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Abstract. We propose Riemannian Denoising Diffusion Probabilistic Models (RDDPMs) for
learning distributions on submanifolds of Euclidean space that are level sets of functions, including
most of the manifolds relevant to applications. Existing methods for generative modeling on manifolds
rely on substantial geometric information such as geodesic curves or eigenfunctions of the Laplace-
Beltrami operator and, as a result, they are limited to manifolds where such information is available. In
contrast, our method, built on a projection scheme, can be applied to more general manifolds, as it
only requires being able to evaluate the value and the first order derivatives of the function that defines
the submanifold. We provide a theoretical analysis of our method in the continuous-time limit, which
elucidates the connection between our RDDPMs and score-based generative models on manifolds. The
capability of our method is demonstrated on distributions over complex manifolds implicitly represented
as level sets, with applications in statistical mechanics and molecular dynamics.

Keywords. generative modeling; diffusion probabilistic model; submanifold; projection scheme.

AMS subject classifications. 58J65; 60J05; 60J60.

1. Introduction
Generative models have achieved remarkable success in learning data distributions

across various fields. Among them, diffusion models stand out for their superior ability
to generate high-quality samples that resemble the data distributions. Two prominent
frameworks are Denoising Diffusion Probabilistic Models (DDPMs; [10]), which minimize
a variational bound in variational inference, and Score-based Generative Models (SGMs;
[30, 31]), which learn the score function [14]. Both frameworks have demonstrated
significant success in learning data distributions in Euclidean spaces.

In many scientific domains, data distributions are constrained to Riemannian man-
ifolds rather than Euclidean spaces. For example, spheres are used in geographical
sciences [23], while SE(3) and SO(3) are considered in studying protein structures [34]
and robotic movements [27]. Other manifolds include SU(3) in lattice quantum chromo-
dynamics [22], triangular meshes in 3D computer graphics [11], and the Poincaré disk
in cell development research [17]. These applications highlight the need for developing
generative models that can handle distributions on manifolds.

Several recent works have extended diffusion-based models to Riemannian manifolds.
The Riemannian Score-based Generative Model (RSGM; [7]) extends SGM to Riemannian
manifolds by incorporating the heat kernel into the denoising score-matching objective.
Since heat kernels on manifolds are generally intractable, RSGM approximates them using
eigenfunction expansion or Varadhan’s approximation. Furthermore, RSGM leverages
the exponential map to enable trajectory sampling on manifolds. The Riemannian
Diffusion Model [13] adopts a variational diffusion model framework on Riemannian
manifolds. It considers submanifolds embedded in an Euclidean space and utilizes a

∗Received date, and accepted date. Communicated by ***
†Equal contribution. Center for Data Science, Peking University, Beijing 100871, P.R. China

(zcliu@stu.pku.edu.cn).
‡Equal contribution. Zuse Institute Berlin, Takustrasse 7, Berlin 14195, Germany (wei.zhang@fu-

berlin.de).
§Institute of Mathematics, Freie Universität Berlin and Zuse Institute Berlin, Takustrasse 7, Berlin

14195, Germany (schuette@zib.de).
¶Corresponding author. LMAM and School of Mathematical Sciences, Center for Machine

Learning Research and Center for Data Science, Peking University, Beijing 100871, P.R. China
(tieli@pku.edu.cn).

1



2 RIEMANNIAN DENOISING DIFFUSION PROBABILISTIC MODELS

variational upper bound on the negative log-likelihood as loss function. Additionally, the
Trivialized Diffusion Model [39] is able to solve generative tasks on Lie groups by utilizing
group property of the underlying manifold. Beyond diffusion-based models, flow-based
generative models [2, 3, 21,23,25] extend continuous normalizing flows to manifolds. In
particular, the method proposed in [3] accommodates manifolds with relatively general
geometries, provided that their geodesic curves can be efficiently computed.

Despite these advancements, existing methods heavily rely on geometric information
of manifolds, such as geodesics, exponential maps, heat kernels, or metrics. This restricts
their applicability to manifolds where such information is readily available. In view of
these limitations, we aim to develop algorithms that bypass these geometric dependencies,
making them applicable to more general manifolds.

In this work, we introduce Riemannian Denoising Diffusion Probabilistic Models
(RDDPMs), an extension of DDPMs to Riemannian submanifolds. A key ingredient
is the projection scheme used in Monte Carlo methods for sampling under constraints,
which allows us to develop Markov chains on manifolds with explicit transition densities.
To our best knowledge, no successful extension of DDPMs to manifolds has been proposed
prior to this study. The main advantages of our method over existing methods are
summarized below.

• Our method is developed for submanifolds that are level sets of smooth functions
in Euclidean space. This general setting includes most of the often studied
manifolds such as spheres and matrix groups. More importantly, it fits well
with applications where constraints are involved, e.g. applications in statistical
mechanics and molecular dynamics.

• Our method requires neither geodesic curves nor heat kernel, and it only relies
on the computation of the value and the first-order derivatives of the function
that defines the submanifold. This makes our approach applicable to more
general manifolds.

• We present a theoretical analysis for the loss function of our method in the
continuous-time limit, elucidating its connection to the existing methods [7].
This analysis also shows the equivalence between loss functions derived from
variational bound in variational inference and from learning score function.

We successfully apply our method to distributions on manifolds studied in prior
works, as well as new manifolds implicitly defined as level sets, such as the configuration
space of alanine dipeptide with a fixed dihedral angle and the conserved Hamiltonian
surface in phase space, both of which are challenging for existing methods due to their
geometric complexity.

2. Background

2.1. Riemannian submanifolds. We consider the zero level set M={x∈
Rn|ξ(x)=0} of a smooth function ξ : Rn→Rn−d, where 1≤d<n. We assume thatM
is non-empty and the matrix ∇ξ(x)∈Rn×(n−d), i.e. the Jacobian of ξ, has full rank
at each x∈M. Under this assumption, the regular value theorem [1, Corollary 5.9]
implies thatM is a d-dimensional submanifold of Rn. We further assume thatM is
a smooth compact connected manifold without boundary. The Riemannian metric on
M is endowed from the standard Euclidean distance on Rn. For x∈M, we denote by
TxM the tangent space of M at x. The orthogonal projection matrix P (x)∈Rn×n

mapping TxRn=Rn to TxM is given by P (x)= In−∇ξ(x)
(
∇ξ(x)⊤∇ξ(x)

)−1∇ξ(x)⊤.
Let Ux∈Rn×d be a matrix whose column vectors form an orthonormal basis of TxM
such that U⊤x Ux= Id. It is straightforward to verify that P (x)=UxU

⊤
x . The volume
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element over M is denoted by σM. All probability densities that appear in this
paper refer to relative probability densities with respect to either σM or the product
of σM over product spaces. For notational simplicity, we also use the shorthand∫
p(x(1:N))dx(1:N) :=

∫
M·· ·

∫
Mp(x(1),. ..,x(N))dσM(x(1))· ··dσM(x(N)).

2.2. Denoising diffusion probabilistic models. Denoising diffusion proba-
bilistic models DDPMs [10,28] employ a forward Markov chain to perturb data into noise
and a reverse Markov chain to incrementally recover data from noise. The models are
trained to minimize a variational bound on the negative log-likelihood. In the following,
we formulate the general steps of DDPMs in the manifold setting.

Assume that the data distribution is q0(x)dσM(x). DDPMs are a class of generative
models built on Markov chains. Specifically, states x(1),. ..,x(N)∈M are generated by
evolving the data x(0) according to a Markov chain onM, which is called the forward
process. The joint probability density of x(1),. ..,x(N) given x(0) is

q(x(1:N) |x(0))=
N−1∏
k=0

q(x(k+1) |x(k)), (2.1)

where q(x(k+1) |x(k)) is the transition density of the forward process. The generative
process, also called the reverse process, is a Markov chain on M that is learnt to
reproduce the data by reversing the forward process. Its joint probability density is

pθ(x
(0:N))=p(x(N))

N−1∏
k=0

pθ(x
(k) |x(k+1)), (2.2)

where p(x(N)) is a (fixed) prior density, pθ(x
(k) |x(k+1)) is the transition density of the

reverse process, and θ is the parameter to be learnt. The probability density of x(0)

generated by the reverse process is therefore pθ(x
(0))=

∫
pθ(x

(0:N))dx(1:N). The learning
objective is based on the standard variational bound on the negative log-likelihood.
Specifically, using (2.1) and (2.2), and applying Jensen’s inequality, we can derive

Eq0

(
− logpθ(x

(0))
)
=Eq0

(
− log

∫
pθ(x

(0:N))dx(1:N)
)

=Eq0

(
− log

∫
pθ(x

(0:N))

q(x(1:N) |x(0))q(x
(1:N) |x(0))dx(1:N)

)
≤EQ(N)

(
− log

pθ(x
(0:N))

q(x(1:N) |x(0))
)

=EQ(N)

(
− logp(x(N))−

N−1∑
k=0

log
pθ(x

(k) |x(k+1))

q(x(k+1) |x(k))
)
, (2.3)

where Eq0 ,EQ(N) denote the expectation with respect to the data distribution onM, and

the expectation with respect to the joint density q(x(0:N)) under the forward process,
respectively. In order to derive an explicit training objective, we have to construct
Markov chains on M with explicit transition densities. We discuss how this can be
achieved in the next section.

We conclude this section by reformulating the variational bound (2.3) using relative
entropy (see [29] for a similar formulation of score-based diffusion models). Recall that
the relative entropy, or Kullback-Leibler (KL) divergence, from a probability density Q2
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to another probability density Q1 in the same measure space, where Q1 is absolutely

continuous with respect to Q2, is defined as H(Q1 |Q2) :=EQ1

(
log Q1

Q2

)
. For simplicity,

we also use the same notation for two probability measures. Adding the term Eq0(logq0)
to both sides of the inequality (2.3), we see that it is equivalent to the so-called data
processing inequality

H(q0 |pθ)≤H(
←−
Q (N) |P(N)

θ ), (2.4)

where the upper bound is the relative entropy from the path measure P(N)
θ of the reverse

process to the path measure
←−
Q (N) of the forward process (the arrow in the notation

indicates that paths of the forward process are viewed backwardly). Therefore, learning
DDPMs using the variational bound (2.3) can be viewed as approximating probability
measures in path space by the cross-entropy method [38].

3. Method

3.1. Projection scheme. We recall a projection scheme from Monte Carlo
sampling methods on manifolds [4, 19, 20,36], and we show that it allows us to construct
Markov chains onM with tractable transition densities.

