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Abstract

Large-scale AI models, such as Large Language Models (LLMs) and Diffusion
Models (DMs), have grown rapidly in size, creating significant challenges for
efficient deployment on resource-constrained hardware. In this paper, we introduce
Dynamic-Length Float (DFloat11), a lossless compression framework that reduces
LLM and DM size by 30% while preserving outputs that are bit-for-bit identical
to the original model. DFloat11 is motivated by the low entropy in the BFloat16
weight representation of LLMs, which reveals significant inefficiency in the exist-
ing storage format. By applying entropy coding, DFloat11 assigns dynamic-length
encodings to weights based on frequency, achieving near information-optimal
compression without any loss of precision. To facilitate efficient inference with
dynamic-length encodings, we develop a custom GPU kernel for fast online decom-
pression. Our design incorporates the following: (i) compact, hierarchical lookup
tables (LUTs) that fit within GPU SRAM for efficient decoding, (ii) a two-phase
GPU kernel for coordinating thread read/write positions using lightweight auxiliary
variables, and (iii) transformer-block-level decompression to minimize latency.
Experiments on Llama 3.3, Qwen 3, Mistral 3, FLUX.1, and others validate our
hypothesis that DFloat11 achieves around 30% model size reduction while preserv-
ing bit-for-bit identical outputs. Compared to a potential alternative of offloading
parts of an uncompressed model to the CPU to meet memory constraints, DFloat11
achieves 2.3–46.2× higher throughput in token generation. With a fixed GPU
memory budget, DFloat11 enables 5.7–14.9× longer generation lengths than un-
compressed models. Notably, our method enables lossless inference of Llama 3.1
405B, an 810GB model, on a single node equipped with 8×80GB GPUs.

1 Introduction

Foundation models, such as Large Language Models (LLMs) and Diffusion Models (DMs), have
demonstrated remarkable capabilities across a wide range of Natural Language Processing (NLP) [56]
and Computer Vision (CV) tasks [57]. However, their huge model sizes create substantial obstacles
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for efficient deployment, especially in memory-constrained environments. For example, a competitive
recent LLM, Llama 3.1 405B [20], has 405 billion parameters in 16-bit Brain Float (BFloat16) format
and requires about 810 GB of memory for full inference, exceeding the capacity of a typical high-end
GPU server (e.g., DGX A100/H100 with 8×80GB GPUs). As a result, deploying this model requires
multiple nodes, making it expensive and inaccessible. In this work, we present a solution that
compresses any BFloat16 model to approximately 70% of its original size while preserving
100% of its accuracy on any task.

Model compression via quantization has limitations. Quantization is a type of lossy compression
method that lowers the precision of model weights by converting them into lower bit-width repre-
sentations [15, 37, 36, 43]. Although it can significantly reduce memory usage and often improve
inference speed, quantization is not a one-size-fits-all solution and presents several key limitations:
➊ Accuracy degradation. By design, quantization introduces approximation errors. The degree of
accuracy loss depends on multiple factors, including the base model, quantization method, evaluation
benchmark, and target bit-width [35]. These interactions make it difficult to predict or quantify the
impact comprehensively. Even mild quantization can noticeably degrade performance. For example,
applying 8-bit SmoothQuant [51] to DeepSeek-R1-Distill-Qwen-1.5B [21] results in a 9.09% drop
in average accuracy across reasoning tasks [39]. ➋ Behavioral shifts. Even when overall accuracy
metrics appear roughly unchanged, quantized models may behave differently from their full-precision
counterparts. For instance, Dutta et al. [13] observe a phenomenon called flips, where quantized
models produce answers that change from correct to incorrect and vice versa. This indicates that
quantization can significantly alter model behavior, even when standard accuracy metrics show
minimal change. For example, the W8A16 GPTQ-quantized Qwen2-1.5B[15, 54] exhibits only a
0.3% drop in GSM8K (8-shot) accuracy [5], yet 6.37% of its answers flip in correctness [13]. ➌
Compliance and reliability concerns. In domains like finance or healthcare, quantized models may
not satisfy regulatory or reliability standards, as their outputs may differ from those of the original
models [31]. We refer readers to Appendix A for a more detailed discussion on quantization.

Existing lossless model compression does not support efficient GPU inference. Unlike lossy
compression, lossless compression reduces model size while preserving the full precision of the
original weights. This ensures the model’s output distribution remains identical to that of the
uncompressed counterpart. However, most existing lossless methods focus on storage efficiency, such
as compressing model checkpoints [22, 25], or target specialized hardware like FPGAs [59], rather
than accelerating inference on general-purpose GPUs. While useful for tasks like checkpoint rollback
during large-scale training [47] or reducing download time from model hubs [25], these methods
offer little to no benefit for GPU-based inference.

Our proposal, Dynamic-Length Float (DFloat11), is a lossless compression framework optimized
for efficient GPU inference. We identify a key inefficiency in the commonly used BFloat16 format:
its 8-bit exponent field carries only about 2.6 bits of actual information. This redundancy is consistent
across a wide range of LLMs, as shown in Section 2.2. To exploit it, we apply Huffman coding [28]
to the exponent bits of BFloat16 weights, while leaving the sign and mantissa bits uncompressed. The
resulting exponents have dynamic-length encodings: frequent values are assigned shorter codes, while
rarer ones use longer codes. However, standard Huffman decoding relies on sequential bit-by-bit tree
traversal, which is inefficient on GPUs due to limited parallelism. Assigning one GPU thread per
decompression task leads to severe hardware underutilization and high latency. To overcome this, we
design a hardware-aware algorithm that enables efficient online decompression of dynamic-length
floats on GPUs. Our solution includes three key components: 1. compact, hierarchical lookup tables
(LUTs) that fit in GPU SRAM to support fast, table-based Huffman decoding, 2. a two-phase GPU
kernel that uses lightweight auxiliary variables to coordinate thread-level read and write operations,
and 3. batched decompression at the transformer-block level to maximize throughput. We summarize
our contributions as follows:

1. We propose Dynamic-Length Float (DFloat11), a losslessly compressed floating-point format
that reduces BFloat16 weights to approximately 11 bits. This yields around 30% model size
reduction with bit-for-bit identical outputs.

