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Abstract
Modern foundation model architectures rely on
attention mechanisms to effectively capture con-
text. However, these methods require linear or
quadratic memory in terms of the number of in-
puts/datapoints, limiting their applicability in low-
compute domains. In this work, we propose Con-
stant Memory Attention Block (CMAB), a novel
general-purpose attention block that computes its
output in constant memory and performs updates
in constant computation. Highlighting CMABs
efficacy, we introduce methods for Neural Pro-
cesses and Temporal Point Processes. Empirically,
we show our proposed methods achieve results
competitive with state-of-the-art while being sig-
nificantly more memory efficient.

1. Introduction
The success of foundation models such as LLMs (Large
Language Models) is due in no small part to the recent de-
velopment of attention mechanisms. Early attention works
such as Transformers (Vaswani et al., 2017) scaled quadrati-
cally with the number of datapoints, rendering them inappli-
cable to settings with large amounts of inputs. There have
been many proposed approaches to obtain efficiency gains
such as sparse attention (Huang et al., 2019), low-rank self-
attention (Wang et al., 2020), and latent bottlenecks (Goyal
et al., 2021; Jaegle et al., 2021; Lee et al., 2019). For an
in-depth overview, we refer the reader to the recent survey
works (Khan et al., 2022; Lin et al., 2022) on Transform-
ers and their applications. Unfortunately, these attention
methods’ memory requirement is at least linearly dependent
(often with a large constant multiplier) on the number of in-
puts, limiting scalability in low compute domains (e.g., IoT
devices, mobile phones and other battery-powered devices).

In this work, we propose a novel attention block called the
Constant Memory Attention Block (CMAB) which allows
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(1) computing its output in constant memory regardless
of the number of inputs and (2) performing updates to the
attention block’s input in constant computation. Further-
more, CMABs do not require storing the input to update its
output; as a result, unlike prior attention methods, CMABs
also do not require storing the prior inputs to perform up-
dates when deployed. To the best of our knowledge, we
are the first to propose an attention mechanism with an
efficient update mechanism that allows for computing the
output of the attention block in constant memory. We intro-
duce two models for different settings: Constant Memory
Attentive Neural Processes (CMANPs) and Constant Mem-
ory Hawkes Process (CMHPs). The experimental results
show these methods based on CMABs achieve results com-
petitive with that of state-of-the-art methods while being
significantly more memory efficient.

2. Background
2.1. Neural Processes

Neural Processes (NPs) are meta-learned models that effi-
ciently compute uncertainty estimates. Specifically, NPs
condition on an arbitrary amount of context datapoints (la-
belled datapoints) and make predictions for a batch of target
datapoints, while preserving invariance in the ordering of
the context dataset. Prior works have modelled NPs as
p(y|x,Dcontext) := p(y|x, rC) where rC := Agg(Dcontext)
such that Agg is a deterministic function that aggregates
the context dataset Dcontext into a finite representation. NPs
are trained to maximise the likelihood of the target dataset
given the context dataset.

NPs consist of three phases: conditioning, querying, and
updating. In the conditioning phase, the model com-
putes embeddings of the context dataset rC , i.e., rC :=
Agg(Dcontext). During the querying phase, the model makes
predictions for batches of target datapoints given the embed-
dings rC . In the updating phase, the model receives new
datapoints Dupdate, and a new embedding r′C is computed,
i.e., r′C := Agg(Dcontext ∪ Dupdate).

2.2. Temporal Point Processes

In brief, Temporal Point Processes are stochastic processes
composed of a time series of discrete events. Recent works
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Figure 1: Constant Memory Attention Block (CMAB).

have proposed to model this via a neural network. Notably,
models such as THP (Zuo et al., 2020) encode the history
of past events to predict the next event, i.e., modelling the
predictive distribution of the next event pθ(τl+1|τ≤l) where
θ are the parameters of the model, τ represents an event,
and l is the number of events that have passed. Typically,
an event comprises a discrete temporal (time) stamp and a
mark (categorical class). Models are trained to maximise
the likelihood of the next event given prior events.

