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ABSTRACT

The problem of detecting out-of-distribution (OOD) examples in neural networks
has been widely studied in the literature, with state-of-the-art techniques being
supervised in that they require fine-tuning on OOD data to achieve high-quality
OOD detection. But supervised OOD detection methods also have a disadvantage
in that they require expensive training on OOD data, curating the OOD dataset
so that it is distinguishable from the in-distribution data, and significant hyper-
parameter tuning. In this work, we propose a unified evaluation suite, Sneako-
scope, to revisit the problem with in-depth exploration of unsupervised OOD de-
tection. Our surprising discovery shows that (1) model architectures play a sig-
nificant role in unsupervised OOD detection performance; (2) unsupervised ap-
proaches applied on large-scale pre-trained models can achieve competitive per-
formance compared to their supervised counterparts; and (3) unsupervised OOD
detection based on Mahalanobis Distance with the support of a pre-trained model
consistently outperforms other unsupervised methods by a large margin and com-
pares favorably with results from state-of-the-art supervised OOD detection meth-
ods reported in the literature. We thus provide new baselines for unsupervised
OOD detection methods.

1 INTRODUCTION

Deep neural networks (DNNs) have attained unprecedented success in various tasks across domains
such as object recognition in computer vision (Krizhevsky et al., 2012), machine translation in natu-
ral language processing (Bahdanau et al., 2014), and protein structure prediction in biology (Jumper
et al., 2021). However, such breakthrough hinges on the assumption that unseen test data distribute
identically as their training counterparts. In fact, DNNs have been found to make over-confident pre-
dictions for semantically meaningless inputs. For example, (Hendrycks & Gimpel, 2017) shows an
MNIST image classifier gives a predicted class probability of 91% to an input of random Gaussian
noise. The problem of DNNs being overly assertive to semantic data distribution shifts has motivated
a rich literature of detecting anomalous inputs like out-of-distribution (OOD) examples (Hendrycks
& Gimpel, 2017; Liang et al., 2018; Lee et al., 2018a;b; Hendrycks et al., 2019a;b; Grathwohl et al.,
2020; Liu et al., 2020; Fort et al., 2021; Lin et al., 2021).

Initial OOD detection methods were unsupervised (e.g., Maximum Softmax Probability-based de-
tector (Hendrycks & Gimpel, 2017) or unsupervised version of Mahanalobis Distance-based detec-
tor (Lee et al., 2018b)), in that they only required access to a classifier trained on in-distribution
examples, but not any OOD data itself. But, state-of-the-art OOD detection methods tend to be
supervised, in which the detector is further fine-tuned (trained) on OOD data (Lee et al., 2018b;
Hendrycks et al., 2019b; Liu et al., 2020). This fine-tuning on OOD data is considered essential for
boosting detector performance. For example, Hendrycks et al. (2019b) cuts down false positive rate
from 42.80% (unsupervised) to 12.20% (supervised) on one OOD dataset by fine-tuning the MSP-
based CIFAR-10 detector on a very broad set of OOD examples. Unfortunately, this fine-tuning also
has its own limitations. Training on wide range of ODD data involves considerable additional effort,
making it harder to do quick development of OOD detectors. Such detectors (e.g., ODIN (Liang
et al., 2018)) also require an auxiliary OOD dataset to fine-tune the hyper-parameters of the trained
classifier or the pre-processing pipeline, but the OOD dataset may not be representative of incoming
OOD examples. Some supervised detectors, such as Outlier Exposure (Hendrycks et al., 2019b),
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heavily rely on training the detector against massive amounts of OOD data; such data may not
always be available. In Outlier Exposure, it requires careful curation relative to the training classes.

In this work, we revisit unsupervised approaches to the OOD detection problem and ask the question
if they can achieve state-of-the-art results on OOD detection without needing supervised fine-tuning
on OOD data, overcoming some of the limitations of supervised methods. To do an in-depth explo-
ration of this issue, we propose Sneakoscope, a unified evaluation suite that systematically investi-
gates the performance of different unsupervised OOD detection methods on classifiers with different
model architectures and with and without large-scale pre-training.

We show that an unsupervised approach based on Mahalanobis Distance (Lee et al., 2018b) consis-
tently stands out after it is augmented with support of a classifier that is pretrained on a large-scale
dataset (e.g., the Vision Transformer or ResNet-based Big Transfer). Mahalanobis Distance was
originally proposed by Lee et al. (2018b) for OOD detection, but the original approach did not work
well in unsupervised mode (false positive rate of 45.60%); their best supervised version had a false
positive rate of 3.58% on CIFAR-10 vs. SVHN but required fine-tuning of input pre-processing and
feature ensemble on OOD data. However, our experiment results indicate that Mahalanobis Distance
without any fine-tuning is still a better OOD detection method when compared to other unsupervised
approaches based on MSP and energy scores. We also demonstrate that using an underlying classi-
fier that uses large-scale pre-training uplifts the performance of all evaluated unsupervised detection
methods while Mahalanobis Distance gains the most from pre-training. Surprisingly, the results
compare favorably with reported results from state-of-the-art supervised detectors.

