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ABSTRACT

In this paper, we introduce UltraLightUNet (2D and 3D), an ultra-lightweight,
multi-kernel U-shaped network for medical image segmentation. The core of Ul-
traLightUNet consists of a new Multi-kernel Inverted Residual (MKIR) block,
which can efficiently process images through multiple kernels while capturing
complex spatial relationships. Additionally, our Multi-kernel Inverted Resid-
ual Attention (MKIRA) block refines and emphasizes image salient features via
sophisticated convolutional multi-focal attention mechanisms. UltraLightUNet
strategically employs the MKIR block in the encoder for feature extraction and
the MKIRA block in the decoder for feature refinement, thus ensuring targeted
feature enhancement at each stage. With only 0.316M #Params and 0.314G
#FLOPs, UltraLightUNet offers an ultra-lightweight yet powerful segmentation
solution that outperforms state-of-the-art (SOTA) methods across twelve medical
imaging benchmarks. Notably, UltraLightUNet surpasses TransUNet on DICE
score while using 333× fewer #Params and 123× fewer #FLOPs. Compared
to the lightweight model, UNeXt, UltraLightUNet improves DICE scores by
up to 6.7% with 4.7× fewer parameters. UltraLightUNet also outperforms re-
cent lightweight models such as MedT, CMUNeXt, EGE-UNet, Rolling-UNet,
and UltraLight VM UNet, while using significantly fewer #Params and #FLOPs.
Furthermore, our 3D version, UltraLightUNet3D-M (1.42M #Params and 7.1G
#FLOPs), outperforms SwinUNETR (62.19M #Params, 328.6G #FLOPs) and
nn-UNet (31.2M #Params, 110.4G #FLOPs) on the FETA, MSD Brain Tumor,
Prostate, and Lung Cancer segmentation benchmarks. This remarkable perfor-
mance, combined with substantial computational gains, makes UltraLightUNet
an ideal solution for real-time and point-of-care services in resource-constrained
environments. We will make the code publicly available upon paper acceptance.

1 INTRODUCTION

The field of medical image segmentation has been revolutionized through the development of U-
shaped convolutional neural network (CNN) architectures (Ronneberger et al., 2015; Oktay et al.,
2018; Zhou et al., 2018; Fan et al., 2020) such as UNet (Ronneberger et al., 2015), ResUNet (Zhang
et al., 2018), UNet++ (Zhou et al., 2018), AttnUNet (Oktay et al., 2018), PraNet (Fan et al., 2020),
UACANet (Kim et al., 2021), DeepLabv3+ (Chen et al., 2017), and ACC-UNet (Ibtehaz & Ki-
hara, 2023). These models excel at segmenting medical images, thus enabling precise segmentation
of critical areas like tumors, lesions, or polyps. The attention mechanisms (Oktay et al., 2018;
Fan et al., 2020; Woo et al., 2018) integrated into these architectures help refine the feature maps,
thus enhancing pixel-level classification. However, the substantial computational demands of these
models, including those with attention mechanisms, limit their applicability in resource-constrained
environments such as point-of-care diagnostics.

The introduction of vision transformers (Chen et al., 2021; Cao et al., 2021; Rahman & Marculescu,
2023b; Valanarasu et al., 2021), including TransUNet (Chen et al., 2021), SwinUNet (Cao et al.,
2021), MedT (Valanarasu et al., 2021), EMCAD (Rahman et al., 2024), and DeformableLKA (Azad
et al., 2024), marked a shift towards leveraging self-attention to capture long-range dependencies
within images for a comprehensive global view. However, transformers tend to neglect crucial local
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spatial relationships among pixels which are essential for precise segmentation. Moreover, trans-
formers usually have high memory and computational demands for calculation and fusing attention
with convolutional mechanisms, which limits their practical uses.

In recent years, a good number of lightweight architectures such as MobileNets (Howard et al.,
2017; Sandler et al., 2018), UNeXt (Valanarasu & Patel, 2022), CMUNeXt (Tang et al., 2023),
MALUNet (Ruan et al., 2022), EGE-UNet (Ruan et al., 2023), Rolling-UNet (Liu et al., 2024),
and UltraLight VM-UNet (Wu et al., 2024), helped bridge this gap by combining the strengths of
CNNs and/or multi-layer perceptrons (MLPs). However, most of these architectures are designed
for less complex or easy-to-segment applications such as skin lesions, breast cancer with ultrasound,
and microscopic cell nuclei/structure segmentation. Consequently, these architectures show poor
performance in challenging applications like polyp segmentation due to the high variability in the
shape, size, and texture of polyps.

Aiming to improve segmentation performance and accuracy, several 3D medical image segmen-
tation networks have been also introduced, such as 3D U-Net (Çiçek et al., 2016), SwinUNETR
(Hatamizadeh et al., 2021), 3D UX-NET (Lee et al., 2022), UNETR (Hatamizadeh et al., 2022),
nn-UNet (Isensee et al., 2021), and nn-Former (Zhou et al., 2021). However, the high computa-
tional demands (particularly the large #FLOPs and significant memory consumption) of these 3D
networks, make it challenging to implement them in clinical settings. Recently, SlimUNTER (Pang
et al., 2023) introduces a lightweight architecture, however, with the cost of significantly low seg-
mentation accuracy. These limitations highlight the need for extremely lightweight models that
can deliver highly accurate segmentation while being practical for use in real-time, particularly in
resource-constrained settings.

Aiming to extreme lightweight efficiency for both 2D and 3D medical image segmentation in
resource-constraint settings, we design UltraLightUNet, a significant breakthrough in medical im-
age segmentation, which leverages multi-kernel (i.e., k1 = k2 or k1 ̸= k2 for k1, k2 ∈ Kernels)
lightweight convolutions. Our lightweight convolution blocks drastically reduce the computational
cost, making the network ultra-lightweight without sacrificing the ability to capture detailed fea-
tures within an image. Additionally, our multi-kernel property enables the model to effectively
handle feature representations at same or varying receptive fields, thus allowing for a more robust
and comprehensive analysis of complex images in diverse applications. Moreover, by incorporat-
ing sophisticated convolutional multi-focal attention mechanisms only in our decoder further refines
the feature maps by capturing the image salient features. We note that our network is effective for
segmentation in both scenarios, whether the regions of interest vary significantly in size and shape
or remain relatively uniform. By integrating these new ideas, UltraLightUNet achieves a fine bal-
ance between computational efficiency and segmentation accuracy, thus offering an ultra-lightweight
model that not only surpasses the performance of heavyweight counterparts (in DICE scores), but it
does so with significantly fewer #Params and #FLOPs. Our contributions are as follows:

• New Ultra Lightweight UNet: We propose a new end-to-end network, UltraLigh-
tUNet, for both 2D and 3D medical image segmentation, which encodes an image using
lightweight multi-kernel convolutions. UltraLightUNet also progressively refines the multi-
resolution spatial representations using multi-kernel convolutional attention. Of note, our
UltraLightUNet-T has only 0.027M and 0.062G #Params and #FLOPs, respectively, yet
provides SOTA performance. Moreover, UltraLightUNet has only 0.316M #Params and
0.314G #FLOPs. The extremely low model size (#Params) and computations (#FLOPs)
make our UltraLightUNet easy to deploy in point-of-care diagnostics or resource-constraint
environments (e.g., mobile or edge devices).

• Lightweight Multi-kernel Inverted Residual: We introduce MKIR, a new Multi-Kernel
Inverted Residual block that performs depth-wise convolutions with multiple kernels (i.e.,
k1 = k2 or k1 ̸= k2, for k1, k2 ∈ Kernels). Our encoder extracts features using the MKIR
block; this choice is motivated by the need to efficiently process and encode diverse and
complex structures in medical images, thus providing a rich representation with minimal
computational costs.