3. Methodology
3.1. Constant Memory Attention Block (CMAB)

The Constant Memory Attention Block (Figure 1) takes as
input the input data INPUT and a set of LI input latent
vectors IEMB and outputs a set of LI output latent vectors
OEMB. The objective of the block is to encode the infor-
mation of the input data into a fixed sized representation
similar to the objective of iterative attention (Jaegle et al.,
2021). However, unlike prior works, our proposed atten-
tion mechanism crucially allows for applying updates to the
input data in constant computation per datapoint. When
stacking CMABs, the output latent vectors of the previous
CMAB are fed as the input latent vectors to the next, i.e.,
IEMB← OEMB. Similar to that of iterative attention, the
value of IEMB of the first stacked CMAB block is learned.

CMAB initially compresses the input data by applying a
cross-attention between the input data and a fixed set of LB

latents BEMB whose value is learned during training. Next,
self-attention is used to compute higher-order information:

DEMB = SA(CA(BEMB, INPUT))

where SA is an abbreviation for SelfAttention and CA
is an abbreviation for CrossAttention. Afterwards, an-
other cross-attention between the input vectors IEMB and
DEMB is performed and an additional self-attention is used
to further compute higher-order information, resulting in

the output vectors OEMB:

OEMB = SA(CA(IEMB,DEMB))

In summary, CMAB works as follows:

CMAB(IEMB, INPUT) =

SA(CA(IEMB,SA(CA(BEMB, INPUT))))

The two cross-attentions have a linear complexity of
O(NLB) and a constant complexity O(LBLI), respec-
tively. The self-attentions have constant complexities of
O(L2

B) and O(L2
I), respectively. As such, the total com-

putation required to compute the output of the block is
O(NLB +L2

B +LBLI +L2
I) where LB and LI are hyper-

parameter constants which bottleneck the amount of infor-
mation which can be encoded.

Constant Computation Updates. A significant advantage
of CMABs is that when given new inputs1, CMABs can
compute the updated output in constant computation per new
datapoint. In contrast, a transformer block and Perceiver’s
iterative attention would require re-computing its output
from scratch, requiring quadratic and linear computation
respectively to perform a similar update.

Having computed CMAB(IEMB, INPUT) and
given new datapoints DU (e.g., from sequential
settings such as contextual bandits or time series),
CMAB(IEMB, INPUT ∪ DU ) can be computed
in O(|DU |), i.e., a constant amount of computation
per new datapoint.

A formal proof and description of this process is included
in the Appendix. In brief, the proof shows that the fol-
lowing update procedure for the first Cross-Attention has a

1CMABs also allow for efficient removal of datapoints (and
consequently edits as well) to the input data, but this is outside the
scope of this work.
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complexity of O(|DU |):

CA(BEMB, INPUT ∪ DU ) =

UPD(DU ,CA(BEMB,INPUT))

where UPD is an abbreviation for UPDATE. Since each
of the remaining self-attention and cross-attention blocks
only requires constant computation. As such, CMAB can
compute its updated output in O(|DU |), i.e., a constant
amount of computation per datapoint.

Computing Output in Constant Memory. Interestingly,
a follow-up property is that CMABs can compute its out-
put in constant memory regardless of the number of inputs.
Naively computing the output of CMAB is non-constant
memory due to CrossAttention(BEMB,CONTEXT)
having a linear memory complexity of O(NLB). To achieve
constant memory computation, we split the input data
INPUT into N/BC batches of input datapoints of size up
to BC (a pre-specified constant), i.e., INPUT = ∪N/BC

i=1 Di.
Instead of computing the output at once, it is equivalent to
performing the update N/BC − 1 times:

CA(BEMB, INPUT) = UPD(D1,UPD(D2, . . .

UPD(DN/BC−1,CA(BEMB,DN/BC
))))

Computing CA(BEMB,DN/BC
) requires O(LBBC) con-

stant memory. After its computation, the memory can be
freed up, so that each of the subsequent UPDATE op-
erations can re-use the memory space. Each of the up-
date operations cost O(LBBC) constant memory, resulting
in CA(BEMB, INPUT) only needing constant memory
O(LBBC). As a result, CMAB’s output can be computed
in constant memory.

CMABs are generally useful in that they are a more memory
efficient alternative to transformer or iterative attention in
many settings. Another advantage of CMABs over prior
works is that the input data does not need to be stored when
performing updates with new data, meaning the model has
privacy-preserving properties and is applicable to streaming
data settings (e.g., settings where the data is not stored).