Given x∈M and a tangent vector v∈TxM that is drawn from the standard Gaussian
distribution on TxM, we compute the intermediate state x′=x+σ2b(x)+σv∈Rn, where
σ>0 is a positive constant and b :Rn→Rn is a smooth function. In general, x′ does
not belong toM. We consider the projection y∈M of x′ ontoM along an orthogonal
direction in the space spanned by column vectors of ∇ξ(x). Precisely, the projected
state y is found by (numerically) solving the constraint equation for c∈Rn−d

y=x+σ2b(x)+σv+∇ξ(x)c, s.t. ξ(y)=0∈Rn−d . (3.1)

This projection scheme can be seen as a discretization of a certain stochastic process on
the manifoldM, where σ2 corresponds to the step size [4]. The choice of b will affect
the final invariant distribution and the convergence rate to equilibrium of the resulting
Markov chain (see Section 3.5 for further discussion). There are n−d constraints in
(3.1) with the same number of unknown variables. In particular, when ξ is scalar-valued,
i.e., n−d=1, solving (3.1) amounts to finding a root of a (nonlinear) scalar function.

Algorithm 3 shows the details of solving the linear equations. Let kiter denote the
number of Newton iterations, and Cξ be the computational cost of evaluating ∇ξ. The
complexity of solving the linear equations in line 4 of Algorithm 3 is O((n−d)3). Thus,
the total complexity of Newton’s method is O(kiter(Cξ+(n−d)3)). When the step size σ
is sufficiently small, Newton’s method typically converges in a few iterations. Therefore,
the computational cost of Newton’s method is primarily determined by the cost of
computing ∇ξ (i.e., Cξ) and the codimension n−d of the manifold.

While for some vectors v multiple solutions to (3.1) may exist in theory, the projected
state, and hence the resulting Markov chain built on a numerical solver, is uniquely
defined as long as the numerical solver finds one solution in a deterministic way. For
example, this is the case when Newton’s method is adopted to solve (3.1) with fixed
initial condition c=0. When no solution can be found for some v, we can either resample
the tangent vector v or resample a new path (see Section 3.5 for further discussion). Let

F (σ)
x be the set of v for which a solution can be found and denote by ϵ

(σ)
x =P(v /∈F (σ)

x ),

i.e. the probability that no solution can be found. We denoteM(σ)
x the set of all states

in M that can be reached from x by solving (3.1) with certain v∈F (σ)
x . Notice that
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ϵ
(σ)
x =0 when σ=0, because in this case c=0 is a solution to (3.1) for any v. Therefore,

it is expected that ϵ
(σ)
x →0 as σ decreases to zero. That is, when σ is small, a solution

to (3.1) can be found with a probability that is close to one.
To derive the transition density of jumping to y from x, we notice that, by applying

the orthogonal projection matrix P (x) to both sides of (3.1) and using the fact that
P (x)∇ξ(x)=0, we have the relation σv=P (x)(y−x−σ2b(x)). This indicates that,

given a state x∈M and y∈M(σ)
x , there is a unique tangent vector v∈F (σ)

x ⊆TxM that

leads to y by solving (3.1). In other words, the mapping from v∈F (σ)
x to y∈M(σ)

x is a

bijection. Moreover, its inverse is explicitly given by G
(σ)
x :M(σ)

x →F (σ)
x ⊆TxM, where

G(σ)
x (y;b)=

1

σ
P (x)(y−x−σ2b(x)). (3.2)

To simplify the notation, we also write G
(σ)
x (y) when omitting the dependence on b does

not cause ambiguity. Recall that Ux,Uy ∈Rn×d denote the matrices whose columns form
an orthonormal basis of TxM and TyM, respectively. Using (3.2), we can derive

det(DG(σ)
x (y))=σ−ddet(U⊤x Uy), (3.3)

where the left hand side denotes the determinant of the Jacobian DG
(σ)
x (y) :TyM→

TvTxM∼=Rd of the map G
(σ)
x at y. See the texts above (4.5) in Section 4 of [20] for

detailed discussions. Since v is a Gaussian variable confined in F (σ)
x (with a normalizing

constant rescaled by (1−ϵ(σ)x )−1), applying the change of variables formula for probability
densities, we obtain the probability density of y conditioned on x:

q(y |x)=(2π)−
d
2 (1−ϵ(σ)x )−1e−

1
2 |G

(σ)
x (y)|2 |detDG(σ)

x (y)|
=(2πσ2)−

d
2 (1−ϵ(σ)x )−1e−

1
2 |G

(σ)
x (y)|2 |det(U⊤x Uy)|, y∈M(σ)

x . (3.4)

For y∈M\M(σ)
x , the probability density is zero, i.e., q(y |x)=0.

3.2. Forward process. We construct the forward process in our model as a
Markov chain on M whose transitions are defined by the projection scheme in (3.1).
Specifically, given the current state x(k)∈M at step k, where k=0,1,. ..,N−1, the next
state x(k+1)∈M is determined by solving the constraint equation (for c∈Rn−d):

x(k+1)=x(k)+σ2
kb(x

(k))+σkv
(k)+∇ξ(x(k))c, s.t. ξ(x(k+1))=0∈Rn−d , (3.5)

where σk>0 and v(k)∈Tx(k)M is a standard Gaussian variable in Tx(k)M. According
to (2.1) and (3.4), we obtain the transition probability density of the forward process as

q(x(k+1) |x(k))=(2πσ2
k)
− d

2 |det(U⊤x(k)Ux(k+1))|
(
1−ϵ(σk)

x(k)

)−1
exp

(
−1

2

∣∣∣G(σk)

x(k) (x
(k+1);b)

∣∣∣2) ,
(3.6)

where the function G
(σk)

x(k) (x
(k+1);b) is defined in (3.2).

3.3. Reverse process. The reverse process in our model is a Markov chain on
M whose transitions (from x(k+1) to x(k)) are defined by the constraint equation

x(k)=x(k+1)−β2
k+1b(x

(k+1))+β2
k+1s

(k+1),θ(x(k+1))+βk+1v̄
(k+1)+∇ξ(x(k+1))c,

s.t. ξ(x(k))=0, (3.7)
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for k=N−1,N−2,. ..,0, where βk+1>0, v̄(k+1) is a standard Gaussian variable in
Tx(k+1)M, and s(k+1),θ(x(k+1))∈Rn depends on the learning parameter θ. Combining
(2.2) and (3.4), we obtain the transition density of the reverse process as

pθ(x
(k) |x(k+1))

=(2πβ2
k+1)

− d
2 (1−ϵ(βk+1)

x(k+1),θ
)−1|det(U⊤x(k+1)Ux(k))|exp

(
−1

2

∣∣∣G(βk+1)

x(k+1) (x
(k);s(k+1),θ−b)

∣∣∣2) .
(3.8)

In the above, ϵ
(βk+1)

x(k+1),θ
denotes the probability of having v̄(k+1) with which no solution

to (3.7) can be found and G
(βk+1)

x(k+1) (x
(k);s(k+1),θ−b) is defined in (3.2).

3.4. Training objective. The training objective follows directly from the
variational bound (2.3) on the negative log-likelihood, as well as the explicit expressions
of transition densities. Concretely, substituting (3.6) and (3.8) into the last line of (2.3),
we get

Eq0 [−logpθ(x(0))]≤Loss(N)(θ)+C(N) , (3.9)

where

Loss(N)(θ)=
1

2
EQ(N)

N−1∑
k=0

∣∣∣G(βk+1)

x(k+1) (x
(k);s(k+1),θ−b)

∣∣∣2 (3.10)

is our objective for training the parameter θ in the reverse process (recall that EQ(N)

denotes the expectation with respect to the forward process), the constant

C(N)=−EQ(N)

[
1

2

N−1∑
k=0

∣∣∣G(σk)

x(k) (x
(k+1);b)

∣∣∣2+logp(x(N))

]

+d

N−1∑
k=0

log
βk+1

σk
−EQ(N)

N−1∑
k=0

log
(
1−ϵ(σk)

x(k)

)
(3.11)

is independent of θ, and we have used the inequality log
(
1−ϵ(βk+1)

x(k+1),θ

)
≤ 0 in deriving

(3.9).

3.5. Algorithmic details. The algorithms for sampling the trajectories of the
forward and reverse processes are summarized in Algorithms 1 and 2, respectively, both
of which involve solving constraint equations, as detailed in Algorithm 3. The training
algorithm is summarized in Algorithm 4. In the following, we discuss several algorithmic
details of our method.

3.5.1. Choice of the Markov chain. The total number of steps N should be
large enough so that the forward Markov chain can approximately reach equilibrium
starting from the data distribution. To simplify algorithm implementation, we may set
βk+1=σk, a choice that is also supported by our theoretical derivation in the continuous-
time limit (see Theorem 4.1). While larger σk, βk+1 allow the Markov chains to make
larger jumps, their sizes should be chosen properly (depending on the manifold) so
that the solution to the constraint equations (3.5) and (3.7) can be found with high
probability.
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For relatively simple manifolds, we can simply choose b=0 in the forward Markov
chain (3.5). As we will discuss in Section 4, in the continuous-time limit, the Markov
chain with b=0 converges to the Brownian motion onM up to a rescaling of time ((4.1)
with b=0), whose invariant distribution is the uniform distribution onM. Motivated by
this fact, we can choose the prior (see line 2 in Algorithm 2) as the uniform distribution
onM. WhenM is non-compact or when the convergence of Markov chain to equilibrium
is slow with b=0, we can choose non-zero b such as b=−∇V , i.e. the (full space) gradient
of some function V :Rn→R in the ambient space. In this case, we choose the prior as
the invariant distribution of the forward process, and sampling the prior can be done by
simulating a single long trajectory of the forward process.

3.5.2. Method for solving constraint equations. As in Monte Carlo
sampling methods on submanifolds, we employ Newton’s method to solve the constraint
equations (3.5) and (3.7). This method has (local) quadratic convergence and its
implementation is simple. In most cases, a solution with high precision can be found
within a few iteration steps (usually less than 5 steps). When no solution is found, one
can re-generate the state by sampling a new tangent vector or re-generate the entire
trajectory. Our implementation of Newton’s method is summarized in Algorithm 3.

3.5.3. Generation of trajectory data. The optimal parameter θ is sought by
minimizing the objective (3.10), which requires the trajectory data of the forward process.
Although sampling trajectories to evaluate the loss function may seem computationally
expensive, the computational cost can be alleviated by using a pre-prepared trajectory
dataset that is updated during training with a tunable frequency. In our implementation,
trajectories are initially sampled in a preparatory step, and the model is trained with
mini-batches from this trajectory dataset, which is periodically updated (see line 2 and
lines 10–12 in Algorithm 4).