• Lightweight Multi-kernel Inverted Residual Attention: We propose Multi-Kernel In-
verted Residual Attention (MKIRA), a new block to refine and enhance multi-scale salient
features by suppressing irrelevant regions. In our decoder, MKIRA enhances features dis-
crimination by focusing on key feature channels and highlighting the important spatial
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(a) Average DICE scores vs. #Params (b) Average DICE scores vs. #FLOPs

Figure 1: Comparison of our UltraLightUNet against different SOTA methods over six binary med-
ical image segmentation datasets. As shown, UltraLightUNet has the third lowest #Params and
#FLOPs (behind EGE-UNet (Ruan et al., 2023), UltaLight VM UNet (Wu et al., 2024)), yet the
highest DICE scores. However, our UltraLightUNet-T achieves significantly better DICE score than
EGE-UNet and UltraLight VM UNet, with much lower #Params and comparable #FLOPs.

regions in an image. This ensures that the decoder can reconstruct precise and accurate
segmentation maps by focusing only on the most critical aspects of the encoded features.

• Improved Performance across Various Datasets: Our experiments evident that Ultra-
LightUNet significantly improves the performance of medical image segmentation com-
pared to SOTA models with an extreme efficiency (as shown in Fig. 1) on twelve medical
image segmentation datasets (e.g., BUSI, ClinicDB, ColonDB, ISIC2018, DSB2018, EM,
Synapse, ACDC, FETA, MSD BrainTumour, Prostate, and Lung) that belong to ten dif-
ferent segmentation tasks (e.g., breast cancer, polyp, skin lesion, cell, abdomen organs,
cardiac organs, brain organs, brain tumor, prostate, and lung cancer).

The remaining of this paper is organized as follows: Section 2 summarizes related work. Section 3
describes our proposed method. Section 4 explains our experimental setup and results on multiple
medical image segmentation benchmarks. Section 5 covers different ablation experiments. Lastly,
Section 6 concludes the paper by summarizing our findings.

2 RELATED WORK

2.1 CONVOLUTIONAL NEURAL NETWORKS (CNNS)

The advent of CNNs marks a significant shift in medical image segmentation (Ronneberger et al.,
2015; Oktay et al., 2018; Zhou et al., 2018; Fan et al., 2020; Kim et al., 2021; Chen et al., 2017; Ibte-
haz & Kihara, 2023). Pioneering works such as Fully Convolutional Networks (FCNs) (Long et al.,
2015) laid the foundation for end-to-end segmentation models. FCNs replace fully connected lay-
ers with convolutional layers, thus enabling pixel-wise predictions and efficient learning of spatial
hierarchies in images. Afterward, U-Net (Ronneberger et al., 2015) became a key model in medical
image segmentation due to its encoder-decoder architecture with skip connections. U-Net effec-
tively combines the high-resolution features from the encoder with the context information from
the decoder, hence leading to precise segmentations even with limited training data. The sophisti-
cated design of U-shaped architecture for pixel-level segmentation tasks motivates us to choose the
U-shaped design in our proposed network.

U-Net’s success has inspired numerous variants and improvements. Inspired by residual learning in
ResNet (He et al., 2016), ResUNet (Zhang et al., 2018) employs residual blocks to facilitate gradient
flow and improve convergence, addressing the vanishing gradient problem in deep networks. Zhou
et al. (2018) introduce UNet++, which uses nested and dense skip connections to further enhance the
feature propagation and improve the segmentation accuracy. AttnUNet (Oktay et al., 2018) incorpo-
rates attention mechanisms that focus on the relevant regions in the feature maps, thus enhancing the
segmentation performance by suppressing irrelevant background noise. Fan et al. (2020) introduce
PraNet for precise polyp segmentation by employing parallel reverse attention and edge-guidance to
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refine segmentation boundaries. UACANet (Kim et al., 2021) leverages uncertainty-aware mecha-
nisms to improve the reliability and robustness of segmentation outcomes. DeepLabv3+ (Chen et al.,
2017) integrates atrous convolutions and spatial pyramid pooling to capture multi-scale context in-
formation. ACC-UNet (Ibtehaz & Kihara, 2023) employs adaptive context capture mechanisms to
dynamically adjust the receptive fields based on the input image.

2.2 VISION TRANSFORMERS

Vision Transformers (ViTs) (Dosovitskiy et al., 2020; Liu et al., 2021) have emerged as a power-
ful alternative to CNNs, i.e., a new paradigm for medical image analysis tasks that leverages the
self-attention mechanism (Chen et al., 2021; Cao et al., 2021; Rahman et al., 2024; Rahman &
Marculescu, 2023a; Valanarasu et al., 2021). Moreover, by combining the strengths of CNNs for
local feature extraction and Transformers for capturing long-range dependencies, TransUNet (Chen
et al., 2021) achieves superior performance in medical image segmentation. SwinUNet (Cao et al.,
2021) is introduced based on the Swin Transformer (Liu et al., 2021) architecture, which utilizes
shifted windows to achieve hierarchical feature representation, enabling efficient computation. Rah-
man et al. introduces, CASCADE (Rahman & Marculescu, 2023a), a cascaded-attention decoding
network using standard convolutions. Recently, EMCAD (Rahman et al., 2024) introduces a depth-
wise convolutions-based multi-scale decoder. Although, CASCADE and EMCAD perform well in
medical image segmentation, their segmentation accuracy and computational complexity solely de-
pend on the strength and complexity of the exiting pretrained transformer encoder they use, thus
making them less suitable for resource-constrained settings. In contrast, we propose to design an
extremely efficient (ultra-lightweight) end-to-end (both encoder and decoder) architecture using the
multi-kernel trick (where, k1 = k2 or k1 ̸= k2 for k1, k2 ∈ Kernels) with depthwise convolutions.

2.3 LIGHTWEIGHT NETWORKS

Recent efforts have focused on making CNNs more efficient for real-time and resource-constrained
environments. MobileNets (Howard et al., 2017) and EfficientNets (Tan & Le, 2019) introduce
depthwise separable convolutions and compound scaling, respectively, to create lightweight mod-
els with competitive performance. Additionally, several novel lightweight architectures have been
developed to further enhance the efficiency of medical image segmentation (Valanarasu & Patel,
2022; Tang et al., 2023; Ruan et al., 2023; Liu et al., 2024; Yang et al., 2023; Lin et al., 2023b).
UNeXt (Valanarasu & Patel, 2022) leverages hybrid convolutional and transformer blocks to cap-
ture both local and global features efficiently, improving segmentation accuracy while maintaining
computational efficiency. CMUNeXt (Tang et al., 2023) combines convolutional and multi-scale
features to enhance segmentation performance. EGE-UNet (Ruan et al., 2023) integrates edge-
guided mechanisms to refine segmentation boundaries. Rolling-UNet (Liu et al., 2024) incorporates
rolling convolutional blocks to enhance the model’s ability to capture long-range dependencies.

2.4 3D NETWORKS

Recent advancements in 3D medical image segmentation have introduced several techniques to im-
prove performance, though many face challenges related to computational and memory efficiency.
3D U-Net (Çiçek et al., 2016) is a widely-used U-shaped network, but suffers from high #FLOPs
and memory usage. nn-UNet (Isensee et al., 2021) automates the architecture optimization for spe-
cific datasets, but still remains resource-intensive. Transformer-based models like nn-Former (Zhou
et al., 2021), UNETR (Hatamizadeh et al., 2022), and SwinUNETR (Hatamizadeh et al., 2021)
capture global dependencies, but are computationally heavy. Recently, mimicking the large-kernel
depthwise convolutions in ConvNeXt (Liu et al., 2022) for global feature representation (like trans-
formers), 3D UX-Net (Lee et al., 2022) introduces a lightweight encoder using the 3D large-kernel
depthwise convolutions to improve global feature learning. However, 3D UX-Net has high compu-
tational costs due to using the existing heavyweight UNETR decoder (Hatamizadeh et al., 2022).
Recently, SlimUNETR (Azad et al., 2024) introduces a lightweight 3D network for volumetric seg-
mentation. However, SlimUNETR performs poorly on complex datasets. In contrast, we propose to
design an ultra-lightweight 3D network without compromising the segmentation accuracy.
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Figure 2: The proposed network. (a) UltraLightUNet network (b) Multi-kernel inverted residual at-
tention (MKIRA), (c) Multi-kernel inverted residual (MKIR), (d) Multi-kernel (parallel) depth-wise
convolution (MKDC), (e) Grouped attention gate (GAG), (f) Convolutional multi-focal attention
(CMFA). We propose the 3D version of all the above modules (b-f) for volumetric context extrac-
tion, and design our UltraLightUNet3D network for volumetric segmentation.

