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ABSTRACT

Coordinating multiple agents to collaboratively maximize submodular functions
in unpredictable environments is a critical task with numerous applications in
machine learning, robot planning and control. The existing approaches, such as the
OSG algorithm, are often hindered by their poor approximation guarantees and the
rigid requirement for a fully connected communication graph. To address these
challenges, we firstly present a MA-OSMA algorithm, which employs the multi-
linear extension to transfer the discrete submodular maximization problem into a
continuous optimization, thereby allowing us to reduce the strict dependence on a
complete graph through consensus techniques. Moreover, MA-OSMA leverages a
novel surrogate gradient to avoid sub-optimal stationary points. To eliminate the
computationally intensive projection operations in MA-OSMA, we also introduce a
projection-free MA-OSEA algorithm, which effectively utilizes the KL divergence
by mixing a uniform distribution. Theoretically, we confirm that both algorithms
achieve a regret bound of Õ(

√
CTT
1−β ) against a ( 1−e−c

c )-approximation to the
best comparator in hindsight, where CT is the deviation of maximizer sequence,
β is the spectral gap of the network and c is the joint curvature of submodular
objectives. This result significantly improves the ( 1

1+c )-approximation provided
by the state-of-the-art OSG algorithm. Finally, we demonstrate the effectiveness of
our proposed algorithms through simulation-based multi-target tracking.

1 INTRODUCTION

Recent years have witnessed an upsurge in research focused on leveraging submodular functions
to coordinate the actions of multiple agents in accomplishing tasks that are spatially distributed. A
compelling example is the dynamic deployment of mobile sensors, particularly unmanned aerial
vehicles (UAVs), for multi-target tracking (Zhou et al., 2018; Corah & Michael, 2021) as depicted
in Figure 1. In this scenario, at each critical moment of decision, every mobile sensor needs to
determine its trajectory and velocity through interactions with others to effectively track all moving
points of interest. The primary challenges of this tracking challenge lie in the unpredictability
of the targets’ movements and the limited sensing capabilities of agents. To address these issues,
various modeling techniques have been developed, including one based on dynamically maximizing
a sequence of submodular functions that capture the spatial relationship between sensors and moving
targets (Xu et al., 2023; Rezazadeh & Kia, 2023; Robey et al., 2021). As a result, the problem of target
tracking can be cast into a specific instance of multi-agent online submodular maximization(MA-
OSM) problem. Besides target tracking, the MA-OSM problem also offers a versatile framework
for a variety of complex tasks such as area monitoring (Schlotfeldt et al., 2021; Li et al., 2023),
environmental mapping (Atanasov et al., 2015; Liu et al., 2021), data summarization (Mirzasoleiman
et al., 2016a;b) and task assignment (Qu et al., 2019). Motivated by these practical use cases, this
paper delves into the multi-agent online submodular maximization (MA-OSM) problem.

To tackle the aforementioned MA-OSM problem, Xu et al. (2023) have recently proposed an online
sequential greedy (OSG) algorithm, building upon the foundations of the classical greedy method
(Fisher et al., 1978). Nevertheless, this online algorithm suffers from two notable limitations: i)
Sub-optimal Approximation: In contrast with the tight ( 1−e−c

c )-approximation ratio (Vondrák,
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Mobile Sensor

Sensing Zone

Point of Interest

Undirected Edge

Directed Edge

Figure 1: Left: Multi-target tracking with 4 mobile sensors over a complete directed acyclic commu-
nication network. Right: Multi-target tracking with 4 sensors over a connected undirected graph.

2010; Bian et al., 2017a), OSG only can guarantee a sub-optimal ( 1
1+c )-approximation where

c ∈ [0, 1] is the joint curvature of submodular objectives; ii) Requirement of a Fully Connected
Communication Network: OSG begins by assigning a unique order to each agent and then requires
every agent to have full access to the decisions made by all predecessors, which leads to a complete
directed acyclic communication graph (Refer to the left side of Figure 1). As the number of agents
grows, the communication overheads associated with this operation may become prohibitively
high. Furthermore, Grimsman et al. (2018) have pointed out that the approximation guarantee of
OSG continuously degrades as the communication graph becomes less dense. This highlights the
necessity of a complete communication graph for maintaining the effectiveness of OSG. Given these
disadvantages of OSG algorithm, the objective of this paper is to address the following question:

Is it possible to devise an online algorithm with tight ( 1−e−c

c )-approximation for MA-OSM problem
over a connected and sparse communication network?

In this paper, we provide an affirmative answer to this question by presenting two online algo-
rithms, i.e., MA-OSMA and MA-OSEA, both of which not only can achieve the optimal ( 1−e−c

c )-
approximation guarantee but also reduce the strict requirement for a complete communication graph.

Specifically, our proposed algorithms incorporate three key innovations. First, we utilize the multi-
linear extension to convert the discrete submodular maximization into a continuous optimization
problem, which enables us to reduce the rigid requirement for a complete communication graph via
the well-established consensus techniques in the field of decentralized optimization. Second, we
develop a surrogate function for the multi-linear extension of submodular functions with curvature c,
which empowers us to move beyond the sub-optimal ( 1

1+c )-approximation stationary points. Last
but not least, for each agent, we implement a distinct strategy to update the selected probabilities
associated with its own actions and those of other agents, which only requires agents to assess the
marginal gains of actions within their own action sets, thereby reducing the practical requirement on
the observational scope of each agent. To summarize, we make the following contributions.

• We construct a surrogate function for the multi-linear extension of submodular functions with
curvature c ∈ [0, 1]. The stationary points of this surrogate can guarantee a tight ( 1−e−c

c )-
approximation to the maximum value of the multi-linear extension, significantly outperforming the
( 1
1+c )-approximation provided by the stationary points of the original multi-linear extension itself.

• We propose a new algorithm MA-OSMA, which seamlessly integrates consensus techniques,
lossless rounding and the surrogate function previously discussed. Moreover, we prove that
MA-OSMA enjoys a regret bound of O

(√
CTT
1−β

)
against a ( 1−e−c

c )-approximation to the best
comparator in hindsight, where CT is the deviation of maximizer sequence and β is the spectral gap
of the communication network. Subsequently, we present a projection-free variant of MA-OSMA,
titled MA-OSEA, which effectively utilizes the KL divergence by mixing a uniform distribution.
We also prove that MA-OSEA can attain a ( 1−e−c

c )-regret bound of Õ
(√

CTT
1−β

)
. A detailed

comparison of our MA-OSMA and MA-OSEA with existing studies is presented in Table 1.
• We conduct a simulation-based evaluation of our proposed algorithms within a multi-target tracking

scenario. Our experiments demonstrate the effectiveness of our MA-OSMA and MA-OSEA.

Related Work. Due to space limits, we only focus on the most relevant studies. A more compre-
hensive discussion is provided in Appendix A.1. Multi-agent submodular maximization (MA-SM)
problem involves coordinating multiple agents to collaboratively maximize a submodular utility

2
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Method Approx.Ratio Graph(G) Regret Projection-free? Reference

OSG
(

1
1+c

)
complete Õ

(√
CTT

)
✔ Xu et al. (2023)

OSG
(

1
1+α(G)

)
connected Õ

(√
CTT

)
✔ Grimsman et al. (2018); Xu et al. (2023)

MA-OSMA
(

1−e−c

c

)
connected O

(√
CTT
1−β

)
✘ Theorem 3 & Remark 8

MA-OSEA
(

1−e−c

c

)
connected Õ

(√
CTT
1−β

)
✔ Theorem 5 & Remark 9

Table 1: Comparison with prior works. T is the horizon length, c ∈ [0, 1] is the joint curvature of
submodular objectives, CT is the deviation of maximizer sequence, β is the second largest magnitude
of the eigenvalues of the weight matrix, α(G) is the number of nodes in the largest independent set in
communication graph G where α(G) ≥ 1 and Õ(·) hides log(T ) term.

function, with numerous applications in sensor coverage (Krause et al., 2008; Prajapat et al., 2022)
and multi-robot planning (Singh et al., 2009; Zhou & Tokekar, 2022). A commonly used solution for
MA-SM problem heavily depends on the distributed implementation of the classic sequential greedy
method (Fisher et al., 1978), which can ensure a ( 1

1+c )-approximation (Conforti & Cornuéjols, 1984).
However, this distributed algorithm requires each agent to have full access to the decisions of all
previous agents, thereby forming a complete directed communication graph. Subsequently, several
studies (Grimsman et al., 2018; Gharesifard & Smith, 2017; Marden, 2016) have investigated how
the topology of the communication network affects the performance of the distributed greedy method.
Particularly, Grimsman et al. (2018) pointed out that the worst-case performance of the distributed
greedy algorithm will deteriorate in proportion to the size of the largest independent group of agents in
the communication graph. Given that the majority of applications occur in time-varying environments,
Xu et al. (2023) proposed the online sequence greedy(OSG) algorithm for online MA-SM problem,
which also ensures a sub-optimal ( 1

1+c )-approximation over a complete communication graph.

2 PRELIMINARIES AND PROBLEM FORMULATION

Notations. Throughout this paper, R and R+ denote the set of real numbers and non-negative real
numbers, respectively. For any positive integer K, [K] stands for the set {1, . . . ,K}. Let ∥ · ∥
represent a norm for vectors and its dual norm be denoted by ∥ · ∥∗. Specially, ∥ · ∥1 and ∥ · ∥2 denote
the l1 norm and l2 norm for vectors, respectively. ⟨·, ·⟩ denotes the inner product. The lowercase
boldface (e.g. x) denotes a column vector with a suitable dimension and the uppercase boldface (e.g.
W) for a matrix. The i-th component of a vector x will be denoted xi and the element in the i-th row
of the j-th column of a matrix W will be denoted by wij . Moreover, λi(W) denotes the i-th largest
eigenvalue of matrix W. In and 1n represent the identity matrix and the n-dimensional vector whose
all entries are 1, respectively. Additionally, for any vector x ∈ Rn and S ⊆ [n], the [x]S denotes the
projection of x onto the set S, i.e., [x]S = (xi1 , . . . , xi|S|) ∈ Rs for any S = {i1, . . . , i|S|} ⊆ [n].

Submodularity and curvature. Let V be a finite set and f : 2V → R+ be a set function mapping
subsets of V to the non-negative real line. The function f is said to be submodular iff f(S ∪ {e})−
f(S) ≥ f(T ∪ {e}) − f(T ) for any S ⊆ T ⊆ V and e ∈ V \ T . In this paper, we will consider
submodular functions that are monotone, meaning that for any S ⊆ T ⊆ V , f(S) ≤ f(T ), and
normalized, that is, f(∅) = 0. To better reflect the diminishing returns property of submodular
functions, Conforti & Cornuéjols (1984) introduced the concept of curvature, which is defined as
c := 1−minS⊆V,e/∈S

f(S∪{e})−f(S)
f({e}) . Moreover, we can infer c ∈ [0, 1] for submodular functions.

2.1 PROBLEM FORMULATION

In this subsection, we introduce the multi-agent online submodular maximization (MA-OSM) prob-
lem, commonly abbreviated as multi-agent submodular coordination.

In MA-OSM, we generally consider a group of N different agents denoted as N = {1, 2, . . . , N},
interacting over a connected communication graph G(N , E). In addition, each agent i within N is
equipped with a unique and discrete set of actions, denoted by Vi. This implies that these action sets
are mutually disjoint, i.e., Vi∩Vj = ∅ for any two distinct agents i ∈ N and j ∈ N . At each time step
t ∈ [T ], every agent i ∈ N separately selects an action at,i from the individual action set Vi. After
committing to these choices, the environment reveals a monotone submodular function ft defined
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over the aggregated action space V := ∪i∈NVi. Then, the agents receive the utility ft(∪i∈N {at,i}).
As a result, the objective of agents at any given moment is to maximize their collective gains as much
as possible, that is to say, we need to solve the following submodular maximization problem in a
multi-agent manner at each round:

max ft(A), s.t. |A ∩ Vi| ≤ 1,∀i ∈ N . (1)

Compared to the standard centralized submodular maximization problem, this MA-OSM problem
brings additional challenges: 1) Unpredictable Objectives and Actions: Agents must make decisions
at each moment without prior knowledge of future submodular utility functions and the insight into
other agents’ actions; 2) Limited Feedback: In many real-world scenarios, each agent is typically
endowed with a narrow perceptual or detection scope, which only allows it to sense the environmental
changes within its surroundings. For instance, in the target tracking problem of Figure 1, every sensor
usually overlooks these targets beyond its sensing circle. Broadly speaking, the local information
observed by one agent is inadequate for precisely assessing the actions of most other agents who
are not in close vicinity. To capture this, various studies (Xu et al., 2023; Rezazadeh & Kia,
2023; Robey et al., 2021; Qu et al., 2019) related to MA-OSM problem commonly confine each
agent i ∈ N to a local marginal gain oracle Oi

t : Vi × 2V → R+ after ft is revealed, where
Oi

t(a,A) := ft(A ∪ {a})− ft(A) for any a ∈ Vi and A ⊆ V . This restriction means that, at each
time t ∈ [T ], agents only can receive the limited feedback about the marginal evaluations of actions
within their own action set, rather than the full information of ft. In this paper, we also impose this
restriction on each agent.