In summary, Sneakoscope’s analysis suggests unsupervised OOD detection methods that are based
on existing classifiers that rely on large-scale pre-trained datasets (e.g., the Vision Transformer and
Big Transfer) can compare favorably with state-of-the-art supervised OOD detection methods that
require fine-tuning a detector on OOD data. Furthermore, Mahalanobis Distance is a good underly-
ing measure for unsupervised OOD detection and outperforms MSP and Energy Score. Our work
provides new baselines for unsupervised OOD detection methods. For instance, the combination of
pre-trained ViT and Mahalanobis Distance reduces the false positive rate (at 95% true positive rate)
on CIFAR-10 vs. SVHN from 67.81% (ResNet with MSP) to 0.43%. The rest of paper includes
Sneakoscope overview, experiments results, and detailed analysis and discussion that provides in-
sights into the findings.

2 Sneakoscope: A UNIFIED EVALUATION SUITE

In this section, we start by describing the problem setup, and then give an overview of key compo-
nents in Sneakoscope. Unlike prior works, we focus on studying the effects of model architectures
and large-scale pre-training on unsupervised OOD detection. Sneakoscope incorporates both factors
into the evaluation, and provide visual and quantitative analysis to justify the results.

2.1 PRELIMINARIES

We consider the problem of predicting whether an input at inference time comes from a distribution
different from training data. Given a trained classifier F on an in-distribution X with a fixed label
space Y = {1, . . . ,K}, a detector G : X ′ → {0, 1} (where X ′ is the sample space) assigns label 0
to an out-of-distribution sample (negative) and label 1 to an in-distribution sample (positive).

We also describe here the prominent issues of supervised detection approaches.

• Hyper-parameter fine-tuning or training a separate detector with a modified training objec-
tive requires additional OOD data that are not always available;

• There is no guarantee that available OOD data are representative, thus the detector may
overfit to OOD samples seen in the fine-tuning;

• Depending on the downstream classifiers, available OOD data need to be curated to avoid
class overlapping, which is laborious and inefficient.

So in this work, we are primarily interested in evaluating unsupervised OOD detection and, if pos-
sible, improving them.
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2.2 UNSUPERVISED OOD DETECTION TECHNIQUES

Sneakoscope currently includes three popular unsupervised detection techniques as described below.

Maximum Softmax Probability (MSP). Hendrycks & Gimpel (2017) proposes a simple yet ef-
fective method for OOD detection. For a given input x, it takes the negative prediction probability,
i.e., −maxy p(y|x), as the anomaly score. x is considered an OOD sample if the anomaly score is
greater than a specified threshold.

Mahalanobis Distance. Lee et al. (2018b) proposes to estimate the probability density of interme-
diate features from a trained classifier by fitting class-conditional Gaussian distributions to training
examples. For each class c, the empirical mean µ̂c is computed as 1

Nc

∑
i:yi=c f(xi) where Nc is

the number of training examples in class c and f(·) denotes the output of an intermediate layer. A
shared covariance Σ̂ is given by 1

N

∑
c

∑
i:yi=c(f(xi) − µ̂c)(f(xi) − µ̂c)

T . The anomaly score of
a test sample x is defined as the closest Mahalanobis distance minc(f(x)− µ̂c)

T Σ̂−1(f(x)− µ̂c).

Energy Score. Liu et al. (2020) proposes to use energy scores directly derived from a discriminative
model as an alternative to MSP-based methods that are more susceptible to the overconfidence issue.
Energy scores are non-probabilistic scalars that claim to align with the probability density of the
inputs (Liu et al., 2020). In other words, samples with higher energies are less likely to occur.
Without changes to a trained classifier f , the energy score is defined as E(x; f) = − log

∑K
i efi(x)

where x is an input, K is the number of classes, and fi(x) is the logit of the i-th class.

To summarize, MSP has served as a long-standing baseline of OOD detection due to its simplicity
and effectiveness. Energy-based detection also becomes popular in recent works (Grathwohl et al.,
2020; Liu et al., 2020; Lin et al., 2021). Despite having less recognition, we find Mahalanobis
Distance is a potent approach with strong detection performance as shown later.

2.3 DETECTION BACKBONE MODELS

Although unsupervised OOD detection techniques are applicable to any DNN-based classifier, few
works assess the sensitivity of those techniques to different model architectures. So Sneakoscope
sources a collection of widely-used model architectures for evaluation.

ResNets. Residual Networks (He et al., 2016) are one of the most successful families of DNNs. The
novel idea of having skip connections to learn the residual mapping solves the problems of unstable
training and degrading performance with very deep neural networks.

WideResNets. Wide Residual Networks (Zagoruyko & Komodakis, 2016) retain the overall archi-
tecture of ResNets while trading the depth with the width of the networks.

DenseNets. Densely Connected Convolutional Networks (Huang et al., 2017) are another type of
CNN architecture where all layers are directly connected, and each layer takes in feature maps from
all preceding layers while passing on its own feature maps to all subsequent layers.

Big Transfer. Big Transfer (Kolesnikov et al., 2020) introduces a set of large-scale pre-trained
ResNets that can effectively adapt to downstream tasks with few-shot finetuning.

ViT. Unlike CNN architectures above, the Vision Transformer (ViT) (Vaswani et al., 2017) carries
on self-attention and large-scale pre-training from its NLP predecessor. With minor modifications
of the original transformer architecture, ViT attains compelling results in image classification.

2.4 UNIFIED ANALYSIS

Sneakoscope provides both visual and quantitative analysis to understand the results through the
same scope. In particular, Sneakoscope examines model confidence calibration and hidden repre-
sentations to illustrate the following research questions.