Algorithm 1 Sampling trajectory of forward process

1: Input: x(0)∈M, constants σk, function b, and integer N
2: for k=0 to N−1 do
3: sample z(k)∼N (0,In) and set vk=P (x(k))z(k)

4: set x(k+
1
2 ) :=x(k)+σ2

kb(x
(k))+σkv

(k)

5: c,flag=newton solver(x(k),x(k+
1
2 );ξ). // solve (3.5) by Algorithm 3

6: if flag == true then
7: set x(k+1) :=x(k+

1
2 )+∇ξ(x(k))c

8: else
9: discard the trajectory and re-generate // alternatively, go back to line 3

10: end if
11: end for
12: Return (x(0),x(1),. ..,x(N))

4. Theoretical results In this section, we study the continuous-time limit of our
proposed method. Let T >0 and g : [0,T ]→R+ be a continuous function. Define h= T

N

and consider the case where σk=
√
hg(kh), for k=0,1,. ..,N−1. It is shown in [4] that

the forward process (3.5) converges strongly to the SDE onM

dXt=g
2(t)P (Xt)b(Xt)dt+g(t)dW

M
t , t∈ [0,T ], (4.1)
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Algorithm 2 Sampling trajectory of reverse process

1: Input: trained functions (s(k+1),θ(x))0≤k≤N−1, constants βk, function b, and
integer N

2: draw sample x(N) from the prior distribution p(x(N))
3: for k=N−1 to 0 do
4: sample z̄(k+1)∼N (0,In) and set v̄(k+1)=P (x(k+1))z̄(k+1)

5: set x(k+
1
2 )=x(k+1)+β2

k+1P (x
(k+1))

(
s(k+1),θ−b

)
(x(k+1))+βk+1v̄

(k+1)

6: c,flag=newton solver(x(k+1),x(k+
1
2 );ξ) // solve (3.7) by Algorithm 3

7: if flag == true then
8: x(k) :=x(k+

1
2 )+∇ξ(x(k+1))c

9: else
10: discard the trajectory and re-generate // alternatively, go back to line 4
11: end if
12: end for
13: Return (x(N),x(N−1),. ..,x(0))

Algorithm 3 newton solver(x,x′;ξ) // solve ξ(x′+∇ξ(x)c)=0 by Newton’s method

1: Input: x∈M, x′∈Rn, ξ :Rn→Rn−d, maximal steps nstep, tolerance tol>0
2: Initialization: set c=0∈Rn−d

3: for k=0 to nstep−1 do

4: Solve linear equation
[
∇ξ
(
x′+∇ξ(x)c

)⊤∇ξ(x)]u=−ξ(x′+∇ξ(x)c) for u∈Rn−d

5: c← c+u
6: if |ξ(x′+∇ξ(x)c)|< tol then
7: Return c, true
8: end if
9: end for

10: Return c, false

where WMt is a Brownian motion overM. Denote by p(·,t) the probability density of Xt

with respect to σM at time t∈ [0,T ]. We have the following result, which characterizes
the loss function in (3.10) as N→+∞.
Theorem 4.1. Let T >0 and g : [0,T ]→R+ be a continuous function. Define h= T

N

and tk=kh, for k=0,1,. ..,N−1. Assume that σk=βk+1=
√
hg(tk). Also assume

that there is a C1 function sθ :Rn× [0,T ]→Rn such that s(k+1),θ(x)=sθ(x,tk+1) for all
k=0,1,... ,N−1 and x∈M. For the loss function defined in (3.10), we have

lim
N→+∞

(
Loss(N)(θ)− 1

2

N−1∑
k=0

∣∣v(k)∣∣2)

=EQ

[1
2

∫ T

0

∣∣P (Xt)sθ(Xt,t)−∇M logp(Xt,t)
∣∣2g2(t)dt

+

∫ T

0

(
P (Xt)b(Xt)−

1

2
∇M logp(Xt,t)

)
·∇M logp(Xt,t)g

2(t)dt
]
,

where EQ on the right hand side denotes the expectation with respect to the paths of
SDE (4.1) and ∇M denotes the gradient operator onM.

Based on Theorem 4.1, the variational bound (2.3), and its relative entropy formula-
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Algorithm 4 Training procedure

1: Input: training data (yi)1≤i≤M , functions (s(k+1),θ(x))0≤k≤N−1, constants σk,βk>
0, function b :Rn→Rn, integer N , batch size B>0, number of total training epochs
Nepoch, integer lf >0, learning rate r>0.

2: generate a path (x(0),i,x(1),i,. ..,x(N),i) using Algorithm 1, for each x(0),i=yi

3: for l=1 to Nepoch do
4: for j=1 to ⌊M/B⌋ do
5: sample a min-batch I=(i1,i2,. ..,iB) from the set of indices {1,2, ... ,M}
6: calculate loss: ℓ(θ)= 1

2|I|
∑
i∈I

N−1∑
k=0

∣∣∣G(βk+1)

x(k+1),i(x
(k),i;s(k+1),θ−b)

∣∣∣2
7: θ=optimizer update(θ,ℓ(θ),r)
8: end for
9: // update trajectories every lf epochs

10: if l%lf ==0 then
11: re-generate paths (x(0),i,x(1),i,. ..,x(N),i) using Algorithm 1, for each x(0),i=yi

12: end if
13: end for
14: Return θ

tion in (2.4), we obtain the following corollary, which states that our RDDPMs learn
the score function as N→+∞. It elucidates the connection between our RDDPMs and
Riemannian score-based generative models [7] as N→+∞.

Corollary 4.1. Under the same assumptions of Theorem 4.1, we have, for any
parameter θ,

lim
N→+∞

H
(←−
Q (N) |P(N)

θ

)
=

1

2
EQ

∫ T

0

∣∣P (Xt)sθ(Xt,t)−∇M logp(Xt,t)
∣∣2g2(t)dt=H(

←−
Q |Pθ),

(4.2)

where
←−
Q denotes the path measure of the time-reversal of SDE (4.1), and Pθ denotes

the path measure of the SDE

dYt=g
2(T − t)P (Yt)

(
−b(Yt)+sθ(Yt,T − t)

)
dt+g(T − t)dWMt , t∈ [0,T ], (4.3)

starting from Y0=XT .

The proofs of Theorem 4.1 and Corollary 4.1 are presented in Appendix A.

5. Experiments

We evaluate our method on distributions defined on mesh manifolds, the high-
dimensional special orthogonal group (both with and without a nonlinear transformation),
conserved Hamiltonian surfaces in phase space, and molecular conformations under
constraints. The last three novel datasets have not been studied by existing methods.
Further experimental details and results can be found in Appendix B. In particular,
parameters for each example are summarized in Table B.1 in Appendix B.

5.1. Mesh data on learned manifolds. Our method can effectively handle
manifolds with general geometries. For demonstration, we examine the Stanford Bunny
[32] and Spot the Cow [6], two manifolds defined by triangle meshes. To create the target
distribution, we follow the approach in [15] and [3], which utilizes the k-th clamped
eigenfunction of the Laplace-Beltrami operator on meshes.
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Similar to [25], we first learn a function ξ :R3→R, whose zero level set matches the
manifold. We adopt the approach in [9], where ξ is represented by a neural network
and is trained such that on mesh data ξ is close to zero and |∇ξ| is close to one. Using
this approach, we obtain a function ξ whose order of magnitude is 10−2 on mesh data.
Then, we perform a further refinement to the dataset such that all points belong to the
learned manifoldM={x∈R3|ξ(x)=0} up to a small error 10−5. The maximal distance
between the original data and the refined data is smaller than 0.017.

The function b in the forward Markov chain (3.5) is set to be the zero function, and
the prior distribution p(x(N)) is a uniform distribution on the meshes (see discussions in
Section 3.5). We perform the training with the learned function ξ.

In Table 5.1, we present the negative log-likelihood (NLL) on the test set, estimated
via the second line of (2.3). Our method outperforms existing manifold-based methods,
including RFM [3] and LogBM [15]. One possible explanation for this improvement
is that existing methods require computing the premetric on meshes through infinite
series (see Equation (16) in [3]), which introduces bias due to truncation in practice. In
principle, our method is unbiased, as it does not require computing distances on the
manifold. Figure 5.1 visualizes the generated samples, demonstrating good agreement
with the target data distribution.

Stanford Bunny Spot the Cow

k=50 k=100 k=50 k=100

RFM w/ Diff. 1.48±0.01 1.53±0.01 0.95±0.05 1.08±0.05
RFM w/ Bihar. 1.55±0.01 1.49±0.01 1.08±0.05 1.29±0.05
LogBM w/ Diff. 1.42±0.01 1.41±0.00 0.99±0.03 0.97±0.03
LogBM w/ Bihar. 1.55±0.02 1.45±0.01 1.09±0.06 0.97±0.02

Ours

RDDPM 1.36±0.00 1.31±0.01 0.84±0.00 0.77±0.00

Table 5.1: Test negative log-likelihood (NLL) on mesh datasets. Lower values indicate
better performance. The table shows the mean and the standard deviation of the NLL
over five independent runs. For RFM and LogBM, with Diff and with Bihar refer to
different weighting functions used in computing the spectral distances (diffusion distance
and biharmonic distance, respectively).

5.2. High-dimensional special orthogonal group. We apply our method to
the special orthogonal group SO(10), viewed as a 45-dimensional submanifold embedded
in R100. This manifold can be characterized as (one of the two connected components
of) the zero level set of the map ξ :R100→R55, whose components are defined by the
upper triangular entries of the matrix S⊤S−I10, where S is a 10×10 matrix and I10
denotes the identity matrix of size 10.

The dataset is sampled from a multimodal distribution on SO(10) with 5 modes.
As in the previous example, we choose b in the forward Markov chain to be zero and the
prior distribution to be the uniform distribution on the manifold.

To assess the quality of generated data, we consider the statistics tr(S), tr(S2),
tr(S4), and tr(S5), where tr denotes the trace operator of matrices. Figure 5.2 indicates
that our learned model can generate the data distribution accurately. What is more, the
distributions of the forward process at intermediate steps are also faithfully reproduced.
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Fig. 5.1: First row: datasets and true distributions. Second row: generated samples and
distributions from the trained models.
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Fig. 5.2: Results for SO(10). Empirical densities of the statistics tr(S),tr(S2),tr(S4), and
tr(S5) for the forward process (solid line) and the learned reverse process (dashed line)
at different steps k=0,50,200,500, colored in black, red, green, and blue, respectively.

Besides, to better demonstrate that our method can be applied to more general
manifolds, we also consider the manifold φ−1(SO(10)), which is a nonlinear trans-
formation of SO(10). Specifically, the manifold is defined as the space of matrices

S=(xi,j)1≤i,j≤10 that satisfy the constraints
∑10

k=1φ(xi,k)φ(xj,k)−δi,j =0, 1≤ i≤ j≤10,
where φ(x)=tan(π4x). Consequently, it is also a 45-dimensional submanifold of R100.
The target distribution is again chosen as a multimodal distribution with five modes.
The function b in the forward Markov chain is defined as b(x)=−∇V (x), where
V (x)= 5

2∥x−I10∥2F (∥·∥F denotes the Frobenius norm). As shown in Figure 5.3, our
method successfully generates data that matches the true data.

