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Abstract:1

Imitation learning has proven to be a powerful tool for training complex visuo-2

motor policies. However, current methods often require hundreds to thousands3

of expert demonstrations to handle high-dimensional visual observations. A key4

reason for this poor data efficiency is that visual representations are predominantly5

either pretrained on out-of-domain data or trained directly through a behavior6

cloning objective. In this work, we present DynaMo, a new in-domain, self-7

supervised method for learning visual representations. Given a set of expert8

demonstrations, we jointly learn a latent inverse dynamics model and a forward9

dynamics model over a sequence of image embeddings, predicting the next frame10

in latent space, without augmentations, contrastive sampling, or access to ground11

truth actions. Importantly, DynaMo does not require any out-of-domain data such12

as Internet datasets or cross-embodied datasets. On a suite of six simulated and real13

environments, we show that representations learned with DynaMo significantly14

improve downstream imitation learning performance over prior self-supervised15

learning objectives, and pretrained representations. Gains from using DynaMo16

hold across policy classes such as Behavior Transformer, Diffusion Policy, MLP,17

and nearest neighbors. Finally, we ablate over key components of DynaMo and18

measure its impact on downstream policy performance. Robot videos are best19

viewed at https://dynamo-anon.github.io.20

1 Introduction21

Learning visuo-motor policies from human demonstrations is an exciting approach for training22

difficult control tasks in the real world [1–5]. However, a key challenge is to efficiently learn a policy23

with fewer expert demonstrations. To address this, prior works have focused on learning better visual24

representations, often by pretraining on large Internet-scale video datasets [6–11]. However, as shown25

in Dasari et al. [12], these out-of-domain representations may not transfer to downstream tasks with26

very different embodiments and viewpoints from the pretraining dataset.27

An alternative is to train the visual representations ‘in-domain’ on the demonstration data collected to28

solve the task [13, 4]. Prevalent approaches for using self-supervision in downstream control often29

make a bag-of-frames assumption, using contrastive methods [14, 15] or masked autoencoding [11, 8]30

on individual frames for self-supervision. Most of these approaches ignore a rich supervision signal:31

action-based causality. Future observations are dependent on past observations, and unobserved latent32

actions. Can we obtain a good visual representation for control by simply learning the dynamics? In33

fact, this idea is well-established in neuroscience: animals are thought to possess internal models of34

the motor apparatus and the environment that facilitate motor control and planning [16–23].35

In this work, we present Dynamics Pretraining for Visuo-Motor Control (DynaMo), a new self-36

supervised method for pretraining visual representations for visuomotor control from limited in-37

domain data. DynaMo jointly learns the encoder with inverse and forward dynamics models,38
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Figure 1: We present DynaMo, a new self-supervised method for learning visual representations for control.

without access to ground truth actions [24, 25]. All of our datasets, and training and evaluation39

code will be made publicly available. Videos of our trained policies can be seen here: https:40

//dynamo-anon.github.io.41

2 DynaMo42

2.1 Dynamics as a visual self-supervised learning objective43

First, we sample an observation sequence ot:t+h of length h and compute its representation st:t+h =44

fθ(ot:t+h). For convenience, we will write st:t+h as s:h, and st+1:t+h as s1:h below. At any given45

step, the distribution of possible actions can be multimodal [5]. Therefore, the forward dynamics46

transition p(s1:h|s:h−1) can also have multiple modes. To address this, we first model the inverse47

dynamics q(z:h−1|s:h), where zt is the latent transition between frames. We assume zt to be well-48

determined and unimodal given consecutive frames {st, st+1}. We have z ∈ Rm, s ∈ Rd,m ≪ d49

such that the latent cannot trivially memorize the next frame embedding. Finally, we concatenate50

(st, zt) and predict the one-step forward dynamics p(ŝ1:h|s:h−1, z:h−1).51

We compute a dynamics loss Ldyn(ŝ, s
∗) on the one-step forward predictions ŝt+1:t+h, where52

s∗t+1:t+h are the target next-frame embeddings; and a covariance regularization loss Lcov from53

Bardes et al. [26] on a minibatch of observation embeddings S:54

Ldyn(ŝt, s
∗
t ) = 1− ⟨ŝt, s∗t ⟩

∥ŝt∥2 · ∥s∗t ∥2

Lcov(S) =
1

d

∑
i̸=j

[Cov(S)]2i,j

L = Ldyn + λLcov

(1)
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Figure 2: We evaluate DynaMo on four simulated benchmarks - Franka Kitchen, Block Pushing, Push-T, and
LIBERO Goal, and two real-world environments - Allegro Manipulation, and xArm Kitchen.