RQ1: Why does the detection performance of the same method on the same dataset vary signifi-
cantly across different model architectures?

RQ2: How does large-scale pre-training reshape the landscape of OOD detection?
RQ3: Why does Mahalanobis Distance have the biggest win from pre-training?
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Confidence Calibration. Confidence calibration refers to the problem whether the model confi-
dence reflects the true correctness likelihood. Since MSP employs the predicting probability (as the
model confidence measure) for OOD detection, we can expect the effectiveness of MSP to rely on
the degree of confidence calibration of a classifier.

We follow Guo et al. (2017) and measure model confidence calibration with two empirical approxi-
mations: Reliability Diagram and Expected Calibration Error (ECE). The reliability diagram assigns
predictions into evenly-spaced confidence bins, and plots both expected accuracy and empirical ac-
curacy against each confidence interval. By showing the gap between two accuracy, the reliability
diagram visually captures confidence calibration of a classifier. Different from the reliability dia-
gram, ECE is a scalar statistical indicator of confidence calibration. It calculates a weighted sum of
the absolute difference between the accuracy and confidence of each bin, thus taking into account
the percentage of examples in each bin.

Note that the predicting probability is not the sole proxy of model confidence. With slight trans-
formations, non-probabilistic energy-based score SE(x; f) and Mahalanobis Distance-based score
SM (x; f) (both are non-negative, and the higher the better) can also be converted to model confi-
dence. We apply function g(z) = 1 / (1+e−z)×2−1 where z ≥ 0 to squash unbounded values into
the interval [0, 1] while maintaining the relative order of original values. Thereby, we can derive the
following confidence measures: (1) Energy Score-based confidence = 1 / (1 + e−SE(x;f))× 2− 1;
and (2) Mahalanobis Distance-based confidence = 1 / (1 + e−SM (x;f))× 2− 1.

With probabilistic confidence measures, we are able to utilize Reliability Diagram and Expected
Calibration Error to inspect whether a model is calibrated with respect to Energy Score and Ma-
halanobis Distance. It is worth pointing out that the absolute values of Expected Calibration Error
are not comparable across confidence measures. Nevertheless, a good confidence measure should
assign high values to in-distribution samples and low values to OOD samples.So we can anticipate a
more calibrated model to have better detection performance, which helps explain the varying results
of the same detection method over different model architectures.

Learned Representation. Confidence calibration illuminates the aforementioned questions from
the output aspect. We next turn to the input perspective for more insights. Both MSP and Energy
Score obtain detection scores from the model logits — MSP takes the predicting probability from
the softmax-normalized logits and Energy Score simply applies logsumexp operator to logits. In
contrast, Mahalanobis Distance was motivated to characterize OOD samples in the feature space
rather than ”label-overfitted” output space (Lee et al., 2018b). So we take a particular look at features
of the penultimate layer (which go through fully connected layer(s) and become logits).

To analyze hidden features, we leverage Central Kernel Alignment (CKA) (Kornblith et al., 2019)
that can quantitatively compare learned representations across model architectures. CKA is essen-
tially a normalized version of Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2007)
that measures the statistical independence between two distributions. With CKA1, we are able to
examine the effect of model architectures and pre-training on hidden representations and the down-
stream task of OOD detection.

3 EXPERIMENTS

We start with the experiment setup in this section. We then demonstrate (1) model architectures have
a significant effect on OOD detection performance; (2) large-scale pre-training can dramatically
improve the results of all three detection methods while Mahalanobis Distance benefits most from
pre-training. Finally, we present analysis that helps explain and understand the experiment results.

3.1 DATASETS & MODELS

We consider CIFAR-10/100 (Krizhevsky et al., 2009) as in-distribution datasets along with
SVHN (Netzer et al., 2011), Textures (Cimpoi et al., 2014), Fashion-MNIST (Xiao et al., 2017),
Gaussian noise, Rademacher Noise, and Blobs as out-of-distribution datasets. The last three are
synthetic images. We also use CIFAR-100 as OOD for CIFAR-10 and vice versa.

1https://github.com/google-research/google-research/tree/master/
representation_similarity
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To circumvent the issues associated with training practices and biases towards less effective ap-
proaches identified in this work, we use trained models released from prior works: ResNet and
DenseNet from Lee et al. (2018b); WideResNet from Liu et al. (2020). To study the effect of pre-
training, We took a ViT CIFAR-10 model from Hugging Face Model Zoo2. Since we didn’t find the
rest of models publicly available, we fine-tuned Big Transfer3 on CIFAR-10 and CIFAR-100, and
ViT4 on CIFAR-100 with the recommended hyper-parameters from their sources. Both Big Transfer
and ViT were pre-trained on ImageNet-21K. Table 1 gives test accuracy of all models.

Table 1: Test accuracy in percentage of each model on CIFAR-10 and CIFAR-100.

Test Accuracy ResNet DenseNet WideResNet Big Transfer ViT
CIFAR-10 93.67 95.19 94.84 97.46 98.52

CIFAR-100 78.34 77.63 75.96 86.93 92.90

3.2 METRICS

We evaluate the unsupervised detection methods with the following metrics: (1) AUROC, the
area under the receiver operating characteristic curve; (2) AUPR, the area under the precision-
recall curve; (3) FPR95, the fraction of out-of-distribution examples (negative) misclassified as
in-distribution data (positive) when the true positive rate is at 95%.

