA N:M accelerators like STA/Vegeta, and
compare them with three configurations of FIGS. We assume
the same number of MACS = 512 MACs for all architectures.

TABLE I
SPARSITY TRAINING RESULTS WITH FIGS. FF MEANS SPARSITY IS

PRESENT IN THE FEED-FORWARD LAYERS. QK MEANS THE SPARSITY IS
PRESENT IN THE QUERY AND KEY WEIGHTS.

Model Sparsity ViT Swin V2
Dense / 76.369 83.45

SR-STE 1:8(FF) 77.869 81.437
FIGS 1:8(FF) 78.175 81.466

SR-STE 1:8(FF + QK) 81.218
FIGS 1:8(FF + QK) 81.438

B. Performance Analysis

Figure 5 shows the runtime of the SWIN and VIT Feed-
Forward layers on the 5 accelerators. We normalized the
runtime using the longest runtime (runtime for a dense systolic
accelerator). We first observe that a systolic accelerator with no
acceleration ability for sparse operations results in the highest
runtime. STA/VEGETA is a state-of-the-art architecture for ac-
celerating N:M structured sparsity, but these are bottlenecked
by the input bandwidth to the compute array. We assume
4x the dense input bandwidth for all architectures. With this,
STA/VEGETA can only accelerate layers with 1:4 or higher
amount of sparsity. Thus for ViT, it can accelerate only the
last sparsification phase with 1:4 sparsity, while for SWIN, it
can accelerate the last 2 sparsification phases with 2:4 and 1:2
sparsity. Compared to these, FIGS architectures with the same
input BW perform much better. FIGS(α = 1) can accelerate
the sparsity ratio upto 2:8, FIGS(α = 2) can accelerate the
sparsity ratio upto 4:16, and FIGS(α = 3) can accelerate the
sparsity ratio upto 8:32.

Hence, we observe that all FIGS configurations perform
much better than existing SOTA accelerators. For ViT with
1:4 sparsity, FIGS with (α = 3) achieve 4.4x speedup over
S2TA and Vegata, while 2.41x speedup for Swin v2 with 1:2
sparsity.
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Fig. 5. Runtime Comparison of fine-grained runtime sparsification.

V. FUTURE WORK

Some of the potential directions we are considering for this
work are:-

• Our proposed FIGS technique provides a promising di-
rection for accelerating attention-based models with N:M
structured sparsity. One possible direction for future work
is to investigate the efficacy of FIGS-Train in larger mod-
els and models other than those for image classification.

• We would also explore how to club this technique with
other existing sparsification techniques like block spar-
sity, butterfly sparsity, etc.

• We would also like to do an area-energy-performance
analysis of FIGS uarch to cap its ability and view its
feasibility in realistic implementations.

VI. CONCLUSION

In this work, we proposed FIne-Grained Sparsification
(FIGS) techniques to accelerate attention-based models with-
out increasing the on-chip bandwidth requirement. We showed
that our proposed FIGS microarchitecture can achieve high PE
utilization while minimizing the on-chip interconnect area. Our
proposed FIGS-Train training recipe also showed promising
results in improving the accuracy of N:M structured sparse at-
tention models. We compared the performance of our proposed
FIGS microarchitecture with state-of-the-art N:M accelerators
and showed that it outperforms existing approaches.
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