For environments with multiple views, we compute a loss over each view separately and take the55

mean. We choose λ = 0.04 following Bardes et al. [26] for the total loss L. We find that covariance56

regularization slightly improves downstream task performance.57

Naively, this objective admits a constant embedding solution. To prevent representation collapse,58

for Ldyn(ŝ, s
∗), we follow SimSiam [27] and set the target embedding s∗t := sg(st), where sg is the59

stop gradient operator. Alternatively, our objective is also compatible with a target from a momentum60

encoder fθ̄ [28, 15], s∗t := s̄t = fθ̄(ot), where θ̄ is an exponential moving average of θ.61

We train all three models end-to-end with the objective in Eq. 1, and use the encoder for downstream62

control tasks.63

3 Experiments64

We evaluate our dynamics-pretrained visual representation on four simulated and two real robot65

environments, depicted in Figure 2. Details of them are included in Appendix A. We compare66

DynaMo representations with pretrained representations for vision and control, as well as other67

self-supervised learning methods.68

3.1 Does DynaMo improve downstream policy performance?69

We evaluate each representation by training an imitation policy head on the frozen embeddings,70

and reporting the downstream task performance on the simulated environments. We use Vector-71

Quantized Behavior Transformer (VQ-BeT) [1] for the policy head. For xArm Kitchen, we use a72

goal-conditioned BAKU [29] with a VQ-BeT action head. MAE-style baselines (VC-1, MVP, MAE)73

use a ViT-B backbone. All other baselines and DynaMo use a ResNet18 backbone.74

For environments with multiple views, we concatenate the embeddings from all views for the down-75

stream policy. Further training details are in Appendix D. Table 1 provides comparisons of DynaMo76

pretrained representations with other self-supervised learning methods, and pretrained weights for77

vision and robotic manipulation. Detailed descriptions of the baselines can be found in Appendix B.78

The best pretrained representation is underlined and the best self-supervised representation is bolded.79

We find that our method matches prior state-of-the-art visual representations on Franka Kitchen, and80

outperforms all other visual representations on Block Pushing, Push-T, and LIBERO Goal.81

3.2 Do representations trained with DynaMo work on real robotic tasks?82

We evaluate the representations pre-trained with DynaMo on two real-world robot environments: the83

Allegro Manipulation environment, and the multi-task xArm Kitchen environment. For the Allegro84

environment, we use a k-nearest neighbors policy [30] and initialize with ImageNet-1K features for85

all pretraining methods, as the dataset is relatively small with around 1 000 frames per task. In the86

xArm Kitchen environment, we use the BAKU [29] architecture for goal-conditioned rollouts across87

five tasks. For our real-robot evaluations, we compare DynaMo against the strongest performing88

baselines from our simulated experiments (see Table 1). The results are reported in Table 2. We89

observe that DynaMo outperforms the best baseline by 43% on the single-task Allegro hand and90
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Table 1: Downstream policy performance on frozen visual representation on four simulated benchmarks - Franka
Kitchen, Blocking Pushing, Push-T, and LIBERO Goal. We observe that DynaMo matches or significantly
outperforms prior work on all simulated tasks.