3.2. Constant Memory Attentive Neural Processes
(CMANP)

In this section, we leverage CMABs to construct an effi-
cient Neural Process by replacing the iterative attention
blocks used in LBANPs (Feng et al., 2023) with CMABs.
CMANPs (Figure 3 in Appendix due to space limitations)
comprise of stacked CMAB blocks which take as input the
context dataset. In Table 1, we compare the memory com-
plexities of state-of-the-art Neural Processes with that of
CMANPs, showcasing the efficiency gains of CMANPs over
prior methods. Full details regarding the computation of the
conditioning, querying, and updating phase of CMANPs is
included in the Appendix.

Memory Complexity
Condition Query Update

In Terms of N N M N |DU |
TNP-D N/A N/A N/A
EQTNP
LBANP
CMANP

Table 1: Comparison of Memory Complexities of state-
of-the-art Neural Processes with respect to the number of
context datapoints N , number of target datapoints in a
batch M , and a set of new datapoints in an update DU .
(Green) Checkmarks represent constant memory, (Orange)
half checkmarks represent linear memory, and (Red) Xs
represent quadratic or more memory.

In leveraging CMABs, CMANP do not require the context
dataset when updating the model, allowing for streaming
data settings such as bayesian optimization and contextual
bandit settings. Unlike prior work NP, the raw data would
not need to be stored which is a significant advantage in
settings with limited resources or where data privacy is a
concern. In addition, CMANPs only require constant mem-
ory to perform the conditioning, querying, and updating
phases of Neural Proesses, making a state-of-the-art NP
highly accessible for small devices.

3.3. Constant Memory Hawkes Processes (CMHPs)

Building on CMABs, we introduce the Constant Memory
Hawkes Process (CMHPs) (Figure 4 in Appendix due to
space limitations), a model which replaced the transformer
layers in Transformer Hawkes Process (THP) (Zuo et al.,
2020) with Constant Memory Attention Blocks. However,
unlike THPs which summarise the information for predic-
tion in a single vector, CMHPs summarise it into a set of
latent vectors. As such, a flatten operation is added at the end
of the model. Following prior work (Bae et al., 2023; Shchur
et al., 2020), we use a mixture of log-normal distribution
as the decoder for both THP and CMHP. Crucially, when
deployed, CMHPs do not need to store any of its history
of events to update the model with new events that happen.
Furthermore, CMHPs also only use constant memory in-
stead of THP’s quadratic memory requirement, making it a
reliable model for low-memory devices.

4. Experiments
4.1. CMANPs: Image Completion

In this experiment, we compare CMANPs against prior NP
methods on standard NP datasets: EMNIST (Cohen et al.,
2017) and CelebA (Liu et al., 2015). TNP-D (Transformer-
based model) and LBANP (Perceiver’s iterative attention-
based model) are the state-of-the-art for comparison.
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Method CelebA EMNIST
32x32 64x64 128x128 Seen (0-9) Unseen (10-46)

CNP (Garnelo et al., 2018a) 2.15 ± 0.01 2.43 ± 0.00 2.55 ± 0.02 0.73 ± 0.00 0.49 ± 0.01
CANP (Kim et al., 2019) 2.66 ± 0.01 3.15 ± 0.00 — 0.94 ± 0.01 0.82 ± 0.01

NP (Garnelo et al., 2018b) 2.48 ± 0.02 2.60 ± 0.01 2.67 ± 0.01 0.79 ± 0.01 0.59 ± 0.01
ANP (Kim et al., 2019) 2.90 ± 0.00 — — 0.98 ± 0.00 0.89 ± 0.00
BNP (Lee et al., 2020) 2.76 ± 0.01 2.97 ± 0.00 — 0.88 ± 0.01 0.73 ± 0.01

BANP (Lee et al., 2020) 3.09 ± 0.00 — — 1.01 ± 0.00 0.94 ± 0.00
TNP-D (Zuo et al., 2020) 3.89 ± 0.01 5.41 ± 0.01 — 1.46 ± 0.01 1.31 ± 0.00

LBANP (Feng et al., 2023) 3.97 ± 0.02 5.09 ± 0.02 5.84 ± 0.01 1.39 ± 0.01 1.17 ± 0.01
CMANP (Ours) 3.93 ± 0.05 5.02 ± 0.14 5.55 ± 0.01 1.36 ± 0.01 1.09 ± 0.01

Table 2: Image Completion Experiments. Each method is evaluated with 5 different seeds according to the log-likelihood
(higher is better). The "dash" represents methods that could not be run because of the large memory requirement.