3 METHOD

We introduce next our Multi-Kernel Inverted Residual (MKIR), Convolutional Multi-focal Attention
(CMFA), Multi-Kernel Inverted Residual Attention (MKIRA) and Grouped Attention Gate (GAG)
blocks. Then, we introduce our complete UltraLightUNet architecture by integrating these new
blocks into the UNeXt (Valanarasu & Patel, 2022) (Fig. 2a in green box).

3.1 MULTI-KERNEL INVERTED RESIDUAL (MKIR)

We first introduce the multi-kernel inverted residual (MKIR) block to generate and refine feature
maps (Fig. 2c). By utilizing multiple (same or different) kernel sizes, MKIR allows for better
understanding of both fine-grained details and broader contexts, thereby enabling a comprehensive
representation of the input. As shown in Fig. 2c, the process begins by expanding the #channels
(i.e., expansion factor = 2) through point-wise convolution PWC1, batch normalization BN (Ioffe
& Szegedy, 2015), and ReLU6 activation (Krizhevsky & Hinton, 2010). This is followed by multi-
kernel depth-wise convolution MKDC for capturing application-specific complex spatial contexts.
A subsequent point-wise convolution PWC2 and BN restore the original #channels. The MKIR
(Equation 1) significantly reduces the computational cost while ensuring rich feature representation:

MKIR(x) = BN(PWC2(MKDC(ReLU6(BN(PWC1(x)))))) (1)

where MKDC for multiple kernels (K) is defined in Equation 2 and Fig. 2d:

MKDC(x) = CS(
∑

k∈K DWCBk(x)) (2)

where DWCBk(x) = ReLU6(BN(DWCk(x))). Here, DWCk(.) is a depth-wise convolution
with the kernel k × k. To address the channel independence in depth-wise convolution, a channel
shuffle (CS) is used to ensure the inter-channel information flow. Our MKDC(.) differs from
MSCB (in EMCAD (Rahman et al., 2024)) in their core theoretical concepts. Our multi-kernel
trick supports both k1 = k2 (same-size kernels) and k1 ̸= k2 (different-size kernels) for k1, k2 ∈ K
versus conventional multi-scale (only k1 ̸= k2) designs (Rahman et al., 2024; Lin et al., 2023a;
Seo et al., 2022), thus allowing adaptable context extraction. This conceptual distinction allows
UltraLightUNet to adapt kernel sizes based on application-specific needs (e.g., large kernels for
large objects, small kernels for small objects, or mixed for both objects segmentation).
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3.2 CONVOLUTIONAL MULTI-FOCAL ATTENTION (CMFA)

Our CMFA (Fig. 2f) leverages a unified attention mechanism that effectively captures both channel-
wise and spatial features (Rahman & Marculescu, 2023a), thereby optimizing the network ability
to focus on critical aspects of the image while suppressing irrelevant details. We first enhance the
relevant channels by applying both adaptive max pooling (AMP ) and average pooling (AAP ) to
condense spatial information, which allows the network to maintain robustness to variations in local
structures. The pooled outputs are then passed through a series of point-wise convolutions (PWC)
to reduce (r = 16) dimensions and are activated by ReLU (Nair & Hinton, 2010), followed by a
second PWC layer for expansion. The Sigmoid activation generates the attention weights, which
are then multiplied element-wise (⊛) with the input, thus emphasizing the important channels. This
attention process is defined in Equation 3:

CA(x) = Sigmoid(PWC2(ReLU(PWC1(AMP (x)))) + PWC2(ReLU(PWC1(AAP (x)))))⊛ x (3)

Subsequently, to capture the spatial dependencies and refine the feature maps further, we ap-
ply pooling operations across channels to generate two spatial descriptors: Channelmax(x) and
Channelavg(x). By applying a large-kernel convolution (LKC) to the concatenated pooled values,
we capture contextual relationships across a broader spatial context, thus reinforcing the network
focus on important regions of an image. The refined feature maps are derived as Equation 4:

SA(x) = Sigmoid(LKC([Channelmax(x), Channelavg(x)]))⊛ x (4)

In essence, combining both mean and max pooling helps balance the focus between high-intensity
(max) regions and overall feature consistency (mean). Similarly, the integration of both channel
and spatial attention facilitates precise reconstruction and segmentation, even in complex scenarios,
thereby leading to improved segmentation performance.

3.3 MULTI-KERNEL INVERTED RESIDUAL ATTENTION (MKIRA)

Our new MKIRA block (Fig. 2b) effectively refines the feature maps by leveraging a convolutional
multi-focal attention mechanism (CMFA) and a multi-kernel inverted residuals (MKIR). The use
of CMFA enhances the network ability to focus on critical channels and spatial regions, thereby
ensuring that the most salient features are enhanced (see the CMFA activation heatmaps in Fig. 3
in Appendix). This dual attention mechanism aids in improving feature discrimination and rep-
resentation, especially in challenging scenarios where important structures may vary significantly.
Additionally, the incorporation of the MKIR block further enriches the feature maps by capturing
contextual relationships through multiple kernels (see the MKIRA activation heatmaps in Fig. 3).
Taken together, these components enable the network to maintain high accuracy while minimizing
the computational overhead. MKIRA is given in Equation 5:

MKIRA(x) = MKIR(CMFA(x)) (5)

3.4 GROUPED ATTENTION GATE (GAG)

We design a new grouped attention gate (GAG, Fig. 2e) that mixes the feature maps with the
attention coefficients for enhancing the relevant features and suppressing the irrelevant ones. By
utilizing a gating signal from higher-resolution features, GAG directs the information flow, thus
improving medical image segmentation accuracy. Unlike Attention UNet (Oktay et al., 2018), which
processes signals with 1 × 1 convolution, our method applies 3 × 3 group convolutions to both
gating (g) and input (x) feature maps separately. After convolution, the features undergo batch
normalization (BN ) and get combined via addition, followed by ReLU activation. Subsequently,
a 1 × 1 convolution and batch normalization (BN ) produce a unified feature map which, after the
Sigmoid activation (σ), generates the attention coefficients. These coefficients adjust the input
feature x, and create an attention-enhanced output. GAG is defined in Equations 6:
GAG(g, x) = x⊛ σ(BN(Conv(ReLU(BN(GroupConvg(g) +BN(GroupConvx(x))))))))) (6)

3.5 ULTRALIGHTUNET

Our complete UltraLightUNet architecture employs multi-kernel convolutions across five encoding
and decoding stages to generate high-resolution segmentation maps, as depicted in Fig. 2a. Each
encoding stage uses an MKIR block to produce Ci feature maps, followed by max pooling for down-
sampling while retaining crucial information. The output from the final encoding (bottleneck) stage
passes through an MKIRA block in the decoder initial stage, significantly refining the feature maps
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Table 1: Results of binary (breast cancer, skin lesion, polyp, and cell) segmentation. We reproduce
the results of SOTA methods using their publicly available implementations with our 80:10:10 train-
val-test splits. FLOPs of all the methods are reported for 256 × 256 inputs. The FLOPs of all
methods for polyp segmentation with 352 × 352 inputs will be higher. We report the DICE scores
(%) averaging over five runs, thus having 1-4% standard deviations. Best results are shown in bold.