Given the NP-hardness of maximizing a submodular function subject to a general constraint (Vondrák,
2013; Bian et al., 2017b), we adopt the dynamic α-regret to evaluate the algorithm performance for
MA-OSM problem in this paper, which is defined as follows (Kakade et al., 2007; Streeter & Golovin,
2008; Chen et al., 2018):

Regd
α(T ) = α

T∑
t=1

ft(A∗
t )−

T∑
t=1

ft(∪i∈N {at,i}),

where A∗
t is the maximizer of Eq.(1) and at,i is the action taken via the agent i ∈ N at time t ∈ [T ].

3 MULTI-LINEAR EXTENSION AND ITS PROPERTIES

Compared to discrete optimization, continuous optimization has a plethora of efficient tools and
algorithmic frameworks. As a result, a common approach in discrete optimization is based on a
continuous relaxation to embed the corresponding discrete problem into a solvable continuous opti-
mization. In the subsequent section,we will present a canonical relaxation technique for submodular
functions, known as multi-linear extension (Calinescu et al., 2011; Chekuri et al., 2014). To better
illustrate this extension, we suppose |V| = n and set V := [n] = {1, . . . , n} throughout this paper.
Definition 1. For a set function f : 2V → R+, we define its multi-linear extension as

F (x) =
∑
A⊆V

(
f(A)

∏
a∈A

xa

∏
a/∈A

(1− xa)
)
= ER∼x

(
f(R)

)
, (2)

where x = (x1, . . . , xn) ∈ [0, 1]n and R ⊆ V is a random set that contains each element a ∈ V
independently with probability xa and excludes it with probability 1− xa. We write R ∼ x to denote
that R ⊆ V is a random set sampled according to x.

From the Eq.(2), we can view multi-linear extension at any point x ∈ [0, 1]n as the expected utility
of independently selecting each action a ∈ V with probability xa. With this tool, we can cast the
previous discrete problem Eq.(1) into a continuous maximization which learns the selected probability
for each action a ∈ V , that is, for any t ∈ [T ], we consider the following continuous optimization:

max
x∈[0,1]n

Ft(x), s.t.
∑
a∈Vi

xa ≤ 1,∀i ∈ N , (3)

where Ft(x) is the multi-linear extension of ft. When ft is submodular, the maximization problem
Eq.(3) is both non-convex and non-concave (Bian et al., 2020). Thanks to recent advancements in
optimizing complex neural networks, a large body of empirical and theoretical evidence has shown
that numerous gradient-based algorithms, such as projected gradient methods and Frank Wolfe,
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can efficiently address the general non-convex or non-concave problem. Specifically, under certain
mild assumptions, many first-order gradient algorithms can converge to a stationary point of the
corresponding non-convex or non-concave objective (Nesterov, 2013; Lacoste-Julien, 2016; Jin
et al., 2017; Agarwal et al., 2017; Hassani et al., 2017). Motivated by these findings, we proceed to
investigate the stationary points of the multi-linear extension of submodular functions.

3.1 CHARACTERIZING STATIONARY POINTS

We begin with the definition of a stationary point for maximization problems.

Definition 2. A vector x ∈ C is called a stationary point for the differentiable function G : [0, 1]n →
R+ over the domain C ⊆ [0, 1]n if maxy∈C⟨y − x,∇G(x)⟩ ≤ 0.

Stationary points are of great interest as they characterize the fixed points of a multitude of gradient-
based methods. Next, we quantify the performance of the stationary points of multi-linear extension
relative to the maximum value, i.e.,

Theorem 1 (Proof is deferred to Appendix B). If f : 2V → R+ is a monotone submodular function
with curvature c, then for any stationary point x of its multi-linear extension F : [0, 1]n → R+ over
domain C ⊆ [0, 1]n, we have

F (x) ≥
( 1

1 + c

)
max
y∈C

F (y).

Remark 1. The ratio 1
1+c is tight for the stationary points of the multi-linear extension of submodular

function with curvature c, because there exists a special instance of multi-linear extension with a
( 12 )-approximation stationary point when c = 1 (Hassani et al., 2017).
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Figure 2: 1
1+c v.s. 1−e−c

c .

Theorem 1 suggests that applying various gradient-based methods directly
to multi-linear extension only can ensure a 1

1+c -approximation guarantee.
However, the known tight approximation ratio for maximizing a monotone
submodular function with curvature c is 1−e−c

c (Vondrák, 2010; Bian
et al., 2017a). As depicted in Figure 2, there exists a non-negligible gap
between 1

1+c and 1−e−c

c . The question arises: Is it feasible to bridge this
significant gap? Recently, numerous studies have successfully leveraged a
classic technique named Non-Oblivious Search (Alimonti, 1994; Khanna
et al., 1998; Filmus & Ward, 2012; 2014) to output superior solutions by
constructing an effective surrogate function. Inspired by this idea, we also
aspire to devise a surrogate function that can enhance the approximation guarantees for the stationary
points of multi-linear extension. In line with the works (Zhang et al., 2022; 2024; Wan et al., 2023),
we consider a type of surrogate function F s(x) whose gradient at point x assigns varying weights
to the gradient of multi-linear extension at z ∗ x, given by ∇F s(x) =

∫ 1

0
w(z)∇F (z ∗ x)dz where

w(z) is the positive weight function over [0, 1] and ∗ denotes the multiplication of scalars and vectors.
After carefully selecting the weight function w(z), we can have that:

Theorem 2 (Proof is deferred to Appendix C). If the weight function w(z) = ec(z−1) and the function
F : [0, 1]n → R+ is the multi-linear extension of a monotone submodular function f : 2V → R+

with curvature c, we have, for any x,y ∈ [0, 1]n,

⟨y − x,∇F s(x)⟩ =
〈
y − x,

∫ 1

0

ec(z−1)∇F (z ∗ x)dz
〉

≥
(1− e−c

c

)
F (y)− F (x). (4)

Remark 2. Theorem 2 illustrate that the stationary points of surrogate function F s(x) can provide a

better
(

1−e−c

c

)
-approximation than the stationary points of the original multi-linear extension F .

Remark 3. Unlike prior work on surrogate functions regarding the multi-linear extension of sub-
modular functions (Zhang et al., 2022; 2024), Theorem 2 takes into account the impact of curvature.
Specifically, when the curvature c = 1, our result Eq.(4) is consistent with those of Zhang et al.
(2022; 2024). To the best of our knowledge, we are the first to explore the stationary points of the
multi-linear extension of submodular functions with different curvatures.
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3.2 CONSTRUCTING AN UNBIASED GRADIENT FOR SURROGATE FUNCTION

In this subsection, we present how to estimate the gradient ∇F s(x) =
∫ 1

0
ec(z−1)∇F (z ∗ x)dz

using the function values of f . Given that F is the multi-linear extension of set function f , we can
show ∂F (x)

∂xi
= ER∼x

(
f(R∪ {i})− f(R \ {i})

)
(Calinescu et al., 2011). That is to say, the partial

derivative of multi-linear extension F at each variable xi equals the expected marginal contribution
for the action {i}. Consequently, after sampling a random number z from the probability distribution
of r.v. Z where P (Z ≤ b) = ( c

1−e−c )
∫ b

0
ec(z−1)dz = ec(b−1)−e−c

1−e−c for any b ∈ [0, 1] and then
generating a random set R according to z ∗ x, we can estimate ∇F s(x) by the following equation:

∇̃F s(x) =
(1− e−c

c

)(
f(R∪ {1})− f(R \ {1}), . . . , f(R∪ {n})− f(R \ {n})

)
(5)

4 METHODOLOGY

The mirror method, a sophisticated optimization framework, utilizes the notion of Bregman divergence
in lieu of Euclidean distance for the projection step, thereby unifying a spectrum of first-order
algorithms (Nemirovsky & Yudin, 1983). In this section, we present two multi-agent variants of the
online mirror ascent (Hazan et al., 2016; Jadbabaie et al., 2015; Shahrampour & Jadbabaie, 2017),
which is specifically crafted to tackle the MA-OSM problem introduced in Section 2.1.

4.1 MULTI-AGENT ONLINE SURROGATE MIRROR ASCENT

Given the core role of Bregman divergence in the mirror ascent method, we begin with an in-depth
review of this concept, that is,
Definition 3 (Bregman Divergence). Let ϕ : Ω → R is a continuously-differentiable, 1-strongly
convex function defined on a convex set Ω ⊆ [0, 1]n. Then the Bregman divergence with respect to ϕ
is defined as:

Dϕ(x,y) := ϕ(x)− ϕ(y)− ⟨∇ϕ(y),x− y⟩. (6)

Two well-known examples of Bregman divergence include the Euclidean distance, which arises
from the choice of ϕ(x) = ∥x∥2

2

2 and the Kullback-Leibler (KL) divergence, associated with ϕ(x) =∑n
i=1 xi log(xi). Note that both forms of ϕ(x) allow for a coordinate-wise decomposition. Without

loss of generality, we make the following assumption.
Assumption 1. ϕ(x) is dominated by a one-dimensional strongly convex differentiable function
g : [0, 1] → R, that is, ϕ(x) =

∑n
i=1 g(xi) where x = (x1, . . . , xn).

Under this assumption, we can re-define the Bregman divergence between two n-dimensional vectors
b and c as: Dg,n(b, c) :=

∑n
i=1

(
g(bi)− g(ci)− g′(ci)(bi − ci)

)
where g′ denotes the derivative

of g. Specially, we also have Dϕ(x,y) = Dg,n(x,y) from Eq.(6). Building on these foundations,
we now introduce the Multi-Agent Online Boosting Mirror Ascent (MA-OSMA) algorithm for
MA-OSM problem, as detailed in Algorithm 1.

In Algorithm 1, at every time step t ∈ [T ], each agent i ∈ N maintains a local variable xt,i ∈ [0, 1]|V|,
which, to some extent, reflects agent i’s current beliefs regarding all actions in V . The core of MA-
OSMA algorithm is primarily composed of four interleaved components: Rounding, Information
aggregation, Surrogate gradient estimation and Probabilities update. Specifically, at every iteration
t ∈ [T ], each agent i first selects an action at,i from Vi based on its current preferences xt,i.
Subsequently, agent i receives xt,j from all neighboring agents and then computes the aggregated
beliefs yt,i as the weighted average of xt,j for j ∈ Ni, where Ni denotes the neighbors of agent i.
Next, agent i estimates the gradient of the surrogate function of the multi-linear extension of ft at
each coordinate a ∈ Vi by employing the methods outlined in Section 3.2. That is, agent i initially
samples a random number zt,i from the random variable Z , where P (Z ≤ b) = ec(b−1)−e−c

1−e−c for

any b ∈ [0, 1], and then approximates [∇F s
t (xt,i)]a as 1−e−c

c

(
ft(Rt,i ∪ {a})− ft(Rt,i \ {a})

)
for

any a ∈ Vi where Rt,i is a random set according to zt,i ∗ xt,i. Finally, each agent i adjusts the
probabilities of actions in Vi through a mirror ascent along the direction [∇̃F s

t (xt,i)]Vi
. As for other

actions not in Vi, their probabilities are straightforwardly updated using the aggregated beliefs yt,i.

6
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Algorithm 1 Multi-Agent Online Surrogate Mirror Ascent (MA-OSMA)

1: Input: Number of iterations T , the set of agents N , communication graph G(N , E), weight
matrix W = [wij ] ∈ RN×N , 1-strongly decomposable convex function ϕ(x) =

∑n
i=1 g(xi),

the curvature c ∈ [0, 1], step size ηt for t ∈ [T ];
2: Initialized: for any agent i ∈ N , let [x1,i]j =

1
|Vi| , ∀j ∈ Vi and [x1,i]j = 0, ∀j /∈ Vi

3: for t ∈ [T ] do
4: for i ∈ N do
5: Compute SUM :=

∑
a∈Vi

[xt,i]a ▷ Rounding (Lines 5-6)

6: Select an action at,i from the set Vi with probability [xt,i]a
SUM

7: Exchange xt,i with each neighboring node j ∈ Ni ▷ Information aggregation (Lines 7-8)
8: Aggregate the information by setting yt,i =

∑
j∈Ni∪{i} wijxt,j

9: Sampling a random number zt,i from r.v. Z ▷ Surrogate gradient estimation (Lines 9-11)
10: Sampling a random set Rt,i ∼ zt,i ∗ xt,i

11: Compute [∇̃F s
t (xt,i)]a := 1−e−c

c

(
ft(Rt,i ∪ {a})− ft(Rt,i \ {a})

)
for any a ∈ Vi

12: Update [xt+1,i]a = [yt,i]a, ∀a /∈ Vi ▷ Update the probabilities of actions (Lines 12-13)
13: Update the probabilities of actions of agent i itself by

[xt+1,i]Vi := argmin∑ni
k=1 bk≤1

(
− ⟨[∇̃F s

t (xt,i)]Vi ,b⟩+
1

ηt
Dg,n1(b, [yt,i]Vi)

)
, (7)

where ni = |Vi| and b = (b1, . . . , bni) ∈ [0, 1]ni

The key novelty of Algorithm 1 is twofold: first, it integrates a surrogate gradient estimation for the
multi-linear extension of ft, ensuring a tight approximation guarantee; second, it adopts a divide-
and-conquer strategy to update the probabilities of all actions in Lines 12-13, which only requires
agents to evaluate the marginal benefits of actions within their own action sets. These tactics not only
effectively reduce the computational burden for each agent but also partially offset the practical errors
caused by the limited observational capabilities of each agent.