Method Mooc Reddit
RMSE NLL ACC RMSE NLL ACC

THP 0.202 ± 0.017 0.267 ± 0.164 0.336 ± 0.007 0.238 ± 0.028 0.268 ± 0.098 0.610 ± 0.002
CMHP (Ours) 0.168 ± 0.011 -0.040 ± 0.620 0.237 ± 0.024 0.262 ± 0.037 0.528 ± 0.209 0.609 ± 0.003

Table 3: Temporal Point Processes Experiments.

Results. In Table 2, we compare CMANPs with existing
NP baselines, showing their performance is competitive
with that of prior state-of-the-art: TNP-D and LBANP. Al-
though all baseline methods were able to be evaluated on
CelebA (32 x 32) and EMNIST, many were not able to scale
to CelebA (128 x 128) due to their memory cost, includ-
ing TNP-D. In contrast, CMANP was not affected by this
limitation due to only requiring constant memory.

4.2. CMHPs: Temporal Point Processes

In this experiment, we compare CMHPs (CMAB-based
model) against THPs (Transformer-based model) on stan-
dard TPP datasets: Mooc and Reddit (dataset details in
Appendix). The results (Table 3) show CMHPs are com-
petitive with THPs. Crucially, unlike THP, CMHP has the
ability to efficiently update the model with new data as it
arrives overtime which is typical in time series data such
as in Temporal Point Processes. CMHP only requires con-
stant computation to perform the update unlike the quadratic
computation required by THP.

4.3. Analysis

Empirical Memory: In Figure 2, we compare CMANP’s
empirical memory cost with that of state-of-the-art NP meth-
ods during evaluation. Comparing the vanilla variants of
NPs, we see that TNP-D (Transformer-based model) and
LBANP (Perceiver’s iterative attention-based model) scale
quadratically and linearly respectively with respect to the
number of context datapoints. In contrast, CMANPs are
significantly more efficient only requiring a low constant

Figure 2: Memory Analyses Graphs.

amount of memory.

5. Conclusion
In this work, we introduced CMAB (Constant Memory At-
tention Block), a novel efficient attention block capable
of computing its output in constant additional memory.
Building on CMAB, we proposed Constant Memory At-
tentive Neural Processes (CMANPs) and Constant Mem-
ory Hawkes Processes (CMHPs). Our experiments show
CMANPs and CMHPs achieve results competitive with
state-of-the-art while only requiring constant memory, mak-
ing it applicable to settings such as low-memory domains.
In contrast, prior state-of-the-art method required memory
that is linear or quadratic in the number of datapoints.
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A. Appendix: Model and Experiment Details
A.1. CMANPs: Conditioning, Querying, and Updating

Phases

The conditioning, querying, and updating phases in
CMANPs work as follows:

Conditioning Phase: In the conditioning phase, the CMAB
blocks encode the context dataset into a constant number
of latent vectors LEMBi. The first block takes as input a
set of meta-learned latent vectors LEMB0 (i.e., IEMB in
CMABs) and the context dataset CONTEXT and outputs
a set of encodings LEMB1 (i.e., OEMB in CMABs). The
output latents of each block are passed as the input latents
to the next CMAB block.

LEMBi = CMAB(LEMBi−1,CONTEXT)

Since CMAB can compute its output in constant memory,
thus CMANPs can also perform this conditioning phase in
constant memory.

Querying Phase: In the querying phase, the deployed
model retrieves information from the fixed size outputs
of the CMAB blocks (LEMBi) to make predictions for
the query dataset (QUERY). When making a prediction
for query datapoints, information is retrieved via cross-
attention.

QEMB0 = QUERY

QEMBi = CrossAttention(QEMBi−1,LEMBi)

Output = Predictor(QEMBK)

Update Phase: In the update phase, the NP receives a
batch of new datapoints DU to include in the context
dataset. CMANPs leverage the efficient update mechanism
of CMABs to achieve efficient updates (constant per data-
point) to its context dataset. Specifically, the first CMAB
block updates its output using the new datapoints. After-
wards, the next CMAB blocks are updated sequentially
using the updated output of the previous CMAB block as
follows:

LEMB′
0 = LEMB0

LEMB′
i = CMAB(LEMB′

i−1,CONTEXT ∪ DU )

Since CMAB can compute the output and perform updates
in constant memory irrespective of the number of context
datapoints, CMANPs can also compute its output and per-
form the update in constant memory.