Architecture Pretrain #Params FLOPs BUSI ISIC18 Polyp Cell Avg.Clinic Colon DSB18 EM

UNet (Ronneberger et al., 2015) No 34.53M 65.53G 74.04 86.67 91.43 83.95 92.23 95.36 87.28
ResUNet (Zhang et al., 2018) No 62.74M 94.56G 74.12 86.75 91.46 84.02 92.16 95.32 87.31
UNet++ (Zhou et al., 2018) No 9.16M 34.65G 74.76 87.46 91.52 87.88 91.97 95.38 88.16
AttnUNet (Oktay et al., 2018) No 34.88M 66.64G 74.48 87.05 91.50 86.46 92.22 95.45 87.86
DeepLabv3+ (Chen et al., 2017) Yes 39.76M 14.92G 76.81 88.64 92.46 89.86 92.14 94.96 89.15
PraNet (Fan et al., 2020) Yes 32.55M 6.93G 75.14 88.46 91.71 89.16 89.89 92.37 87.79
UACANet (Kim et al., 2021) Yes 69.16M 31.51G 76.96 88.72 93.29 89.76 88.86 89.28 87.81
TransUNet (Chen et al., 2021) Yes 105.32M 38.52G 78.01 89.04 93.18 89.97 92.04 95.27 89.59
SwinUNet (Cao et al., 2021) Yes 27.17M 6.2G 77.38 88.66 92.42 89.07 91.03 94.47 88.84
ACC-UNet (Ibtehaz & Kihara, 2023) No 16.8M 38.0G 77.02 88.57 92.56 89.13 90.05 94.67 88.67
DeformableLKA (Azad et al., 2024) No 102.76M 26.03G 74.62 88.17 91.05 85.93 92.12 94.45 87.72
Rolling-UNet-S (Liu et al., 2024) No 1.78M 2.1G 76.38 87.35 90.23 82.48 92.50 95.23 87.36
MedT (Valanarasu et al., 2021) No 1.57M 1.95G 69.23 86.78 83.44 68.90 92.28 93.87 82.42
UNeXt (Valanarasu & Patel, 2022) No 1.47M 0.57G 74.71 87.78 90.20 83.84 86.01 93.81 86.06
CMUNeXt (Tang et al., 2023) No 0.418M 1.09G 77.34 87.51 92.82 83.85 92.58 95.38 88.25
UltraLightUNet (Ours) No 0.316M 0.314G 78.04 88.74 93.48 90.01 92.71 95.52 89.75
UltraLightUNet-S (Ours) No 0.093M 0.125G 77.26 88.57 92.31 88.78 92.45 95.22 89.10

EGE-UNet (Ruan et al., 2023) No 0.054M 0.072G 71.34 86.95 84.76 76.03 90.10 93.76 83.82
UltraLight VM UNet (Wu et al., 2024) No 0.050M 0.060G 72.31 87.85 87.11 80.06 91.88 93.96 85.53
UltraLightUNet-T (Ours) No 0.027M 0.062G 75.64 88.19 91.26 85.03 92.38 94.69 87.87

by emphasizing and grouping relevant pixels. These are then upsampled using bilinear interpolation
for subsequent decoding stages. Decoder stages integrate skip-connections with refined features
using a GAG followed by additive aggregation. The resultant feature maps are refined through the
MKIRA block and up-sampled (only bilinear 2×, no convolutions) to align with the later stages.

The segmentation head (SH) at the last stage outputs the segmentation map p. We obtain the final
segmentation output by employing a Sigmoid on p for binary segmentation or a Softmax for
multi-class segmentation. We optimize the loss of only the prediction p for all segmentation tasks.

We directly extended our UltraLightUNet architecture to UltraLightUNet3D for 3D medical image
segmentation by replacing all 2D operations (such as Conv2d, BatchNorm2d, and channel shuffle)
with their corresponding 3D operations. This adaptation allows the network to capture the volumet-
ric features and spatial relationships inherent in 3D medical imaging data. Therefore, our MKDC
is extended to MKDC3D, thus enabling our network to process complex volumetric features more
efficiently across different layers in a 3D space. Additionally, attention mechanisms such as channel
attention (CA) and spatial attention (SA) are adapted to focus on relevant 3D regions to enhance
feature discrimination and segmentation accuracy.

Note: The different versions of our network (UltraLightUNet-T (Tiny), UltraLightUNet-S (Small),
UltraLightUNet (Base), UltraLightUNet-M (Medium), and UltraLightUNet-L (Large)) are distin-
guished by the number of channels used in the five stages of our network (see Tables 9, and 10).

4 EXPERIMENTS AND RESULTS

The implementation details, binary segmentation results, multi-class segmentation results, and 3D
segmentation results are described below. The dataset description, evaluation metrics, and more
results including qualitative are provided in the Appendix A.1, A.2, and A.9-A.13, respectively.

4.1 IMPLEMENTATION DETAILS

Our networks are developed and evaluated using Pytorch 1.11.0, operating on a single NVIDIA
RTX A6000 GPU equipped with 48GB of RAM. We utilize multi-scale kernels [1, 3, 5] within
our MKDC, based on an ablation study. The architecture employs a series of parallel depth-
wise convolutions in the UltraLightUNet network, standardizing on channel configurations of
[16, 32, 64, 96, 160] across all experiments, unless specified otherwise. Model optimization is
achieved via the AdamW (Loshchilov & Hutter, 2017) optimizer. The dataset specific imple-
mentation details are in Appendix A.3.
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4.2 RESULTS ON BINARY SEGMENTATION

Table 1 and Fig. 1 compare our UltraLightUNet with SOTA CNNs and Transformers on six datasets
for four binary medical segmentation tasks. Our UltraLightUNet achieves the top average DICE
score of 89.75% with an ultra-lightweight footprint of only 0.316M #Params and 0.314G #FLOPs.
Our UltraLightUNet-T with 0.027M #Params and 0.062G #FLOPs, outperforms the existing tiny
model EGE-UNet (Ruan et al., 2023) by on an average 5.93% DICE score over six datasets. The
multi-kernel inverted residuals, alongside convolutional multi-focal attention mechanisms, play a
crucial role in these strong results. The UltraLightUNet’s performance on different datasets high-
lights its superior ability to balance accuracy with computational efficiency, setting a new benchmark
for point-of-care services. The quantitative results of four different tasks are described next.

Breast cancer segmentation: Our UltraLightUNet shows superior performance on the BUSI
dataset (Al-Dhabyani et al., 2020) with a DICE score of 78.04% by segmenting complex breast can-
cer lesions with diverse appearances. UltraLightUNet achieves comparable results with far fewer
#Params and #FLOPs compared to heavyweight networks like TransUNet (78.01%) and SwinUNet
(77.38%). Against lightweight networks such as UNeXt (74.71%), UltraLightUNet shows a 3.3%
improvement with 4.7× lower #Params. Additionally, compared to ultra-lightweight networks like
EGE-UNet (71.34%), UltraLightUNet exhibits 6.7% higher DICE scores.

Skin lesion segmentation: UltraLightUNet outperforms most SOTA methods on the ISIC18 dataset
(Codella et al., 2019) with a DICE score of 88.74% by effectively handling the diverse lesion
shapes and sizes in ISIC18. Among heavyweight networks, UltraLightUNet achieves compa-
rable performance to TransUNet (89.04%) and DeepLabv3+ (88.64%) with significantly fewer
#Params and FLOPs. Compared to lightweight networks like UNeXt (87.78%) and Roling-UNet-S
(87.35%), UltraLightUNet shows a 1.0-1.4% improvement with 4.7× and 5.7× fewer #Params.
Even against ultra-lightweight methods such as EGE-UNet (86.95%) and UltraLight VM UNet
(87.85%), UltraLightUNet-T (88.19%) demonstrates up to 1.2% better DICE score.