Method
Franka Kitchen

( ·/4 )
Block Pushing

( ·/2 )
Push-T
( ·/1 )

LIBERO Goal
( ·/1 )

Random 3.32 0.07 0.07 0.80

Pretrained
representations

ImageNet 3.01 0.12 0.41 0.93
R3M 2.84 0.11 0.49 0.89
VC-1 2.63 0.05 0.38 0.91
MVP 2.31 0.00 0.20 0.88

Self-supervised
methods

BYOL 3.75 0.09 0.23 0.28
BYOL-T 3.33 0.16 0.34 0.28
MoCo-v3 3.28 0.03 0.57 0.70
RPT 3.54 0.52 0.56 0.17
TCN-MV — 0.07 — 0.69
TCN-SV 2.41 0.07 0.07 0.76
MAE 2.70 0.00 0.07 0.59
DynaMo 3.64 0.65 0.66 0.93

Table 2: We evaluate DynaMo on eight tasks across two real-world environments: Allegro Manipulation, and
xArm Kitchen. Results are presented as (successes/total). We observe that DynaMo significantly outperforms
prior representation learning methods on real tasks.

Task BYOL BYOL-T MoCo-v3 DynaMo

Allegro
Sponge 2/10 4/10 5/10 7/10
Tea 1/10 0/10 2/10 5/10
Microwave 2/10 3/10 1/10 9/10

xArm Kitchen

Put yogurt 4/5 4/5 2/5 5/5
Get yogurt 0/5 4/5 4/5 5/5
Put ketchup 5/5 3/5 5/5 4/5
Get tea 2/5 2/5 3/5 5/5
Get water 0/5 0/5 3/5 3/5

Table 3: Pretrained baselines on Allegro

Method Sponge Tea Microwave

ImageNet 4/10 1/10 0/10
R3M 1/10 1/10 5/10
DynaMo 7/10 5/10 9/10

by 20% on the multi-task xArm Kitchen environment. Additionally, as shown in Table 3, DynaMo91

exceeds the performance of pretrained representations by 50% on the Allegro hand. These results92

demonstrate that DynaMo is capable of learning effective robot representations in both single-task93

and multi-task settings. Additionally, in Appendix C, we also show that DynaMo is compatible94

with various policy architectures, can be used to fine-tune other pretrained weights like ImageNet95

initialization, and that each component in DynaMo is necessary through an extensive ablation study.96
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A Environment and dataset details313

A.1 Franka Kitchen314

The Franka Kitchen [31] environment consists of seven simulated kitchen appliance manipulation315

tasks with a 9-dimensional action space Franka arm and gripper. The dataset has 566 demonstration316

trajectories, each completing three or four tasks. The observation space is RGB images of size317

(224, 224) from a fixed viewpoint. We evaluate for 100 rollouts and report the mean number of318

completed tasks (maximum 4).319

A.2 Block Pushing320

The simulated Block Pushing environment [32] has two blocks, two target areas, and a robot pusher321

with 2-dimensional action space (end-effector translation). Both the blocks and targets are colored322

red and green. The task is to push the blocks into either same- or opposite-colored targets. The323

dataset has 1 000 demonstration trajectories. The observation is RGB images of size (224, 224) from324

two fixed viewpoints. We evaluate for 100 rollouts and report the mean number of blocks in targets325

(maximum 2). The training dataset consists of 1 000 trajectories, evenly distributed among the four326

possible combinations of block target and push order. These trajectories were collected by a scripted327

expert controller.328

A.3 Push-T329

The Push-T environment [3] consists of a pusher with 2-dimensional action space, a T-shaped rigid330

block, and a target area in green. The task is to push the block to cover the target area. The dataset331

has 206 demonstration trajectories. The observation space is a top-down view of the environment,332

rendered as RGB images of size (224, 224). We evaluate for 100 rollouts and report the final coverage333

of the target area (maximum 1). Similar to the Franka Kitchen environment, we have created an334

image-based variant by rendering demonstrations to 224× 224 RGB images.335

A.4 LIBERO Goal336

The LIBERO Goal [33] environment consists of 10 manipulation tasks with a 7-dimensional action337

space simulated Franka arm and gripper. The dataset has 500 demonstration trajectories in total, 50338

per task goal. The observation space is RGB images of size (224, 224) from a fixed external camera,339