A.2. CMANPs: Additional Experiment Details

We compare CMANPs against the large variety of mem-
bers of the Neural Process family: Conditional Neural Pro-
cesses (CNPs) (Garnelo et al., 2018a), Neural Processes

(NPs) (Garnelo et al., 2018b), Bootstrapping Neural Pro-
cesses (BNPs) (Lee et al., 2020), (Conditional) Attentive
Neural Processes (C)ANPs (Kim et al., 2019), and Boot-
strapping Attentive Neural Processes (BANPs) (Lee et al.,
2020). In addition, we compare against the recent state-
of-the-art methods: Latent Bottlenecked Attentive Neural
Processes (LBANPs) (Feng et al., 2023) and Transformer
Neural Processes (TNPs) (Nguyen & Grover, 2022).

For the purpose of consistency, we set the number of latents
(i.e., bottleneck size) LI = LB = 128 across all experi-
ments. Similarly, for LBANPs, we report results with the
number of latents (i.e., bottleneck size) L = 128 across all
experiments.

A.2.1. CMANPS: IMAGE CLASSIFICATION DETAILS

The model is given a set of pixel values of an image and aims
to predict the remaining pixels of the image. Each image
corresponds to a unique function (Garnelo et al., 2018b). In
this experiment, the x values are rescaled to [-1, 1] and the y
values are rescaled to [−0.5, 0.5]. For each task, a randomly
selected set of pixels are selected as context datapoints and
target datapoints.

EMNIST comprises of black and white images of hand-
written letters of 32 × 32 resolution. 10 classes are used
for training. The context and target datapoints are sampled
according to N ∼ U [3, 197) and M ∼ U [3, 200 − N) re-
spectively. CelebA comprises of colored images of celebrity
faces. Methods are evaluated on various resolutions to show
scalability of the methods. In CelebA32, images are down-
sampled to 32 × 32 and the number of context and target
datapoints are sampled according to N ∼ U [3, 197) and
M ∼ U [3, 200 − N) respecitvely. In CelebA64, the im-
ages are down-sampled to 64 × 64 and N ∼ U [3, 797)
and M ∼ U [3, 800 − N). In CelebA128, the images
are down-sampled to 128 × 128 and N ∼ U [3, 1597) and
M ∼ U [3, 1600−N).

A.2.2. CMHPS: TPP DATASET DETAILS

Mooc Dataset comprises of 7, 047 sequences. Each se-
quence contains the action times of an individual user of an
online Mooc course with 98 categories for the marks.

Reddit Dataset comprises of 10, 000 sequences. Each se-
quence contains the action times from the most active users
with marks being one of the 984 the sub-reddit categories
of each sequence.

A.3. Reproducibility

We use the implementation of the baselines from the offi-
cial repository of TNPs (https://github.com/tung-nd/TNP-
pytorch) and LBANPs (https://github.com/BorealisAI/latent-
bottlenecked-anp). The datasets are standard for Neural Pro-
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Figure 3: Constant Memory Attentive Neural Processes

Figure 4: Constant Memory Hawkes Processes

cesses and are available in the same link. Details regarding
the architecture and the implementation is included in the
main paper. Additional details regarding the hyperparame-
ters and architecture are included in the Appendix.

A.4. Implementation and Hyperparameter Details

We follow closely the hyperparameters of TNPs and
LBANPs. In CMANPs, the number of blocks for the condi-
tioning phase is equivalent to the number of blocks in the
conditioning phase of LBANPs. Similarly, the number of
cross-attention blocks for the querying phase is equivalent
to that of LBANPs. We used an ADAM optimizer with a
standard learning rate of 5e−4. We performed a grid-search
over the weight decay term {0.0, 0.00001, 0.0001, 0.001}.
Consistent with prior work (Feng et al., 2023) who set their
number of latents L = 128, we also set the number of
latents to the same fixed value LI = LB = 128 without
tuning. Due to CMANPs and CMABs architecture, they
allow for varying embedding sizes for the learned latent
values (LEMB0 and BEMB). For simplicity, we set the
embedding sizes to 64 consistent with prior works (Nguyen
& Grover, 2022; Feng et al., 2023). During training, CelebA
(128x128), (64x64), and (32x32) used a mini-batch size of
25, 50, and 100 respectively. All experiments are run with
5 seeds. All experiments were either run on a GTX 1080ti
(12 GB RAM) or P100 GPU (16 GB RAM).