Note that AUROC and AUPR are independent of thresholds whereas FPR95 sets a specific threshold
such that 95% in-distribution data are correctly detected. Unlike AUROC, AUPR also adjusts for
different positive and negative base rates.

3.3 RESULTS

Table 2: OOD detection results in percentage with CIFAR-10 as the in-distribution dataset. The
overall best numbers are in bold while the best numbers of each detection technique is in italics.

OOD: SVHN MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 89.89 85.95 67.81 93.92 95.48 45.60 91.20 85.84 52.09
DenseNet 89.91 84.61 59.61 96.72 92.08 14.26 90.93 84.61 47.73

Wide-ResNet 91.91 86.50 48.43 97.66 99.49 13.20 91.08 79.22 35.36

OOD: Textures MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 89.28 94.06 60.90 95.14 97.47 30.92 89.54 93.54 49.66
DenseNet 88.53 93.07 59.50 95.17 96.62 17.82 84.98 88.21 58.51

WideResNet 88.42 92.78 59.66 97.28 98.38 15.21 85.35 88.44 52.48

OOD: CIFAR-100 MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 86.77 87.87 66.39 88.81 90.08 59.05 87.52 87.66 55.38
DenseNet 89.74 91.28 58.77 68.05 68.07 81.31 90.95 91.72 45.72

Wide-ResNet 88.18 89.09 62.47 84.11 85.70 69.20 87.57 86.62 49.66

OOD: Gaussian MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 89.47 92.78 76.62 97.24 97.92 17.07 89.69 92.70 72.18
DenseNet 97.69 98.40 11.94 100.00 100.00 0.00 98.10 98.93 0.06

Wide-ResNet 94.79 96.26 42.17 100.00 100.00 0.00 72.14 79.98 100.00

The Effect of Architectures on OOD. Table 2 presents CIFAR-10 OOD detection results with-
out considering pre-training. We can see that even for the same detection technique and the same
dataset, there is a large variation of the detection performance across model architectures, espe-
cially regarding FPR95. For instance, in the setting of CIFAR-10 vs. SVHN, ResNet, DenseNet,
and WideResNet share similar AUROC and AUPR under the MSP column; however, as regard to
FPR95, ResNet is more than 8% worse than DenseNet and nearly 20% worse than WideResNet;
Under the Mahalanobis column, ResNet is more than 30% worse than other models; Energy Score
also exhibits similar discrepancy among the three models.

2https://huggingface.co/nateraw/vit-base-patch16-224-cifar10
3https://github.com/google-research/big_transfer
4https://github.com/jeonsworld/ViT-pytorch
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Consistent with CIFAR-10 vs. SVHN, the numbers in CIFAR-10 vs. Textures/CIFAR-100/Gaussian
show the considerable variations of all three metrics over architectures as well. We also observe
that Mahalanobis Distance applied on WideResNet obtains the best results in three settings (except
CIFAR-100) where the OOD samples are semantically dissimilar to objects in CIFAR-10. But in the
case of CIFAR-100 as the OOD dataset, Mahalanobis Distance suffers from high FPR95 regardless
of architectures, which we will explain in the analysis section.

We have the same observation of the fluctuating results over architectures with CIFAR-100 as the in-
distribution dataset. Nevertheless, as there are much more classes in CIFAR-100, MSP and Energy
Score are struggling with all three metrics, again especially with FPR95. AUROC and AUPR of
MSP and Energy Score are mainly around or below 80% while FPR95 is generally above 75%,
which is very concerning and suggests both techniques are broken. Due to the limit of space, we
show the rest of CIFAR-10 results in table 5 and table 6, and the full CIFAR-100 results in table 7
and table 8 in appendix.

Table 3: Consider pre-training in OOD detection with CIFAR-10 as the in-distribution dataset. The
overall best numbers are in bold while the best numbers of each detection technique is in italics.

OOD: SVHN MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 89.89 85.95 67.81 93.92 95.48 45.60 91.20 85.84 52.09
Big Transfer 95.64 87.22 16.20 99.74 99.51 0.36 94.10 81.93 20.84

ViT 99.07 98.28 3.54 99.81 99.60 0.43 99.44 98.79 2.10

OOD: Textures MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 89.28 94.06 60.90 95.14 97.47 30.92 89.54 93.54 49.66
Big Transfer 97.66 98.39 8.51 100.00 100.00 0.00 93.91 94.95 22.71

ViT 99.94 99.97 0.14 99.98 99.99 0.00 99.97 99.98 0.11

OOD: CIFAR-100 MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 86.77 87.87 66.39 88.81 90.08 59.05 87.52 87.66 55.38
Big Transfer 89.52 85.21 31.11 96.27 96.36 18.85 86.08 80.21 38.20

ViT 97.53 97.57 11.36 98.71 98.74 7.02 97.52 97.30 10.07

OOD: Gaussian MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 89.47 92.78 76.62 97.24 97.92 17.07 89.69 92.70 72.18
Big Transfer 96.57 95.23 11.28 100.00 100.00 0.00 91.03 87.11 29.13

ViT 99.99 99.99 0.00 99.98 99.99 0.00 99.99 100.00 0.00

OOD with Pre-training. Table 3 shows the CIFAR-10 OOD detection results considering large-
scale pre-training. We assess the impact of pre-training on OOD detection by comparing ResNet
trained from scratch, Big Transfer (i.e., pre-trained ResNet), and ViT 5.