Polyp segmentation: In polyp segmentation on Clinic (Bernal et al., 2015) and Colon (Vázquez
et al., 2017) datasets, our UltraLightUNet excels with leading scores of 93.48% and 90.01%, re-
spectively, by effectively capturing variations in polyp shapes, sizes, and textures. UltraLightUNet
achieves comparable performance with fewer #Params (0.316M) compared to heavyweight net-
works like TransUNet (105.32M) and SwinUNet (27.17M). Against lightweight networks like UN-
eXt and CMUNeXt, UltraLightUNet delivers a higher DICE score. Even among ultra-lightweight
networks, UltraLightUNet-T (0.027M #Params) outperforms EGE-UNet and UltraLight VM UNet.

Microscopic cell nuclei/structure segmentation: For cell structure segmentation on the DSB18
and EM datasets, UltraLightUNet achieves DICE scores of 92.71% and 95.52%, respectively, by
capturing complex cellular structures effectively even with its ultra-lightweight design. In contrast,
networks like TransUNet and UNeXt, despite their heavyweight design and higher #Params and
FLOPs, do not surpass the DICE score of UltraLightUNet. For instance, TransUNet achieves lower
scores on DSB18 (92.04%) and EM (95.27%), while UNeXt falls 6.70% behind the UltraLightUNet.

4.3 RESULTS ON SYNAPSE MULTI-ORGAN SEGMENTATION

Table 2 shows that our UltraLightUNet networks achieve superior or comparable DICE scores com-
pared to various SOTA lightweight and traditional methods on the Synapse Multi-Organ Segmen-
tation benchmark. Traditional architectures like UNet and Att UNet exhibit high parameter counts
(34.53M and 34.88M), yet only achieve modest DICE scores of 70.11% and 71.70%. Advanced
models such as TransUNet (77.61% DICE) and SwinUNet (79.13% DICE) show improved perfor-
mance, but at a significant computational cost, with 105.28M and 27.17M #Params (7.2× of our
UltraLightUNet-L (78.68% DICE)), respectively, thus making them less suitable for real-time tasks.

Among lightweight models, our UltraLightUNet-L outperforms the SOTA models by achieving the
top DICE score of 78.68% with 3.76M #Params and 2.51G #FLOPs, thus surpassing Rolling UNet
(73.15%) and CMUNeXt (72.69%) with far fewer computational resources. Even UltraLightUNet-
M achieves a competitive 76.01% DICE score, surpassing UNeXt (72.60%) and EGE-UNet
(59.32%) with fewer #Params and #FLOPs. Our ultra-lightweight networks, UltraLightUNet-S and
UltraLightUNet-T, also show a solid balance between performance and efficiency.

We note that the improved performances of our UltraLightUNet stems from the use of MKIR and
CMFA blocks, which focus on extracting multi-scale features while reducing redundant computa-
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Table 2: Experimental results of Synapse Multi-organ segmentation. #FLOPs are reported for
224×224 images. The average DICE scores of three runs are reported here. Our models have
orders of magnitude fewer #Params and #FLOPs.

Network #Params (M) FLOPs (G) DICE (%)

UNet (Ronneberger et al., 2015) 34.53 50.19 70.11
Att UNet (Oktay et al., 2018) 34.88 51.04 71.70
UNet++ (Zhou et al., 2018) 9.164 26.74 74.87
DeepLabV3+ (Chen et al., 2017) 39.76 11.45 78.40
TransUNet (Chen et al., 2021) 105.28 24.73 77.61
SwinUNet (Cao et al., 2021) 27.17 6.2 79.13
UltraLightUNet-L (Ours) 3.76 2.51 78.68

MedT (Valanarasu et al., 2021) 1.564 1.957 62.29
Rolling UNet S (Liu et al., 2024) 1.783 1.613 73.15
CMUNeXt (Tang et al., 2023) 0.418 0.838 72.69
UNeXt (Valanarasu & Patel, 2022) 1.474 0.449 72.60
UltraLightUNet-M (Ours) 1.15 0.760 76.01
UltraLightUNet (Ours) 0.316 0.257 73.31

EGE-UNet (Ruan et al., 2023) 0.053 0.056 59.32
UltraLight VM UNet (Wu et al., 2024) 0.050 0.047 61.56
UltraLightUNet-S (Ours) 0.093 0.104 70.83
UltraLightUNet-T (Ours) 0.027 0.053 65.69

Table 3: Experimental results of 3D segmentation on MSD Prostate and FETA datasets. Our models
have orders of magnitude fewer #Params and #FLOPs. We report the average DICE scores (%) of
three runs. Bold and underlined values denote the best and second-best values, respectively.

Architecture Params (M) ↓ FLOPs (G) ↓ MSD Prostate ↑ FETA ↑
3D U-Net (Çiçek et al., 2016) 4.81 135.9 62.53 85.93
nn-UNet (Isensee et al., 2021) 31.2 743.3 67.85 87.24
TransBTS (Wenxuan et al., 2021) 31.6 110.4 68.02 87.52
UNETR (Hatamizadeh et al., 2022) 92.78 82.6 65.22 86.72
nnFormer (Zhou et al., 2021) 159.3 204.2 66.63 87.03
SwinUNETR (Hatamizadeh et al., 2021) 62.19 328.6 65.12 87.75
3D UX-Net (Lee et al., 2022) 53.01 632.0 68.92 88.67
SlimUNETR (Pang et al., 2023) 1.78 11.99 59.01 86.98

UltraLightUNet3D-S (Ours) 0.163 2.03 69.20 87.15
UltraLightUNet3D (Ours) 0.453 3.42 70.52 87.92
UltraLightUNet3D-M (Ours) 1.42 7.1 71.51 88.40

tions. This allows UltraLightUNet to capture complex structure of organs more effectively than other
lightweight methods, thus achieving SOTA results with significantly lower computational overhead.

4.4 RESULTS ON 3D SEGMENTATION

Table 3 presents the performance of our UltraLightUNet3D networks against several SOTA 3D med-
ical image segmentation methods on the MSD Prostate (Antonelli et al., 2022) and FETA (Payette
et al., 2021) datasets. Despite using significantly fewer #Params and #FLOPs, our models consis-
tently achieve superior or comparable DICE scores. Notably, UltraLightUNet3D-M achieves the
highest DICE score of 71.51% on MSD Prostate, outperforming large-scale models like nnFormer
(66.63%) and SwinUNETR (65.12%), with only 1.42M parameters and 7.1G #FLOPs — substan-
tially lower than nnFormer (159.3M, 204.2G) and SwinUNETR (62.19M, 328.6G). Moreover, com-
pared to 3D UX-Net, UltraLightUNet3D-M not only improves the DICE score by 2.59% on MSD
Prostate, but also reduces the #Params and #FLOPs by 37.3× and 89×, respectively. This perfor-
mance gain can be attributed to our multi-kernel design and attention-based refinement strategy,
which effectively capture multi-scale contextual features and enhance critical regions.

5 ABLATION STUDIES

We describe two critical ablation studies here and provide more in Appendix A.5-A.8.

5.1 IMPACT OF DIFFERENT COMPONENTS

Table 4 presents the performance of various configurations within the UltraLightUNet network
across six medical image segmentation datasets, highlighting the impact of integrating different
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Table 4: Effect of different components of UltraLightUNet with #channels = [16, 32, 64, 96, 160] and
[1, 3, 5] kernels. UNeXt has #channels = [16, 32, 128, 160, 256]. We design Mobile UNet following
the structure of UNeXt network. However, we use the #channels = [16, 32, 64, 96, 160] and kernel
size of [3] with the original inverted residual block (IRB) in the Mobile UNet. We report the DICE
scores (%) averaged over five runs. Best results are shown in bold.