2. We develop optimized, hardware-aware algorithms for efficient GPU inference with DFloat11-
compressed models by leveraging GPU memory and compute hierarchies.
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Figure 1: (Left) The allocation of bits for the components of BFloat16. (Right 3) The Shannon
entropy of the components (sign, exponent, mantissa) of BFloat16 weights in various LLMs.

3. We evaluate DFloat11 across popular LLMs and diffusion transformers, including Llama 3, Qwen
3, Mistral 3, DeepSeek R1 Distilled, FLUX.1, and Stable Diffusion 3.5 [20, 46, 45, 21, 32, 2]. Our
method consistently achieves 30% compression without altering original outputs at all. Notably, it
enables running Llama-3.1-405B on a single node (8×80GB A100 GPUs), reducing hardware
requirements by half without accuracy loss.

2 Method

In this section, we introduce our proposed floating-point format, Dynamic-Length Float (DFloat11),
along with its custom decompression kernel designed for efficient GPU inference.

2.1 Preliminary

Brain Float (BFloat16) Recent state-of-the-art LLMs predominantly employ the 16-bit Brain
Float format (BFloat16 or BF16) for storing weights, due to its balance of numerical precision with
memory efficiency. BF16 allocates its 16 bits as follows: 1 sign bit, 8 exponent bits, and 7 mantissa
bits. The numerical value represented by a BF16 number is computed as:

(−1)sign × 2exponent−127 × (1.mantissa), (1)

where mantissa is interpreted as a binary fractional value.

Entropy Coding Entropy coding is a core technique in lossless data compression that leverages
statistical redundancy to reduce data size. Several widely used methods fall under this category, in-
cluding Huffman coding [28], arithmetic coding [33], and Asymmetric Numeral Systems (ANS) [12].
Among these, Huffman coding is one of the most widely adopted, which uses variable-length encod-
ing to minimize the size of encoded data. It assigns shorter binary codes to more frequent symbols
and longer codes to less frequent ones. The codes are decoded using a prefix-free binary tree, known
as a Huffman tree. Due to the prefix-free property of Huffman codes, no code is a prefix of any other,
which ensures unique decodability of the encoded bitstream without the need for delimiters. The
tree is constructed based on symbol frequencies and is provably optimal for any given frequency
distribution. However, decoding Huffman codes in a massively parallel manner is challenging due to
its inherently sequential nature.

GPU Computation and Memory Paradigm GPUs are designed to perform computations in a
massively parallel manner. A modern GPU consists of thousands of threads, which are organized
into blocks and executed on streaming multiprocessors (SMs). Each block has access to a small, fast,
on-chip memory called shared memory (often referred to as SRAM), which provides much lower
latency and higher bandwidth than the off-chip global memory, commonly known as high-bandwidth
memory (HBM). The capacity of shared memory is limited, typically having up to 100 KB per
block. In this work, we leverage the fast access characteristics of SRAM to enable efficient on-the-fly
decompression of compressed weights during inference.
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Figure 2: Our proposed format Dynamic-Length Float for compressing BFloat16 weights of LLMs
losslessly down to 11 bits. The exponents are compressed via Huffman coding, while the sign and
mantissa bits remain uncompressed.

2.2 Motivation: BFloat16 Representation is Information Inefficient

To motivate the lossless compression of LLM weights, we analyze the compressibility of the BFloat16
weights of recent LLMs. Specifically, we use Shannon entropy to quantify the information content of
BFloat16 components (sign, exponent, and mantissa) for all linear projection matrices of an LLM.
The Shannon entropy H(·) is defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x) (2)

where X is a discrete random variable with support X , and p : X → [0, 1] denotes its probability
mass function. We present the computed entropy values in Figure 1. As shown, the entropy of
the sign and mantissa bits is close to their respective bit widths, indicating limited potential for
compression. In contrast, the exponent exhibits significantly lower entropy, approximately 2.6 bits
versus its allocated 8 bits, suggesting substantial opportunities for lossless compression.

To understand this discrepancy, we visualize the frequency distribution of all BFloat16 components
in Figure 8 and the ranked frequency of exponent values in Figure 9, both in the Appendix. The sign
and mantissa values are relatively uniform across their ranges, but the exponent distribution is highly
imbalanced: only about 40 of the 256 possible 8-bit values are used, with the rest never appearing.
Ranked frequencies also decay rapidly. These observations reveal the low entropy of the exponent
and its potential for compression.

2.3 Dynamic-Length Float: Lossless LLM Compression for Efficient GPU Inference

To address the substantial information inefficiency in the BFloat16 representation of LLM weights,
we propose a lossless compression framework that encodes floating-point parameters using entropy
coding. Specifically, we build a Huffman tree based on the distribution of exponents in model weights.
We then compress the exponents using Huffman coding, while preserving the original signs and
mantissas. Exponents are encoded and tightly bit-packed into a byte array, EncodedExponent, while
the sign and mantissa are left uncompressed and stored in a separate byte array PackedSignMantissa.
Figure 2 illustrates Dynamic-Length Float (DFloat11 or DF11), our proposed format for compactly
representing BFloat16 model parameters.

The Core Challenge: Efficient GPU Inference with Compressed Weights While DFloat11
enables lossless compression of LLM weights, efficient GPU inference remains a key challenge.
Entropy-coded weights use variable-length encoding and cannot be directly used in matrix multiplica-
tions. As a result, each weight matrix must be decompressed on-the-fly to its original BFloat16 format
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Figure 3: (Left) The Huffman tree is decomposed into a set of non-overlapping subtrees, each
corresponding to a compact lookup table (LUT). These hierarchical LUTs reside in GPU SRAM
to enable efficient Huffman decoding via array lookups. (Right) Each thread decodes n bytes of
encoded exponents. The array Gaps stores the bit offset of the first element assigned to each thread,
while the array Block Output Positions stores the index of the first element for each thread block.

before matrix multiplication, then discarded immediately after use to conserve memory. However,
traditional Huffman decoding is inherently sequential, requiring bit-by-bit tree traversal for each
element, which is ill-suited for GPUs’ parallel architecture. Naively assigning a single thread for
decompression leads to poor utilization and high latency. Addressing this bottleneck is essential for
practical compressed inference.