4.1.1 REGRET ANALYSIS FOR ALGORITHM 1

In this subsection, we present theoretical results for the proposed method MA-OSMA. We begin
by introducing some standard assumptions about the communication graph G(N , E), weight matrix
W ∈ RN×N , Bregman divergence Dϕ and the surrogate gradient estimation ∇̃F s

t .

Assumption 2. The graph G is connected, i.e., there exists a path from any agent i ∈ N to any other
agent j ∈ N . Moreover, the weight matrix W = [wij ] ∈ RN×N is symmetric and doubly stochastic
with positive diagonal, i.e., WT = W and W1N = 1N , where N is the number of agents.

Remark 4. The connectivity of communication graph G implies the uniqueness of λ1(W) = 1 and
also warrants that other eigenvalues of W are strictly less than one in magnitude (Nedic & Ozdaglar,
2009; Horn & Johnson, 2012; Yuan et al., 2016). In detail, regarding the eigenvalue of W,i.e.,
1 = λ1(W) ≥ λ2(W) ≥ · · · ≥ λN (W) ≥ −1, then β < 1,where β = max(|λ2(W)|, |λN (W)|)
is the second largest magnitude of the eigenvalues of W.

Assumption 3. Let x and {yi}Ni=1 be vectors in [0, 1]n, the Bregman divergence satisfies the separate

convexity in the following sense Dϕ

(
x,
∑N

i=1 αiyi

)
≤
∑N

i=1 Dϕ(x, αiyi), where
∑N

i=1 αi = 1.

Remark 5. The separate convexity (Bauschke & Borwein, 2001) is commonly satisfied for most used
cases of Bregman divergence. For example, the Euclidean distance and KL-divergence.

Assumption 4. The Bregman divergence satisfies a Lipschitz condition, i.e., there exists a constant
K such that for any x,y, z ∈ [0, 1]n, we have |Dϕ(x, z)−Dϕ(y, z)| ≤ K∥x− y∥.

Remark 6. When the function ϕ is Lipschitz with respect to ∥ · ∥, the Lipschitz condition on the
Bregman divergence is automatically satisfied. Thus, this assumption evidently holds for Euclidean
distance. However, KL divergence is not satisfied with Assumption 4, as its gradient will approach
infinity on the boundary.
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Assumption 5. For any t ∈ [T ] and x ∈ [0, 1]n, the stochastic gradient ∇̃F s
t (x) is bounded and

unbiased, i.e., E(∇̃F s
t (x)|x) = ∇F s

t (x) and E(∥∇̃F s
t (x)∥2∗) ≤ G2. Here, ∥ · ∥∗ is the dual norm

of the general norm ∥ · ∥. Moreover, Ft is also L-smooth, i.e., ∥∇F s
t (x)−∇F s

t (y)∥∗ ≤ L∥x− y∥.

A detailed discussion regarding Assumption 5 will be presented in the Appendix A.2. Now we are
ready to show the main theoretical result about Algorithm 1.
Theorem 3 (Proof is deferred to Appendix D). Consider our proposed Algorithm 1, if Assumption
1-5 hold and each set function ft is monotone submodular with curvature c for any t ∈ [T ], then we
can conclude that, when α = 1−e−c

c ,

E
(

Regd
α(T )

)
≤ C1

( T∑
t=1

t∑
τ=1

βt−τητ

)
+

NR2

ηT+1
+KNC2

T∑
t=1

|A∗
t+1∆A∗

t |
ηt+1

+
NG

2

T∑
t=1

ηt, (8)

where A∗
t is any maximizer of Eq.(1), ∆ is the symmetric difference of two sets, C1 = (4G +

LDG)N
3
2 , ∥x∥ ≤ C2∥x∥1 for x ∈ [0, 1]n, D = supx,y∈C ∥x− y∥, R2 = supx,y∈C Dϕ(x,y), and

C is the constraint set of Eq.(3).
Remark 7. According to the definition of symmetric difference, i.e., S∆T = (S \ T ) ∪ (T \ S), we
can know that the value |A∗

t+1∆A∗
t | quantifies the deviation between the optimal strategy set at time

t+ 1 and the one at time t, which, to a certain extent, reflects the environmental fluctuations.

Remark 8. From Eq.(8), if we set ηt = O

(√
(1−β)CT

T

)
where CT :=

∑T
t=1 |A∗

t+1∆A∗
t |is the

deviation of maximizer sequence, we have that
∑T

t=1 E
(
ft(At)

)
≥
(

1−e−c

c

)∑T
t=1 ft(A∗

t ) −

O
(√

CTT
1−β

)
, which means that Algorithm 1 can attain a dynamic regret bound of O(

√
CTT
1−β )

against a ( 1−e−c

c )-approximation to the best comparator in hindsight.

4.2 PROJECTION-FREE MULTI-AGENT ONLINE SURROGATE ENTROPIC ASCENT

The primary computational burden of Algorithm 1 lies in Line 13, where each agent is tasked with a
single constrained mirror projection. Despite that this projection can be done very efficiently in linear
time using standard methods described in (Pardalos & Kovoor, 1990; Brucker, 1984), the optimal
solution to Eq.(7) admits an analytical expression when KL-divergence is selected as the metric. That
is, we have the following theorem, whose proof is deferred to Appendix E.
Theorem 4. Let m be a positive integer and g(x) = x log(x). Then, the optimal solution x

to the problem min∥b∥1≤1,b∈[0,1]m

(
⟨z,b⟩ + Dg,m(b,y)

)
satisfies the following conditions: if∑m

i=1 yi exp(−zi) ≤ 1, xi = yi exp(−zi); otherwise, xi =
yi exp(−zi)∑m
i=1 yi exp(−zi)

∀i ∈ [m].

However, KL divergence does not meet with the Lipschitz condition in Assumption 4, as its gradient
approaches infinity on the boundary. Fortunately, this drawback can be circumvented by mixing a
uniform distribution. As a result, we get the projection-free Multi-Agent Online Surrogate Entropic
Ascent (MA-OSEA) algorithm for the MA-OSM problem, as shown in Algorithm 2. Similarly, we
also can verify the following regret bound for MA-OSEA algorithm.
Theorem 5 (Proof deferred to Appendix F). Consider our proposed Algorithm 2, if Assumption 1,2,3
and 5 hold, ∥ · ∥ is l1 norm and each set function ft is monotone submodular with curvature c, then
we can conclude that, when α = 1−e−c

c ,

E
(

Regdα(T )
)
≤ C1

( T∑
t=1

t∑
τ=1

(β−βγ)t−τητ

)
+
NC2

ηT+1
+C2

T∑
t=1

|A∗
t+1∆A∗

t |
ηt+1

+
NG

2

T∑
t=1

ηt+

T∑
t=1

C3

ηt
+GDγ,

(9)
where A∗

t is any maximizer of Eq.(1), C1 = (4G2 + LDG)N
3
2 , C2 = N log(nγ ), C3 = 2N2γ,

D = supx,y∈C ∥x− y∥1 and C is the constraint set of Eq.(3).

Remark 9. From Eq.(9), if we set ηt = O

(√
(1−β)CT

T

)
and γ = O(T−2) where CT =∑T

t=1 |A∗
t+1∆A∗

t |, we have that
∑T

t=1 E
(
ft(At)

)
≥
(

1−e−c

c

)∑T
t=1 ft(A∗

t )− Õ
(√

CTT
1−β

)
.
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Algorithm 2 Multi-Agent Online Surrogate Entropic Ascent (MA-OSEA)

1: Input: Number of iterations T , the set of agents N , communication graph G(N , E), weight ma-
trix W = [wij ] ∈ RN×N , 1-strongly decomposable convex function ϕ(x) =

∑n
i=1 xi log(xi),

the curvature c ∈ [0, 1], step size ηt for t ∈ [T ],mixing parameter γ;
2: Initialized: for any agent i ∈ N , let [x1,i]j =

1
|Vi| , ∀j ∈ Vi and [x1,i]j = 0, ∀j /∈ Vi

3: for t ∈ [T ] do
4: for i ∈ N do
5: Compute SUM :=

∑
a∈Vi

[xt,i]a ▷ Rounding (Lines 5-6)

6: Select an action at,i from the set Vi with probability [xt,i]a
SUM

7: Compute x̂t,i := (1− γ)xt,i +
γ
n1n; ▷ Mixing (Line 7)

8: Exchange x̂t,i with each neighboring node j ∈ Ni ▷ Information aggregation (Lines 8-9)
9: Aggregate the information by setting yt,i =

∑
j∈Ni∪{i} wijxt,j

10: Sampling a random number zt,i from r.v. Z ▷ Surrogate gradient estimation (Lines 10-12)
11: Sampling a random set Rt,i ∼ zt,i ∗ xt,i

12: Compute [∇̃F s
t (xt,i)]a := 1−e−c

c

(
ft(Rt,i ∪ {a})− ft(Rt,i \ {a})

)
for any a ∈ Vi

13: Update [xt+1,i]a = [yt,i]a, ∀a /∈ Vi ▷ Update the probabilities of actions (Lines 13-18)

14: Compute SUM1 :=
∑

a∈Vi

(
[yt,i]a exp(ηt[∇̃F s

t (xt,i)]a)
)

15: if SUM1 ≤ 1 then
16: [xt+1,i]a := [yt,i]a exp(ηt[∇̃F s

t (xt,i)]a) for any a ∈ Vi

17: else
18: [xt+1,i]a := [yt,i]a exp(ηt[∇̃F s

t (xt,i)]a)/SUM1 for any a ∈ Vi

5 NUMERICAL EXPERIMENTS

In this section, we evaluate our proposed Algorithm 1 and Algorithm 2 in simulated multi-target
tracking tasks (Corah & Michael, 2021; Xu et al., 2023) with multiple agents.

Experiment Setup. We consider a 2D scenario where 20 agents are pursuing 30 moving targets with
T = 2500 iterations over 50 seconds. At every iteration, each agent selects its direction of movement
from “up”, “down”, “left”, “right”, or “diagonally”. Concurrently, agents also adjust their speeds
from a set of 5, 10, or 15 units/s. As for targets, we categorize them into three distinct types: the
unpredictable ‘Random’, the structured ‘Polyline’, and the challenging ‘Adversarial’. Specifically, at
each iteration, a ‘Random’ target randomly changes its movement angle θ from [0, 2π] and moves
at a random speed between 5 and 10 units/s. A ‘Polyline’ target generally maintains its trajectory
and only behaves like the ‘Random’ target at {0, T

k ,
2T
k , . . . , (k−1)T

k }-th iteration where T is the
predefined total iterations and k is a random number from {1, 2, 4}. As for the ‘Adversarial’ target, it
acts like a ‘Random’ target when all agents are beyond 20 units. However, if any agent is within a
20-unit range, the ‘Adversarial’ target escapes at a speed of 15 units/s for one second, pointing to the
direction that maximizes the average distance from all agents. In addition, we initialize the starting
positions of all agents and targets randomly within 20-unit radius circle centered at the origin.

Objective Function. We begin by defining the ground set V = {(θ, s, i) : s ∈ {5, 10, 15}units/s, i ∈
[20], θ ∈ {π

4 ,
π
2 ,

3π
4 , π, . . . , 2π}} where θ, s, i represent the movement angle, speed and the identifier

of agents, respectively. Moreover, the symbol ot(j) denotes the 2D location of target j ∈ [30] at time
t ∈ [T ] and oat (θ, s, i) stands for the new position of agent i after moving from its location at time t−1
in the direction of θ at a speed of s. In order to keep up with all targets, we naturally consider the fol-
lowing submodular objective function for each time t: ft(A) =

∑30
j=1 max(θ,s,i)∈A

1
d(oat (θ,s,i),ot(j))

where d(·, ·) is the distance between two locations and A ⊆ V .

Analysis. In Figure 3, we assess our proposed MA-OSMA and MA-OSEA against OSG (Xu et al.,
2023) across scenarios with different proportions of ‘Random’, ‘Polyline’, and ‘Adversarial’ targets.
The ratios are setting as ‘R’:‘A’:‘P’=8:1:1 in Figure 3(a)-3(c), 6:3:1 in Figure 3(d)-3(f) and 4:5:1
in Figure 3(g)-3(i). The suffixes in MA-OSMA and MA-OSEA represent two different choices
for communication graphs: ‘c’ for a complete graph and ‘r’ for an Erdos-Renyi random graph with
average degree 4. From Figure 3(a),3(d) and 3(g), we can find that the running average utility
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Figure 3: Comparison of average cumulative utility, average number of targets within 5 units, average
distance of Top-5 nearest targets of MA-OSMA-c,MA-OSMA-r,MA-OSEA-c and MA-OSEA-c
with OSG on different multi-target tracking scenarios(averaged over 5 runs).∑t

τ=1 fτ (∪i∈N {aτ,i})
t of our proposed MA-OSMA and MA-OSEA significantly outperforms the

OSG algorithm, which is in accord with our theoretical analysis. Similarly, the average number of
targets within 5 units for MA-OSMA and MA-OSEA greatly exceeds that of the OSG, as depicted
in Figure 3(b),3(e) and 3(h). Note that, due to ‘Adversarial’ targets, all curves for the average
number exhibit a downward trend. Furthermore, our proposed MA-OSMA and MA-OSEA also
can effectively reduce the average distance as shown in Figure 3(c), 3(f), and 3(i). Note that the
algorithms over random graph perform comparably to those on complete graph in all figures, which,
to some extent, reflects the communication efficiency of our proposed algorithms.