B. Appendix: Proofs
B.1. CMAB’s Constant Computation Updates Proof

Proof Outline: Since LB and LI are constants (hyperpa-
rameters), CMAB’s complexity is constant except for the
contributing complexity part of the first attention block:
CrossAttention(BEMB, INPUT), which has a complex-
ity of O(NLB). As such, to achieve constant computation
updates, it suffices that the updated output of this cross-
attention can be updated in constant computation per dat-
apoint. Simplified, CrossAttention(BEMB, INPUT) is
computed as follows:

CrossAttention(BEMB, INPUT) = softmax(QKT )V

where K and V are key, value matrices respectively that
represent the embeddings of INPUT and Q is the query
matrix representing the embeddings of BEMB. When an
update withDU new datapoints occurs, |DU | rows are added
to the key, value matrices. However, the query matrix is
constant due to BEMB being a fixed set of latent vectors
whose values are learned. As a result, the output of the
cross-attention can be computed via a rolling average in
O(|DU |).

Full Proof: Recall, CMAB works as follows:

CMAB(IEMB, INPUT) =

SA(CA(IEMB,SA(CA(BEMB, INPUT))))
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Constant Memory Attention Block

where SA represents SelfAttention and CA represents
CrossAttention. The two cross-attentions have a lin-
ear complexity of O(NLB) and a constant complexity
O(LBLI), respectively. The self-attentions have constant
complexities of O(L2

B) and O(L2
I), respectively. As such,

the total computation required to compute the output of the
block is O(NLB + L2

B + LBLI + L2
I) where LB and LI

are hyperparameter constants which bottleneck the amount
of information which can be encoded.

Importantly, since LB and LI are constants (hyperparam-
eters), CMAB’s complexity is constant except for the
contributing complexity part of the first attention block:
CrossAttention(BEMB, INPUT), which has a complex-
ity of O(NLB). To achieve constant computation updates,
it suffices that the updated output of this cross-attention
can be updated in constant computation per datapoint. Sim-
plified, CrossAttention(BEMB, INPUT) is computed as
follows:

emb = CrossAttention(BEMB, INPUT) =

softmax(QKT )V

where K and V are key, value matrices respectively that
represent the embeddings of INPUT (sets of N vectors)
and Q is the query matrix representing the embeddings of
BEMB (a set of LB vectors). When an update withDU new
datapoints occurs, |DU | rows are added to the key, value
matrices. However, the query matrix is constant due to
BEMB being a fixed set of latent vectors whose values are
learned.

Without loss of generality, for simplicity, we consider the
j − th output vector of the cross-attention (embj). Let
si = Qj,:(Ki,:)

T and vi = Vi,:, then we have the following:

embj =

N∑
i=1

exp(si)

C
vi

where C =
∑N

i=1 exp(si). Performing an update with a set
of new inputs DU , results in adding |DU | rows to the K,V
matrices and the following:

emb′j =

N+|DU |∑
i=1

exp(si)

C ′ vi

where C ′ =
∑N+|DU |

i=1 exp(si) = C +
∑N+|DU |

i=N+1 exp(si).
As such, the updated embedding emb′j can be computed
via a rolling average:

emb′j =
C

C ′ × embj +

N+|DU |∑
i=N+1

esi

C ′ vi

Computing emb′j and C ′ via this rolling average only re-
quires O(|DU |) operations when given C and emb as re-

quired. In practice, however, this is not stable. The computa-
tion can quickly run into numerical issues such as overflow
problems.

Practical Implementation: In practice, instead of comput-
ing and storing C and C ′, we instead compute and store
log(C) and log(C ′).