In the following paragraphs, we present our solution in detail: a set of hardware-aware algorithmic
designs tailored for low-latency decoding of entropy-coded weights in a massively parallel manner.
Our approach consists of three key components: ➊ leveraging compact lookup tables that fit within
GPU SRAM for efficient, lookup-based decoding, ➋ introducing a two-phase kernel design to coordi-
nate read/write operations for all threads using lightweight auxiliary variables, and ➌ performing
decompression at the transformer block level to minimize latency.

2.3.1 Efficient Decoding with Hierarchical Lookup Tables

The traditional approach to decoding Huffman codes involves reading the encoded bitstream bit by
bit and traversing the Huffman tree accordingly. However, this method is inefficient on GPUs due
to frequent branching and limited parallelism. To enable efficient decoding on GPUs, we adopt a
lookup-table-based approach [53].

Assume the maximum Huffman code length is L, and we construct a lookup table LUT of size 2L.
At each index i, LUT stores the decoded exponent whose Huffman code matches the prefix of the
binary representation of i. To decode the next exponent, we read the next L bits from the encoded
bitstream, interpret them as an index into LUT, and retrieve the corresponding value. To determine
how many bits to advance in the stream, we use a secondary lookup table CodeLengths, which maps
each exponent to the length of its Huffman code. A detailed example of this decoding process is
provided in Section I of the Appendix.

In practice, the value of L can be large. For LLMs, L typically ranges from 24 to 32, resulting in a
LUT with up to 232 entries, which cannot fit within GPU SRAM for fast lookups. To address this, we
decompose the monolithic LUT into a hierarchy of compact lookup tables [53]. We first partition the
Huffman tree into non-overlapping subtrees of height 8. Each subtree corresponds to a compact LUT
that decodes 8 bits, requiring only 28 = 256 entries.

Figure 3 shows an example of how a Huffman tree of height 4 can be decomposed into a hierarchy of
compact LUTs, each with 4 entries. Because the LUTs are organized hierarchically, some entries
must serve as references to other LUTs lower in the hierarchy. We take advantage of the sparsity in
8-bit exponent usage: although 256 values are available, typically only around 40 are used in LLMs
(see Figure 9 in the Appendix). We repurpose unused values (specifically, the range 240 to 255) as
pointers to other LUTs. These values correspond to extremely large magnitudes (±2113 to ±2128)
that do not occur in LLM weights, making them safe for use as internal markers.
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We use k to denote the number of compact LUTs. In our experiments, we observe that k ranges from
4 to 8 for the Huffman trees built from BFloat16 exponent values. Combined with CodeLengths,
these LUTs occupy at most (8 + 1) × 256 bytes of memory, which easily fits within SRAM and
allows for fast repeated lookups.

2.3.2 Two-Phase Kernel and Lightweight Auxiliary Variables

To leverage the parallel processing capabilities of GPUs, we assign each thread to a contiguous,
non-overlapping block of encoded exponents consisting of n bytes (n = 8 in our experiments). Each
thread decodes elements whose Huffman codes begin within its assigned block. Since Huffman codes
are variable-length, a thread may need to skip some bits at the start before decoding the first element.
Similarly, the last element may span beyond the assigned byte range.

This approach introduces two key challenges: 1. The starting bit position for each thread is unclear
due to the variable-length nature of Huffman codes. 2. Except for the first thread, the index of decoded
elements is unknown, making it difficult to determine their correct output locations.

To address the first issue, we use a gap array [53] to specify the starting bit offset for each thread. The
array Gaps has one entry per thread, where each entry indicates the offset of the first valid Huffman
code relative to the thread’s assigned starting byte. With a maximum code length of 32 bits, each
offset lies in [0, 31] and is stored using only 5 bits.

For the second issue, maintaining an output position for each thread is straightforward but memory-
intensive. Each position requires a 32-bit integer, and with tens of thousands of threads per weight
matrix, this leads to significant overhead, undermining DFloat11’s compression benefits. To reduce
this overhead, we store the output position only for the first element of each thread block rather
than for every thread. Since each block typically contains hundreds to thousands of threads, this
optimization reduces the overhead from one 32-bit integer per thread to one per block, making the
memory cost negligible. Figure 3 illustrates how the gap and block-level output position arrays
encode the metadata associated with the encoded exponents.

To support this design, we implement a two-phase kernel. In the first phase, each thread decodes its
assigned block and counts the number of elements, without writing to the HBM. Afterward, threads
within a block synchronize to compute per-thread output positions via a prefix sum over the element
counts. We use the Blelloch algorithm [4] for this step. In the second phase, each thread re-decodes
the same block, this time writing decoded values to a write buffer in SRAM at the calculated positions.
To avoid redundant global memory access, the encoded exponents are loaded into SRAM before the
first pass. Once all decoded exponents are written to SRAM, a single batch of coalesced writes is
issued to HBM. Pseudocode for the two-phase kernel is provided in Algorithm 1 of the Appendix.

2.3.3 Transformer-Block-Level Decompression

We now have a complete recipe for decompressing entropy-coded exponents in a massively parallel
manner. During inference, the LLM weights stored in DFloat11 format, along with auxiliary variables
(the thread-level gap array and block-level output position array), reside entirely in GPU memory.
When a weight matrix is needed for matrix multiplication, it is decompressed on-the-fly into the
original BFloat16 format. Once the matrix multiplication is complete, the BFloat16 matrix is
immediately discarded to conserve GPU memory.