5.3. Conserved Hamiltonian surface in phase space. We consider conserved
Hamiltonian surface in phase space, where the manifold is defined as the space of states
x=(q,p)∈Rn0×Rn0 satisfying the constraint ξ(q,p)=H(q,p)−E=0, where E>0 is

a constant, and the Hamiltonian is defined as H(q,p)= |p|
2

2m +U(q) with U(q)= κ
2 |q|2+

λ
∑n0

i=1q
4
i representing the potential energy of a nonlinear oscillator.

In our experiment, we choose n0=10, E=10, m=0.5, and κ=λ=2. Since the
uniform distribution on the manifold is difficult to obtain, we define the function b as
b(x)=−∇V (x), where V (x)= 5

2

∑n0

i=1(q
2
i +(pi−1)2). We assume that each component

qi follows a mixture of two Gaussian distributions. The resulting target distribution has
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Fig. 5.3: Results for Transformed-SO(10). Empirical densities of the statistics
tr(S),tr(S2),tr(S4), and tr(S5) for the samples generated by our method (dashed line)
and samples from the target distribution (solid line).

in total 2n0 modes. Figure 5.4 shows the empirical densities of components q1, q2, p1,
and p2. The solid and dashed lines compare the distributions of the forward and the
learned reverse processes at different steps k. The overlap of the black lines at k=0
shows that the generated samples match well with the target distribution.
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Fig. 5.4: Results for the conserved Hamiltonian surface. Empirical densities of q1, q2, p1,
and p2 for the forward process (solid line) and the learned reverse process (dashed line)
at different steps k=0,20,40,150, colored in black, red, green, and blue, respectively.

5.4. Alanine dipeptide. We apply our method to alanine dipeptide, a commonly
studied model system in bio-physics. The configuration of the system can be characterized
by its two dihedral angles ϕ and ψ (see Figure 5.5a). In this study, we are interested in
the configurations of the 10 non-hydrogen atoms of the system (in R30) with the fixed
angle ϕ=−70◦.

In the forward process, b is chosen as −∇V , where V is proportional to the root mean
squared deviation (RMSD) from a pre-selected reference configuration xref . Consequently,
the prior distribution p(x(N)) is a single-well distribution centered at xref . Furthermore,
we model s(k+1),θ(x) in the reverse process using a network that preserves rotational
equivariance and translational invariance. This design, together with our choice of b,
guarantees that the distribution pθ(x

(0)) generated by our model is invariant under
SE(3) [35]. We refer to Appendix B.4 for further experimental details and to Appendix C
for theoretical support.

We employ three metrics to assess the quality of the generated configurations: the
angle ψ, and two RMSDs (denoted by RMSD1 and RMSD2) with respect to two pre-
defined reference configurations that are selected from two different wells. Figure 5.5b
illustrates the empirical densities of these three metrics for the configurations generated
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by our model and the configurations in the dataset. The solid and dashed lines show the
agreement between the distributions of the learned reverse process and the distributions
of the forward process at different time steps k. In particular, the overlap between the
lines in black, which correspond to step k=0, demonstrates that the distribution of the
generated samples (dashed) closely matches the data distribution (solid).

(a) Alanine dipeptide
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RMSD1 (nm)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0
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9

12

15

RMSD2 (nm)

(b) Results for alanine dipeptide

Fig. 5.5: (a) Illustration of the system. Names and 1-based indices are shown for atoms
that define the dihedral angles. The dihedral angles ϕ and ψ are defined by atoms
whose 1-based indices are 5,7,9,15 and 7,9,15,17, respectively. (b) Empirical densities
of the angle ψ, RMSD1, and RMSD2 for the forward process (solid line) and the learned
reverse process (dashed line) at steps k=0,10,40,200, colored in black, red, green, blue,
respectively. The ψ values of the two reference points that are used to define RMSD1

and RMSD2 are −20◦ and 150◦, respectively (as shown by the two vertical dashed lines
in the left panel).

6. Conclusion We have proposed Riemannian Denoising Diffusion Probabilistic
Models for generative modeling on submanifolds. Our method does not rely on sophisti-
cated geometric objects on manifold and it is applicable to high-dimensional manifolds
with nontrivial geometry. We have provided a theoretical analysis of our method in
the continuous-time limit, which elucidates its connection to Riemannian score-based
generative models. We have demonstrated the strong capability of our method on
manifolds from previous studies, as well as on those with complex geometries that can
not be easily explored by existing methods.
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Appendix A. Proofs of the continuous-time limit.

In this section, we prove Theorem 4.1 and Corollary 4.1 in Section 4. For simplicity
of notation, we denote by ∂i the derivative with respect to xi in the ambient space, and
by I the identity matrix of order n. We use subscripts to denote components of a vector
and entries of a matrix. Also recall that the orthogonal projection matrix P (x)∈Rn×n
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is well defined for x∈Rn and has the expression

Pij(x)= δij−
n−d∑

α,α′=1

∂iξα(x)(∇ξ⊤∇ξ)−1αα′(x)∂jξα′(x), 1≤ i,j≤n, (A.1)

where δij is the Dirac delta function. First, we present the proof of Theorem 4.1.
Proof. (Proof of Theorem 4.1.) Let us write the forward process in (3.5) as

x(k+1)=x(k+
1
2 )+∇ξ(x(k))c(x(k+ 1

2 )),

where x(k+
1
2 )=x(k)+σ2

kb(x
(k))+σkv

(k) and the dependence of c on x(k+
1
2 ) is made

explicit. Applying Lemma A.1 at the end of this section, we obtain the expansion, for
1≤ i≤n,

x
(k+1)
i (A.2)

=x
(k)
i +

n∑
j=1

Pij(x
(k))
(
σ2
kbj(x

(k))+σkv
(k)
j

)
+

1

2

n∑
j,l,r,r′=1

(
(I−P )irPr′l∂r′Prj

)
(x(k))

(
σ2
kbj(x

(k))+σkv
(k)
j

)(
σ2
kbl(x

(k))+σkv
(k)
l

)

+
1

6

n∑
j,l,r=1

n−d∑
η=1

(
∂iξη∂

3
jlrcη

)
(x(k))

(
x
(k+ 1

2 )
j −x(k)j

)(
x
(k+ 1

2 )

l −x(k)l

)(
x
(k+ 1

2 )
r −x(k)r

)
+o
(
|x(k+ 1

2 )−x(k)|3
)

=x
(k)
i +σkv

(k)
i +σ2

k

n∑
j=1

Pij(x
(k))bj(x

(k))+
σ2
k

2

n∑
j,r,r′=1

(
(I−P )ir∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′

+σ3
kR

(k)
i +o(σ3

k), (A.3)

where we have used the identity
∑n

j=1Pij(x
(k))v

(k)
j =v

(k)
i (since v(k) is a tangent vector),

and R
(k)
i is a term that satisfies

∑n
i′=1Pii′(x

(k))R
(k)
i′ =0, for 1≤ i≤n.

With the expansion above, we compute the loss function in (3.10). Using (A.2), the
relation βk+1=σk=

√
hg(kh), and the assumption that s(k+1),θ(x(k+1))=sθ(x

(k+1),(k+
1)h)∈Rn, we can derive

β2
k+1

∣∣∣P (x(k+1))
(
s(k+1),θ(x(k+1))−b(x(k+1))+

x(k+1)−x(k)
β2
k+1

)∣∣∣2
=σ2

k

n∑
i=1

∣∣∣∣ n∑
i′=1

Pii′(x
(k+1))

[
sθ,i′(x

(k+1),(k+1)h)−bi′(x(k+1))+

n∑
j=1

Pi′j(x
(k))bj(x

(k))

+
1

2

n∑
j,r,r′=1

(
(I−P )i′r∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′ +

v
(k)
i′

σk
+σkR

(k)
i′ +o(σk)

]∣∣∣∣2
=I1+I2+I3+o(σ2

k), (A.4)

where the three terms on the last line are defined as

I1 :=σ2
k

n∑
i=1

∣∣∣∣ n∑
i′=1

Pii′(x
(k+1))

[
sθ,i′(x

(k+1),(k+1)h)−bi′(x(k+1))+

n∑
j=1

Pi′j(x
(k))bj(x

(k))
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+
1

2

n∑
j,r,r′=1

(
(I−P )i′r∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′ +σkR

(k)
i′

]∣∣∣∣2 ,
I2 :=

n∑
i=1

( n∑
i′=1

Pii′(x
(k+1))v

(k)
i′

)2
,

I3 :=2σk

n∑
i,i′=1

Pii′(x
(k+1))

[
sθ,i′(x

(k+1),(k+1)h)−bi′(x(k+1))+

n∑
j=1

Pi′j(x
(k))bj(x

(k))

+
1

2

n∑
j,r,r′=1

(
(I−P )i′r∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′ +σkR

(k)
i′

]
v
(k)
i ,

respectively. In the following, we derive the expansions of the three terms above. For I1,
expanding the functions P,sθ,b using (A.2), we can derive

I1=σ2
k

n∑
i=1

∣∣∣∣ n∑
i′=1

Pii′(x
(k))
[
sθ,i′(x

(k),kh)−bi′(x(k))+
n∑

j=1

Pi′j(x
(k))bj(x

(k))

+
1

2

n∑
j,r,r′=1

(
(I−P )i′r∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′

]
+o(1)

∣∣∣∣2

=σ2
k

n∑
i=1

∣∣∣ n∑
i′=1

Pii′(x
(k))sθ,i′(x

(k),kh)
∣∣∣2+o(σ2

k), (A.5)

where we have used the relations P 2=P and P (I−P )=0 satisfied by the orthogonal
projection matrix P to derive the second equality. For I2, using the relation P 2=P and
(A.2), we can compute

I2=
n∑

i,i′=1

Pii′(x
(k+1))v

(k)
i v

(k)
i′

=

n∑
i,i′=1

Pii′(x
(k))v

(k)
i v

(k)
i′ +

n∑
i,i′,r=1

∂rPii′(x
(k))
(
x(k+1)
r −x(k)r

)
v
(k)
i v

(k)
i′

+
1

2

n∑
i,i′=1

n∑
r,r′=1

∂2rr′Pii′(x
(k))v

(k)
i v

(k)
i′ (x(k+1)

r −x(k)r )(x
(k+1)
r′ −x(k)r′ )

+o(|x(k+1)−x(k)|2)

=|v(k)|2+
n∑

i,i′,r=1

∂rPii′(x
(k))
(
x(k+1)
r −x(k)r

)
v
(k)
i v

(k)
i′

+
σ2
k

2

n∑
i,i′=1

n∑
r,r′=1

∂2rr′Pii′(x
(k))v

(k)
i v

(k)
i′ v

(k)
r v

(k)
r′ +o(σ2

k). (A.6)

Let’s compute the three terms in (A.6). Using the expression of Pii′ in (A.1), the fact

that
∑n

i=1∂iξα(x
(k))v

(k)
i =0, and the product rule, it is straightforward to verify that,

for 1≤ r≤n,
n∑

i,i′=1

∂rPii′(x
(k))v

(k)
i v

(k)
i′ =−

n∑
i,i′=1

∂r

( n−d∑
α,α′=1

∂iξα(∇ξ⊤∇ξ)−1αα′∂i′ξα′

)
(x(k))v

(k)
i v

(k)
i′ =0.