Network #Params #FLOPs BUSI Clinic Colon ISIC18 DSB18 EM

UNeXt 1.47M 0.57G 74.71 90.20 83.84 87.78 86.01 93.81
Mobile UNet 0.271M 0.230G 72.41 90.90 84.15 87.20 90.52 94.87

MKIR 0.306M 0.300G 74.74 92.63 86.46 88.22 92.40 95.31
MKIR + GAG 0.310M 0.311G 74.98 91.97 86.56 88.34 92.67 95.48

MKIR + MKIRA 0.311M 0.303G 76.61 92.64 89.40 88.56 92.64 95.37
MKIR + GAG + MKIRA (Ours) 0.316M 0.314G 78.04 93.48 90.01 88.64 92.71 95.52

Table 5: Effect of multiple kernels in the depth-wise convolution of MKDC on BUSI dataset. The
results for kernels beyond 7 × 7 are not reported as the performance does not scale proportionally
with the computational cost of larger kernels. We use the UltraLightUNet network with #channels=
[16, 32, 64, 96, 160] for these experiments and report the FLOPs for 256× 256 inputs. We report the
DICE scores (%) averaging over five runs. Best results are highlighted in bold.

Convolution kernels #Params(M) FLOPs(G) DICE Convolution kernels #Params(M) FLOPs(G) DICE

1× 1 0.272 0.220 70.83 5× 5 0.299 0.276 76.81
1× 1, 1× 1 0.275 0.229 71.11 1× 1, 5× 5 0.303 0.286 77.05

3× 3 0.281 0.239 76.42 3× 3, 3× 3, 3× 3 0.306 0.295 76.86
1× 1, 3× 3 0.284 0.248 76.81 3× 3, 5× 5 0.312 0.304 77.62

1× 1, 1× 1, 3× 3 0.288 0.257 77.08 1×1, 3×3, 5×5 0.316 0.314 78.04
3× 3, 3× 3 0.294 0.267 76.83 5× 5, 5× 5 0.331 0.342 77.88

1× 1, 3× 3, 3× 3 0.297 0.276 77.26 5× 5, 5× 5, 5× 5 0.362 0.408 77.80

components like MKIR, GAG, and MKIRA. The comparison spans models from UNeXt to the ad-
vanced MKIR + GAG + MKIRA variant, revealing a progressive improvement in the DICE scores
with the addition of each component. Notably, the multi-kernel trick, implemented through MKIR
(in the encoder) and MKIRA (in the decoder) blocks, is the most critical component for improving
the segmentation accuracy, increasing the DICE score from 72.41% to 76.61% on the BUSI dataset.
This indicates the significant contribution of the multi-kernel approach to feature extraction and re-
finement. However, when we integrate all proposed modules (MKIR + GAG + MKIRA), our model
achieves the highest overall DICE score of 78.04% on the same dataset, with minimal computa-
tional resources (0.316M #Params and 0.314G #FLOPs). This exhibits the efficacy of combining
multi-kernel convolution with attention mechanisms within UltraLightUNet.

5.2 EFFECT OF MULTIPLE KERNELS

Table 5 evaluates the influence of different convolutional kernel combinations on the performance
of MKDC within the UltraLightUNet network, specifically for the BUSI dataset. By experimenting
with a variety of kernel sizes ranging from 1 to 3, 5, 7, it becomes evident that a mix of 1, 3, 5 kernels
stands out by achieving the best DICE score of 78.04% with a moderate increase in computational
resources (0.316M #Params and 0.314G #FLOPs). This finding highlights the effectiveness of a
multi-scale kernel approach in capturing diverse feature representations, thus significantly improv-
ing segmentation accuracy without a substantial rise in computational demands. Drawing from these
empirical findings, we opt for the kernel combination of [1, 3, 5] across all our experiments.

6 CONCLUSION

In this paper, we have presented UltraLightUNet, a new network for medical image segmentation
that achieves high accuracy with an ultra-lightweight design. UltraLightUNet outperforms state-of-
the-art models across multiple benchmarks while maintaining a significantly lower computational
footprint. For example, UltraLightUNet surpasses the performance of TransUNet in DICE scores
with 333× fewer #Params and 123× fewer #FLOPs. Similarly, UltraLightUNet improves segmen-
tation accuracy by up to 6.7% compared to UNeXt, while using 4.7× fewer #Params. Our design
efficiently captures complex spatial relationships and refines salient features, thus making it ideal
for resource-constrained environments such as point-of-care services, where real-time, high-fidelity
diagnostics are essential.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 DATASETS

We evaluate the UltraLightUNet’s efficacy across 11 datasets covering eight segmentation tasks.
Our six datasets from four binary segmentation tasks includes breast cancer (BUSI (Al-Dhabyani
et al., 2020), 647 images: 437 benign and 210 malignant), polyp (ClinicDB (Bernal et al., 2015) with
612 images, and ColonDB (Vázquez et al., 2017) with 379 images), skin lesion (ISIC18 (Codella
et al., 2019), 2,594 images), and cell nuclei/structure segmentation (DSB18 (Caicedo et al., 2019)
with 670 images, and EM (Cardona et al., 2010) with 30 images). These datasets, collected from
various imaging centers, offer a broad diversity in image characteristics, ensuring a comprehensive
evaluation. An 80:10:10 train-val-test split was applied across all the binary segmentation datasets
and the DICE score of testset is reported.

Our two 2D multi-class segmentation datasets are Synapse Multi-organs 1 and ACDC cardiac organs
2. The Synapse multi-organ dataset is used for abdominal organ segmentation and includes 30
abdominal CT scans with 3,779 axial slices of 512 × 512 pixels. Following the TransUNet (Chen
et al., 2021), 18 scans (2,212 slices) are used for training and 12 for validation. We segment eight
organs: aorta, gallbladder, left kidney, right kidney, liver, pancreas, spleen, and stomach. For cardiac
organ segmentation, the ACDC dataset contains 100 cardiac MRI scans segmented into three sub-
organs: right ventricle, myocardium, and left ventricle. We follow the TransUNet protocol using 70
cases (1,930 slices) for training, 10 for validation, and 20 for testing.

We perform experiments on five public multi-modality datasets for 3D volumetric segmentation: (1)
MICCAI 2021 FeTA Challenge dataset (FeTA2021) (Payette et al., 2021), (2) Medical Segmentation
Decathlon (MSD) (Antonelli et al., 2022) Task01 BrainTumour, (3) MSD Task05 Prostate, (4) MSD
Task06 Lung, and (5) Synapse Multi-organ.

(1) For FeTA2021, we use 80 T2-weighted infant brain MRIs from the University Children’s Hos-
pital, acquired using 1.5T and 3T clinical whole-body scanners, for brain tissue segmentation with
annotations of seven distinct tissues. We perform a five-fold cross-validation and report the average
DICE score.

(2) The MSD Task01 BrainTumour dataset consists of multi-modal 848 MRI scans, including T1,
T1-contrast enhanced (T1ce), T2, and FLAIR modalities. The dataset focuses on the segmentation of
three tumor sub-regions: Tumor Core (TC), Whole Tumor (WT), and Non-enhancing Tumor (NET).
A major challenge in this dataset lies in the heterogeneous appearance and spatial distribution of the
tumor sub-regions, caused by differences in tumor morphology, size, and imaging characteristics
across patients. We use 396 scans for training and 96 scans for validation.

(3) The MSD Task05 Prostate dataset comprises 32 annotated MRI scans across two modalities,
targeting the prostate peripheral zone (PZ) and transition zone (TZ). One of the major challange
of this dataset is the significant inter-subject variability. We use 26 MRI scans for training and
remaining 6 scans for validation.

(4) The MSD Task06 Lung dataset comprises 63 annotated CT scans, aiming to segment lung cancer
lesions. The dataset presents significant challenges due to the variable sizes, shapes, and locations
of lesions, as well as the presence of similar-looking non-tumorous structures like blood vessels and
nodules. The diversity in scan quality and inter-subject anatomical variability further adds to the
complexity in this dataset. We use 51 scans for training and 12 scans for validation.