In practice, decompressing a single weight matrix often underutilizes GPU resources due to its
relatively small size. As the matrix size increases, decompression throughput improves. Figure 7
illustrates this trend, showing how DFloat11 decompression scales with matrix size. To capitalize on
this, we propose batching the decompression of multiple matrices together to improve throughput and
hide latency. Specifically, we decompress all DFloat11 weight matrices within a transformer block as
a single batch. This batched decompression occurs right before the forward pass of the transformer
block. We also compress the token embedding and language modeling head of LLMs. Since these
matrices are large enough to saturate GPU resources, batching their decompression is unnecessary.
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Table 1: DF11 statistics for various models. Model sizes are shown before and after compression.
Model Original→ DF11 Compressed Compression Ratio Avg. Bit Width

Large Language Models

Llama 3.1 8B Instruct 16.06 GB→ 10.90 GB 67.84% 10.85
Llama 3.3 70B Instruct 141.11 GB→ 95.40 GB 67.61% 10.82
Llama 3.1 405B Instruct 811.71 GB→ 551.22 GB 67.91% 10.87
Qwen 3 14B 29.54 GB→ 20.14 GB 68.17% 10.91
QwQ 32B 65.53 GB→ 44.65 GB 68.14% 10.90
Mistral Nemo Instruct 24.50 GB→ 16.59 GB 67.74% 10.84
Mistral Small 3 47.14 GB→ 31.86 GB 67.58% 10.81
Phi 4 Reasoning Plus 29.32 GB→ 19.83 GB 67.64% 10.82
DeepSeek R1 Distill Llama 8B 16.06 GB→ 10.89 GB 67.81% 10.85

Diffusion Transformers

FLUX.1 dev 23.80 GB→ 16.33 GB 68.61% 10.98
FLUX.1 schnell 23.78 GB→ 16.31 GB 68.58% 10.97
Stable Diffusion 3.5 Large 16.29 GB→ 11.33 GB 69.52% 11.12

Table 2: Comparison of accuracy and perplexity for the BF16 and DF11 models on different
benchmarks. DF11 compression results in absolutely no loss in accuracy or perplexity.

Accuracy Perplexity

Model Data Type MMLU TruthfulQA WikiText C4

Llama 3.1 8B Instruct BF16 68.010 ± 0.375 36.965 ± 1.690 8.649 21.677
DF11 (Ours) 68.010 ± 0.375 36.965 ± 1.690 8.649 21.677

3 Experiments

We empirically evaluate the effectiveness of DF11 compression and its GPU inference efficiency.
A range of recent LLMs and DMs are compressed from their original BFloat16 format into DF11,
and we report the resulting compression ratios. We then compare the inference performance of
DF11-compressed models against their uncompressed counterparts across different GPUs, followed
by an ablation study to analyze the impact of compression.

Software and Hardware We implement the DF11 decompression kernel in CUDA and C++, and
integrate it into the HuggingFace Transformers [48] inference framework. We evaluate the inference
efficiency of our DF11 models against the original BF16 counterparts. We use the HuggingFace
Accelerate framework to support CPU offloading and multi-GPU inference. To assess the performance
of the DF11 kernel across different hardware configurations, we run experiments on multiple machines
with varying GPU and CPU setups. The hardware specifications for all experimental machines are
provided in Table 4 in the Appendix.

3.1 Results

DF11 compresses models to 70% size. Table 1 presents the compression factors of DF11 for a
wide selection of recent LLMs and DMs. Specifically, we apply compression to all weight matrices
and token embeddings in LLMs and all weight matrices in the transformer blocks of DMs. The
models we compress include Llama 3.1/3.3 [20], Qwen 3 [54], Mistral Nemo/Small [44, 45], Phi 4 [1],
DeepSeek R1 Distilled [21], Stable Diffusion 3.5 [2], FLUX.1 [32]. DF11 achieves approximately
70% compression across all models, corresponding to an effective bit width of around 11 bits.

Accuracy and perplexity evaluations confirm DF11 compression is lossless. We verify the
lossless property of DF11 compression through a series of accuracy and perplexity evaluations on
standard benchmarks. Evaluations are conducted using lm_evaluation_harness [18], reporting
accuracy on MMLU [24] and TruthfulQA [38], and word-level perplexity on WikiText [41] and
C4 [42]. The results are shown in Table 2. As demonstrated, the compressed model achieves
identical accuracy and perplexity to the original BF16 counterpart. We also present the text-to-image
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Table 3: Comparison of peak GPU memory usage and text-to-image generation time for diffusion
transformers in BF16 and DF11, using a single A5000 GPU.

Peak GPU Memory (GB) Generation Time (s)

Model BF16 DF11 (Ours) BF16 DF11 (Ours)

Stable Diffusion 3.5 Large 16.44 11.78 66.36 ± 0.13 69.08 ± 0.11
FLUX.1 dev 23.15 16.72 74.41 ± 0.15 78.53 ± 0.18
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Figure 4: Comparison of throughput (top row) and latency (bottom row) for token decoding using
the original BF16 models and their DF11-compressed counterparts. Portions of the BF16 models are
offloaded to the CPU due to GPU memory constraints.

generation results of BF16 and DF11 Stable Diffusion 3.5 Large model in Appendix J. Given the
same random seed and text prompt, the image generated are pixel-wise identical with the original
model.

DF11 outperforms CPU offloading in inference efficiency. We compare the inference perfor-
mance of DF11 and BF16 models across various hardware platforms. Due to memory constraints,
BF16 models exceed the capacity of a single GPU and require partial CPU offloading, while DF11
models fit entirely within GPU memory. For fair comparison, we retain most computation on the
GPU for BF16 models and offload only necessary components. Latency and throughput are measured
after a 100-token warm-up run, followed by decoding 100 tokens from an empty prompt across
varying batch sizes. Each configuration is run five times, and we report the average results. As shown
in Figure 4, DF11 consistently outperforms BF16 with CPU offloading, achieving 2.31–46.24× lower
latency or higher throughput. Multi-GPU comparisons are shown in Figure 10 in the Appendix.

DF11 reduces memory usage for diffusion transformers with minimal latency impact. We
assess the impact of DF11 compression on diffusion transformer models by measuring peak GPU
memory usage and text-to-image generation latency for an 1024×1024 image across five runs. Neither
the BF16 nor DF11 models employ CPU offloading. As shown in Table 3, DF11 reduces memory
consumption by 28.3% for Stable Diffusion 3.5 and 27.8% for FLUX.1. The relative increase in
latency is small: 4.1% for Stable Diffusion and 5.5% for FLUX.1.

DF11 memory savings enable longer generation lengths. DF11 compression not only can reduce
the number of GPUs needed for inference but can also support longer generation under the same
VRAM budget. During decoding, the KV cache grows linearly with the number of tokens and quickly
becomes a memory bottleneck. Figure 5 shows GPU memory usage for DF11 and BF16 models with
batch size 1 as token count increases. DF11 allows 5.70 to 14.86× more tokens to be decoded before
reaching memory limits.
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3.2 Ablation Study

Latency breakdown shows decompression overhead is amortized at larger batch sizes. We
analyze the latency of Llama 3.1 8B Instruct in BF16 and DF11 formats across varying token batch
sizes on an A100-40GB GPU. For each setting, we measure the average latency of each component
over 10 runs, as shown in Figure 6. DF11 introduces additional latency from decompressing the
token embedding, transformer blocks, and language modeling head. This overhead is constant and
independent of batch size, so increasing the token batch size effectively amortizes the cost.