(A.7)
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Similarly, we can verify that

n∑
i,i′,r,r′=1

∂2rr′Pii′(x
(k))v

(k)
i v

(k)
i′ v

(k)
r v

(k)
r′

=−2

n∑
i,i′,r,r′=1

n−d∑
α,α′=1

(
∂2irξα(∇ξ⊤∇ξ)−1αα′∂

2
i′r′ξα′

)
(x(k))v

(k)
i v

(k)
i′ v

(k)
r v

(k)
r′ . (A.8)

Hence, substituting (A.7) and (A.8) into (A.6), we obtain

I2=|v(k)|2−σ2
k

n∑
i,i′,r,r′=1

n−d∑
α,α′=1

(
∂2irξα(∇ξ⊤∇ξ)−1αα′∂

2
i′r′ξα′

)
(x(k))v

(k)
i v

(k)
i′ v

(k)
r v

(k)
r′ +o(σ2

k).

(A.9)

For I3, we have

I3=2σk

n∑
i,i′=1

Pii′(x
(k))

[
sθ,i′(x

(k),kh)−bi′(x(k))+
n∑

j=1

Pi′j(x
(k))bj(x

(k))

+
1

2

n∑
j,r,r′=1

(
(I−P )i′r∂r′Prj

)
(x(k))v

(k)
j v

(k)
r′ +σkR

(k)
i′

]
v
(k)
i

+2σ2
k

n∑
i,i′,r=1

∂r(Pii′(sθ,i′−bi′))(x(k),kh)v(k)r v
(k)
i

+2σ2
k

n∑
i,i′,r,j=1

∂rPii′(x
(k))Pi′j(x

(k))bj(x
(k))v(k)r v

(k)
i

+σ2
k

n∑
i,i′,r,j,r′,j′=1

∂rPii′(x
(k))
(
(I−P )i′j′ ∂r′Pj′j

)
(x(k))v

(k)
j v

(k)
r′ v

(k)
r v

(k)
i +o(σ2

k)

=2σk

n∑
i,i′=1

Pii′(x
(k))sθ,i′(x

(k),kh)v
(k)
i +2σ2

k

n∑
i,i′,r=1

∂r(Pii′(sθ,i′−bi′))(x(k),kh)v(k)r v
(k)
i

+2σ2
k

n∑
i,i′,r,j=1

∂rPii′(x
(k))Pi′j(x

(k))bj(x
(k))v(k)r v

(k)
i

+σ2
k

n∑
i,i′,r,j,r′,j′=1

∂rPii′(x
(k))
(
(I−P )i′j′ ∂r′Pj′j

)
(x(k))v

(k)
j v

(k)
r′ v

(k)
r v

(k)
i +o(σ2

k),

(A.10)

where we have used Taylor expansion with (A.2) and the fact that |sθ(x,(k+1)h)−
sθ(x,kh)|=O(h)=O(σ2

k) to derive the first equality, and we have used the relations

P 2=P , P (I−P )=0, and
∑n

i′=1Pii′(x
(k))R

(k)
i′ =0 to derive the second equality. We

further simplify the last two terms in the expression above. Notice that, similar to (A.7),
we can verify that

n∑
i,i′,r=1

∂rPii′(x
(k))Pi′j(x

(k))v(k)r v
(k)
i =0, 1≤ j≤n. (A.11)
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For the last term in (A.10), we can derive

n∑
i,i′,r,j,r′,j′=1

∂rPii′(x
(k))
(
(I−P )i′j′ ∂r′Pj′j

)
(x(k))v

(k)
j v

(k)
r′ v

(k)
r v

(k)
i

=

n∑
i′,r,j,r′,j′=1

(
∂rPi′j′ ∂r′Pj′j

)
(x(k))v

(k)
j v

(k)
r′ v

(k)
r v

(k)
i′

=

n∑
i′,r,j,r′,j′=1

[ n−d∑
α,α′,η,η′=1

(
∂2i′rξα(∇ξ⊤∇ξ)−1αα′∂j′ξα′

)(
∂2jr′ξη(∇ξ⊤∇ξ)−1ηη′∂j′ξη′

)]
(x(k))

·v(k)j v
(k)
r′ v

(k)
r v

(k)
i′

=

n∑
i′,r,j,r′=1

[ n−d∑
α,η=1

(
∂2i′rξα(∇ξ⊤∇ξ)−1αη∂

2
jr′ξη

)]
(x(k))v

(k)
j v

(k)
r′ v

(k)
r v

(k)
i′ , (A.12)

where the first equation follows by applying the product rule to the identity P (I−P )=0

and using the relation
∑n

i=1Pii′v
(k)
i =v

(k)
i′ , the second equation follows from the

expression (A.1) and the fact that several terms vanish due to the orthogonality

relation
∑n

i=1∂iξα(x
(k))v

(k)
i =0, and the last equation follows from the fact that∑n

j′=1∂j′ξα′∂j′ξη′ =(∇ξ⊤∇ξ)α′η′ . Combining (A.10), (A.11), and (A.12), we obtain

I3=2σk

n∑
i,i′=1

Pii′(x
(k))sθ,i′(x

(k),kh)v
(k)
i +2σ2

k

n∑
i,i′,r=1

∂r(Pii′(sθ,i′−bi′))(x(k),kh)v(k)r v
(k)
i

+σ2
k

n∑
i′,r,j,r′=1

[ n−d∑
α,η=1

(
∂2i′rξα(∇ξ⊤∇ξ)−1αη∂

2
jr′ξη

)]
(x(k))v

(k)
j v

(k)
r′ v

(k)
r v

(k)
i′ +o(σ2

k).

(A.13)

Substituting (A.5), (A.9), and (A.13) into (A.4), we obtain (after cancellation of terms
in I2 and I3)

β2
k+1

∣∣∣∣P (x(k+1))
(
s(k+1),θ(x(k+1))−b(x(k+1))+

x(k+1)−x(k)
β2
k+1

)∣∣∣∣2
=I1+I2+I3+o(σ2

k)

=σ2
k

∣∣P (x(k))sθ(x(k),kh)∣∣2+ ∣∣v(k)∣∣2+2σ2
k

n∑
i,i′,r=1

∂r(Pii′(sθ,i′−bi′))(x(k),kh)v(k)r v
(k)
i

+2σk

n∑
i,i′=1

Pii′(x
(k))sθ,i′(x

(k),kh)v
(k)
i +o(σ2

k). (A.14)

Now, we consider the terms on the right hand side of the above expression in the limit
N→+∞. Using the fact that the forward process x(k) converges to the SDE (4.1) [4] ,
we have

lim
N→+∞

EQ(N)

(N−1∑
k=0

σ2
k

∣∣P (x(k))sθ(x(k),kh)∣∣2)=EQ

∫ T

0

(∣∣P (Xt)sθ(Xt,t)
∣∣2)g2(t)dt.

Since v(k) is the standard Gaussian random variable in Tx(k)M confined in F (σk)

x(k) (the

set of tangent vectors with which (3.5) has a solution), the set F (σk)

x(k) increases to the
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entire tangent space Tx(k)M as N→+∞, we can show that (by bounded convergence
theorem)

lim
N→+∞

EQ(N)

(
σk

n∑
i,i′=1

Pii′(x
(k))sθ,i′(x

(k),kh)v
(k)
i

)
=0,

and

lim
N→+∞

EQ(N)

(
σ2
k

n∑
i,i′,r=1

∂r(Pii′(sθ,i′−bi′))(x(k),kh)v(k)r v
(k)
i

)
=EQ

[∫ T

0

( n∑
i,i′,r=1

∂r(Pii′(sθ,i′−bi′))(Xt,t)Pri(Xt)
)
g2(t)dt

]

=EQ

[∫ T

0

(
divM

(
P (sθ−b)

)
(Xt,t)

)
g2(t)dt

]
,

where the equality above can be verified using the fact that v(k)=P (x(k))z(k) and z(k)

converges to a standard Gaussian random variable in Rn as N→+∞.
Substituting (A.14) into (3.10) and using the above equations, we can derive

lim
N→+∞

(
Loss(N)(θ)− 1

2

N−1∑
k=0

∣∣v(k)∣∣2)
=EQ

∫ T

0

[
1

2

∣∣P (Xt)sθ(Xt,t)
∣∣2+divM

(
P (sθ−b)

)
(Xt,t)

]
g2(t)dt

=

∫ T

0

[∫
M

(1
2

∣∣P (x)sθ(x,t)∣∣2+divM
(
P (sθ−b)

)
(x,t)

)
p(x,t)dσM(x)

]
g2(t)dt

=

∫ T

0

[∫
M

(1
2

∣∣P (x)sθ(x,t)∣∣2−(P (sθ−b))(x,t) ·∇M logp(x,t)
)
p(x,t)dσM(x)

]
g2(t)dt

=
1

2

∫ T

0

[∫
M

∣∣P (x)sθ(x,t)−∇M logp(x,t)
∣∣2p(x,t)dσM(x)

]
g2(t)dt

+

∫ T

0

[∫
M

((
P (x)b(x)− 1

2
∇M logp(x,t)

)
·∇M logp(x,t)

)
p(x,t)dσM(x)

]
g2(t)dt

=EQ

[
1

2

∫ T

0

∣∣P (Xt)sθ(Xt,t)−∇M logp(Xt,t)
∣∣2g2(t)dt

+

∫ T

0

(
P (Xt)b(Xt)−

1

2
∇M logp(Xt,t)

)
·∇M logp(Xt,t)g

2(t)dt

]
,

where we have used integration by parts on M, and the expression divMf =∑n
i,r=1Pir∂rfi for f :M→Rn (which can be verified using Lemma A.1 in [37]).
Next, we present the proof of Corollary 4.1.
Proof. (Proof of Corollary 4.1.) Using the assumption βk+1=σk, the projection

scheme in (3.5) and the relation P (x(k))∇ξ(x(k))=0, we can simplify the constant C(N)

in (3.11) as

C(N)=−EQ(N)

(
logp(x(N))+

1

2

N−1∑
k=0

|v(k)|2+
N−1∑
k=0

log
(
1−ϵ(σk)

x(k)

))
. (A.15)
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Therefore, using the definition of relative entropy (see (2.4)), the loss function in (3.10),
the constant C(N) in (3.11), and applying Theorem 4.1, we have

lim
N→+∞

H
(←−
Q (N) |P(N)

θ

)
= lim

N→+∞

[
Loss(N)(θ)+C(N)+EQ(N)

(N−1∑
k=0

log
(
1−ϵ(σk)

x(k+1),θ

))]
+Eq0(logq0)

= lim
N→+∞

Loss(N)(θ)−EQ(N)

logp(x(N))+
1

2

N−1∑
k=0

|v(k)|2+
N−1∑
k=0

log
1−ϵ(σk)

x(k)