6 CONCLUSIONS AND FUTURE WORK

This paper presents two efficient algorithms for the multi-agent online submodular maximization
problem. In sharp contrast with the previous OSG method, our proposed algorithms not only enjoy a
tight ( 1−e−c

c )-approximation but also reduce the need for a complete communication graph. Finally,
extensive empirical evaluations are performed to validate the effectiveness of our algorithms.

In many real-world scenarios, the local information gathered by one agent is often contaminated with
noise, thereby leading to imperfect assessments of the marginal gains of its own actions. To tackle
this challenge, a compelling strategy is to extend our regret analysis to accommodate the estimation
errors inherent in marginal evaluations, as exemplified by the work of Corah & Michael (2021).
Furthermore, another innovative direction is to generalize Algorithms 1 and 2 to adapt to time-varying
and directed network topology (Nedić & Olshevsky, 2014; Nedić et al., 2017), as opposed to the
static and undirected structure that is assumed. Lastly, the most promising direction is to design a
parameter-free algorithm that eliminates the dependency on curvature of Algorithms 1 and 2.
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A ADDITIONAL DISCUSSIONS

A.1 MORE DETAILS ON RELATED WORKS

Single-Agent Submodular Maximization, Maximization of submodular functions has recently
found numerous applications in machine learning, operations research and economics, including
data summarization (Lin & Bilmes, 2010; 2011; Wei et al., 2013; 2015), dictionary learning (Das &
Kempe, 2018), product recommendation (Kempe et al., 2003; El-Arini et al., 2009; Mirzasoleiman
et al., 2016a), federated learning (Balakrishnan et al., 2022; Rafiey, 2024) and in-context learning (Ku-
mari et al., 2024). When considering the simple cardinality constraint, the classical works(Fisher
et al., 1978; Nemhauser et al., 1978) show that the greedy algorithm can achieve a tight (1− 1/e)-
approximation guarantee for monotone submodular maximization problem. As for the general
matroid constraint, a continuous greedy algorithm with (1− 1/e)-approximation guarantee is pre-
sented in (Calinescu et al., 2011; Chekuri et al., 2014). Especially when the submodular function
has curvature c ∈ [0, 1], Vondrák (2010) pointed out that the continuous greedy algorithm also can
achieve an improved ( 1−e−c

c )-approximation guarantee.

Multi-Agent Submodular Maximization. Multi-agent submodular maximization(MA-SM) problem
involves coordinating multiple agents to collaboratively maximize a submodular utility function.
A commonly used solution for MA-SM problem heavily depends on the distributed implemen-
tation of the classic sequential greedy method (Fisher et al., 1978), which can ensure a ( 1

1+c )-
approximation (Conforti & Cornuéjols, 1984) when the submodular function has curvature c ∈ [0, 1].
However, this distributed algorithm requires each agent to have full access to the decisions of all
previous agents, thereby forming a complete directed communication graph. Subsequently, several
studies (Grimsman et al., 2018; Gharesifard & Smith, 2017; Marden, 2016) have investigated how
the topology of the communication network affects the performance of the distributed greedy method.
Particularly, Grimsman et al. (2018) pointed out that the worst-case performance of the distributed
greedy algorithm will deteriorate in proportion to the size of the largest independent group of agents
in the communication graph. In order to overcome these challenges, various studies (Rezazadeh &
Kia, 2023; Robey et al., 2021; Du et al., 2022) utilized the multi-linear extension to design algorithms
for solving MA-SM problem. Specifically, Du et al. (2022) devised a multi-agent variant of gradient
ascent for MA-SM problem, which can attain 1

2OPT − ϵ over connected communication graph at the
cost of O( n

ϵ2 ) value queries to the submodular function where OPT is the optimal value. After that,
to improve the 1

2 -approximation, Robey et al. (2021) developed a multi-agent variant of continuous
greedy method(Calinescu et al., 2011; Chekuri et al., 2014) with tight (1 − 1/e)-approximation.
However, this multi-agent continuous greedy(Robey et al., 2021) requires the exact knowledge
of the multi-linear extension function, which will lead to the exponential query complexity. To
tackle this drawback, Rezazadeh & Kia (2023) also proposed a stochastic variant of continuous
greedy method(Calinescu et al., 2011; Chekuri et al., 2014), which considers the curvature c of
submodular objectives and can enjoy ( 1−e−c

c )OPT − ϵ at the expense of O(
n log( 1

ϵ )

ϵ3 ) value queries
to the submodular function. In our Algorithm 1 and Algorithm 2, if any incoming objective function
ft corresponds to some submodular function f and we return the set ∪i∈N {at,i},∀t ∈ [T ] with
probability 1

T , we also can obtain two methods with the tight ( 1−e−c

c )-approximation guarantee

for MA-SM problem. Notably, in sharp contrast with O(
n log( 1

ϵ )

ϵ3 ) value queries in (Rezazadeh &
Kia, 2023), the aforementioned variants of Algorithm 1 and Algorithm 2 only require inquiring the
submodular objective O( n

ϵ2 ) and O(
n log( 1

ϵ )

ϵ2 ) times to attain ( 1−e−c

c )OPT − ϵ, respectively. We
present a detailed comparison of our proposed MA-OSMA and MA-OSEA with previous studies for
MA-SM problem in Table 2.

Because the multi-linear extension of a submodular set function belongs to the general continuous DR-
submodular functions, we also review related works about decentralized continuous DR-submodular
maximization. As for more detailed content on continuous DR-submodular maximization, please
refer to Pedramfar et al. (2023; 2024).

Decentralized Continuous DR-submodular Maximization. A differentiable function F : [0, 1]n →
R+ is DR-submodular if ∇F (x) ≤ ∇F (y) for any x ≥ y. Mokhtari et al. (2018) is the first to study
the decentralized continuous DR-submodular maximization problem, which showed an algorithm
titled DeCG achieving (1−1/e)OPT−ϵ for monotone and deterministic continuous DR-submodular
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maximization after O( 1
ϵ2 ) iterations and O( 1

ϵ2 ) communications. When only an unbiased estimate of
gradient is available, Mokhtari et al. (2018) also presented a decentralized method named DeSCG
for monotone cases, which attains (1 − 1/e)OPT − ϵ with O( 1

ϵ3 ) communications after O( 1
ϵ3 )

iterations. Next, Xie et al. (2019) presented a deterministic DeGTFW and a stochastic DeSGTFW
by applying the gradient tracking techniques(Pu & Nedić, 2021) to DeCG and DeSCG respectively,
both of which achieve the (1− 1/e)-approximation with a faster O( 1ϵ ) convergence rate and a lower
O( 1ϵ ) communications. After that, Gao et al. (2023) utilized the variance reduction technique(Fang
et al., 2018) to propose two sample-efficient algorithms, namely, DeSVRFW-gp and DeSVRFW-gt,
both of which can reduce the sample complexity of DeSGTFW from O( 1

ϵ3 ) to O( 1
ϵ2 ). Lastly, several

studies(Zhu et al., 2021; Zhang et al., 2023; Liao et al., 2023) extended these aforementioned offline
decentralized frameworks to time-varying DR-submodular objectives. It’s important to note that the
decentralized submodular maximization problem significantly differs from the multi-agent scenario
emphasized in this paper. In the context of decentralized optimization, we typically assume that each
local node maintains its own local utility function and the collective goal is to optimize the sum of
these local functions. In contrast, within the scope of this paper, we assume that all agents share a
common submodular function but each agent is restricted to accessing a unique set of actions.

Method Utility Graph Query Complexity Reference

Greedy Method ( 1
1+c )OPT complete n Conforti & Cornuéjols (1984)

Greedy Method ( 1
1+α(G) )OPT connected n Grimsman et al. (2018)

Projected Gradient Method 1
2OPT − ϵ connected O

(
n
ϵ2

)
Du et al. (2022)

CDCG (1− 1
e )OPT − ϵ connected O

(
n2n

ϵ

)
Robey et al. (2021)

Distributed-CG ( 1−e−c

c )OPT − ϵ connected O
(

n log( 1
ϵ )

ϵ3

)
Rezazadeh & Kia (2023)

Algorithm 1 ( 1−e−c

c )OPT − ϵ connected O
(
n
ϵ2

)
Theorem 3 & Remark 8

Algorithm 2 ( 1−e−c

c )OPT − ϵ connected O
(

n log( 1
ϵ )

ϵ2

)
Theorem 5 & Remark 9

Table 2: Comparison with prior works for Multi-Agent Submodular Maximization Problem. OPT
is the optimal value, c is the curvature of submodular objective, n := |V| the total number of all
available actions, α(G) is the number of nodes in the largest independent set in communication graph
G where α(G) ≥ 1. Note that the column of Query Complexity only considers the setting that each
agent selects one action.

A.2 MORE DISCUSSIONS ON ASSUMPTION 5

In this subsection, we show the Assumption 5 is well-established in both l1 norm and l2 norm.

At first, we review that, in Section 3.2, we define that:

∇̃F s(x) =
(1− e−c

c

)(
f(R∪ {1})− f(R \ {1}), . . . , f(R∪ {n})− f(R \ {n})

)
, (10)

where z is sampled from the probability distribution of the random variable Z where P (Z ≤ b) =

( c
1−e−c )

∫ b

0
ec(z−1)dz = ec(b−1)−e−c

1−e−c for any b ∈ [0, 1] and R ∼ z ∗ x.

From Eq.(10) and the submodularity of set function f , we can know that E(∇̃F s(x)|x) = ∇F s and
E(∥∇̃F s(x)∥∞) ≤ 1−e−c

c mf where mf = maxa∈V f({a}) denotes maximum singleton value.

Moreover, Hassani et al. (2017) recently have shown that the multi-linear extension F of a submodular
function f is mf -smooth under l1 norm, that is, ∥∇F (x)−∇F (y)∥∞ ≤ mf∥x− y∥1. From the
definition of surrogate function, we also know that ∇F s(x) =

∫ 1

0
ec(z−1)∇F (z ∗ x)dz such that

∥∇F s(x)−∇F s(y)∥∞ ≤
∫ 1

0

ec(z−1)∥∇F (z ∗ x)−∇F (z ∗ y)∥∞dz

≤
∫ 1

0

zec(z−1)mf∥x− y∥1dz

=
e−c + c− 1

c2
mf∥x− y∥1.
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Therefore, we can conclude that the surrogate function F s of the multi-linear extension of a sub-
modular function f with curvature c ∈ [0, 1] is

(
e−c+c−1

c2 mf

)
-smooth under l1 norm. Due to

∥ · ∥2 ≤
√
n∥ · ∥∞ and ∥ · ∥1 ≤

√
n∥ · ∥2, we also can show that E(∥∇̃F s(x)∥2) ≤

√
n 1−e−c

c mf

and ∥∇F s(x)−∇F s(y)∥2 ≤
(
n e−c+c−1

c2 mf

)
∥x− y∥2.

With the previous results, in Assumption 5, we can set G =
(

1−e−c

c

)
maxa∈V,t∈[T ]

(
ft({a})

)
and L =

(
e−c+c−1

c2

)
maxa∈V,t∈[T ]

(
ft({a})

)
under l1 norm. As for l2 norm, we consider G =

√
n
(

1−e−c

c

)
maxa∈V,t∈[T ]

(
ft({a})

)
and L = n

(
e−c+c−1

c2

)
maxa∈V,t∈[T ]

(
ft({a})

)
.

A.3 MORE DISCUSSIONS ON EXPERIMENTS

In this subsection, we highlight some additional details about the experiments.

At first, all experiments are performed in Python 3.6.5 using CVX optimization tool (Grant &
Boyd, 2014) on a MacBook Pro with Apple M1 Pro and 16GB RAM. Then, when considering the
random graph, we set the weight matrix W as follow: if the edge (i, j) is an edge of the graph, let
wij = 1/(1 + max(di, dj)) where di and dj are the degree of agent i and j, respectively. If (i, j) is
not an edge of the graph and i ̸= j, then wij = 0. Finally, we set wii = 1−

∑
j∈Ni

wij .

As for the complete graph, we set wij =
1
N where N is the number of agents. In MA-OSMA and

MA-OSEA algorithms, we set c = 1 and ηt =
1√
T

.

B PROOF OF THEOREM 1

We begin by reviewing some basic properties about the multi-linear extension of a submodular
function.

Lemma 1 (Calinescu et al. (2011); Bian et al. (2020)). When f : V → R+ is a monotone submod-
ular function, its multi-linear extension F (x) =

∑
A⊆V

(
f(A)

∏
a∈A xa

∏
a/∈A(1− xa)

)
has the

following properties:

1. F is monotone, that is, ∂F (x)
∂xi

≥ 0 for any i ∈ [n] and x ∈ [0, 1]n;

2. F is concave along any non-negative direction d ∈ Rn
+;

3. ∂F (x)
∂xi

= ER∼x

(
f(R∪ {i})− f(R \ {i})

)
,

4. ∇F (x) ≥ ∇F (y) for any x ≤ y and x,y ∈ [0, 1]n.