DF11 decompression is significantly faster than CPU-to-GPU transfer and nvCOMP ANS. We
compare DF11 decompression latency and throughput with two baselines: CPU-to-GPU weight
transfer and ANS decompression [12] from NVIDIA’s nvCOMP [6], using sliced weight matrices
from the Llama 3.1 8B Instruct language modeling head. As shown in Figure 7, DF11 achieves up to
34.95× higher throughput than CPU transfer and up to 20.97× faster decompression than nvCOMP.
DF11 also offers a better compression ratio (68%) compared to nvCOMP (79%). Moreover, DF11
decompression throughput improves with larger matrix sizes due to better GPU utilization.
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Figure 7: Throughput (left two) and latency (right two) comparisons between transferring BF16
matrices from CPU to GPU and decompressing the same matrices on GPU using the NVIDIA
nvCOMP ANS library and our proposed DF11 kernel, across matrix sizes and GPU types.

4 Related Works

Data Formats for Model Weights Full-precision model weights are typically stored in formats
such as BF16, FP16, or FP32. Several works have proposed 4-bit compressed formats, including
FP4, INT4, NF4 (NormalFloat) [9], AF4 (AbnormalFloat) [58], and SF4 (Student Float) [11],
which represent each parameter with 4 bits. Unlike these lossy formats, the proposed DF11 format
compresses weights losslessly.

Lossless Model Compression While lossy compression methods such as pruning [14] and quan-
tization [37, 15] are well-studied, lossless compression remains less explored. Four prior works
have addressed this area. Deep Compression [22] applied Huffman coding [28] to quantized CNNs,
achieving 22% additional compression. ZipNN [25] extended this approach to language models with
improved compression over classical methods. However, both techniques target storage efficiency and
do not support inference-time gains. NeuZip [23] is the only prior work supporting GPU inference. It
uses Asymmetric Numeral Systems (ANS) with layer-wise decompression and relies on NVIDIA’s
nvCOMP for GPU-based operations. nvCOMP is no longer open source, and its binary-only distribu-
tion limits adoption. Moreover, as shown in Figure 7, nvCOMP ANS incurs higher latency and lower
throughput compared to our DFloat11 kernel. Huff-LLM [59] is designed for FPGA-like hardware
and is not applicable to GPUs. Additional discussion of related formats is presented in Appendix B.

5 Conclusion

We introduce Dynamic-Length Float (DFloat11), a lossless compression framework designed for
efficient GPU inference of BFloat16 models, including both large language models (LLMs) and
diffusion models (DMs). DFloat11 exploits the information redundancy inherent in foundation
model weights through entropy-coded, dynamic-length encoding, achieving compression rates close
to the information-theoretic limit. To enable efficient deployment, we develop hardware-aware
algorithms that support high-speed inference directly on compressed weights. Extensive experiments
demonstrate that DFloat11 significantly reduces GPU memory requirements for LLMs and DMs,
allowing for longer generation lengths, while maintaining bit-exact accuracy and incurring only
negligible decompression overhead.
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Appendix

A Discussion: Is Quantization a Universal Solution?

Much of the motivation behind our work lies in understanding whether lossless compression of
large-scale models such as LLMs, which preserves 100% identical output behavior compared to
the original uncompressed model, is a practical direction worthy of further study. Specifically,
how does DFloat11, which compresses LLMs to approximately 11 bits, compare to widely used lossy
quantization techniques [15, 37], where models are typically reduced to even lower bit-widths (e.g.,
8-bit or 4-bit)?

The answer is far more nuanced than a simple “Yes/No” or a one-size-fits-all judgment about which
approach is better. For instance, existing benchmark studies like [19, 55, 29] often suggest that 8-bit
(weight-only or not) quantization is a relatively “safe” compression scheme. Although technically
lossy, 8-bit models can often maintain strong task performance across a range of standard benchmarks.
However, we must note these benchmarks typically focus on a narrow set of tasks (e.g., WikiText2
perplexity, MMLU, Commonsense Reasoning), and thus fail to offer a comprehensive view of
real-world LLM usage, especially from the perspective of end-users.

That being said, the argument that “current benchmarks fail to capture the performance gap between 8-
bit compressed and 16-bit uncompressed models” is itself constrained by the limitations of the current
benchmarking landscape, making it difficult to produce abundant supporting evidence. Nonetheless,
some reports have begun to highlight such gaps. For example, human evaluations on LLM Arena1

show a notable performance drop between Llama-3.1-405B-Instruct [20] and its W8A8 counterpart
(Llama-3.1-405B-Instruct-FP8), particularly under coding (1293 vs. 1277) and long-query (1282 vs.
1275) tasks. Similarly, quantizing DeepSeek-R1-Distill-Llama-70B [21] from 16 bits to 8 bits results
in a 23.7% drop on GPQA (from 9.51% to 7.25%).2 Furthermore, reasoning, a core capability of
modern LLMs, appears especially sensitive to compression loss. Recent benchmark [39] reveals that
quantizing DeepSeek-R1-Distill-Qwen-1.5B with 8-bit SmoothQuant [51] (for weight, attention, and
KV cache) leads to an average 9.09% drop in reasoning tasks (48.82% to 44.29%) across datasets
like AIME, MATH-500, GPQA-Diamond, and LiveCodeBench. We leave more evidence exploring
the performance gap between 8-bit quantized and uncompressed model in Appendix H.

Although the broader question: “Which specific task, on which model, using which quantization
technique, under what conditions, will lead to a noticeable drop compared to FP16/BF16?” is likely
to remain open-ended simply due to the sheer amount of potential combinations. It is fair to say that
lossy quantization introduces complexities that some end-users would prefer to avoid, since it creates
uncontrolled variables that must be empirically stress-tested for each deployment scenario.