and a wrist-mounted camera. We evaluate a goal-conditioned policy for 100 rollouts in total, 10 per340

task goal, and report the average success rate (maximum 1).341

A.5 Allegro Manipulation342

The environment consists of an Allegro hand attached to a Franka arm, and a fixed camera for image343

observations. The observation space is 224× 224 RGB images. The action space is 23-dimensional,344

consisting of Cartesian position and orientation of the Franka robot arm (7 DoF), and 16 joint345

positions of the Allegro Robot Hand. The demonstrations are collected at 50Hz for Franka, and 60Hz346

for the Allegro hand. The learned policies are rolled out at 4Hz.347

We evaluate on three contact-rich dexterous manipulation tasks that require precise multi-finger348

control and arm movement, described in detail below.349

Sponge picking: This task requires the hand to reach to the position of the sponge, grasp the sponge,350

and lift the sponge from the table. We collect 6 demonstrations via OpenTeach [34] for the task,351

starting from different positions, with 543 frames in total. The task is considered successful if the352

robot hand can grasp the sponge from the table within 120 seconds.353

Teabag picking: This task is similar to the previous task, but more difficult with a smaller task object.354

We collect 7 demonstrations via OpenTeach with 1 034 frames in total. In this task, the robot needs355
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reach the teabag, grasp the teabag with two fingers, then pick it up. The task is considered successful356

if the robot hand can grasp the teabag from the table within 240 seconds.357

Microwave opening: This task requires the hand to reach the microwave door handle, grasp the358

handle, and pull down the door. We collect 6 demonstrations via OpenTeach with 735 frames in total.359

The task is considered successful if the robot hand can open the door within 240 seconds.360

A.6 xArm Kitchen361

This is a real-world multi-task kitchen environment comprising a Ufactory xArm 7 robot with an362

xArm Gripper. The policies are trained on RGB images of size 128×128 obtained from four different363

camera views, including an egocentric camera attached to the robot gripper. The action space364

comprises the robot end effector pose and the gripper state. We collect a total of 65 demonstrations365

across 5 tasks, depicted in Figure 3. The demonstrations were collected using OpenTeach [34] at366

30Hz. The learned policies are deployed at 10Hz. Figure 3 shows real-world task rollouts for the367

multitask policy learned for all 5 tasks.368

 

Put ketchup bottle inside fridge: Pick up the bottle of tomato ketchup and put it inside the fridge.

Fetch tea bottle from fridge door: Take the bottle of green tea out from the door of the fridge.

  

Fetch water bottle from fridge: Take the bottle of vitamin water out of the fridge.

Put yogurt bottle in fridge door: Pick up the bottle of yogurt and place it in the door of the fridge.

Fetch yogurt bottle from fridge door: Take the bottle of yogurt out from the door of the fridge.

Figure 3: xArm Kitchen environment tasks
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Table 4: We evaluate the compatibility of DynaMo with different policy classes for downstream policy learning
on the Push-T simulated benchmark. We report the final target coverage achieved (maximum 1) and demonstrate
that DynaMo significantly outperforms prior representation learning methods across all policy classes.

Method VQ-BeT Diffusion MLP (chunking) kNN

Random 0.07 0.04 0.07 0.01

Pretrained
representations

ImageNet 0.41 0.73 0.24 0.09
R3M 0.49 0.63 0.27 0.08
VC-1 0.38 0.63 0.22 0.07
MVP 0.20 0.49 0.11 0.08

Self-supervised
methods

BYOL 0.23 0.40 0.11 0.04
BYOL-T 0.34 0.50 0.16 0.04
MoCo v3 0.57 0.67 0.30 0.07
RPT 0.56 0.62 0.30 0.07
TCN-SV 0.07 0.14 0.07 0.01
MAE 0.07 0.06 0.07 0.02
DynaMo 0.66 0.73 0.35 0.12

B Baseline details369

• Random, ImageNet, R3M: ResNet18 with random, ImageNet-1K, and R3M [9] weights.370