With this lemma, we can show the following lemma.

Lemma 2 (Calinescu et al. (2011); Bian et al. (2020)). when F is the multi-linear extension of a
monotone submodular function f , we can conclude that

⟨y − x,∇F (x)⟩ ≥ F (x ∨ y) + F (x ∧ y)− 2F (x),

where x ∧ y := min(x,y) and x ∨ y := max(x,y) are component-wise minimum and component-
wise maximum, respectively.

Proof. From the second property about the concavity in Lemma 1 and y ∨ x ≥ x and x∧ y ≤ x, we
first have that

⟨y ∨ x− x,∇F (x)⟩ ≥ F (y ∨ x)− F (x),

⟨x ∧ y − x,∇F (x)⟩ ≥ F (x ∧ y)− F (x).
(11)

Due to x + y = x ∨ y + x ∧ y, we therefore that that ⟨y − x,∇F (x)⟩ = ⟨y ∨ x − x,∇F (x)⟩ +
⟨x ∧ y − x,∇F (x)⟩ ≥ F (x ∨ y) + F (x ∧ y)− 2F (x).
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From the third property in Lemma 1 and the definition of curvature c ∈ [0, 1], that is, c := 1 −
minS⊆V,e/∈S

f(S∪{e})−f(S)
f({e}) , we can conclude that, when f is monotone submodular, f(S ∪ {e})−

f(S) ≥ (1− c)f({e}) for any S ⊆ V, e /∈ S such that, for any x ∈ [0, 1]n,

∂F (x)

∂xi
= ER∼x

(
f(R∪ {i})− f(R \ {i})

)
≥ (1− c)f({i}) = (1− c)

∂F (0n)

∂xi
,

where 0n is n-dimensional zero vector and we general suppose f(∅) = 0.

As a result, we can show that

Lemma 3. when F is the multi-linear extension of a monotone submodular function f with curvature
c, we have

F (x ∨ y) ≥ (1− c)
(
F (x)− F (x ∧ y)

)
+ F (y).

Proof.

F (x ∨ y)− F (y) =

∫ 1

z=0

〈
∇F

(
y + z(x ∨ y − y)

)
,x ∨ y − y

〉
dz

≥ (1− c)⟨∇F (0n),x ∨ y − y⟩
≥ (1− c)⟨∇F (x ∧ y),x ∨ y − y⟩
= (1− c)⟨∇F (x ∧ y),x− x ∧ y⟩

≥ (1− c)
(
F (x)− F (x ∧ y)

)
,

where the first inequality follows from ∇F (y + z(x ∨ y − y)) ≥ (1 − c)∇F (0n); the second
inequality comes from the fourth property in Lemma 1, i.e., ∇F (0n) ≥ ∇F (x ∧ y). The second
equality is due to x+y = x∨y+x∧y and the final inequality from the concavity along non-negative
direction.

Merging Lemma 3 into Lemma 2, we finally have that ⟨y− x,∇F (x)⟩ ≥ F (y)− (1 + c)F (x) such
that if x is a stationary point for F over the domain C ⊆ [0, 1]n, we have that 0 ≥ ⟨y−x,∇F (x)⟩ ≥
F (y)− (1 + c)F (x) for any y ∈ C, so F (x) ≥ 1

1+c maxy∈C F (y).

C PROOF OF THEOREM 2

In this section, we show the proof of Theorem 2. Before going into the details, we firstly prove the
following lemma.

Lemma 4. when F is the multi-linear extension of a monotone submodular function f with curvature
c, we have, for any y,x ∈ [0, 1]n,

⟨y,∇F (x)⟩ ≥ F (y)− cF (x).

Proof. Due to x+ y = x ∨ y + x ∧ y, we have that

⟨y,∇F (x)⟩ = ⟨x ∨ y − x,∇F (x)⟩+ ⟨x ∧ y,∇F (x)⟩
≥ F (x ∨ y)− F (x) + (1− c)⟨x ∧ y,∇F (0n)⟩
≥ F (x ∨ y)− F (x) + (1− c)F (x ∧ y)

≥ F (y)− cF (x),

where the first inequality follows from ∇F (x) ≥ (1 − c)∇F (0n) and the concavity along non-
negative direction, i.e., ⟨x ∨ y − x,∇F (x)⟩ ≥ F (x ∨ y)− F (x); the final inequality comes from
Lemma 3.

Next, we verify Theorem 2.
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Proof. Firstly, we prove that〈
x,

∫ 1

0

ec(z−1)∇F (z ∗ x)dz
〉

=

∫ 1

0

ec(z−1)⟨x,∇F (z ∗ x)⟩dz

=

∫ 1

0

ec(z−1)d
(
F (z ∗ x)

)
= ec(z−1) ∗ F (z ∗ x)|z=1

z=0 −
∫ 1

0

F (z ∗ x)d
(
ec(z−1)

)
= F (x)− c

∫ 1

0

ec(z−1)F (z ∗ x)dz.

(12)

Then, we show an upper bound for ⟨y,
∫ 1

0
ec(z−1)∇F (z ∗ x)dz⟩,〈

y,

∫ 1

0

ec(z−1)∇F (z ∗ x)dz
〉

=

∫ 1

0

ec(z−1)⟨y,∇F (z∗x)⟩dz ≥
∫ 1

0

ec(z−1)(F (y)−cF (z∗x))dz,

(13)
where the inequality follows from Lemma 4. Combining Eq.(12) with Eq.(13), we have〈
y − x,

∫ 1

0

ec(z−1)∇F (z ∗ x)dz
〉

≥
(∫ 1

0

ec(z−1)dz
)
F (y)−F (x) =

(∫ 1

0

ec(z−1)dz
)
F (y)−F (x).

Note the
∫ 1

0
ec(z−1)dz = 1−e−c

c .

D PROOF OF THEOREM 3

In this section, we show the proof of Theorem 3. Before going into the details, we firstly review a
standard lemma for the mirror projection.
Lemma 5 (Chen & Teboulle (1993); Jadbabaie et al. (2015)). Let ϕ : [0, 1]n → R be a 1-strongly
convex function with respect to the norm ∥ · ∥ and Dϕ(x,y) represent the Bregman divergence with
respect to ϕ, respectively. Then, any update of the form

x+ = min
y∈C

⟨b,y⟩+Dϕ(y,x),

satisfies the following inequality

⟨x+ − z, b⟩ ≤ Dϕ(z,x)−Dϕ(z,x
+)−Dϕ(x

+,x),

for any z ∈ C where C is a convex domain in [0, 1]n.

Next, we verify that each local variable xt,i of Algorithm 1 is included in the constraint of continuous
problem Eq.(3) for any t ∈ [T ] and i ∈ N .
Lemma 6. In Algorithm 1, if we set the constraint C = {x ∈ [0, 1]n :

∑
a∈Vi

xa ≤ 1,∀i ∈ N} and
Assumption 2 holds,we have that, for any t ∈ [T ] and i ∈ N , we have that, for any t ∈ [T ] and
i ∈ N , xt,i ∈ C and yt,i ∈ C.

Proof. We prove this lemma by induction. At first, from the Line 2 in Algorithm 1, we know that
x1,i ∈ C for any i ∈ N . Moreover, due to Assumption 2 and Line 8, we also can infer y1,i =∑

j∈Ni∪{i} wijx1,j ∈ C for any i ∈ N . For any 1 ≤ t < T , if we assume xt,i ∈ C and yt,i ∈ C for
any i ∈ N . Then from the Line 12 in Algorithm 1, we know

∑
a∈Vj

[xt+1,i]a =
∑

a∈Vj
[yt,i]a ≤ 1

for any j ̸= i and i ∈ Ni. Furthermore, Line 13 implies that [xt+1,i]Vi is the projection over
the constraint

∑ni

k=1 bk ≤ 1, so
∑

a∈Vi
[xt+1,i]a ≤ 1. we can conclude that xt+1,i ∈ C. Due to

Assumption 2, we can further show yt+1,i ∈ C.

With Lemma 6, we integrate the probability update procedures for actions i ∈ Vi and those not in Vi

within Algorithm 1, i,e, Lines 12-13.
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Lemma 7. In Algorithm 1, if we set the constraint C = {x ∈ [0, 1]n :
∑

a∈Vi
xa ≤ 1,∀i ∈ N} and

Assumption 1 and 2 hold,we have that, for any t ∈ [T ] and i ∈ N ,

xt+1,i = argmin
x∈C

(
− ⟨∇̃F s

t (xt,i)⊙ 1Vi
,x⟩+ 1

ηt
Dϕ(x,yt,i)

)
,

where ⊙ denotes the coordinate-wise multiplication, i.e.,the i-th element of vector x⊙ y is xiyi, and
1Vi

denotes a n-dimensional vector where the entries at Vi is equal to 1 and all others are 0.

Proof. Firstly, we define the solution of the problem minx∈C

(
− ⟨∇̃F s

t (xt,i) ⊙ 1Vi
,x⟩ +

1
ηt
Dϕ(x,yt,i)

)
as o∗ ∈ [0, 1]n. Due to Assumption 1,

o∗ = argmin
x∈C

(
− ⟨∇̃F s

t (xt,i)⊙ 1Vi
,x⟩+ 1

ηt
Dϕ(x,yt,i)

)
= argmin

x∈C

(
− ⟨[∇̃F s

t (xt,i)]Vi
, [x]Vi

⟩+ 1

ηt
Dg,ni

([x]Vi
, [yt,i]Vi

) +
1

ηt
Dg,n−ni

([x]V\Vi
, [yt,i]V\Vi

)
)
.

As a result, we can conclude that

[o∗]Vi
= argmin∑

a∈Vi
ba≤1

(
− ⟨[∇̃F s

t (xt,i)]Vi
,b⟩+ 1

ηt
Dg,ni

(b, [yt,i]Vi
)
)
,

[o∗]V\Vi
= argmin∑

a∈Vj
za≤1,∀j∈N\{i}

(
Dg,ni

(z, [yt,i]V\Vi
)
)
= [yt,i]V\Vi

, (Note that yt,i ∈ C (See lemma 6))

(14)
where b ∈ [0, 1]ni and z ∈ [0, 1]n−ni . From the Eq.(14) and Lines 12-13 in Algorithm 1, we get the
o∗ = xt+1,i.

In the following part, we define some commonly used symbols for the proof of Theorem 3:

x̄t :=

∑N
i=1 xt,i

N
, xcate

t := [xt,1;xt,2; . . . ;xt,N ] ∈ Rn∗N ;

ȳt :=

∑N
i=1 yt,i

N
, ycate

t := [yt,1;yt,2; . . . ;yt,N ] ∈ Rn∗N ;

rt,i := xt+1,i − yt,i, rcatet := [rt,1; rt,2; . . . ; rt,N ] ∈ Rn∗N ;

With these symbols, we can verify that
Lemma 8. If we set the constraint C = {x ∈ [0, 1]n :

∑
a∈Vi

xa ≤ 1,∀i ∈ N} and Assumption 1
and 5 hold, we have that

E(∥rt,i∥) = E(∥xt+1,i − yt,i∥) ≤ Gηt.

Proof. According to Lemma 7, we have that

xt+1,i = argmin
x∈C

(
− ⟨∇̃F s

t (xt,i)⊙ 1Vi
,x⟩+ 1

ηt
Dϕ(x,yt,i)

)
,

where C = {x ∈ [0, 1]n :
∑

a∈Vi
xa ≤ 1,∀i ∈ N}.

From the Lemma 5, we have

ηt⟨xt+1,i − x,−∇̃F s
t (xt,i)⊙ 1Vi

⟩ ≤ Dϕ(x,yt,i)−Dϕ(x,xt+1,i)−Dϕ(xt+1,i,yt,i), (15)

for any x ∈ C. If we set x = yt,i
1 in Eq.(15), we have that

ηt⟨xt+1,i − yt,i, ∇̃F s
t (xt,i)⊙ 1Vi

⟩ ≥ Dϕ(yt,i,xt+1,i) +Dϕ(xt+1,i,yt,i) ≥ ∥xt+1,i − yt,i∥,
where the final inequality follows from the 1-strongly convex of ϕ.

From the Young inequality, we have that ηt⟨xt+1,i − yt,i, ∇̃F s
t (xt,i) ⊙ 1Vi⟩ ≤ ∥xt+1,i−yt,i∥

2 +
∥ηt∇̃FA

t (xt,i)⊙1Vi
∥∗

2 such that E(∥xt+1,i − yt,i∥) ≤ E(∥ηt∇̃F s
t (xt,i) ⊙ 1Vi

∥∗) ≤ ηtG from the
Assumption 5.

1Note that we prove yt,i ∈ C in Lemma 6.
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With this Lemma 8, we next derive an upper bound about the deviation between xt+1,i,yt+1,i and
the average x̄t+1.
Lemma 9. Under the Assumption 1, 2 and 5, we have that, for any t ∈ [T ] and i ∈ N ,

E(∥xt+1,i − x̄t+1∥) ≤
t∑

τ=1

√
Nβt−τητG,

E(∥yt+1,i − x̄t+1∥) ≤
t∑

τ=1

√
Nβt−τητG,

where β = max(|λ2(W)|, |λN (W)|) is the second largest magnitude of the eigenvalues of the
weight matrix W.