To eliminate this burden, DFloat11 offers a compelling alternative: delivering 100% identical
performance to the original model, while consuming only ∼70% of the memory footprint with
throughput benefits, which is a unique and practical offering for resource-constrained deployment
settings.

B Extended Related Works

Data Formats for Model Weights LLM weights are typically stored in compact floating-point
formats such as FP16 or BFloat16 (officially stylized as bfloat163). FP16 allocates 1 sign bit, 5
exponent bits, and 10 mantissa bits, whereas BFloat16 uses 1 sign bit, 8 exponent bits, and 7 mantissa
bits. Compared to FP16, BFloat16 offers a wider dynamic range at the cost of precision, which
improves numerical stability and mitigates overflow issues during training [17, 30].

Compressed data formats typically aim for lower bit-widths. For example, FP8—which comes in both
E4M3 (4 exponent bits, 3 mantissa bits, plus 1 sign bit) and E5M2 configurations—has seen reasonable
adoption in LLM training and development. Integer formats like INT8 have also been well explored,
as in LLM.int8() [8] and its following works. Formats with a stronger emphasis on efficiency, such

1https://x.com/lmarena_ai/status/1835760196758728898
2https://huggingface.co/RedHatAI/DeepSeek-R1-Distill-Llama-70B-quantized.w8a8
3https://cloud.google.com/blog/products/ai-machine-learning/

bfloat16-the-secret-to-high-performance-on-cloud-tpus
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as FP4, INT4, NF4 [9], and AF4 [58], use only 4 bits. In this work, we primarily focus on formats
with ≥8 bits, as benchmark literature [55, 19, 39] often suggests that 8-bit quantization results in
negligible performance drop—though we show in Section A that this claim is likely skewed due to
evaluation selectiveness and benchmark limitations.

Lossless Model Compression While lossy model compression techniques such as pruning and
quantization [14, 37, 15] have received widespread attention, lossless model compression remains a
relatively underexplored area. Upon careful investigation, we identified roughly four prior works that
have made meaningful efforts in this space. Deep Compression [22] is a foundational work, applying
Huffman coding [28] to quantized CNN models and achieving an additional ∼22% compression gain
for model checkpoints. ZipNN [25] extended this idea to language models, comparing its results to
classic lossless compression tools such as zlib [10] and zstd4 and demonstrated superior compression
gains. However, this line of work—including their industry counterparts, such as ezm75—is limited
in that its efficiency gains only apply to storage (reducing the size of model checkpoints) but offer
no benefits during inference. While such storage savings are meaningful in large-scale training
settings—where frequent snapshotting and checkpoint rollbacks are needed [47]—they have limited
impact for everyday LLM end-users. Model downloading is typically a one-time cost, so even if a
model checkpoint is compressed by 50%, it only cuts the download time at most by half, presumably
over the model’s entire lifecycle of deployment. Furthermore, checkpoints are usually stored on disk,
where terabytes of capacity are easily available, making up a much looser constraint compared to
GPU HBM (High Bandwidth Memory); one of the main resource constraints during inference.

We argue that a lossless compression technique would be substantially more impactful if it could
deliver efficiency gains during inference—particularly on GPU-based systems, which is the default
setup for LLM serving. In this context, NeuZip [23] is the only prior work we identify that supports
GPU inference. NeuZip applies entropy encoding with layer-wise decompression to maintain a
reduced memory footprint throughout serving. However, it is built on NVIDIA’s nvCOMP: “a high-
speed data compression and decompression library optimized for NVIDIA GPUs”.6 Unfortunately,
nvCOMP is no longer open-source (only binary executables are available), which hinders future
research. Moreover, we empirically find that nvCOMP’s inference throughput and latency are
significantly worse than our proposed DFloat11 kernel, resulting in a pipeline that trades memory
efficiency for substantial inference overhead (see Figure 7).

Another work referencing NeuZip is Huff-LLM [59], which also aims to reduce memory costs while
maintaining efficient inference. However, its contributions are specific to FPGA-like architectures
and do not apply to GPUs. To the best of our knowledge, the DFloat data format we presented (and
its respective kernel support in DFloat11) shall serve as the only GPU-inference-friendly data format
with lossless compression benefits.

Efficient LLM Inference LLMs are computationally intensive and resource-demanding, making
the efficiency of LLM inference a key research focus [52]. FlashAttention [7] accelerates exact
attention computation on GPUs through kernel fusion, while NoMAD Attention [64] speeds up
attention on CPUs using in-register lookups. Model compression is another effective strategy to
reduce resource requirements for serving LLMs and diffusion models. Quantization methods such as
GPTQ [15], AWQ [37], SmoothQuant [51], LeanQuant [61], CQ [63], KVQuant [26], and KIVI [40]
lower memory usage and enhance efficiency by compressing model weights, activations, or KV
cache. Compression is also applied in fine-tuning: methods like LoRA [27], QLoRA [9], and
SketchTune [62] compress model weight deltas, whereas GaLore [65] and SARA [60] compress
optimizer states during training. One additional line of work relevant to efficient LLM inference
would be lossless efficient decoding, where paradigms such as speculative decoding [49, 34, 50]
and n-gram candidate decoding [16, 3] offer lossless generation quality with improved latency.
DFloat11 mainly differs from these works in that it provides substantial savings in memory footprint
while maintaining lossless generation quality, whereas most—if not all—lossless efficient decoding
methods require memory consumption equal to or greater than that of the original model.

4https://github.com/facebook/zstd
5https://github.com/liuliu/s4nnc/pull/11 https://encode.su/threads/

4067-Good-Compressors-for-16-bit-floats
6https://developer.nvidia.com/nvcomp
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Figure 8: Relative frequency distribution of sign, exponent, and mantissa values in the BFloat16
weights of all linear projection layers across various LLMs.

C Frequency Distribution of BFloat16 Values

Figure 8 presents the frequency distribution for distinct values of sign, exponent, and mantissa bits in
the BFloat16 weights of LLMs. Figure 9 shows the sorted frequency of exponent values of LLM
weights.
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Figure 9: Distribution of BFloat16 exponent values across various models. The frequency of exponent
values (shown in log scale) decays rapidly with exponent rank.

D Pseudo-code of the GPU kernel for DFloat11 Decompression

Algorithm 1 presents the pseudo-code of the two-phase GPU kernel for decompressing DFloat11 to
BFloat16.