• VC-1: Pretrained weights from Majumdar et al. [11].371

• MVP: Pretrained weights from Xiao et al. [8].372

• BYOL: BYOL [15] pretraining on demonstration data.373

• BYOL-T: BYOL + temporal contrast [35]. Adjacent frames ot, ot+1 are sampled as positive374

pairs, in addition to augmentations.375

• MoCo-v3: MoCo [28] pretraining on demonstration data.376

• RPT: RPT [36] trained on observation tokens.377

• TCN: Time-contrastive network [37] pretraining on demonstrations. MV: multi-view objec-378

tive; SV: single view objective.379

• MAE: Masked autoencoder [38] pretraining on demonstrations.380

• DynaMo: DynaMo pretraining on demonstrations.381

C Additional experiments382

C.1 Is DynaMo compatible with different policy classes?383

On the Push-T environment [3], we compare all pretrained representations across four policy classes:384

VQ-BeT [1], Diffusion Policy [3], MLP (with action chunking [2]), and k-nearest neighbors with385

locally weighted regression [30]. We present the results in Table 4. We find that DynaMo representa-386

tions improve downstream policy performance across policy classes compared to prior state-of-the-art387

representations. We also note that our representation works on the robot hand in §3.2 with a nearest388

neighbor policy.389

C.2 Can pretrained weights be fine-tuned in domain with DynaMo?390

We fine-tune an ImageNet-1K-pretrained ResNet18 with DynaMo for each simulated environment,391

and evaluate with downstream policy performance on the frozen representation as described in §3.1.392

The results are shown in Table 5. We find that DynaMo is compatible with ImageNet initialization,393

and can be used to fine-tune out-of-domain pretrained weights to further improve in-domain task394
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Table 5: We evaluate the ability of DynaMo to finetune an ImageNet-pretrained ResNet-18 encoder across 4
benchmarks. We demonstrate that using a pretrained encoder can further improve the performance of DynaMo.

Representation
Franka Kitchen

( ·/4 )
Block Pushing

( ·/2 )
Push-T
( ·/1 )

LIBERO Goal
( ·/1 )

ImageNet 3.01 0.12 0.41 0.93
DynaMo (random init) 3.64 0.65 0.66 0.93
DynaMo (ImageNet fine-tuned) 3.82 0.67 0.50 0.90

Table 6: Ablation analysis of downstream performance relative to the full architecture (100%)

Ablations Kitchen Block Push-T LIBERO

No forward 34% 8% 44% 33%
No inverse 72% 35% 97% 41%
No bottleneck 92% 22% 9% 75%
No cov. reg. 94% 62% 85% 59%
No stop grad. 1% 5% 9% 0%
Short context 100% 75% 88% 89%

performance. We also note that our method works in the low-data regime with ImageNet initialization395

on the real Allegro hand in Table 2.396

C.3 How important is each component in DynaMo?397

In Table 6, we ablate each component in DynaMo and measure its impact on downstream policy398

performance on our simulated benchmarks.399

Forward dynamics prediction: We replace the one-step forward prediction target s∗1:h with the400

same-step target s∗:h−1. To prevent the model from trivially predicting s∗t given st, we replace the401

forward dynamics input (s:h−1, z:h−1) with only z:h−1. The ablated objective is essentially a variant402

of autoencoding st. We observe that removing forward dynamics prediction degrades performance403

across environments.404

Inverse dynamics to a transition latent: As described in §2.1, the forward dynamics loss assumes405

that the transition is unimodal and requires an inferred transition latent. We observed that removing406

the latent from the forward dynamics input results in a significant performance drop.407

Bottleneck on the transition latent dimension: For the transition latent z and the observation408

embedding s, we find that having dim z ≪ dim s stabilizes training. Here we set dim z := dim s,409

and find that our model can still learn a reasonable representation in some environments, but training410

can destabilize, leading to a high variance in downstream performance.411

Covariance regularization: We find that covariance regularization from Bardes et al. [26] im-412

proves performance across environments. Training still converges without it, but the downstream413

performance is slightly worse.414

Stop gradient on target embeddings: We observe that removing techniques like momentum encoder415