The update is instead computed as follows: log(C ′) =

log(C) + softplus(T ) where T = log(
∑N+|DU |

i=N+1 exp(si −
log(C))). T can be computed efficiently and accurately
using the log-sum-exp trick in O(|DU |). This results in an
update as follows:

emb′j = exp(log(C)− log(C ′))× embj+

N+|DU |∑
i=N+1

exp(si − log(C ′))vi

The resulting emb′ and C ′ is the same. However, this
method of implementation avoids the numerical issues that
will occur.

Practical Implementation (Proof):

C =

N∑
i=1

exp(si) C ′ =

N+|DU |∑
i=1

exp(si)

log(C ′)− log(C) =

log(

N+|DU |∑
i=1

exp(si))− log(

N∑
i=1

exp(si))

log(C ′) = log(C) + log(

∑N+|DU |
i=1 exp(si)∑N

i=1 exp(si)
)

log(C ′) = log(C) + log(1 +

∑N+|DU |
i=N+1 exp(si)∑N

i=1 exp(si)
)

log(C ′) = log(C) + log(1 +

∑N+|DU |
i=N+1 exp(si)

exp(log(C))
)

log(C ′) = log(C) + log(1 +

N+|DU |∑
i=N+1

exp(si − log(C)))

Let T = log(
∑N+|DU |

i=N+1 exp(si − log(C))). Note that T
can be computed efficiently using the log-sum-exp trick in
O(|DU |). Also, recall the softplus function is defined as
follows: softplus(T ) = log(1+exp(T )). As such, we have
the following:

8



Constant Memory Attention Block

log(C ′) = log(C) + log(1 + exp(T ))

= log(C) + softplus(T )

Recall:

emb′j =
C

C ′ × embj +

N+|DU |∑
i=N+1

exp(si)

C ′ vi

Re-formulating it using log(C) and log(C ′) instead of C
and C ′ we have the following update:

emb′j = exp(log(C)− log(C ′))× embj+

N+|DU |∑
i=N+1

exp(si − log(C ′))vi

which only requires O(|DU |) computation (i.e., constant
computation per datapoint) while avoiding numerical issues.

B.2. Additional Properties

In this section, we show that CMANPs uphold the context
and target invariance properties.

Property: Context Invariance. A Neural Process pθ is
context invariant if for any choice of permutation function
π, context datapoints {(xi, yi)}Ni=1, and target datapoints
xN+1:N+M ,

pθ(yN+1:N+M |xN+1:N+M , x1:N , y1:N ) =

pθ(yN+1:N+M |xN+1:N+M , xπ(1):π(N), yπ(1):π(N))

Proof Outline: Since CMANPs retrieve information from
a compressed encoding of the context dataset computed by
CMAB (Constant Memory Attention Block). It suffices to
show that CMABs compute their output while being order
invariant in their input (i.e., context dataset in CMANPs)
(INPUT).

Recall CMAB’s work as follows:

CMAB(IEMB, INPUT) =

SA(CA(IEMB,SA(CA(BEMB, INPUT))))

where IEMB are a set of vectors outputted by prior blocks,
BEMB are a set of vectors whose values are learned during
training, and INPUT are the set of inputs in which we wish
to be order invariant in.

The first cross-attention to be computed is:
CA(BEMB, INPUT). A nice feature of cross-attention
is that its order invariant in the keys and values; in this
case, these are embeddings of INPUT. In other words, the

output of CA(BEMB, INPUT) is order invariant in the
input data INPUT.

Since the remaining self-attention and cross-attention
blocks take as input: IEMB and the output of
CA(BEMB, INPUT), both of which are order invariant in
INPUT, therefore the output of CMAB is order invariant
in INPUT.

As such, CMANPs are also context invariant as required.

Property: Target Equivariance. A model pθ is tar-
get equivariant if for any choice of permutation function
π, context datapoints {(xi, yi)}Ni=1, and target datapoints
xN+1:N+M ,

pθ(yN+1:N+M |xN+1:N+M , x1:N , y1:N ) =

pθ(yπ(N+1):π(N+M)|xπ(N+1):π(N+M), x1:N , y1:N )

Proof Outline: The vanilla variant of CMANPs makes
predictions similar to that of LBANPs (Feng et al., 2023) by
retrieving information from a set of latent vectors via cross-
attention and uses an MLP (Predictor). The architecture
design ensures that the result is equivalent to making the
predictions independently. As such, CMANPs preserve
target equivariance the same way LBANPs do.
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