Table 4: System specifications of servers used for experiments.
GPU GPU Memory CPU CPU Memory

Server 1 NVIDIA RTX A5000 24564MiB AMD EPYC 7513 32-Core 504GB
Server 2 NVIDIA A100 40960MiB AMD EPYC 7742 64-Core 1.48TB
Server 3 NVIDIA Quadro RTX 8000 49152MiB AMD EPYC 7742 64-Core 1.48TB
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Algorithm 1 GPU kernel for decompressing DFloat11 to BFloat16
1: procedure DF11TOBF16

require:
– EncodedExponent,PackedSignMantissa: byte arrays
– LUT1, . . . , LUTk,CodeLengths: 8-bit unsigned integer arrays of size 256
– Gaps: 5-bit unsigned integer array (one entry per thread in each block)
– BlockOutputPos: 32-bit unsigned integer array (one entry per block)
– Outputs: BFloat16 array, for storing results
– B, T, n, k: the number of thread blocks, number of threads, number of bytes processed by each thread,

number of compact LUTs, respectively
2: Divide EncodedExponent into chunks:

EncodedExponent1, . . . ,EncodedExponentB of size nT bytes each
3: for all b← 1, . . . , B (in parallel across blocks) do
4: Load EncodedExponentb into SRAM
5: Divide EncodedExponentb into chunks:

EncodedExponentb,1, . . . ,EncodedExponentb,T of size n bytes each
6: Load LUT1, . . . , LUTk,CodeLengths into SRAM
7: Initialize integer arrays NumElements[1 . . . T ],ThreadOutputPos[1 . . . T ] with all 0s
8: Initialize BFloat16 write buffer WriteBuffer in SRAM
9: for all t← 1, . . . , T (in parallel across threads) do

▷ Phase 1: Each thread determines its initial output position
10: BitOffset← Gaps[bT + t]
11: while BitOffset < 8n do
12: Read the next 4 bytes of EncodedExponentb,t, starting from the BitOffset-th bit, into

Byte1...4
13: i← 1
14: Exponent← LUT1[Bytei]
15: while Exponent ≥ 240 do

▷ Exponent ≥ 240 means that it is a pointer to the next LUT
16: i← i+ 1
17: Exponent← LUT(257−Exponent)[Bytei]
18: end while
19: BitOffset← BitOffset + CodeLengths[Exponent]
20: NumElements[t]← NumElements[t] + 1
21: end while
22: Thread Synchronization Barrier

▷ Compute prefix-sum using Blelloch’s Algorithm:
23: ThreadOutputPos[t]← BlockOutputPos[b] +

∑t−1
i=1 NumElements[i]

▷ Phase 2: Writing decoded BFloat16s to the appropriate positions
24: BitOffset← Gaps[bT + t]
25: while BitOffset < 8n do
26: Read the next 4 bytes of EncodedExponentb,t, starting from the BitOffset-th bit, into

Byte1...4
27: i← 1
28: Exponent← LUT1[Bytei]
29: while Exponent ≥ 240 do

▷ Exponent ≥ 240 means that it is a pointer to the next LUT
30: i← i+ 1
31: Exponent← LUT(257−Exponent)[Bytei]
32: end while
33: Byte← PackedSignMantissa

[
ThreadOutputPos[t]

]
34: Sign← Byte bitwise_and 0b10000000
35: Mantissa← Byte bitwise_and 0b01111111
36: WriteBuffer[ThreadOutputPos[t]− BlockOutputPos[b]]←

(Sign bitwise_left_shift 8) bitwise_or
(Exponent bitwise_left_shift 7) bitwise_or Mantissa

37: BitOffset← BitOffset + CodeLengths[Exponent]
38: ThreadOutputPos[t]← ThreadOutputPos[t] + 1
39: end while
40: end for

▷ Perform coalesced writes to HBM:
41: Outputs[BlockOutputPos[b] . . . (BlockOutputPos[b+ 1]− 1)]←

WriteBuffer[0 . . . (BlockOutputPos[b+ 1]− BlockOutputPos[b]− 1)]
42: end for
43: end procedure
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E Hardware for Experiments

Table 4 presents the hardware configuration of servers used for experiments.

F DFloat11 Compression Time

Table 5: Compression time per transformer block for different models.
Model Compression Time per Transformer Block (s)
Llama 3.1 8B Instruct 191
Llama 3.3 70B Instruct 547
Llama 3.1 405B Instruct 2133

Table 5 reports the time required to compress a single transformer block for models of different sizes.
Compression is a one-time preprocessing step for each model and is performed using a single CPU
thread. Since transformer blocks are independent in terms of weight storage, their compression can
be parallelized across multiple CPU threads, making the overall process highly scalable and efficient.
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Figure 10: Comparison of average latency and throughput for token decoding between the original
(BF16) models and their losslessly compressed (DF11) counterparts. The BF16 and DF11 models
are run on the same GPU configurations, with Flash Attention [7] turned on for both methods.

G GPU Inference Efficiency Comparison: BF16 vs. DF11

We present the GPU inference efficiency of BF16 and DF11 models in Figure 10, for various models
and batch sizes on A100 GPUs.

H Impact of Lossy Quantization

An accuracy comparison of the original and INT8-quantized Llama model is presented in table 6.
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Table 6: INT8 quantization error on different tasks. “Math” denotes MATH Hard with 2 shots.
“GPQA CoT” is with 2 shots. “∆” denotes the error gap via INT8 quantization.

Model Data Type Math GPQA CoT

Llama-3.1-8B-Instruct
BF16 23.92 15.18
INT8 19.92 14.06
∆ 4.0 1.12
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Figure 11: Decoding Huffman codes can be performed either by traversing the Huffman tree or by
using two lookup tables: one that maps each L-bit binary code to its corresponding symbol, and
another that stores the code length for each symbol.

I Efficient Decoding of Huffman Codes Using Compact Lookup Tables

I.1 The Dual Lookup Table Approach

Huffman decoding can be performed by traversing the Huffman tree: starting from the root, each bit of
the encoded bitstream determines the branch to follow, and the symbol is fully decoded upon reaching
a leaf node. While this bit-by-bit traversal is conceptually simple, it is inefficient in practice. Each
branching decision depends on the previous one, leading to frequent memory accesses and conditional
jumps. This pattern is especially problematic on GPUs, where it causes branch divergence and limits
instruction-level parallelism. A widely adopted alternative is lookup-table-based decoding [53],
which flattens the Huffman tree into two compact lookup tables. This enables decoding of each
symbol using just two array lookups and a bit shift, significantly improving throughput.