[28, 15] and stop gradient [27] leads to representation collapse [39, 15, 26].416

Observation context: The dynamics objective requires at least 2 frames of observation context. For417

Franka Kitchen, we find that a context of 2 frames works best. For the other environments, a longer418

observation context (5 frames) improves downstream policy performance. Details of hyperparameters419

used for DynaMo visual pretraining can be found in Appendix D.1.420
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Table 7: Variants with ground truth actions, downstream performance relative to the base model (100%)

Variants Kitchen Block Push-T LIBERO

Inverse dynamics only 100% 54% 70% 11%
DynaMo + action labels 97% 29% 94% 86%

C.4 Variants with access to ground truth actions421

In Table 7, we compare with two variants of DynaMo where we assume access to ground truth action422

labels during visual encoder training.423

Only inverse dynamics to ground truth actions: as proposed in Brandfonbrener et al. [25], we train424

the visual encoder by learning an inverse dynamics model to ground truth actions, with covariance425

regularization, and without forward dynamics.426

Full model + inverse dynamics to ground truth actions: we train the full DynaMo model plus427

an MLP head to predict the ground truth actions given the transition latents inferred by the inverse428

dynamics model.429

We observe that in both cases, having access to ground truth actions during visual pretraining does430

not seem to improve downstream policy performance. We hypothesize that this is because the431

downstream policy already has access to the same actions for imitation learning.432
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D Hyperparameters and implementation details433

D.1 Visual encoder training434

We present the DynaMo hyperparameters below.

Table 8: Environment-dependent hyperparameters for DynaMo pretraining, random init

Obs. context EMA β Forward dynamics dropout Transition latent dim

Franka Kitchen 2 SimSiam 0 64
Block Pushing 5 0.99 0.3 16
Push-T 5 SimSiam 0 8
LIBERO Goal 5 SimSiam 0 32
xArm Kitchen 5 0.99 0 64

435

Table 9: Shared hyperparameters for DynaMo pretraining, random init

Name Value

Optimizer AdamW
Learning rate 10−4

Weight decay 0.0
Betas (0.9, 0.999)
Gradient clip norm 0.1
Covariance reg. coefficient 0.04
Epochs 40
Batch size 64

Table 10: Environment-dependent hyperparameters for DynaMo fine-tuning from ImageNet weights

Obs. context EMA β Transition latent dim

Franka Kitchen 2 SimSiam 64
Block Pushing 5 0.99 16
Push-T 5 SimSiam 8
LIBERO Goal 5 0.99 32
Allegro 5 SimSiam 32

Table 11: Shared hyperparameters for DynaMo fine-tuning

Name Value

Optimizer AdamW
Learning rate 10−5

Forward dynamics dropout 0.0
Weight decay 0.0
Betas (0.9, 0.999)
Gradient clip norm 0.1
Covariance reg. coefficient 0.04
Epochs 40
Batch size 64

For Block Pushing and xArm kitchen, we use an EMA encoder with the beta schedule from the436

MoCo-v3 official repo. For DynaMo training, we use a constant learning rate schedule for LIBERO437
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Goal, and a cosine learning rate decay schedule with 5 warmup epochs on all other environments.438

For DynaMo fine-tuning, we use a cosine learning rate decay schedule with 5 warmup epochs on all439

environments.440

We use the following official implementation repos:441

• MoCo-v3: https://github.com/facebookresearch/moco-v3442

• BYOL: https://github.com/lucidrains/byol-pytorch443

• MAE: https://github.com/facebookresearch/mae444

• R3M: https://github.com/facebookresearch/r3m/445

• MVP: https://github.com/ir413/mvp446

• VC-1: https://github.com/facebookresearch/eai-vc447

We base our transformer encoder implementation on nanoGPT [40] at https://github.com/448

karpathy/nanoGPT.449

For the Allegro Manipulation environment, we fine-tune MoCo and BYOL from ImageNet-1K450

weights for 1 000 epochs. For all other environments, we train MoCo and BYOL for 200 epochs,451