All three techniques have a remarkable gain from pre-training. For MSP and Energy Score, the
improvements with respect to FPR95 range from 30% to 70%; the improvements of Mahalanobis
Distance with respect to FPR95 have a relatively lower range from 17% to 52% while Mahalanobis
Distance applied on pre-trained models achieves the lowest FPR95. We see CIFAR-10 vs. CIFAR-
100 remains a challenging setting where even Big Transfer has a relatively high FPR95 compared
to ViT, which we also find explanation in our analysis section.

Comparison with Supervised Results. Due to the magnificent uplift by large-scale pre-training,
Mahalanobis Distance obtains nearly perfect detection performance, which is even better than ded-
icated fine-tuned results reported in Hendrycks et al. (2019b) using MSP and Liu et al. (2020)
using Energy Score. This indicates supervision is not the only way to reach the best results in OOD
detection. The combination of large-scale pre-trained models and a competitive detection technique
such as Mahalanobis Distance overcomes the aforementioned drawbacks of supervised detection.

3.4 ANALYSIS

Confidence Calibration. Figure 1 shows the reliability diagram of each model architecture on
CIFAR-10 with the predicting probability as confidence measure. It is visually clear that pre-trained
models Big Transfer and ViT are better calibrated than models without pre-training, which explains

5There are no available large-scale pre-trained DenseNets and WideResNets in Google’s Big Transfer
project, and we are not able to do large-scale pre-training due to limited computing resources.
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why pre-trained models yield superb MSP detection results. One pitfall of reliability diagrams is
that they treat all of the bins equally without considering the proportion of examples in each bin.
While Big Transfer appears to be an almost perfectly calibrated model, Expected Calibration Error
(ECE) gives a precise measure of confidence calibration. Table 4 shows ECE relative to each model
architecture and confidence measure on CIFAR-10 and CIFAR-100. ECE in general reflects the
trend of OOD detection performance of each method over model architectures. In CIFAR-10, more
calibrated models (without pre-training) such as DenseNet and WideResNet have comparably lower
FPR95 as opposed to less calibrated ResNet with the worst FPR95. On the other hand, in CIFAR-
100, WideResNet instead is the most poorly calibrated model and indeed FPR95 of WideResNet is
often falling behind. It is also clear from table 4 that large-scale pre-training notably reduces the
calibration error for all confidence measures. Thus, we see in table 3 that Big Transfer and ViT
outperform ResNet without pre-training and unsurprisingly sweep through the OOD detection task.

Figure 1: Reliability diagrams with MSP as the confidence measure on CIFAR-10 where red bars
reflect the gap between the expected accuracy and the actual accuracy of each bin.

(a) ResNet
with ECE = 3.96

(b) DenseNet
with ECE = 2.89

(c) WideResNet
with ECE = 2.82

(d) Big Transfer
with ECE = 1.41

(e) ViT
with ECE = 0.34

Table 4: Expected Calibration Error in percentage (the lower the better) on CIFAR-10/100 with
respect to each model architecture and confidence measure. Best numbers are highlighted in bold.

CIFAR-10 MSP Mahalanobis Energy
ResNet 3.96 6.33 6.19

DenseNet 2.89 4.81 4.79
WideResNet 2.82 5.16 5.12
Big Transfer 1.41 2.54 1.58

ViT 0.34 1.48 1.15

CIFAR-100 MSP Mahalanobis Energy
ResNet 7.52 21.66 21.54

DenseNet 8.51 22.37 22.37
WideResNet 10.02 24.04 24.03
Big Transfer 2.65 13.07 13.00

ViT 1.70 7.10 7.09

Learned Representation. The analysis of confidence calibration uncovers aforementioned research
questions RQ1 and partly RQ2 from the output perspective. We now consider RQ2 and RQ3 from
the input aspect of learned hidden representations. In particular, we examine the most successful de-
tection approach — Mahalanobis Distance with support of pre-training. In principle, Mahalanobis
Distance fits a class-conditional Gaussian distribution to intermediate features (in our case, the hid-
den representations of the penultimate layer) of training samples of each class. Due to the linear
discriminant analysis assumption, all Gaussian distributions share the same covariance matrix. In
other words, each class c is exactly characterized by the empirical mean µ̂c = 1

Nc

∑
i:yi=c f(xi)

where Nc is the number of training examples in class c and f(·) denotes the output of the penulti-
mate layer. It then becomes evident that Mahalanobis Distance-based detection will deteriorate if
there is a hypothetical class of OOD inputs that also follows the Gaussian distribution with the mean
close to the empirical mean of any training class.

Following the qualitative analysis, we visualize the “closeness” between in-distribution class means
and out-of-distribution class means with CKA similarity heatmaps. Figure 2 indicates the ResNet
empirical mean of class 3 of CIFAR-10 (cat) is close to several classes of SVHN (digit 2, 3, 6,
9) with high CKA similarity around/over 0.8. In contrast, CKA similarity between in- and out-of-
distribution means of pre-trained models Big Transfer and ViT are generally below 0.6. Due to the
“restrictive” representations learned by non-pre-trained models like ResNet, there could be multi-
ple classes of OOD examples that fall close to in-distribution examples. With more generalizable
representations, pre-training dramatically elevates the OOD performance. We also notice that Big
Transfer and ViT seem to reach the best results through different paths. In the heatmap of Big
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Transfer, each OOD class is very weakly similar to all in-distribution classes while ViT learns sharp
representations such that the similarity concentrates on in-distribution class 3.