1−ϵ(σk)

x(k+1),θ


+Eq0(logq0)

= lim
N→+∞

(
Loss(N)(θ)−EQ(N) logp(x(N))− 1

2

N−1∑
k=0

|v(k)|2
)
+Eq0(logq0)

=EQ

[
logp(X0,0)− logp(XT ,T )+

1

2

∫ T

0

∣∣P (Xt)sθ(Xt,t)−∇M logp(Xt,t)
∣∣2g2(t)dt

+

∫ T

0

(
P (Xt)b(Xt)−

1

2
∇M logp(Xt,t)

)
·∇M logp(Xt,t)g

2(t)dt

]
, (A.16)

where the third equality follows because the terms containing ϵ
(σk)

x(k) and ϵ
(σk)

x(k+1),θ
converge

to zero sufficiently fast as N→+∞. Note that the density p(x,t) of SDE (4.1) solves
the Fokker-Planck equation

∂p

∂t
(x,t)=−g2(t)divM

(
P (x)b(x)p(x,t)

)
+
g2(t)

2
∆Mp(x,t) , x∈M, t∈ [0,T ]. (A.17)

Therefore, we have

EQ

[
logp(X0,0)− logp(XT ,T )

]
=

∫
M

logp(x,0)p(x,0)dσM(x)−
∫
M

logp(x,T )p(x,T )dσM(x)

=−
∫ T

0

d

dt

(∫
M

logp(x,t)p(x,t)dσM(x)
)
dt

=−
∫ T

0

[∫
M

(
logp(x,t)+1

)∂p
∂t

(x,t)dσM(x)

]
dt

=−
∫ T

0

[∫
M

(
logp(x,t)+1

)(
−divM

(
P (x)b(x)p(x,t)

)
+

1

2
∆Mp(x,t)

)
g2(t)dσM(x)

]
dt

=−
∫ T

0

[∫
M

((
P (x)b(x)− 1

2
∇M logp(x,t)

)
·∇M logp(x,t)

)
p(x,t)dσM(x)

]
g2(t)dt

=−EQ

[∫ T

0

(
P (Xt)b(Xt)−

1

2
∇M logp(Xt,t)

)
·∇M logp(Xt,t)g

2(t)dt

]
, (A.18)

where we have used (A.17) to derive the fourth equality and integration by parts onM
to derive the fifth equality. Combining (A.16) and (A.18), we obtain

lim
N→+∞

H
(←−
Q (N) |P(N)

θ

)
=EQ

[
1

2

∫ T

0

∣∣P (Xt)sθ(Xt,t)−∇M logp(Xt,t)
∣∣2g2(t)dt]. (A.19)



20 RIEMANNIAN DENOISING DIFFUSION PROBABILISTIC MODELS

Finally, note that
←−
Q is the path measure of the time-reversal Yt=XT−t of SDE (4.1),

which satisfies [7, Theorem 3.1]

dYt=g
2(T − t)

(
−P (Yt)b(Xt)+∇M logp(Yt,T − t)

)
dt+g(T − t)dWMt , t∈ [0,T ] ,

(A.20)
and Pθ is the path measure of SDE (4.3). Applying Girsanov’s theorem [12, Theo-
rem 8.1.2], we obtain

dPθ

d
←−
Q

=exp
(∫ T

0

g2(T − t)
(
P (Yt)sθ(Yt,T − t)−∇M logp(Yt,T − t)

)
·dWMt

− 1

2

∫ T

0

∣∣P (Yt)sθ(Yt,T − t)−∇M logp(Yt,T − t)
∣∣2g2(T − t)dt) , (A.21)

where WMt is a Brownian motion onM under
←−
Q . Therefore, we have

H(
←−
Q |Pθ)=E←−Q

(
log

d
←−
Q

dPθ

)
=E←−Q

(1
2

∫ T

0

∣∣P (Yt)sθ(Yt,T − t)−∇M logp(Yt,T − t)
∣∣2g2(T − t)dt)

=EQ

(1
2

∫ T

0

∣∣P (Xt)sθ(Xt,t)−∇M logp(Xt,t)
∣∣2g2(t)dt) , (A.22)

where the second equality follows from the fact that the stochastic integration in (A.21)
vanishes after taking logarithm and expectation, and the third equality follows by a
change of variable t←T − t and the fact that Yt=XT−t. The conclusion is obtained
after combining (A.19) and (A.22).

Finally, we present the technical lemma on the projection scheme in (3.1), which
was used in the proof of Theorem 4.1.
Lemma A.1. Given x∈M and x′∈Rn, the solution to the problem

y=x′+∇ξ(x)c(x′), c(x′)∈Rn−d, s.t. ξ(y)=0 (A.23)

has the following two expansions as x′ approaches x

∂jcη(x)=−
n−d∑
α=1

(∇ξ⊤∇ξ)−1ηα(x)∂jξα(x), 1≤ j≤n, (A.24)

∂2jlcη(x)=

n−d∑
α=1

(∇ξ⊤∇ξ)−1ηα(x)

n∑
r,r′=1

(
∂rξα∂r′PrjPr′l

)
(x), 1≤ j,l≤n, (A.25)

for 1≤η≤n−d. Moreover, as x′ approaches x, the following expansion of y in (A.23)
holds

yi=xi+

n∑
j=1

Pij(x)(x
′
j−xj)+

1

2

n∑
j,l=1

[ n∑
r,r′=1

(
(I−P )irPr′l∂r′Prj

)
(x)

]
(x′j−xj)(x′l−xl)

+
1

6

n∑
j,l,r=1

(n−d∑
η=1

∂iξη(x)∂
3
jlrcη(x)

)
(x′j−xj)(x′l−xl)(x′r−xr)+o(|x′−x|3), (A.26)
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where 1≤ i≤n.
Proof. Differentiating (with respect to x′) the constraint equation

ξα(x
′+∇ξ(x)c(x′))=0, α=1,.. .,n−d,

we get

n∑
r=1

∂rξα
(
x′+∇ξ(x)c(x′)

)(
δrj+

n−d∑
η=1

∂rξη(x)∂jcη(x
′)
)
=0, 1≤ j≤n. (A.27)

Setting x′=x in (A.27) (notice that c(x′)=0 when x′=x) and multiplying both sides
by (∇ξ⊤∇ξ)−1(x), we obtain (A.24). In particular, using (A.1), we have

δrj+

n−d∑
η=1

∂rξη(x)∂jcη(x)= δrj−
n−d∑
η,α=1

(
∂rξη(∇ξ⊤∇ξ)−1ηα∂jξα

)
(x)=Prj(x), 1≤ r,j≤n.

(A.28)
Next, we show (A.25). Differentiating (A.27) again, setting x′=x and using (A.28), we
get, for 1≤α≤n−d and 1≤ j,l≤n,

0=

n∑
r,r′=1

∂2rr′ξα(x)
(
δrj+

n−d∑
η=1

∂rξη(x)∂jcη(x)
)(
δr′l+

n−d∑
η=1

∂r′ξη(x)∂lcη(x)
)

+

n∑
r=1

∂rξα(x)
(n−d∑

η=1

∂rξη(x)∂
2
jlcη(x)

)

=

n∑
r,r′=1

(
∂2rr′ξαPrjPr′l

)
(x)+

n−d∑
η=1

(
(∇ξ⊤∇ξ)αη∂2jlcη

)
(x),

from which we can solve, for 1≤η≤n−d and 1≤ j,l≤n,

∂2jlcη(x)=−
n−d∑
α=1

n∑
r,r′=1

(
(∇ξ⊤∇ξ)−1ηα∂

2
rr′ξαPrjPr′l

)
(x)

=

n−d∑
α=1

n∑
r,r′=1

(
(∇ξ⊤∇ξ)−1ηα ∂rξα∂r′PrjPr′l

)
(x),

where the second equality follows from the product rule and the identity
∑n

r=1Prj∂rξα=0.
This shows (A.25).

Lastly, we prove the expansion in (A.26). Note that (A.25) and (A.1) implies

n−d∑
η=1

(∂iξη∂
2
jlcη)(x)=

n∑
r,r′=1

(
(I−P )irPr′l∂r′Prj

)
(x), 1≤ i,j,l≤n. (A.29)

By expanding c(x′) at x′=x to the third order, noticing that c(x)=0, and using (A.28)
and (A.29) for the first and second order derivatives respectively, we can derive

yi=x
′
i+

n−d∑
η=1

∂iξη(x)cη(x
′)
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=xi+(x′i−xi)+
n−d∑
η=1

∂iξη(x)

[ n∑
j=1

∂jcη(x)(x
′
j−xj)+

1

2

n∑
j,l=1

∂2jlcη(x)(x
′
j−xj)(x′l−xl)

+
1

6

n∑
j,l,r=1

∂3jlrcη(x)(x
′
j−xj)(x′l−xl)(x′r−xr)

]
+o(|x′−x|3)

=xi+

n∑
j=1

Pij(x)(x
′
j−xj)+

1

2

n∑
j,l=1

[ n∑
r,r′=1

(
(I−P )ir∂r′PrjPr′l

)
(x)

]
(x′j−xj)(x′l−xl)

+
1

6

n∑
j,l,r=1

(n−d∑
η=1

∂iξη(x)∂
3
jlrcη(x)

)
(x′j−xj)(x′l−xl)(x′r−xr)+o(|x′−x|3),

which proves (A.26).

Appendix B. Details of algorithms and experiments.

B.1. Neural networks and training setup. As described in Theorem 4.1,
the functions (s(k+1),θ(x))0≤k≤N−1 are represented by a single function sθ(x,t) with
parameter θ, which is in turn modeled by a multilayer perceptron (MLP). We employ
SiLU as the activation function. We do not require that the output of the neural network
belongs to the tangent space, thanks to the presence of the projection in both the forward
and the reverse processes. Alternative strategies for designing neural networks with
outputs in tangent space are proposed in [7].

Moreover, we define g(t) as g(t)=γmin+
t
T (γmax−γmin), where γmax≥γmin>0. The

parameters in the Markov chain are chosen as σk=βk+1=
√
hg(kh), with h= T

N and
k=0,1,... ,N−1.

We train our models using PyTorch, where we employ the Adam optimizer with
fixed learning rate r=5×10−4 and we clip the gradients of the parameters when the
2-norm exceeds 10. We also implement an exponential moving average for the model
weights [24] with a decay rate of 0.999. All experiments are run on a single NVIDIA A40
GPU with 48G memory. In each run, the dataset is divided into training, validation,
and test sets with ratio 80:10:10. Values of all the parameters in our experiments are
summarized in Table B.1.