MAE for 400 epochs, all from random initialization. The hyperparameters used for training these452

models are detailed in Table 12.453

Compute used for training DynaMo:454

• Franka Kitchen: 3 hours on 1x NVIDIA A100.455

• Block Pushing: 7 hours on 1x NVIDIA A100.456

• Push-T: 1 hour on 1x NVIDIA A100.457

• LIBERO Goal: 2 hours on 1x NVIDIA H100.458

• Allegro Manipulation: 3 minutes on 1x NVIDIA RTX A6000 for the sponge task, 4 minutes459

for the teabag task, and 3 minutes for the microwave task.460

• xArm kitchen: 4 hours on 1x NVIDIA RTX A6000.461

Table 12: SSL Hyperparameters

(a) MoCo Hyperparameters

Name Value

Optimizer LARS
Batch size 1024
Learning rate 0.6
Momentum 0.9
Weight decay 10−6

(b) BYOL Hyperparameters

Name Value

Optimizer LARS
Batch size 512
Learning rate 0.2
Momentum 0.9
Weight decay 1.5× 10−6

(c) MAE Hyperparameters

Name Value

Optimizer AdamW
Batch size 64
Learning rate 2.5× 10−5

Weight decay 0.05
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D.2 Downstream policy training462

Table 13, 14 and 15 detail the downstream policy hyperparameters for VQ-BeT, Diffusion Policy and463

MLP training for the simulated environments.464

For VQ-BeT, we use the implementation from the original paper [1] with the recommended465

hyperparameters. For Diffusion Policy, we use the implementation at https://github.com/466

real-stanford/diffusion_policy with a transformer-based noise prediction network with the467

recommended hyperparameters. We use AdamW as optimizer for the three policy heads.468

Compute used for downstream policy training:469

• Franka Kitchen VQ-BeT: 8.5 hours on 1x NVIDIA A4000.470

• Block Pushing VQ-BeT: 4 hours on 1x NVIDIA A100.471

• Push-T VQ-BeT: 7 hours on 1x NVIDIA A100.472

• Push-T Diffusion Policy: 8 hours on 1x NVIDIA A100.473

• Push-T MLP: 2 hours on 1x NVIDIA A100.474

• LIBERO Goal VQ-BeT: 5 hours on 1x NVIDIA A4000.475

• xArm Kitchen VQ-BeT: 6 hours on 1x NVIDIA A4000.476

Table 13: Hyperparameters for VQ-BeT training

Parameter Franka Kitchen Block Pushing Push-T LIBERO Goal

Batch size 2048 64 512 64
Epochs 1000 300 5000 50
Window size 10 3 5 10
Prediction window size 1 1 5 1
Learning rate 5.5× 10−5 10−4 5.5× 10−5 5.5× 10−5

Weight decay 2× 10−4 0 2× 10−4 2× 10−4

Table 14: Hyperparameters for Diffusion Policy Training

Parameter Push-T

Batch size 256
Epochs 2000
Learning rate 10−4

Weight decay 0
Observation horizon 2
Prediction horizon 10
Action horizon 8
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Table 15: Hyperparameters for MLP Training

Parameter Push-T

Batch size 256
Epochs 2000
Learning rate 10−4

Weight decay 0
Hidden dim 256
Hidden depth 8
Observation context 5
Prediction context 5

E Real robot environment rollouts477

Figure 4: Rollouts on Allegro Manipulation with our DynaMo-pretrained encoder.
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Figure 5: Rollouts on xArm Kitchen with our DynaMo-pretrained encoder.