Figure 2: CKA similarity heatmaps of CIFAR-10 vs. SVHN where the y-axis marks the indices of
CIFAR-10 classes and the x-axis marks the indices of SVHN classes.

(a) ResNet (b) Big Transfer (c) ViT

Figure 3 presents CKA similarity heatmaps of CIFAR-10 vs. CIFAR-100. There are a notable num-
ber of OOD classes close to class 5 (dog) and class 9 (truck) of CIFAR-10 that corrupt Mahalanobis
Distance-based detection, which explains the poor performance on CIFAR-10 vs. CIFAR-100 we
see in table 2. Nevertheless, pre-training mitigates the issue and Mahalanobis Distance resumes to
top the OOD detection. We also observe from CKA similarity heatmaps that there are apparently
much more confusing OOD classes in Big Transfer than in ViT, which explains why FPR95 of ViT
is over 10% lower than Big Transfer even though both are pre-trained models.

Figure 3: CKA similarity heatmaps of CIFAR-10 vs. CIFAR-100 where the y-axis marks the indices
of CIFAR-10 classes and the x-axis marks the indices of the first 25 classes of CIFAR-100.

(a) ResNet (b) Big Transfer (c) ViT

4 RELATED WORK AND DISCUSSIONS

OOD Detection in Neural Networks. Due to the rich literature of OOD detection, we give an
overview of OOD detection techniques that are more related to those evaluated in this work.

Following the baseline work (Hendrycks & Gimpel, 2017), ODIN (Liang et al., 2018) improves on
the baseline by enlarging the softmax score gap between in- and out-of-distribution data with tem-
perature scaling and perturbations to the input images. However, the fine-tuning of hyper-parameters
requires an additional validation dataset, which is not guaranteed to be representative of incoming
OOD samples. So the hyper-parameters including the temperature scalar and the amount of pertur-
bations added to the inputs could potentially overfit to the picked validation dataset. The extreme of
fine-tuning is Outlier Exposure (Hendrycks et al., 2019b) that trains a MSP-based detector with large
“outlier” datasets such as 80 Million Tiny Images (Torralba et al., 2008) and ImageNet-22K (Deng
et al., 2009). We argue Outlier Exposure is impractical for the reason that depending on the spe-
cific classifier, one needs to carefully and laboriously curate the outlier dataset so that there is no
overlapping between in- and out-of-distribution data. A more efficient way as shown is to hand-off
the “exposure” workload to pre-training of the classifier that learns good enough representations for
unsupervised OOD detection.
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As MSP is criticized for giving arbitrarily high predicting score, recent works exploit energy-based
models for OOD detection (Grathwohl et al., 2020; Liu et al., 2020; Lin et al., 2021). Grathwohl
et al. (2020) proposes to reinterpret a classifier as a Joint Energy-based Model (JEM) and apply
JEM to detect OOD samples. Although JEM shows promising results in applications not limited to
OOD detection, there remain concerning issues in reliably training energe-based models. Liu et al.
(2020) directly derives the energy score from the classifier model and avoids the unstable training
problem of JEM. By further fine-tuning the detector with an energy-bounded learning objective,
they obtain the state-of-the-art results on a collection of six OOD datasets. Nevertheless, they also
report Energy Score without fine-tuning underperforms Mahalanobis Distance. We also show in this
work that Mahalanobis Distance with pre-training achieves even better results than Energy Score
with fine-tuning/pre-training. A more recent work (Lin et al., 2021) employs adjusted Energy Score
and intermediate classifier outputs to efficiently detect OOD examples.

Anomaly Detection. Deep learning models are well known to be susceptible to adversarial exam-
ples (Goodfellow et al., 2014) and out-of-distribution examples. Beyond MSP and Energy Score,
the Mahalanobis Distance-based approach can also detect adversarial examples (Lee et al., 2018b),
but detection of adversarial examples is out of scope of our work.

Due to the promising progress in OOD detection, recent works (Ahmed & Courville, 2020; Winkens
et al., 2020) further divide OOD detection to near-OOD tasks and far-OOD tasks depending on how
semantically similar the outliers are to in-distribution examples. In this work, we consider both near-
and far-OOD detection. For example, CIFAR-10 vs. SVHN is a pair of far-OOD datasets because
the digit images in SVHN are semantically dissimilar to object images in CIFAR-10. In contrast,
the pair of CIFAR-10 vs. CIFAR-100 is considered for near-OOD detection since they are both
sourced from the 80 Million Tiny Images dataset and there are semantically similar categories like
(big) truck in CIFAR-10 and pickup truck in CIFAR-100.

Pre-training for OOD Detection. Hendrycks et al. (2019a) demonstrates that pre-training can
improve model robustness and uncertainty estimates. Our work distinguishes from them mainly
in (1) the pre-training scale in Hendrycks et al. (2019a) is limited to a down-sampled version of
ImageNet-1K (Chrabaszcz et al., 2017), which is considerably smaller than the ImageNet-21K pre-
training scale evaluated in this work; (2) they focus on the improvement of AUROC and AUPR
with only MSP-based detection while similar improvement can be reached by a stronger detection
method like Mahalanobis distance. On the contrary, we study more detection methods with emphasis
on FPR95 that is a more practical indicator than AUROC and AUPR; (3) We investigate the impact
of model architectures on OOD detection that is mostly ignored in the literature. We also notice
another more recent work (Fort et al., 2021) that studies pre-trained transformers for OOD detection.
However, they consider far-OOD detection is nearly solved and primarily explore the improvement
of only AUROC from pre-training on near-OOD tasks. Our work with a different goal studies
unsupervised OOD detection more extensively.