Datasets γmin γmax N T lf Nepoch B Nn Nl

Bunny, k=50 0.07 0.07 800 8.0 100 2000 2048 256 5
Bunny, k=100 0.07 0.07 500 5.0 100 2000 2048 256 5
Spot, k=50 0.1 0.1 500 5.0 100 2000 2048 256 5
Spot, k=100 0.1 0.1 300 3.0 100 2000 2048 256 5

SO(10) 0.2 2.0 500 1.0 100 2000 512 512 3
Transformed-SO(10) 0.2 1.3 250 2.5 100 1000 512 256 3

Hamiltonian 0.1 1.5 150 1.5 1 4000 512 256 3

Alanine dipeptide 1.0 1.0 200 0.1 100 5000 512 512 5

Table B.1: Parameters in our experiments. γmin,γmax,N,T are the parameters in our
model; lf ,Nepoch,B are the parameters in Algorithm 4; Nn,Nl are the numbers of the
hidden nodes per layer and the hidden layers of the neural networks, respectively.
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B.2. Mesh data on learned manifolds. The function ξ :R3→R is modeled by
a MLP with 3 hidden layers, each of which has 128 nodes. Different from the activation
function in our model, here we use Softplus activation function, where the parameter β
is set to 10. The loss function for learning ξ is

ℓ(ξ)=
1

|D|
∑
x∈D
|ξ(x)|+ λ

|D′|
∑
y∈D′

(|∇ξ(y)|−1)2, (B.1)

where λ=0.1, D denotes the set of vertices of a high-resolution mesh, and the set D′
contains samples near the manifolds that are obtained by perturbing samples x∈D
according to y=x+cϵ, with ϵ∼N (0, I3) and c=0.05. The first term in (B.1) imposes
that ξ is close to zero on vertices, whereas the second term serves as a regularization term
and ensures that ξ has non-vanishing gradient near the manifold. The neural network is
trained for 200000 steps using Adam optimizer, with batch size 512 and learning rate
10−4.

With the learned function ξ, we consider the manifold defined byM={x∈R3|ξ(x)=
0}. The values of ξ on the dataset are at the order 10−2. To ensure that the data
is on M with high precision, we refine the dataset by solving the following ordinary
differential equation (ODE):

dxt
dt

=−ξ(xt)∇ξ(xt), t≥0, (B.2)

starting from each point in the dataset until the condition |ξ(xt)|<10−5 is reached
(notice that (B.2) is a gradient flow and limt→∞ |ξ(xt)|=0). This ensures that the
refined points conform to the manifold accurately.

B.3. High-dimensional special orthogonal group. The dataset is constructed
as a mixture of 5 wrapped normal distributions, each of which is the image (under the
exponential map) of a normal distribution in the tangent space of a center Si∈SO(10),
1≤ i≤5. To ensure multimodality, we define the centers Si as follows. We initially

define a 2×2 matrix A0 :=

[
cos π

3 sin π
3

−sin π
3 cos π

3

]
, which represents a rotation by π

3 radians. We

then construct block diagonal matrices of order 10 by incorporating A0 and the identity
matrix I2 in various combinations:

X1=diag{A0,I2,I2,I2,I2}, X2=diag{A0,A0,I2,I2,I2}, X3=diag{A0,A0,A0,I2,I2},
X4=diag{A0,A0,A0,A0,I2}, X5=diag{A0,A0,A0,A0,A0}. (B.3)

The centers Si of the wrapped normal distributions are chosen as Si=Q
⊤
i XiQi,

where Qi∈SO(10) are randomly drawn from the uniform distribution. According to
(B.3), the statistics η(S)=(tr(S),tr(S2),tr(S4),tr(S5)) of the centers can be explicitly
computed (using the trace identities tr(AB)=tr(BA) and tr(Q⊤i XiQi)=tr(Xi)) as

η(S1)=(9,7,7,9), η(S2)=(8,4,4,8), η(S3)=(7,1,1,7),

η(S4)=(6,−2,−2,6), η(S5)=(5,−5,−5,5). (B.4)

To generate data in the dataset, we select a center Si with equal probability, sample
tangent vectors Y from the normal distribution (in the tangent space at Si) with
zero mean and standard deviation 0.05, and then compute their images S under the

exponential map, that is, S=Sie
S⊤
i Y .
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B.4. Alanine dipeptide. To generate the dataset, we initially perform a con-
strained molecular simulation of alanine dipeptide in water for 1ns using the molecular
dynamics package GROMACS [33] with step size 1fs. We apply the harmonic biasing
method in COLVARS module [8], where the collective variable is chosen as the dihedral
angle ϕ and the harmonic potential is centered at ϕ=−70◦ with the force constant 5.0.
Further simulation details are omitted since they are similar to those in [18]. In total,
104 configurations are obtained by recording every 100 simulation steps. We exclude the
hydrogen atoms and work with the coordinates of the 10 non-hydrogen atoms in the
system (see Figure 5.5a). In a final preparatory step, we apply the refinement technique
in Appendix B.2 (see Eq. (B.2)) to the recorded coordinates, so that the data in the
dataset lives in the manifoldM={x∈R30|ϕ(x)=−70◦} up to a small numerical error
of order 10−5.

SinceM is unbounded, we adopt a nonzero function b in our model to make sure
that the Markov chain processes stay in bounded region. To this end, we choose a
reference configuration xref from the dataset and define the potential function

V (x)=
κ

2
|R∗x(x−w∗x)−xref |2 , x∈R30 , (B.5)

with κ=50, where R∗x, w
∗
x are the optimal rotation and the optimal translation that

minimize the RMSD (see Eq. (C.2)). The function b is defined as (the negative gradient
of V in full space)

b=−∇V (x)=−κ
(
R∗x(x−w∗x)−xref

)
, (B.6)

where the second equality follows by differentiating V in (B.5) and using the first order
optimality equations satisfied by R∗x and w∗x (also see [5]).

We also build our model to make sure that the generated distribution is SE(3)-
invariant (i.e. invariant under rotations and translations). For this, we rely on the
theoretical results in [35] and in Appendix C. One can check that V (x) is SE(3)-
invariant and b satisfies property (C.1) in Appendix C, that is, b is equivariant under
rotations and invariant under translations. This guarantees that the prior distribution
p(x(N)), which we choose as the invariant distribution of the forward process, is SE(3)-
invariant as well. We still need to make sure that the transition densities of the
reverse Markov chain are SE(3)-invariant. For this purpose, in the reverse process we

set s(k+1),θ(x)=(R∗x)
⊤fθ(R

∗
x(x−w∗x), (k+1)T

N ), where fθ :R30×R→R30 is modeled by
a single MLP with parameter θ, and both R∗x and b∗x are computed by the Kabsch
algorithm [16]. With this choice, s(k+1),θ(x) satisfies property (C.1) by Proposition
C.1 in Appendix C, and the transition density of the reverse process is SE(3)-invariant
by Proposition C.2 in Appendix C. Since the prior p(x(N)) is also SE(3)-invariant, we
conclude that the learned distribution pθ(x

(0)) is SE(3)-invariant [35]. Compared to the
commonly used equivariant networks [26], our network fits our experiment better thanks
to its lower computational cost and reduced memory usage.

B.5. Additional experimental results. This section presents additional
experimental results, focusing on computation time and the non-convergence rate of
trajectories. We first report the simulation time Tsim and training time Ttrain, with
the percentages of the total runtime Ttotal indicated in parentheses in Table B.2. The
trajectory update interval lf , the number of steps N , and the cost of solving Newton’s
equation jointly determine the simulation time Tsim. Recall that the total complexity of
Newton’s method is O(kiter(Cξ+(n−d)3)), where Cξ denotes the computational cost
of evaluating ∇ξ. In our experiments, Cξ=O(1) for most datasets, except for meshes
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where neural network evaluation is required. The codimension is typically n−d=1,
except for SO(10), where n−d=55. When Newton’s method converges, it requires at
most kiter=3 iterations.

Moreover, as discussed in Section 3.1, (3.1) may not yield solutions for certain
vectors v, leading to the discarding of corresponding trajectories. Table B.3 provides the
failure rate of trajectory generation in our experiments, as well as the maximum number
of iterations required for Newton’s method in cases where it converges.

Datasets lf Nepoch Tsim Ttrain Ttotal Tepoch

Bunny, k=50 100 2000 252(1.8%) 14120 14372 7.06
Bunny, k=100 100 2000 142(1.6%) 8718 8860 4.36
Spot, k=50 100 2000 113(1.3%) 8751 8864 4.38
Spot, k=100 100 2000 70(1.3%) 5189 5259 2.59

SO(10) 100 2000 2426(11.2%) 19289 21715 9.64
Transformed-SO(10) 100 2000 491(2.2%) 22276 22767 22.28

Hamiltonian 1 4000 1938(79.6%) 496 2434 0.12

Alanine dipeptide 100 5000 159(1.1%) 14299 14458 2.86

Table B.2: Detailed runtime metrics in our experiments. We report Tsim, Ttrain, and
Ttotal as the time for path generation, time for training, and total runtime, respectively,
with the percentages of the total runtime Ttotal shown in parentheses. The parameter
lf determines the frequency of trajectory updates. The final column Tepoch shows the
training time per epoch, calculated as Ttrain/Nepoch. All time metrics are reported in
seconds.

Datasets σmax Rfail fwd Rfail bwd itermax tol

Bunny, k=50 0.007 1.00% 0.82% 3 1e-4
Bunny, k=100 0.007 0.65% 0.55% 3 1e-4
Spot, k=50 0.010 0.15% 0.25% 3 1e-4
Spot, k=100 0.010 0.11% 0.10% 3 1e-4

SO(10) 0.089 0.00% 0.00% 3 1e-6
Transformed-SO(10) 0.13 0.00% 0.00% 3 5e-6

Hamiltonian 0.15 0.00% 0.00% 4 1e-5

Alanine dipeptide 0.022 0.01% 0.00% 2 1e-5

Table B.3: Failure rate of trajectory generation. Rfail fwd and Rfail bwd represent the
percentages of discarded trajectories when sampling the forward and reverse process,
respectively. σmax denotes the maximum value of (σk)0≤k≤N−1. itermax denotes the
maximum number of iterations for Newton’s method to converge (i.e. until the error is
less than tol).

Appendix C. Theoretical results on neural networks for molecular systems.
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In this section, we present theoretical results for the neural network architecture we
employed in studying alanine dipeptide.