Proof. From the definition of rt,i, we can conclude that

xt+1,i = rt,i + yt,i = rt,i +
∑

j∈Ni∪{i}

wijxt,j , (16)

where the final equality follows from Line 8 in Algorithm 1.

As a result, from the Eq.(16), we can show that

xcate
t+1 = rcatet + (W ⊗ In)x

cate
t

=

t∑
τ=1

(W ⊗ In)
t−τrcateτ

=

t∑
τ=1

(Wt−τ ⊗ In)r
cate
τ ,

(17)

where the symbol ⊗ denotes the Kronecker product.

If we also define x̄cate
t = [x̄t; x̄t; . . . ; x̄t] ∈ Rn∗N and from the Eq.(17), we also have that

x̄cate
t+1 =

(
1N1T

N

N
⊗ IN

)
xcate
t+1

=

t∑
τ=1

(
1N1T

N

N
⊗ In

)
rcateτ .

(18)

Then, from the Eq.(17) and Eq.(18), we have that , for any i ∈ N ,

xt+1,i − x̄t+1 =

t∑
τ=1

∑
j∈Ni∪{i}

(
[Wt−τ ]ij −

1

N

)
rτ,j . (19)

Eq.(19) indicates that

E (∥xt+1,i − x̄t+1∥) = E

∥∥∥∥∥∥
t∑

τ=1

∑
j∈Ni∪{i}

([Wt−τ ]ij −
1

N
)rτ,j

∥∥∥∥∥∥


≤ E

 t∑
τ=1

∑
j∈Ni∪{i}

∣∣∣∣[Wt−τ ]ij −
1

N

∣∣∣∣ ∥rτ,j∥


≤
t∑

τ=1

∑
j∈Ni∪{i}

∣∣∣∣[Wt−τ ]ij −
1

N

∣∣∣∣ ητG ≤
t∑

τ=1

√
Nβt−τητG,

where the second inequality comes from Lemma 8 and the final inequality follows from∑
j∈Ni∪{i} |[Wt−τ ]ij − 1

N | ≤
√
Nβt−τ (See Proposition 1 in (Nedic & Ozdaglar, 2009)). Due to

yt+1,i =
∑

j∈Ni∪{i} wijxt+1,j we also can have E(∥yt+1,i−x̄t+1∥) ≤
∑

j∈Ni∪{i} wijE(∥xt+1,j−
x̄t+1∥) ≤

∑t
τ=1

√
Nβt−τητG.
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Lemma 10. Consider our proposed Algorithm 1, if Assumption 1,2,3,5 hold and each set function ft
is monotone submodular with curvature c for any t ∈ [T ], then we can conclude that,(1− e−c

c

) T∑
t=1

Ft(x
∗
t )−

T∑
t=1

E
(
Ft(x̄t)

)
≤ (3G+ LDG)

( T∑
t=1

t∑
τ=1

N
3
2 βt−τητ

)
+

T∑
t=1

∑
i∈N

1

ηt
E
(
Dϕ(x

∗
t ,yt,i)−Dϕ(x

∗
t ,xt+1,i)

)
+

NG

2

T∑
t=1

ηt,

where x∗
t is the optimal solution of Eq.(3) and D = supx,y∈C ∥x − y∥ where C = {x ∈ [0, 1]n :∑

a∈Vi
xa ≤ 1,∀i ∈ N}.

Proof. From the Eq.(4) in Theorem 2, we have that(1− e−c

c

)
Ft(x

∗
t )− Ft(x̄t) ≤ ⟨∇F s

t (x̄t),x
∗
t − x̄t⟩

= ⟨∇F s
t (x̄t)−

∑
i∈N

(
∇F s

t (xt,i)⊙ 1Vi

)
,x∗

t − x̄t⟩︸ ︷︷ ︸
1⃝

+
∑
i∈N

⟨∇F s
t (xt,i)⊙ 1Vi

,x∗
t − xt,i⟩︸ ︷︷ ︸

2⃝

+
∑
i∈N

⟨∇F s
t (xt,i)⊙ 1Vi

,xt,i − x̄t⟩︸ ︷︷ ︸
3⃝

,

(20)

where ⊙ denotes the coordinate-wise multiplication, i.e.,the i-th element of vector x⊙ y is xiyi, and
1Vi

denotes a n-dimensional vector where the entries at Vi is equal to 1 and all others are 0.

For 1⃝, we have
⟨∇F s

t (x̄t)−
∑
i∈N

(
∇F s

t (xt,i)⊙ 1Vi

)
,x∗

t − x̄t⟩

≤

∥∥∥∥∥∇F s
t (x̄t)−

∑
i∈N

(
∇F s

t (xt,i)⊙ 1Vi

)∥∥∥∥∥
∗

∥x∗
t − x̄t∥

≤ ∥x∗
t − x̄t∥

∑
i∈N

(
∥[∇F s

t (x̄t)]Vi
− [∇F s

t (xt,i)]Vi
∥∗
)

≤ ∥x∗
t − x̄t∥

∑
i∈N

(
∥∇F s

t (x̄t)−∇F s
t (xt,i)∥∗

)
≤ ∥x∗

t − x̄t∥
∑
i∈N

(
L∥x̄t − xt,i∥

)
≤ LD

∑
i∈N

(
∥x̄t − xt,i∥

)
≤ LDG

t∑
τ=1

N
3
2 βt−τητ ,

(21)

where the fourth inequality follows from Assumption 5; the fifth comes from D = supx,y∈C ∥x−y∥
and the final inequality from Lemma 9.

For 3⃝, from Assumption 5 and Lemma 9, we have,

E
(∑

i∈N
⟨∇F s

t (xt,i)⊙ 1Vi ,xt,i − x̄t⟩
)
≤ G

∑
i∈N

E
(
∥xt,i − x̄t∥

)
≤

t∑
τ=1

GN
3
2 βt−τητ . (22)
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As for 2⃝, we have,

E
(∑

i∈N
⟨∇F s

t (xt,i)⊙ 1Vi ,x
∗
t − xt,i⟩

)
= E

(
E
(∑

i∈N
⟨∇F s

t (xt,i)⊙ 1Vi
,x∗

t − xt,i⟩|xt,i

))

= E

(
E
(∑

i∈N
⟨∇̃F s

t (xt,i)⊙ 1Vi
,x∗

t − xt,i⟩|xt,i

))
=
∑
i∈N

E
(
⟨∇̃F s

t (xt,i)⊙ 1Vi ,x
∗
t − xt+1,i⟩

)
︸ ︷︷ ︸

4⃝

+
∑
i∈N

E
(
⟨∇̃F s

t (xt,i)⊙ 1Vi
,xt+1,i − yt,i⟩

)
︸ ︷︷ ︸

5⃝

+
∑
i∈N

E
(
⟨∇̃F s

t (xt,i)⊙ 1Vi
,yt,i − xt,i⟩

)
︸ ︷︷ ︸

6⃝

.

(23)

For 4⃝, from Lemma 7, we know that

xt+1,i = argmin
x∈C

(
− ⟨∇̃F s

t (xt,i)⊙ 1Vi
,x⟩+ 1

ηt
Dϕ(x,yt,i)

)
.

So, from the Lemma 5, we can show that
ηt⟨xt+1,i − x,−∇̃F s

t (xt,i)⊙ 1Vi⟩ ≤ Dϕ(x,yt,i)−Dϕ(x,xt+1,i)−Dϕ(xt+1,i,yt,i), (24)
for any x ∈ C. If we set x = x∗

t in Eq.(24), we have

4⃝ ≤ 1

ηt

∑
i∈N

E
(
Dϕ(x

∗
t ,yt,i)−Dϕ(x

∗
t ,xt+1,i)−Dϕ(xt+1,i,yt,i)

)
≤ 1

ηt

∑
i∈N

E
(
Dϕ(x

∗
t ,yt,i)−Dϕ(x

∗
t ,xt+1,i)

)
−
∑
i∈N

E
(
∥xt+1,i − yt,i∥

2ηt

)
.

(25)

For 5⃝, by Young’s inequality, we have that

5⃝ ≤
∑
i∈N

E
(
∥xt+1,i − yt,i∥

2ηt

)
+
∑
i∈N

E
(ηt
2
∥∇̃F s

t (xt,i)⊗ 1Vi
∥∗
)
,

≤
∑
i∈N

E
(
∥xt+1,i − yt,i∥

2ηt

)
+

ηtNG

2
.

(26)

For 6⃝, we have that,

6⃝ ≤
(∑

i∈N
E
(
∥∇̃F s

t (xt,i)⊗ 1Vi
∥∗∥xt,i − yt,i∥ | xt,i,∀i ∈ N

))
≤
(
E(∥∇̃FA

t (xt,i)∥∗)
)(∑

i∈N
E(∥xt,i − x̄t∥) + E(∥yt,i − x̄t∥)

)
≤ 2

t∑
τ=1

GN
3
2 βt−τητ .

(27)

Merging Eq.(21),(23),(22),(25),(26) and (27) into Eq.(20), we have that(1− e−c

c

)
Ft(x

∗
t )− Ft(x̄t) ≤ ⟨∇F s

t (x̄t),x
∗
t − x̄t⟩

≤ (3G+ LD)
( t∑

τ=1

N
3
2 βt−τητ

)
+

1

ηt

∑
i∈N

E
(
Dϕ(x

∗
t ,yt,i)−Dϕ(x

∗
t ,xt+1,i)

)
+

ηtNG

2
.

As a result, we get the result in Lemma 10.
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Next, we prove an upper bound of
∑T

t=1

∑
i∈N

1
ηt
E
(
Dϕ(x

∗
t ,yt,i)−Dϕ(x

∗
t ,xt+1,i)

)
, that is,

Lemma 11. If Assumption 1-5 hold, we have that
T∑

t=1

∑
i∈N

1

ηt
E
(
Dϕ(x

∗
t ,yt,i)−Dϕ(x

∗
t ,xt+1,i)

)
≤ NR2

ηT+1
+

T∑
t=1

KN

ηt+1
∥x∗

t+1 − x∗
t ∥,

where x∗
t is the optimal solution of Eq.(3), R2 := supx,y∈C Dϕ(x,y), and C is the constraint set in

Eq.(3).

Proof.
T∑

t=1

∑
i∈N

1

ηt
E
(
Dϕ(x

∗
t ,yt,i)−Dϕ(x

∗
t ,xt+1,i)

)

=

T∑
t=1

∑
i∈N

( 1

ηt
E(Dϕ(x

∗
t ,yt,i))−

1

ηt+1
E(Dϕ(x

∗
t+1,yt+1,i))

)
︸ ︷︷ ︸

1⃝

+

T∑
t=1

∑
i∈N

(
1

ηt+1
E
(
Dϕ(x

∗
t+1,yt+1,i)−Dϕ(x

∗
t ,yt+1,i)

))
︸ ︷︷ ︸

2⃝

+

T∑
t=1

∑
i∈N

(
1

ηt+1
E
(
Dϕ(x

∗
t ,yt+1,i)−Dϕ(x

∗
t ,xt+1,i)

))
︸ ︷︷ ︸

3⃝

+

T∑
t=1

∑
i∈N

( 1

ηt+1
− 1

ηt

)
E
(
Dϕ(x

∗
t ,xt+1,i)

)
︸ ︷︷ ︸

4⃝

.

Firstly, we have 1⃝≤ NR2

η1
and 2⃝≤

∑T
t=1

KN
ηt+1

∥x∗
t+1 − x∗

t ∥ from Assumption 4.

Then, from the separate convexity, we have

3⃝ =

T∑
t=1

∑
i∈N

(
1

ηt+1
E
(
Dϕ(x

∗
t ,yt+1,i)−Dϕ(x

∗
t ,xt+1,i)

))

=

T∑
t=1

∑
i∈N

(
1

ηt+1
E
(
Dϕ(x

∗
t ,

∑
j∈Ni∪{i}

wijxt+1,j)−Dϕ(x
∗
t ,xt+1,i)

))

≤
T∑

t=1

(
1

ηt+1
E
(∑

i∈N

∑
j∈Ni∪{i}

(
wijDϕ(x

∗
t ,xt+1,j)

)
−
∑
i∈N

Dϕ(x
∗
t ,xt+1,i)

))

=

T∑
t=1

(
1

ηt+1
E
(∑

i∈N

(
(
∑

j∈Ni∪{i}

wji)Dϕ(x
∗
t ,xt+1,i)

)
−
∑
i∈N

Dϕ(x
∗
t ,xt+1,i)

))
= 0,

where the first inequality follows from Assumption 3, and the third inequality is due to wij = wji.

Moreover, we have 4⃝≤ NR2
(

1
ηT+1

− 1
η1

)
. We finally get

T∑
t=1

∑
i∈N

1

ηt
E
(
Dϕ(x

∗,yt,i)−Dϕ(x
∗,xt+1,i)

)
≤ NR2

ηT+1
+

T∑
t=1

KN

ηt+1
∥x∗

t+1 − x∗
t ∥.
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As a result, we can prove the following Lemma:
Lemma 12. If Assumption 1-5 hold and each set function ft is monotone submodular with curvature
c for any t ∈ [T ], then(1− e−c

c

) T∑
t=1

Ft(x
∗
t )−

T∑
t=1

E
(
Ft

(∑
i∈N

xt,i ⊙ 1Vi

))

≤ (4G+ LDG)
( T∑

t=1

t∑
τ=1

N
3
2 βt−τητ

)
+

NR2

ηT+1
+

T∑
t=1

KN

ηt+1
∥x∗

t+1 − x∗
t ∥+

NG

2

T∑
t=1

ηt.