We also call on the community to review and refine the definition of OOD detection in the context
of pre-training. It remains unclear whether samples from classes seen in pre-training should be
considered OOD for the downstream classifiers fine-tuned on a different set of classes.

5 CONCLUSION

We revisit the problem of unsupervised OOD detection and propose Sneakoscope, a unified evalu-
ation suite that systematically investigates the performance of different unsupervised OOD detec-
tion methods on classifiers with different model architectures and with and without large-scale pre-
training. Based on the investigation, we propose ways to significantly improve unsupervised OOD
detection methods over prior reported results. For instance, a simple combination of pre-trained
ViT and Mahalanobis Distance in unsupervised mode (no futher fine-tuning of the detector on OOD
data is required) has a low false positive rate (at 95% true positive rate) on CIFAR-10 vs. SVHN of
0.43% versus 67.81% for an unsupervised OOD detector based on Resnet with MSP. These results
compare even favorably with state-of-the-art OOD detectors that require substantial fine-tuning on
OOD data. We thus provide new insights and baselines for unsupervised OOD detection methods.
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A APPENDIX

A.1 OOD RESULTS NOT SHOWN IN THE MAIN BODY

Table 5 presents the rest of OOD detection results with CIFAR-10 as the in-distribution dataset.

Table 6 presents the rest of OOD detection results considering large-scale pre-training with CIFAR-
10 as the in-distribution dataset.

Table 7 presents the full OOD detection results with CIFAR-100 as the in-distribution dataset.

Table 8 presents the full OOD detection results considering large-scale pre-training with CIFAR-100
as the in-distribution dataset.
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Table 5: The rest of OOD detection results in percentage with CIFAR-10 as the in-distribution
dataset. The overall best numbers are in bold.

OOD: F-MNIST MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 93.00 94.37 45.81 94.62 96.04 39.96 95.61 96.09 24.88
DenseNet 97.26 97.87 19.56 95.50 96.65 29.44 99.66 99.70 0.89

Wide-ResNet 95.56 96.58 34.42 96.06 96.92 26.31 99.12 99.23 3.66

OOD: Rademacher Noise MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 89.47 92.78 76.62 97.24 97.92 17.07 89.69 92.70 72.18
DenseNet 97.69 98.40 11.94 100.00 100.00 0.00 98.10 98.93 0.06

Wide-ResNet 94.79 96.26 42.17 100.00 100.00 0.00 72.14 79.98 100.00

OOD: Blobs MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 93.59 95.23 49.44 99.39 99.47 2.61 94.29 95.46 36.49
DenseNet 64.05 66.11 96.88 99.71 99.80 0.02 48.17 53.00 99.39

Wide-ResNet 94.60 95.80 39.66 99.79 99.83 0.29 96.91 97.40 15.68

Table 6: Consider large-scale pre-training. The rest of OOD detection results in percentage with
CIFAR-10 as the in-distribution dataset. The overall best numbers are in bold.

OOD: F-MNIST MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 93.00 94.37 45.81 94.62 96.04 39.96 95.61 96.09 24.88
Big Transfer 89.98 81.14 20.48 99.66 99.70 1.11 86.26 75.09 25.60

ViT 98.03 98.05 9.53 99.38 99.44 3.42 98.16 98.08 8.15

OOD: Rademacher Noise MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 93.60 95.79 57.10 99.29 99.48 0.99 93.21 95.66 60.15
Big Transfer 97.10 96.15 9.30 100.00 100.00 0.00 92.48 89.14 24.86

ViT 99.98 99.99 0.00 99.99 99.99 0.00 99.99 99.99 0.00

OOD: Blobs MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 93.59 95.23 49.44 99.39 99.47 2.61 94.29 95.46 36.49
Big Transfer 99.45 99.52 0.83 100.00 100.00 0.00 99.09 99.15 2.45

ViT 98.99 99.22 2.44 99.90 99.92 0.00 99.58 99.64 0.22
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Table 7: The full OOD detection results in percentage with CIFAR-100 as the in-distribution dataset.
The overall best numbers are in bold.

OOD: SVHN MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 79.34 65.86 80.12 89.41 83.59 56.80 79.19 64.04 82.18
DenseNet 82.64 75.09 73.76 85.96 71.72 54.70 87.91 81.86 65.52

WideResNet 71.38 57.79 84.35 90.45 82.18 44.01 73.87 60.50 85.61

OOD: Textures MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 77.89 86.43 78.69 81.24 88.50 72.66 79.13 86.85 76.76
DenseNet 72.62 80.84 81.47 90.04 92.53 31.88 74.03 78.85 78.78

WideResNet 73.59 83.12 83.28 90.76 94.36 40.12 76.35 84.47 79.65

OOD: CIFAR-10 MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 78.24 81.40 79.91 78.28 79.24 79.94 78.35 81.19 81.52
DenseNet 76.67 80.67 80.20 50.24 56.80 98.81 77.09 78.98 81.50