Assume that the system consists ofM atoms, where the coordinates of thee i-th atom
are denoted by xi∈R3, for i=1,2,. ..,M . Let x∈R3M be the vector consisting of all the
coordinates x1x2,. ..,xM ∈R3. For simplicity, given a rotation matrix R∈SO(3) and a
translation vector w∈R3, we use the conventional notation Rx+w to denote the vector
in R3M that consists of the transformed coordinates Rx1+w,Rx2+w,...,RxM +w∈R3.
We say that a function f defined in R3M is SE(3)-invariant, if f(Rx+w)=f(x), for all
R∈SO(3), w∈R3, and for all x∈R3M . We say that function f :R3M→R3M possesses
property (C.1), if it is both equivariant under rotations and invariant under translations,
i.e.

f(Rx+w)=Rf(x), for all R∈SO(3),w∈R3, and all x∈R3M . (C.1)

Assume that a configuration xref is chosen as reference. Given x, the optimal rotation
matrix and the optimal translation vector, which minimize the RMSD

RMSD(x;xref)=
( 1

M
|R(x−w)−xref|2

) 1
2

(C.2)

from the reference xref, are denoted by R∗x and w∗x, respectively.
Proposition C.1 characterizes functions that are both equivariant under rotations

and invariant under translations. Proposition C.2 guarantees the SE(3)-invariance of
the transition densities of our diffusion model.
Proposition C.1. The following two claims are equivalent.

• Function s :R3M→R3M possesses property (C.1).
• There is a function f :R3M→R3M , such that s(x)=(R∗x)

⊤f(R∗x(x−w∗x)), for
all x∈R3M .

Proof. It is straightforward to verify that the first claim implies the second claim. In
fact, setting R=R∗x, w=−R∗xw∗x, and using the identity R⊤R= I3, we obtain from the
first claim that s(x)=(R∗x)

⊤s(R∗x(x−w∗x)). Hence, the second claim holds with f =s.
To show that the second claim also implies the first one, we use the fact that the optimal
rotation R∗Rx+w and the optimal translation w∗Rx+w, which minimize the RMSD of the

state Rx+w from the reference xref , are given by R∗Rx+w=R∗xR
⊤ and w∗Rx+w=Rw∗x+w,

respectively. This fact can be directly checked using (C.2). In particular, we have

R∗Rx+w(Rx+w−w∗Rx+w)=R
∗
x(x−w∗x).

Therefore, for the function s defined in the second claim, we can compute, for any
R∈SO(3), w∈R3, and any x∈R3M ,

s(Rx+w)=(R∗Rx+w)
⊤f
(
R∗Rx+w(Rx+w−w∗Rx+w)

)
=R(R∗x)

⊤f(R∗x(x−w∗x))
=Rs(x),

which shows the first claim.
Proposition C.2. Assume that ξ is SE(3)-invariant and b possesses property (C.1).
Then, the transition density (3.6) of the forward process is SE(3)-invariant. Further
assume that the function s(k+1),θ possesses property (C.1) for 0≤k≤N−1. Then, the
transition density (3.8) of the reverse process is also SE(3)-invariant.
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N σ Rfail fwd Tsim Ttrain JS NLL

50 2.45e-2 2.86% 19.2(3.2%) 589.3 4.382e-01±3.81e-03 0.77±0.01
100 1.73e-2 1.23% 36.9(2.7%) 1313.1 4.314e-01±2.18e-03 0.77±0.01
200 1.22e-2 0.34% 54.0(2.0%) 2673.0 4.312e-01±2.66e-03 0.77±0.01
300 1.00e-2 0.11% 66.4(1.6%) 4186.2 4.298e-01±2.89e-03 0.77±0.01
400 0.87e-2 0.05% 84.8(1.2%) 7297.1 4.300e-01±1.68e-03 0.78±0.01

Table C.1: Ablation study of the number of steps N on the Spot the Cow dataset
with k=100. Here, σ denotes the step size and Rfail fwd represents the proportion of
failed forward trajectories. Tsim and Ttrain are the simulation and training times (see
Table B.2). JS denotes the Jensen-Shannon distance on mesh face histograms between
the ground truth and generated distributions.

N σ Rfail fwd Tsim Ttrain W1

50 0.26 0% 823.2(81.1%) 191.5 3.152e-01±1.96e-03
100 0.18 0% 1429.0(85.0%) 253.0 3.117e-01±8.09e-04
150 0.15 0% 2035.8(84.3%) 378.4 3.098e-01±3.48e-03
200 0.13 0% 2717.9(84.9%) 482.9 3.093e-01±2.66e-03

Table C.2: Ablation study of the number of steps N on conserved Hamiltonian surfaces.
W1 denotes the 1-Wasserstein distance in coordinate space (q1,q2,. ..,qn) between the
ground truth and generated distributions.

Proof. We consider the transition density (3.6). Recall that Ux∈Rn×d is a matrix
whose columns form an orthonormal basis of TxM. Since ξ is SE(3)-invariant, we
have ξ(Rx+w)= ξ(x), for all rotations R and translation vectors w, which implies that
Rx+w∈M, if and only if x∈M. Differentiating the identity ξ(Rx+w)= ξ(x) with
respect to x, we obtain the relation ∇ξ(Rx+w)=R∇ξ(x), from which we see that
URx+w can be chosen such that URx+w=RUx. For the orthogonal projection matrix P
in (A.1), using the identity R⊤R= I3, we can compute

P (Rx+w)=In−∇ξ(Rx+w)
(
∇ξ(Rx+w)⊤∇ξ(Rx+w)

)−1∇ξ(Rx+w)⊤
=In−R∇ξ(x)

(
∇ξ(x)⊤∇ξ(x)

)−1∇ξ(x)⊤R⊤
=RP (x)R⊤ .

Moreover, since both b and ∇ξ satisfy the property (C.1), we also have ϵ
(σk)

Rx(k)+w
= ϵ

(σk)

x(k)

(i.e. the probabilities of having no solution are the same). Therefore, for the transition
density (3.6), we can derive, for any R∈SO(3) and w∈R3,

q(Rx(k+1)+w |Rx(k)+w)
=(2πσ2

k)
− d

2

(
1−ϵ(σk)

Rx(k)+w

)−1|det(U⊤Rx(k)+wURx(k+1)+w)|

·exp(−
∣∣P (Rx(k)+b)(Rx(k+1)−Rx(k)−σ2

kb(Rx
(k)+w)

)∣∣2
2σ2

k

)

=(2πσ2
k)
− d

2

(
1−ϵ(σk)

x(k)

)−1 ∣∣det(U⊤x(k)R
⊤RUx(k+1))

∣∣



28 RIEMANNIAN DENOISING DIFFUSION PROBABILISTIC MODELS

·exp(−
∣∣RP (x(k))R⊤(Rx(k+1)−Rx(k)−σ2

kRb(x
(k))
)∣∣2

2σ2
k

)

=(2πσ2
k)
− d

2

(
1−ϵ(σk)

x(k)

)−1 ∣∣det(U⊤x(k)Ux(k+1))
∣∣exp(− ∣∣P (x(k))(x(k+1)−x(k)−σ2

kb(x
(k))
)∣∣2

2σ2
k

)

=q(x(k+1) |x(k)),

which shows the SE(3)-invariance of the transition density of the forward process. The
invariance of the transition density of the reverse process in (3.8) can be proved using
the same argument, assuming that s(k+1),θ satisfies the relation s(k+1),θ(Rx+w)=
Rs(k+1),θ(x).

Appendix D. Ablation study.
Table C.1 presents the computational cost and performance analysis for the Spot

the Cow dataset with k=100 under varying N . We observe that, as N increases,
the Newton method’s failure rate decreases, and both trajectory simulation time and
training time increase accordingly. To better assess the generation quality, we compare
the Jensen-Shannon distance between the ground truth and generated distributions, as
the NLL metric fails to reveal meaningful differences. The results indicate that N =50
yields relatively poor performance, while other values of N show comparable results with
marginal differences.

Table C.2 presents the ablation study on conserved Hamiltonian surfaces. The
results demonstrate that as N increases, the computational cost grows while the accuracy
improves accordingly.

The performance of our method is not highly sensitive to the number of steps N , as
long as N is not too small; the computational cost scales positively correlated with N .
Thus, a viable strategy is to choose N by balancing the Newton method’s failure rate
against computational overhead, while maintaining satisfactory generation quality.
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[20] T. Lelièvre, G. Stoltz, and W. Zhang, Multiple projection MCMC algorithms on submanifolds,
IMA J. Numer. Anal., 43(2):737–788, 2022. 3.1

[21] A. Lou, D. Lim, I. Katsman, L. Huang, Q. Jiang, S. N. Lim, and C. M. De Sa, Neural manifold
ordinary differential equations, NeurIPS, 33:17548–17558, 2020. 1

[22] A. Lou, M. Xu, A. Farris, and S. Ermon, Scaling Riemannian diffusion models, NeurIPS,
36:80291–80305, 2023. 1

[23] E. Mathieu and M. Nickel, Riemannian continuous normalizing flows, NeurIPS, 33:2503–2515,
2020. 1

[24] B. T. Polyak and A. B. Juditsky, Acceleration of stochastic approximation by averaging, SIAM J.
Control Optim., 30(4):838–855, 1992. B.1

[25] N. Rozen, A. Grover, M. Nickel, and Y. Lipman, Moser flow: Divergence-based generative modeling
on manifolds, NeurIPS, 34:17669–17680, 2021. 1, 5.1

[26] V. G. Satorras, E. Hoogeboom, and M. Welling, E(n) equivariant graph neural networks, ICML,
139:9323–9332, 2021. B.4

[27] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitzmann,
Neural descriptor fields: SE (3)-equivariant object representations for manipulation, Proc.
IEEE Int. Conf. Robot. Autom., 6394–6400, 2022. 1

[28] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, Deep unsupervised learning
using nonequilibrium thermodynamics, ICML, 37:2256–2265, 2015. 2.2

[29] Y. Song, C. Durkan, I. Murray, and S. Ermon, Maximum likelihood training of score-based diffusion
models, NeurIPS, 34:1415–1428, 2021. 2.2

[30] Y. Song and S. Ermon, Generative modeling by estimating gradients of the data distribution,
NeurIPS, 32:11895–11907, 2019. 1

[31] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, Score-based
generative modeling through stochastic differential equations, ICLR, 240–275, 2021. 1

[32] G. Turk and M. Levoy, Zippered polygon meshes from range images, Proc. ACM Comput. Graph.
Interact. Tech., 311–318, 1994. 5.1

[33] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, GROMACS:
Fast, flexible, and free, J. Comput. Chem., 26(16):1701–1718, 2005. B.4

[34] J. L. Watson, D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern, A. J.
Borst, R. J. Ragotte, L. F. Milles, et al., De novo design of protein structure and function
with RFdiffusion, Nature, 620(7976):1089–1100, 2023. 1

[35] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, and J. Tang, GeoDiff: A geometric diffusion model for
molecular conformation generation, ICLR, 14163–14181, 2022. 5.4, B.4

[36] E. Zappa, M. Holmes-Cerfon, and J. Goodman, Monte Carlo on manifolds: Sampling densities
and integrating functions, Comm. Pure Appl. Math., 71(12):2609–2647, 2018. 3.1

[37] W. Zhang, Ergodic SDEs on submanifolds and related numerical sampling schemes, ESAIM Math.
Model. Numer. Anal., 54(2):391–430, 2020. A

[38] W. Zhang, H. Wang, C. Hartmann, M. Weber, and C. Schütte, Applications of the cross-entropy
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