Proof. From the Lemma 10 and Lemma 11, we have that(1− e−c

c

) T∑
t=1

Ft(x
∗
t )−

T∑
t=1

E
(
Ft(x̄t)

)
≤ (3G+ LDG)

( T∑
t=1

t∑
τ=1

N
3
2 βt−τητ

)
+

NR2

ηT+1
+

T∑
t=1

KN

ηt+1
∥x∗

t+1 − x∗
t ∥+

NG

2

T∑
t=1

ηt.

From the Assumption 5, we also can show that |Ft(x)−Ft(y)| ≤ G∥x−y∥ for any t ∈ [T ] such that
we have |Ft

(∑
i∈N xt,i ⊙1Vi

)
−Ft(x̄t)| ≤ G∥

∑
i∈N xt,i ⊙1Vi

− x̄t∥ ≤ G
∑

i∈N ∥xt,i − x̄t∥ ≤
G
(∑t

τ=1 N
3
2 βt−τητ

)
. Thus, we have that

(1− e−c

c

) T∑
t=1

Ft(x
∗
t )−

T∑
t=1

E
(
Ft(
∑
i∈N

xt,i ⊙ 1Vi
)
)

≤
(1− e−c

c

) T∑
t=1

Ft(x
∗
t )−

T∑
t=1

E
(
Ft(x̄t)

)
+
∣∣ T∑
t=1

E
(
Ft

(∑
i∈N

xt,i ⊙ 1Vi

)
− Ft

(
x̄t

))∣∣
≤ (4G+ LDG)

( T∑
t=1

t∑
τ=1

N
3
2 βt−τητ

)
+

NR2

ηT+1
+

T∑
t=1

KN

ηt+1
∥x∗

t+1 − x∗
t ∥+

NG

2

T∑
t=1

ηt.

From Calinescu et al. (2011); Chekuri et al. (2014), we know that the optimal value of continuous
problem Eq.(3) is equal to the optimal value of the corresponding discrete submodular maximization
Eq.(1), so we can set x∗

t := 1A∗
t

where A∗
t is the maximizer of Eq.(1).

Next, we show a relationship between E
(
ft
(
∪i∈N {at,i}

))
and E

(
Ft

(∑
i∈N xt,i ⊙ 1Vi

))
.

Lemma 13. If the function ft is monotone submodular and at,i is the action taken by the agent
i ∈ N at time t, then we have

E
(
ft
(
∪i∈N {at,i}

))
≥ E

((
Ft

(∑
i∈N

xt,i ⊙ 1Vi

))
.

Proof. We prove this lemma by induction on N = |N |. When N = 1, for any t ∈ [T ], we have that

E(Ft(xt,1)) ≤ E(Ft(
xt,1

∥xt,1∥1
) ≤ ER∼ xt,1

∥xt,1∥1

(
ft(R)

)
≤ ER∼ xt,1

∥xt,1∥1

(∑
a∈R

ft(a)
)

=
∑
a∈V

[xt,1]a
∥xt,1∥1

ft(a)

= E(ft(at,1)),

(28)

where the first inequality follows from the monotonicity of ft and ∥xt,1∥1 ≤ 1; the second one from
the submodularity of ft and Line 5-6 in Algorithm 1.
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Now let N > 1. For any R ⊆ V , we denote R1 = R \ VN and si =
∑

a∈Vi
[xt,i]a for any i ∈ N .

Then, we have that

E
(
Ft

(∑
i∈N

xt,i ⊙ 1Vi

))
≤ E

(
Ft

(∑
i∈N

xt,i

si
⊙ 1Vi

))
= ER∼

∑
i∈N

xt,i
si

⊙1Vi

(
ft(R)

)
= ER∼

∑
i∈N

xt,i
si

⊙1Vi

(
ft(R1) + ft(R)− ft(R1)

)
= ER∼

∑
i∈N

xt,i
si

⊙1Vi

(
ft(R)− ft(R1)

)
+ ER∼

∑
i∈N

xt,i
si

⊙1Vi

(
ft(R1)

)
= E

(
ER∼

∑
i∈N

xt,i
si

⊙1Vi

(
ft(R)− ft(R1)

∣∣∣R1

))
+ ER∼

∑
i∈N

xt,i
si

⊙1Vi

(
ft(R1)

)
≤ E

(
ER∼

∑
i∈N

xt,i
si

⊙1Vi

(
ft(R1 ∪ {at,N})− ft(R1)

∣∣∣R1

))
+ ER∼

∑
i∈N

xt,i
si

⊙1Vi

(
ft(R1)

)
= ER∼

∑
i∈N

xt,i
si

⊙1Vi

(
ft(R1 ∪ {at,N})

)
≤ E

(
ft
(
∪i∈N {at,i}

))
,

where the first inequality follows from the monotonicity of ft and si ≤ 1 and we get the second
inequality follows from repeating the proof in Eq.(28) because ft(R)−ft(R1) = ft(R)−ft(R\VN )
is a submodular function over VN for any fixed R ⊆ V and at,N is selected from the set VN according
to [xt,N ]VN

sN
.

Merging Lemma 13 into Lemma 12, we can get that(1− e−c

c

) T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
ft
(
∪i∈N {at,i}

))
≤ (4G+ LDG)

( T∑
t=1

t∑
τ=1

N
3
2 βt−τητ

)
+

NR2

ηT+1
+

T∑
t=1

KN

ηt+1
∥1A∗

t+1
− 1A∗

t
∥+ NG

2

T∑
t=1

ηt.

We know that all norms in finite-dimensional real space are equivalent (Lax, 2014), so ∥x∥ ≤ C2∥x∥1.
Finally, we can verify the Eq.(8) in Theorem 3, that is,(1− e−c

c

) T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
ft
(
∪i∈N {at,i}

))
≤ (4G+ LDG)

( T∑
t=1

t∑
τ=1

N
3
2 βt−τητ

)
+

NR2

ηT+1
+

T∑
t=1

KNC2

ηt+1
|A∗

t+1∆A∗
t |+

NG

2

T∑
t=1

ηt.

E PROOF OF THEOREM 4

In this section, we prove the Theorem 4.

Proof. When g(x) = x log(x), we know that, for any b,y ∈ (0, 1)m

Dg,m(b,y) =

m∑
i=1

(
bi log(

bi
yi
)
)
−

m∑
i=1

bi +

m∑
i=1

yi.

Next, we consider the Lagrangian function, for any fixed y, z ∈ (0, 1)n,

L(b, λ) =

m∑
i=1

zibi +

m∑
i=1

(
bi log(

bi
yi
)
)
−

m∑
i=1

bi +

m∑
i=1

yi + λ(

m∑
i=1

bi − 1).

Then, we have that
∂L(b, λ)

∂bi
= zi + log(

bi
yi
) + λ, ∀i ∈ [m]. (29)
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Setting all equations in Eq.(29) to 0, we can get bi = yi exp(−zi) exp(−λ) for any i ∈ [m]

such that L(λ) = −
∑m

i=1

(
yi exp(−zi)

)
exp(−λ) − λ. When

∑m
i=1

(
yi exp(−zi)

)
≤ 1,

L(0) = maxλ≥0 L(λ) such that the optimal solution b∗i = yi exp(−zi). Similarly, when∑m
i=1

(
yi exp(−zi)

)
> 1,

L

(
log
( m∑

i=1

(
yi exp(−zi)

)))
= max

λ≥0
L(λ),

so b∗i = yi exp(−zi) exp

(
− log

(∑m
i=1

(
yi exp(−zi)

)))
= yi exp(−zi)∑m

i=1

(
yi exp(−zi)

) .

F PROOF OF THEOREM 5

In this section, we present the proof of Theorem 5. Specially, we assume ∥ · ∥ is l1 norm in this
section. Like the Appendix D, we can show that

Lemma 14. In Algorithm 2, if we set the constraint C = {x ∈ [0, 1]n :
∑

a∈Vi
xa ≤ 1,∀i ∈ N}

and Assumption 2 holds,we have that, for any t ∈ [T ] and i ∈ N , we have that, for any t ∈ [T ] and
i ∈ N , xt,i ∈ C and yt,i ∈ C.

Lemma 15. In Algorithm 2, if we set the constraint C = {x ∈ [0, 1]n :
∑

a∈Vi
xa ≤ 1,∀i ∈ N}

and Assumption 1 and 2 hold,we have that, for any t ∈ [T ] and i ∈ N ,

xt+1,i = argmin
x∈C

(
− ⟨∇̃F s

t (xt,i)⊙ 1Vi
,x⟩+ 1

ηt
DKL(x,yt,i)

)
,

where ⊙ denotes the coordinate-wise multiplication, i.e.,the i-th element of vector x⊙ y is xiyi, and
1Vi

denotes a n-dimensional vector where the entries at Vi is equal to 1 and all others are 0.

Lemma 16. In Algorithm 2, if we set the constraint C = {x ∈ [0, 1]n :
∑

a∈Vi
xa ≤ 1,∀i ∈ N}

and Assumption 1 and 5 hold, we have that

E(∥rt,i∥1) = E(∥xt+1,i − yt,i∥1) ≤ Gηt.

Moreover, we also define the following new symbols for Algorithm 2:

x̄t =

∑N
i=1 xt,i

N
, xcate

t = [xt,1;xt,2; . . . ;xt,N ] ∈ Rn∗N ;

ȳt =

∑N
i=1 yt,i

N
, ycate

t = [yt,1;yt,2; . . . ;yt,N ] ∈ Rn∗N ;

x̂t =

∑N
i=1 x̂t,i

N
, x̂cate

t = [x̂t,1; x̂t,2; . . . ; x̂t,N ] ∈ Rn∗N ;

rt,i = xt+1,i − yt,i, rcatet = [rt,1; rt,2; . . . ; rt,N ] ∈ Rn∗N ;

Then, we also can show that

Lemma 17. In Algorithm 2, under the Assumption 1, 2 and 5, we have that, for any t ∈ [T ] and
i ∈ N ,

E((∥xt+1,i − x̄t+1∥1) ≤
t∑

τ=1

√
Nβt−τ (1− γ)t−τητG,

E((∥yt+1,i − x̄t+1∥1) ≤
t∑

τ=1

√
Nβt−τ (1− γ)t+1−τητG+ γD,

where β = max(|λ2(W)|, |λN (W)|) is the second largest magnitude of the eigenvalues of the
weight matrix W and D = supx,y∈C ∥x− y∥1 where C = {x ∈ [0, 1]n :

∑
a∈Vi

xa ≤ 1,∀i ∈ N}.
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Proof. From the definition of rt,i and x̂t,i, we can conclude that

xt+1,i = rt,i + yt,i = rt,i +
∑

j∈Ni∪{i}

wijx̂t,j

= rt,i +
∑

j∈Ni∪{i}

wij

(
(1− γ)xt,i +

γ

n
1n

)
.

(30)

where the final equality follows from step 8 in Algorithm 2.

As a result, from the Eq.(30), we can show that

xcate
t+1 = rcatet + (W ⊗ In)

(
(1− γ)xcate

t +
γ

n
1nN

)
= rcatet + (1− γ)(W ⊗ In)x

cate
t +

γ

n
1nN

=

t∑
τ=1

(1− γ)t−τ (W ⊗ In)
t−τ

(
rcateτ +

γ

n
1nN

)

=

t∑
τ=1

(1− γ)t−τ (Wt−τ ⊗ In)r
cate
τ +

t∑
τ=1

γ(1− γ)t−τ

n
1nN .

(31)

If we define x̄cate
t = [x̄t; x̄t; . . . ; x̄t] ∈ Rn∗N and from the Eq.(31), we also have that

x̄cate
t+1 = (

1N1T
N

N
⊗ IN )xcate

t+1

=

t∑
τ=1

(1− γ)t−τ (
1N1T

N

N
⊗ In)r

cate
τ +

t∑
τ=1

γ(1− γ)t−τ

n
1nN .

(32)

Then, from the Eq.(31) and Eq.(32), we have that , for any i ∈ N ,

xt+1,i − x̄t+1 =

t∑
τ=1

∑
j∈Ni∪{i}

(1− γ)t−τ ([Wt−τ ]ij −
1

N
)rτ,j . (33)

Eq.(33) indicates that

E(∥xt+1,i − x̄t+1∥1) = E(∥
t∑

τ=1

∑
j∈Ni∪{i}

(1− γ)t−τ ([Wt−τ ]ij −
1

N
)rτ,j∥1)

≤ E(
t∑

τ=1

∑
j∈Ni∪{i}

(1− γ)t−τ |[Wt−τ ]ij −
1

N
|∥rτ,j∥1)

≤
t∑

τ=1

∑
j∈Ni∪{i}

|[Wt−τ ]ij −
1

N
|(1− γ)t−τητG

≤
t∑

τ=1

√
Nβt−τ (1− γ)t−τητG,

where the second inequality comes from Lemma 16 and the final inequality follows from∑
j∈Ni∪{i} |[Wt−τ ]ij − 1

N | ≤
√
Nβt−τ . Due to yt+1,i =

∑
j∈Ni∪{i} wijx̂t+1,j we also can
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have

E((∥yt+1,i − x̄t+1∥1) ≤
∑

j∈Ni∪{i}

wijE((∥x̂t+1,j − x̄t+1∥1)

=
∑

j∈Ni∪{i}

wijE((∥
(
(1− γ)xt,i +

γ

n
1n

)
− x̄t+1∥1)

= (1− γ)
∑

j∈Ni∪{i}

wijE((∥xt,i − x̄t+1∥1) + γ
∑

j∈Ni∪{i}

wijE(∥
1

n
1n − x̄t+1∥1)

≤
t∑

τ=1

√
Nβt−τ (1− γ)t+1−τητG+ γD.