WideResNet 76.36 80.49 80.58 69.40 72.51 92.11 79.11 82.10 78.09

OOD: F-MNIST MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 86.97 88.99 62.97 91.68 93.21 49.57 88.28 89.86 60.61
DenseNet 92.67 93.27 35.09 90.12 92.69 63.59 99.00 99.02 5.26

WideResNet 93.68 94.32 33.00 70.93 80.15 98.68 99.28 99.31 3.54

OOD: Gaussian MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 66.75 78.30 100.00 65.05 79.28 100.00 67.21 78.38 100.00
DenseNet 86.41 90.65 82.74 100.00 100.00 0.00 95.18 97.03 41.77

WideResNet 64.42 76.01 99.87 100.00 100.00 0.00 43.33 61.56 100.00

OOD: Rademacher Noise MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 69.71 80.25 99.51 88.08 92.30 85.68 74.03 82.38 99.19
DenseNet 51.92 69.34 100.00 100.00 100.00 0.00 67.29 79.65 100.00

WideResNet 79.21 85.91 97.64 100.00 100.00 0.00 42.80 60.54 100.00

OOD: Blobs MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 90.11 92.28 59.06 90.59 93.55 69.77 90.40 92.16 54.94
DenseNet 88.01 90.46 61.32 98.19 98.90 1.50 88.06 91.97 88.00

WideResNet 75.35 80.03 89.30 99.92 99.92 0.09 51.18 61.15 100.00
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Table 8: Consider large-scale pre-training. The full OOD detection results in percentage with
CIFAR-100 as the in-distribution dataset. The overall best numbers are in bold.

OOD: SVHN MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 79.34 65.86 80.12 89.41 83.59 56.80 79.19 64.04 82.18
Big Transfer 92.68 86.64 39.88 99.35 98.81 1.84 93.51 86.01 31.85

ViT 92.55 84.89 36.37 98.02 96.00 8.12 96.58 92.03 14.63

OOD: Texture MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 77.89 86.43 78.69 81.24 88.50 72.66 79.13 86.85 76.76
Big Transfer 90.52 94.04 47.50 100.00 100.00 0.00 86.76 90.80 59.77

ViT 96.42 97.91 19.91 99.31 99.58 2.45 99.02 99.43 4.91

OOD: CIFAR-10 MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 78.24 81.40 79.91 78.28 79.24 79.94 78.35 81.19 81.52
Big Transfer 84.00 84.46 61.37 77.16 78.95 80.31 82.23 82.01 62.36

ViT 93.28 93.89 32.98 97.27 97.57 14.04 96.23 96.22 16.90

OOD: F-MNIST MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 86.97 88.99 62.97 91.68 93.21 49.57 88.28 89.86 60.61
Big Transfer 89.86 88.01 43.91 93.50 94.97 40.14 84.99 81.23 55.66

ViT 97.68 97.83 13.19 99.39 99.49 2.03 99.21 99.28 3.14

OOD: Gaussian MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 66.75 78.30 100.00 65.05 79.28 100.00 67.21 78.38 100.00
Big Transfer 95.07 96.00 30.66 100.00 100.00 0.00 94.56 95.50 31.98

ViT 99.79 99.84 0.05 99.94 99.97 0.00 99.97 99.98 0.00

OOD: Rademacher Noise MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 69.71 80.25 99.51 88.08 92.30 85.68 74.03 82.38 99.19
Big Transfer 94.80 95.78 32.86 100.00 100.00 0.00 94.38 95.29 32.70

ViT 99.99 99.99 0.00 99.94 99.97 0.00 99.99 99.99 0.00

OOD: Blobs MSP Mahalanobis Energy
AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓ AUROC ↑ AUPR ↑ FPR95 ↓

ResNet 90.11 92.28 59.06 90.59 93.55 69.77 90.40 92.16 54.94
Big Transfer 94.76 95.76 32.21 100.00 100.00 0.00 91.97 93.30 50.57

ViT 99.96 99.97 0.01 99.97 99.98 0.00 99.98 99.99 0.00
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A.2 OTHER OBSERVATIONS

Synthetic OOD Examples. Beyond realistic OOD inputs, we also evaluate the robustness of OOD
detection against synthetic noise. MSP and Energy Score are highly susceptible to noise regardless
of model architectures. On the contrary, Mahalanobis Distance is immune to synthetic noise even
without pre-training except in the case of ResNet.

Unstable Energy Score. When comparing results of Energy Score with those reported in Liu et al.
(2020), we notice a more than 15% discrepancy of AUPR in the setting of CIFAR-10 vs. Textures
using WideResNet. We use their released code and the same pre-trained model (the one without
energy-based fine-tuning)6, but different base ratios of in-distribution data and OOD data. In fact,
Liu et al. (2020) followed the setup in Hendrycks et al. (2019b) and set the number of OOD ex-
amples as 1

5 of in-distribution examples. As Energy Score can unexpectedly fluctuate and AUPR
is sensitive to base ratios of positive and negative examples, AUPR drops from 97.67% to 79.22%
once we use all of the OOD samples in evaluation. In contrast, MSP and Mahalanobis Distance are
not affected by the change of base ratios. The issue of Energy Score being unstable is also observed
by Lin et al. (2021) but in a different scenario.

6https://github.com/wetliu/energy_ood
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