We employ two lookup tables, LUT and CodeLengths, to achieve efficient, branch-free Huffman
decoding. Let L denote the length of the longest codeword in the Huffman codebook. We construct
the primary lookup table LUT as an array of size 2L, where each entry maps an L-bit binary sequence
to the first symbol it encodes.

Figure 11 shows an example with L = 4 and a set of symbols A, B, C, D, E, F. For clarity, we
use letters to represent symbols, though in practice these correspond to exponent values in BFloat16
weights. The lookup table LUT contains 24 = 16 entries, indexed by all possible 4-bit binary
sequences. Each entry in LUT stores the symbol whose Huffman code matches the prefix of that
index. If a symbol’s Huffman code is shorter than L bits, it will fill multiple consecutive entries. For
example, if symbol A is encoded as the single bit 0, then all binary sequences from 0000 to 0111
begin with 0, so entries 0 through 7 in LUT are assigned to A. In contrast, symbols with Huffman
codes of length L occupy exactly one entry each. For instance, E = 1110 and F = 1111 map to
entries 14 and 15, respectively. This construction yields a dense prefix table that allows decoding a
symbol with a single array lookup using an L-bit segment from the encoded bitstream.

To advance the encoded bitstream for decoding the next symbol, we also store the code lengths of all
symbols. The second lookup table, CodeLengths, maps each symbol to its Huffman code length. In
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Figure 12: A Huffman tree can be decomposed into a hierarchy of subtrees, each represented by a
compact lookup table (LUT). Each LUT may reference another lower-level LUT in the hierarchy.
This hierarchical decoding approach is functionally equivalent to using a single monolithic LUT, but
significantly more memory efficient.

the example, the lengths are: A:1, B:3, C:3, D:3, E:4, F:4. Together, these two tables allow
fast, deterministic decoding by repeating the following steps:

1. Use the next L bits from the encoded bitstream to index LUT and retrieve the decoded
symbol.

2. Look up the code length of the decoded symbol from CodeLengths to determine how many
bits to consume.

3. Advance the encoded bitstream and repeat.

This approach eliminates conditional branches and pointer chasing during decoding, making it highly
suitable for parallel computation on GPUs.

I.2 Decomposing LUT into Hierarchical, Compact Lookup Tables

The primary lookup table LUT contains 2L entries, where L is the maximum code length in the
Huffman codebook. While this enables constant-time decoding, the table size grows exponentially
with L. In practice, L ranges from 24 to 32 for Huffman trees built with BFloat16 exponents. This
results in table sizes of 224 to 232 entries, which far exceeds the capacity of GPU SRAM. To address
this, we decompose LUT into multiple smaller lookup tables that fit within on-chip memory, while
still enabling fast decoding.

Hierarchical Table Structure Instead of storing a single flat table of size 2L, we decompose LUT
into a hierarchy of compact lookup tables. Each table corresponds to a subtree of the Huffman tree
and is responsible for decoding b bits. Each table processes the next b bits and either (i) directly
returns a decoded symbol, or (ii) delegates to a table next in the hierarchy for decoding the next b bits.
This hierarchical organization mirrors the structure of the original Huffman tree and significantly
reduces total memory usage.

Figure 12 illustrates an example where the Huffman tree is partitioned into three subtrees, each
mapped to a separate lookup table responsible for 2 bits. The decoding process using these three
LUTs proceeds as follows:

• LUT0: Uses the first and second bits of the encoded bitstream to determine how to proceed,
leading to 3 possible cases:

– 00, 01→ decode the next symbol as A.
– 10→ delegate to LUT1 .
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– 11→ delegate to LUT2.
• LUT1: Uses the third and fourth bits of the encoded bitstream to continue decoding:

– 00, 01→ decode the next symbol as B
– 10, 11→ decode the next symbol as C

• LUT2: Uses the third and fourth bits of the encoded bitstream to continue decoding:
– 00, 01→ decode the next symbol as D
– 10→ decode the next symbol as E
– 11→ decode the next symbol as F

For decoding Huffman-coded BFloat16 exponents, we decompose the LUT into multiple compact
lookup tables, each responsible for decoding 8 bits (i.e. b = 8). This allows us to read the next byte
from the encoded bitstream and perform an array lookup from a 256-entry array in each step. In
practice, the decomposition of LUT leads to 4 to 8 compact LUTs, each with 256 entries, which
comfortably fits within fast SRAM.

J Text-to-image Results of BF16 and DF11 Diffusion Models

Figure 13: Images generated by Stable Diffusion 3.5 Large in the original BFloat16 precision (top 5)
are pixel-wise identical to those produced by the DFloat11-compressed model (bottom 5), using the
same prompt and random seed.

Figure 13 presents the comparison of images generated using Stable Diffusion 3.5 Large in BFloat16
and DFloat11 weight format. The images are pixel-wise identical, when using the same prompt and
random seed.

K Limitations

This work focuses exclusively on losslessly compressing BFloat16 weights. We do not consider
other formats such as FP32, FP16, or FP8, which may require different compression strategies.
While DF11 improves memory efficiency, it introduces a small but non-zero latency overhead due to
decompression. This overhead is amortized at larger batch sizes but may impact latency-sensitive
applications with small batches. Our evaluation is limited to GPUs. We do not assess performance on
other hardware such as CPUs, TPUs, or custom accelerators, which may require platform-specific
optimizations.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a Limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have fully disclosed all information needed for result reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our code and models are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper does not include training experiments. All evaluation details
necessary to reproduce and understand the results are provided in the full paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars for experiments where appropriate.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided detailed information on the computational resources required
to reproduce our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: After reviewing the NeurIPS Code of Ethics, we have verified that our research
is in compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses on improving the inference memory efficiency of existing
pre-trained models and does not involve the development of new model, training data, or
training method, which limits its direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not introduce new data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The assets used are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced by this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not involved in any originl or important parts of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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