(5) As described earlier, Synapse Multi-organ dataset contains 30 CT scans with the annotation of
13 abdominal organs (Spleen, Right Kidney, Left Kidney, Gallbladder, Esophagus, Liver, Stomach,
Aorta, IVC, Portal and Splenic Veins, Pancreas, Right adrenal gland, Left adrenal gland). Follow-
ing the splits of TransUNet (18 for training, 12 for validation), we perform both 13 and 8 class
segmentation. For all of these 3D datasets, we report the results on validation set.

1https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
2https://www.creatis.insa-lyon.fr/Challenge/acdc/
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Table 6: Original Inverted Residual Block (IRB) (Sandler et al., 2018) vs our Multi-Kernel Inverted
Residual (MKIR) with #channels = [16, 32, 64, 96, 160]. We use the kernel size of [3] and [1, 3, 5]
for IRB and MKIR, respectively. We report the DICE scores (%) averaging over five runs. Best
results are shown in bold.

Blocks #Params #FLOPs BUSI Clinic Colon ISIC18 DSB18 EM

IRB 0.271M 0.230G 72.41 90.90 84.15 87.20 90.52 94.87
MKIR (Ours) 0.306M 0.300G 74.74 92.63 86.46 88.22 92.40 95.31

Table 7: Effect of MKIRA in the encoder and decoder of UltraLightUNet with #channels =
[16, 32, 64, 96, 160] and [1, 3, 5] kernels. We report the DICE scores (%) averaging over five runs.
Best results are shown in bold.

Encoder Decoder #Params #FLOPs BUSI Clinic Colon ISIC18 DSB18 EM

MKIRA MKIRA 0.321M 0.346G 77.28 92.81 89.63 88.61 92.65 95.43
(Ours) MKIR MKIRA 0.316M 0.314G 78.04 93.48 90.01 88.64 92.71 95.52

A.2 EVALUATION METRICS

We use the DICE score to evaluate performance on all the datasets. The DICE score DSC(Y, P ) is
calculated using Equations 7:

DSC(Y, P ) =
2× |Y ∩ P |
|Y |+ |P |

× 100 (7)

where Y and P are the ground truth and predicted segmentation map, respectively.

A.3 DATASET SPECIFIC IMPLEMENTATION DETAILS

For binary segmentation, training spans over 200 epochs with batches of 16, learning rate of 1e −
4, and weight decay, during which we save the model achieving the highest DICE score. Image
dimensions are set to 256× 256 pixels for BUSI (Al-Dhabyani et al., 2020), ISIC18 (Codella et al.,
2018), EM (Cardona et al., 2010), and DSB18 (Caicedo et al., 2019) datasets, while for ClinicDB
(Bernal et al., 2015) and ColonDB (Vázquez et al., 2017), the resolution is adjusted to 352 × 352
pixels. We utilize a multi-scale training approach, with scales of {0.75, 1.0, 1.25}, and enforce
gradient clipping at 0.5. For binary segmentation, we do not apply any form of augmentation and
use a hybrid loss function that combines (1:1) weighted BinaryCrossEntropy (BCE) and Intersection
over Union (IoU) loss.

For multi-class segmentation in Synapse Multi-organs and ACDC datasets, we use an input size of
224 × 224, employ random rotation and flipping as data augmentation, and optimize the combined
Cross-entropy (0.3) and DICE (0.7) with a learning rate of 1e− 4. We train models for 300 and 400
epochs with a batch size of 6 and 12 for Synapse and ACDC datasets, respectively. In the case of
3D segmentation in MSD Prostate, FETA, and Synapse Multi-organs datasets, the DiceCELoss is
optimized for 40000 iterations with a learning rate of 1e− 3. We use an input size of 96× 96× 96
and augmentations the same as 3D UX-Net (Lee et al., 2022).

We consider MSD Task01 BrainTumour as a multi-level segmentation problem and use the Sigmoid
activation on the prediction. While we use Softmax activation on the prediction for multi-class
segmentation on MSD Task05 Prostate and binary segmentation on MSD Task06 Lung datasets.
We train the model for 60000 iterations on MSD Task01 BrainTumour and use 40000 iterations for
MSD Task05 Prostate and MSD Task06 Lung datasets. For these three MSD datasets, we use an
input size of 96 × 96 × 96, learning rate of 1e − 3, and augmentations the same as SwinUNETR
(Tang et al., 2022).
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Table 8: Original Attention Gate (AG) (Sandler et al., 2018) vs our Grouped Attention Gate (GAG)
with #channels = [16, 32, 64, 96, 160] in UltraLightUNet. We use the kernel size of 3 for GAG. We
report the DICE scores (%) averaging over five runs. Best results are shown in bold.

Blocks #Params #FLOPs BUSI Clinic Colon ISIC18 DSB18 EM

AG 0.326M 0.320G 77.61 93.02 89.78 88.38 92.48 95.31
GAG (Ours) 0.316M 0.314G 78.04 93.48 90.01 88.64 92.71 95.52

Figure 3: Activation heatmaps visualization of CMFA and MKIR.

A.4 EFFECTIVENESS OF OUR MULTI-KERNEL INVERTED RESIDUAL (MKIR) OVER
INVERTED RESIDUAL BLOCK (IRB) (SANDLER ET AL., 2018)

Table 6 reports the results of the original IRB of MobileUNetv2 (Sandler et al., 2018) and our pro-
posed MKIR block. It can be concluded from the table that our MKIR significantly outperforms (up
to 2.33%) IRB in all the datasets with only an additional 0.035M #Params and 0.07G #FLOPs. The
use of lightweight convolutions with multiple kernels contributes to these performance improve-
ments with nominal additional computational resources.

A.5 EFFECTIVENESS OF OUR MULTI-KERNEL INVERTED RESIDUAL (MKIR) OVER
MULTI-KERNEL INVERTED RESIDUAL ATTENTION (MKIRA) IN ENCODER

The experimental results in Table 7 demonstrate that employing MKIR in the encoder and MKIRA
in the decoder yields superior performance across all datasets. Specifically, this configuration
achieves the best average DICE scores of 78.04% (BUSI), 93.48% (Clinic), 90.01% (Colon), 88.64%
(ISIC18), 92.71% (DSB18), and 95.52% (EM). The MKIR block in the encoder effectively extracts
complex features by leveraging multiple kernels to capture a diverse range of spatial patterns and
global contexts without the need for localized attention, which is more computationally intensive.
Since the encoder primarily focuses on feature extraction, this design helps preserve critical details
while maintaining lightweightness. In contrast, localized attention is crucial in the decoder to facili-
tate precise reconstruction. The MKIRA block in the decoder attends to key spatial regions, enabling
effective feature refinement. This complementary setup leads to an optimal balance between per-
formance and computational cost, as evidenced by the superior results achieved with only 0.316M
parameters and 0.314G #FLOPs.
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Table 9: Analysis of the number of channels on different datasets. We report #FLOPs for 256× 256
inputs and the DICE scores (%) averaging over five runs, thus having 1-4% standard deviations.

Network C1 C2 C3 C4 C5 #Params #FLOPs BUSI Clinic Colon ISIC18 DSB18 EM

UltraLightUNet-T 4 8 16 24 32 0.027M 0.062G 75.64 91.26 85.03 88.19 92.38 94.69
UltraLightUNet-S 8 16 32 48 80 0.093M 0.125G 77.26 92.31 88.78 88.57 92.45 95.22
UltraLightUNet 16 32 64 96 160 0.316M 0.314G 78.04 93.48 90.01 88.74 92.71 95.52

UltraLightUNet-M 32 64 128 192 320 1.15M 0.951G 78.27 93.67 90.27 89.08 92.74 95.62
UltraLightUNet-L 64 128 256 384 512 3.76M 3.19G 79.02 93.85 91.82 89.25 92.80 95.67

Table 10: Analysis of the number of channels on different 3D datasets. The #FLOPs are reported
for 96×96×96 3D input volumes. We report the average DICE scores (%) of three runs.