F Background478

F.1 Visual imitation learning479

Our work follows the general framework for visual imitation learning. Given demonstration data480

D = {(ot, at)}t, where ot are raw visual observations and at are the corresponding ground-truth481

actions, we first employ a visual encoder fθ : ot → st to map the raw visual inputs to lower-482

dimensional embeddings st. We then learn a policy π(at|st) to predict the appropriate actions. For483

rollouts, we model the environment as a Markov Decision Process (MDP), where each subsequent484

observation ot+1 depends on the previous observation-action pair (ot, at). We assume the action-485

conditioned transition distribution p(ot+1|ot, at) to be unimodal for our manipulation tasks.486

F.2 Visual pretraining for policy learning487

Our goal is to pretrain the visual encoder fθ using a dataset of sequential raw visual observations488

D = {ot}t to support downstream policy learning. During pretraining, we do not assume access to489

the ground-truth actions {at}t.490
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Prior work has shown that pretraining encoders on large out-of-domain datasets can improve down-491

stream policy performance [6–11]. However, such pretraining may not transfer well to tasks with492

different robot embodiments [12].493

Alternatively, we can directly pretrain the encoder in-domain using self-supervised methods. One494

approach is contrastive learning with data augmentation priors, randomly augmenting an image twice495

and pushing their embeddings closer. Another approach is denoising methods, predicting the original496

image from a noise-degraded sample (e.g. by masking [11, 8, 38]). A third approach is contrastive497

learning with temporal proximity as supervision, pushing temporally close frames to have similar498

embeddings [37, 35].499

G Related works500

This work builds on a large body of research on self-supervised visual representations, learning from501

human demonstrations, neuroscientific basis for learning dynamics for control, predictive models for502

decision making, learning from videos for control, and visual pretraining for control.503

Self-supervised visual representations: Self-supervised visual representations have been widely504

studied since the inception of deep learning. There are several common approaches to self-supervised505

visual representation learning. One approach is to recover the ground truth from noise-degraded506

samples using techniques like denoising autoencoders [41, 42] and masked modeling [43, 44, 38].507

Another approach is contrastive learning, which leverages data augmentation priors [39, 15, 28, 26,508

27] or temporal proximity [37, 45] to produce contrastive sample pairs. A third self-supervised509

method is generative modeling [46–48], which learns to sequentially generate the ground truth data.510

More recently, self-supervision in the latent space rather than the raw pixel space has proven effective,511

as seen in methods that predict representations in latent space [49, 50].512

Learning from demonstrations: Learning from human demonstrations is a well-established idea513

in robotics [51–54]. With the advances in deep learning, recent works such as [3, 2, 5, 4, 1, 55] show514

that imitation learning from human demonstrations has become a viable approach for training robotic515

policies in simulated and real-world settings.516

Neural basis for learning dynamics: It is widely believed that animals possess internal dynamics517

models that facilitate motor control. These models learn representations that are predictive of sensory518

inputs for decision making and motor control [56–59]. Early works such as [16–19] propose that519

there exists an internal model of the motor apparatus in the cerebellum for motor control and planning.520

[20, 21] propose that the central nervous system uses forward models that predict motor command521

outcomes and model the environment. Learning forward and inverse dynamics models also helps522

with generalization to diverse task conditions [22, 23].523

Predictive models for decision making: Predictive model learning for decision making is well-524

established in machine learning. Learning generative models that can predict sequential inputs has525

achieved success across many domains, such as natural language processing [60], reinforcement526

learning [61], and representation learning [45, 62]. Incorporating the prediction of future states as527

an intrinsic reward has also been shown to improve reinforcement learning performance [63–65].528

Moreover, recent work demonstrates that world models trained to predict environment dynamics can529

enable planning in complex tasks and environments [66–69].530

Learning from video for control: Videos provide rich spatiotemporal information that can be531

leveraged for self-supervised representation learning [70–75]. These methods have been extended532

to decision-making through effective downstream policy learning [7–11, 6]. Further, recent work533

also enables learning robotic policies directly from in-domain human demonstration videos by534

incorporating some additional priors [76–80].535
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Visual representation for control: Visual representation learning for control has been an active536

area of research. Prior work has shown that data augmentation improves the robustness of learned537

representations and policy performance in reinforcement learning domains [81, 82]. Additionally,538

pretraining visual representations on large out-of-domain datasets before fine-tuning for control tasks539

has been shown to outperform training policies from scratch [10, 12, 9, 11, 83, 8, 84]. More recent540

work has shown that in-domain self-supervised pretraining improves policy performance [85–87] and541

enables non-parametric downstream policies [30].542
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