Like the Lemma 10, we can present a similar lemma for Algorithm 2, that is,

Lemma 18. Consider our proposed Algorithm 2, if Assumption 1,2,3,5 hold and each set function ft
is monotone submodular with curvature c for any t ∈ [T ], then we can conclude that,

(1− e−c

c

) T∑
t=1

Ft(x
∗t)−

T∑
t=1

E
(
Ft(x̄t)

)
≤ (2G+ LD)

( T∑
t=1

∑
i∈N

∥xt,i − x̄t∥1
)

+G
( T∑

t=1

∑
i∈N

∥yt,i − x̄t∥1
)
+

T∑
t=1

∑
i∈N

1

ηt
E
(
DKL(x

∗,yt,i)−DKL(x
∗,xt+1,i)

)
+

NG

2

T∑
t=1

ηt,

where x∗
t is the optimal solution of Eq.(3) and D = supx,y∈C ∥x − y∥ where C = {x ∈ [0, 1]n :∑

a∈Vi
xa ≤ 1,∀i ∈ N}.

Then, we derive an upper bound for
∑T

t=1

∑
i∈N

1
ηt
E
(
DKL(x

∗
t ,yt,i)−DKL(x

∗
t ,xt+1,i)

)
, i.e.,

Lemma 19. If Assumption 1,2,3 and 5 hold, we have that

T∑
t=1

∑
i∈N

1

ηt
E
(
DKL(x

∗
t ,yt,i)−DKL(x

∗
t ,xt+1,i)

)

≤
T∑

t=1

∑
i∈N

1

ηt
E

(
n∑

j=1

[x∗
t ]j log

(
[x̂t+1,i]j
[yt,i]j

)
+

n∑
j=1

(
[yt,i]j − [xt+1,i]j

))
+

T∑
t=1

2N2γ

ηt
.

Proof. From Nesterov (2013), we know that, for any two vector x,y ∈ Rn
+,

DKL(x,y) =

n∑
j=1

[x]j log

(
[x]j
[y]j

)
−

n∑
j=1

[x]j +

n∑
j=1

[y]j .

Thus, we can show that

T∑
t=1

∑
i∈N

1

ηt
E
(
DKL(x

∗
t ,yt,i)−DKL(x

∗
t ,xt+1,i)

)

=

T∑
t=1

∑
i∈N

1

ηt
E

(
n∑

j=1

[x∗
t ]j log

(
[xt+1,i]j
[yt,i]j

)
+

n∑
j=1

(
[yt,i]j − [xt+1,i]j

))

=

T∑
t=1

∑
i∈N

1

ηt
E

(
n∑

j=1

[x∗
t ]j log

(
[x̂t+1,i]j
[yt,i]j

)
+

n∑
j=1

[x∗
t ]j log

(
[xt+1,i]j
[x̂t+1,i]j

)
+

n∑
j=1

(
[yt,i]j − [xt+1,i]j

))
.
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From Line 7 in Algorithm 2, we know that [x̂t+1,i]j = (1 − γ)[xt+1,i]j +
γ
n . So if [xt+1,i]j ≤ 1

n ,
[xt+1,i]j ≤ [x̂t+1,i]j or log( [xt+1,i]j

[x̂t+1,i]j
) ≤ 0. As for [xt+1,i]j >

1
n and γ ≤ 1

2 ,

log(
[xt+1,i]j
[x̂t+1,i]j

) = log(
[xt+1,i]j

(1− γ)[xt+1,i]j +
γ
n

) = log
(
1 +

γ([xt+1,i]j − 1
n )

(1− γ)[xt+1,i]j +
γ
n

)
≤

γ([xt+1,i]j − 1
n )

(1− γ)[xt+1,i]j +
γ
n

≤ 2γ,

where the final inequality follows from [xt+1,i]j − 1
n ≤ [xt+1,i]j ≤ 2(1 − γ)[xt+1,i]j ≤ 2

(
(1 −

γ)[xt+1,i]j +
γ
n

)
.

Then, we have

T∑
t=1

∑
i∈N

1

ηt
E
(
DKL(x

∗
t ,yt,i)−DKL(x

∗
t ,xt+1,i)

)

≤
T∑

t=1

∑
i∈N

1

ηt
E

(
n∑

j=1

[x∗
t ]j log(

[x̂t+1,i]j
[yt,i]j

) +

n∑
j=1

(
[yt,i]j − [xt+1,i]j

))
+

T∑
t=1

2N2γ

ηt
.

Lemma 20. If Assumption 1,2,3 and 5 hold, we have that

T∑
t=1

∑
i∈N

1

ηt
E

(
n∑

j=1

[x∗
t ]j log(

[x̂t+1,i]j
[yt,i]j

)

)
≤

N2 log(nγ )

ηT+1
+

T∑
t=1

N log(nγ )

ηt+1
∥x∗

t+1 − x∗
t ]∥1.

Proof.

T∑
t=1

∑
i∈N

1

ηt
E

(
n∑

j=1

[x∗
t ]j log(

[x̂t+1,i]j
[yt,i]j

)

)

=

T∑
t=1

∑
i∈N

1

ηt

(
E
( n∑

j=1

[x∗
t ]j log(

1

[yt,i]j
)
)
− E

( n∑
j=1

[x∗
t ]j log(

1

[x̂t+1,i]j
)
))

=

T∑
t=1

∑
i∈N

(
1

ηt
E
( n∑

j=1

[x∗
t ]j log(

1

[yt,i]j
)
)
− 1

ηt+1
E
( n∑

j=1

[x∗
t+1]j log(

1

[yt+1,i]j
)
))

︸ ︷︷ ︸
1⃝

+

T∑
t=1

∑
i∈N

1

ηt+1

(
E
( n∑

j=1

[x∗
t+1]j log(

1

[yt+1,i]j
)
)
− E

( n∑
j=1

[x∗
t ]j log(

1

[yt+1,i]j
)
))

︸ ︷︷ ︸
2⃝

+

T∑
t=1

∑
i∈N

1

ηt+1

(
E
( n∑

j=1

[x∗
t ]j log(

1

[yt+1,i]j
)
)
− E

( n∑
j=1

[x∗
t ]j log(

1

[x̂t+1,i]j
)
))

︸ ︷︷ ︸
3⃝

+

T∑
t=1

∑
i∈N

( 1

ηt+1
− 1

ηt

)
E
( n∑

j=1

[x∗
t ]j log(

1

[x̂t+1,i]j
)
)

︸ ︷︷ ︸
4⃝

.
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Firstly, from the convexity of function log( 1x ), we have

3⃝ =

T∑
t=1

∑
i∈N

1

ηt+1

(
E
( n∑

j=1

[x∗
t ]j log(

1

[yt+1,i]j
)
)
− E

( n∑
j=1

[x∗
t ]j log(

1

[x̂t+1,i]j
)
))

=

T∑
t=1

∑
i∈N

1

ηt+1

(
E
( n∑

j=1

[x∗
t ]j log(

1∑
k∈Ni∪{i} wik[x̂t+1,k]j

)
)
− E

( n∑
j=1

[x∗
t ]j log(

1

[x̂t+1,i]j
)
))

≤
T∑

t=1

∑
i∈N

1

ηt+1

(
E
( n∑

j=1

[x∗
t ]j

∑
k∈Ni∪{i}

wik log(
1

[x̂t+1,k]j
)
)
− E

( n∑
j=1

[x∗
t ]j log(

1

[x̂t+1,i]j
)
))

=

T∑
t=1

∑
i∈N

1

ηt+1

(( ∑
k∈Ni∪{i}

wki

)
E
( n∑

j=1

[x∗
t ]j log(

1

[x̂t+1,i]j
)
)
− E

( n∑
j=1

[x∗
t ]j log(

1

[x̂t+1,i]j
)
))

= 0.

Then, for 1⃝, we can show that

1⃝ ≤
∑
i∈N

1

η1
E
( n∑

j=1

[x∗
1]j log(

1

[y1,i]j
)
)
≤

N2 log(nγ )

η1
,

where the final inequality follows from [y1,i]j ≥ γ
n such that log( 1

[y1,i]j
) ≤ log(nγ ) and

∑n
j=1[x

∗
1]j ≤

N .

As for 2⃝, we can have that

T∑
t=1

∑
i∈N

1

ηt+1

(
E
( n∑

j=1

[x∗
t+1]j log(

1

[yt+1,i]j
)
)
− E

( n∑
j=1

[x∗
t ]j log(

1

[yt+1,i]j
)
))

=

T∑
t=1

∑
i∈N

1

ηt+1

(
E
( n∑

j=1

(
[x∗

t+1]j − [x∗
t ]j

)
log(

1

[yt+1,i]j
)
))

≤
T∑

t=1

N log(nγ )

ηt+1
∥x∗

t+1 − x∗
t ]∥1,

where the final inequality follows from log( 1
[yt+1,i]j

) ≤ log(nγ ). Moreover, we have 4⃝≤

N2 log(nγ )
(

1
ηT+1

− 1
η1

)
. We finally get

T∑
t=1

∑
i∈N

1

ηt
E

(
n∑

j=1

[x∗
t ]j log(

[x̂t+1,i]j
[yt,i]j

)

)
≤

N2 log(nγ )

ηT+1
+

T∑
t=1

N log(nγ )

ηt+1
∥x∗

t+1 − x∗
t ]∥1.

Next, from Line 13-18 in Algorithm 2, we know that, for any i ∈ N , when∑
a∈Vi

(
[yt,i]a exp(ηt[∇̃F s

t (xt,i)]a)
)

≤ 1, we can have [xt+1,i]a ≥ [yt,i]a. As for∑
a∈Vi

(
[yt,i]a exp(ηt[∇̃F s

t (xt,i)]a)
)
> 1, we have

∑
a∈Vi

[xt+1,i]a = 1 such that
∑n

j=1

(
[yt,i]j−

[xt+1,i]j

)
=
∑

a∈Vi
[yt+1,i]a − 1 ≤ 0. As a result, we can conclude that

T∑
t=1

∑
i∈N

1

ηt
E

(
n∑

j=1

(
[yt,i]j − [xt+1,i]j

))
≤ 0.
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Finally, we get these result(1− e−c

c

) T∑
t=1

Ft(x
∗
t )−

T∑
t=1

E
(
Ft(x̄t)

)
≤ (3G2 + LDG)

( T∑
t=1

t∑
τ=1

N
3
2 βt−τ (1− γ)t−τητ

)
+GγD +

N2 log(nγ )

ηT+1
+

T∑
t=1

N log(nγ )

ηt+1
∥x∗

t+1 − x∗
t ∥1 +

T∑
t=1

2N2γ

ηt
.+

NG

2

T∑
t=1

ηt.

Like Lemma 12, we also can verify that
Lemma 21. In Algorithm 2, if Assumption 1,2,3,5 hold and each set function ft is monotone
submodular with curvature c for any t ∈ [T ], then(1− e−c

c

) T∑
t=1

Ft(x
∗
t )−

T∑
t=1

E
(
Ft

(∑
i∈N

xt,i ⊙ 1Vi

))
≤ (4G2 + LDG)

( T∑
t=1

t∑
τ=1

N
3
2 βt−τ (1− γ)t−τητ

)
+GγD

+
N2 log(nγ )

ηT+1
+

T∑
t=1

N log(nγ )

ηt+1
∥x∗

t+1 − x∗
t ∥1 +

T∑
t=1

2N2γ

ηt
+

NG

2

T∑
t=1

ηt.

From Calinescu et al. (2011); Chekuri et al. (2014), we know that the optimal value of continuous
problem Eq.(3) is equal to the optimal value of the corresponding discrete submodular maximization
Eq.(1), so we can set x∗

t := 1A∗
t

where A∗
t is the maximizer of Eq.(1).

Next, like Lemma 13, we also can show a relationship between E(ft
(
∪i∈N {at,i}

)
) and

E
(
Ft

(∑
i∈N xt,i ⊙ 1Vi

)
.

Lemma 22. If the function ft is monotone submodular and at,i is the action taken via the agent
i ∈ N at time t, then we have

E
(
ft
(
∪i∈N {at,i}

))
≥ E

((
Ft

(∑
i∈N

xt,i ⊙ 1Vi

))
.

Finally, we get(1− e−c

c

) T∑
t=1

ft(A∗
t )−

T∑
t=1

E
(
Ft

(
∪i∈N {at,i}

))
≤ (4G2 + LDG)

( T∑
t=1

t∑
τ=1

N
3
2 βt−τ (1− γ)t−τητ

)
+GγD

+
N2 log(nγ )

ηT+1
+

T∑
t=1

N log(nγ )

ηt+1
∥x∗

t+1 − x∗
t ∥1 +

T∑
t=1

2N2γ

ηt
+

NG

2

T∑
t=1

ηt.
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