Architecture #Params(M) #FLOPs(G) MSD Prostate FETA

UltraLightUNet3D-T 0.061 1.45 61.21 84.24
UltraLightUNet3D-S 0.163 2.03 69.20 87.15
UltraLightUNet3D 0.453 3.42 70.52 87.92

UltraLightUNet3D-M 1.42 7.1 71.51 88.40
UltraLightUNet3D-L 4.28 18.0 71.04 88.11

A.6 EFFECTIVENESS OF OUR GROUPED ATTENTION GATE (GAG) OVER ATTENTION GATE
(AG) (OKTAY ET AL., 2018)

Table 8 reports the results of the original AG of Attention UNet (Oktay et al., 2018) and our proposed
GAG block. It can be seen from the table that our GAG surpasses AG in all the datasets with
0.01M less #Params and 0.06G less #FLOPs. The use of group convolutions with a larger kernel (3)
contributes to these performance improvements with less computational costs.

A.7 ACTIVATION HEATMAPS VISUALIZATION

In Fig. 3, we plot the average activation heatmaps for all channels in high-resolution layers, focusing
on Encoder Stage 1 (ES1) and Decoder Stage 1 (DS1). In ES1, the MKIR block attends to diverse
regions, including the polyp region, thus capturing broad spatial features as expected in the initial
stages of the encoder. In contrast, the CMFA layer in DS1 sharpens attention, thus focusing more
locally on the polyp region. Subsequently, the MKDC within the MKIR block of DS1 further refines
these attended features, thus concentrating exclusively on the polyp region (indicated by deep red
areas). This progression highlights the effectiveness of our architecture in capturing and refining
features, thus resulting in a segmentation map that strongly overlaps with the ground truth.

A.8 ANALYSIS OF THE NUMBER OF CHANNELS

We conduct an ablation study with the different number of channel dimensions in different stages
of the network to show the scalability of our network. Table 9 reports the results of this set of
experiments. The progression from UltraLightUNet-T to UltraLightUNet-L in Table 9 demon-
strates a clear positive correlation between model complexity and performance. Starting with
UltraLightUNet-T’s minimal resource use (0.027M #Params, 0.062G #FLOPs) yielding a 75.64%
DICE score on BUSI, the score increases to 78.04% with UltraLightUNet’s moderate complexity
(0.316M #Params, 0.314G #FLOPs), and peaks at 79.02% with UltraLightUNet-L’s higher resource
demand (3.76M #Params, 3.19G #FLOPs). This trend of increasing DICE score with model com-
plexity is consistent across datasets.

Additionally, Table 10 shows the impact of varying channel sizes on the 3D segmentation on MSD
Prostate and FETA datasets. As channels increase, performance improves, with UltraLightUNet3D-
M achieving the best DICE scores (71.51% for MSD Prostate and 88.40% for FETA) at 1.42M
parameters and 7.1G #FLOPs. Further increasing to UltraLightUNet3D-L offers minimal gains,
thus highlighting diminishing returns in performance beyond a certain point for 3D volumetric seg-
mentation. The smallest model, UltraLightUNet3D-T, performs the worst, thereby demonstrating
that too few channels limit segmentation accuracy. Overall, UltraLightUNet3D-M shows the best
balance between model size and performance.
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Table 11: Results of cardiac organ segmentation on ACDC dataset. Our models have orders of
magnitude fewer #Params and #FLOPs. DICE scores (%) are reported for individual organs. Best
results are shown in bold.

Network #Params (M) #FLOPs (G) Avg. RV Myo LV

UNet (Ronneberger et al., 2015) 35.53 50.19 87.55 87.10 80.63 94.92
Attn UNet (Oktay et al., 2018) 34.88 51.04 86.75 87.58 79.20 93.47
TransUNet (Chen et al., 2021) 105.28 24.73 89.71 86.67 87.27 95.18
SwinUNet (Cao et al., 2021) 27.17 6.20 88.07 85.77 84.42 94.03
UltraLightUNet-L (Ours) 3.76 2.51 90.49 88.36 87.78 95.33
MedT (Valanarasu et al., 2021) 1.564 1.957 80.43 77.98 73.74 89.59
Rolling UNet S (Liu et al., 2024) 1.783 1.613 87.59 85.02 83.59 94.17
CMUNeXt (Tang et al., 2023) 0.418 0.838 85.19 81.30 82.54 91.74
UNeXt (Valanarasu & Patel, 2022) 1.474 0.449 84.68 81.06 81.22 91.76
UltraLightUNet-M (Ours) 1.15 0.760 89.93 87.76 86.9 95.14
UltraLightUNet (Ours) 0.316 0.257 88.80 86.03 85.9 94.46

EGE-UNet (Ruan et al., 2023) 0.053 0.056 80.68 76.6 75.21 90.23
UltraLight VM UNet (Wu et al., 2024) 0.050 0.047 81.82 78.63 76.48 90.36
UltraLightUNet-S (Ours) 0.093 0.104 87.32 84.41 83.50 94.03
UltraLightUNet-T (Ours) 0.027 0.053 82.42 80.02 76.26 91.00

Table 12: Experimental Results of the 3D Version of UltraLightUNet on Synapse Multi-Organ Seg-
mentation. Our models have orders of magnitude fewer #Params and #FLOPs. We report the average
DICE scores (%) of three runs. Best results are shown in bold.

Architecture #Params (M) ↓ #FLOPs (G) ↓ Synapse
(8 organs)

Synapse
(13 organs)

3D U-Net (Çiçek et al., 2016) 4.81 135.9 80.12 73.96
nn-UNet (Isensee et al., 2021) 31.2 743.3 82.96 78.58
TransBTS (Wenxuan et al., 2021) 31.6 110.4 82.74 77.42
UNETR (Hatamizadeh et al., 2022) 92.78 82.6 81.28 75.43
nnFormer (Zhou et al., 2021) 159.3 204.2 82.94 77.86
SwinUNETR (Hatamizadeh et al., 2021) 62.19 328.61 83.98 80.49
3D UX-Net (Lee et al., 2022) 53.01 631.97 84.12 78.78
SlimUNETR (Pang et al., 2023) 1.78 11.99 80.42 72.56

UltraLightUNet3D-S (Ours) 0.163 2.03 81.89 74.81
UltraLightUNet3D (Ours) 0.453 3.42 81.87 76.33
UltraLightUNet3D-M (Ours) 1.42 7.1 82.58 77.46
UltraLightUNet3D-L (Ours) 4.28 18.00 82.90 77.24

A.9 RESULTS ON CARDIAC ORGAN SEGMENTATION ON ACDC DATASET

Table 11 presents the performance comparison of our UltraLightUNet networks against several
SOTA models on the ACDC cardiac organ segmentation dataset. Our UltraLightUNet-L model
achieves the highest average DICE score of 90.49%, significantly outperforming traditional models
like UNet (87.55%) and Attn UNet (86.75%) despite having far fewer #Params (3.76M vs. 35.53M
and 34.88M) and #FLOPs (2.51G vs. 50.19G and 51.04G). Even compared to more advanced mod-
els like TransUNet and SwinUNet, UltraLightUNet-L surpasses them in performance (90.49% vs.
89.71% and 88.07%) with a fraction of the computational costs. Among lightweight models, our
UltraLightUNet-M (1.15M #Params) and UltraLightUNet (0.316M #Params) achieve superior re-
sults compared to Rolling UNet S (87.59%) and UNeXt (84.68%). The improved performance of
our models can be attributed to the MKIR and CMFA blocks, which enable effective feature encod-
ing, attention, and refinement, thus resulting in better discrimination of critical patterns of cardiac
organs. The exceptionally low #Params and #FLOPs of UltraLightUNet-T and UltraLightUNet-S
further highlight the efficiency of our method while maintaining competitive performance.
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Table 13: Experimental results (DICE %) of 3D Brain tumor and Lung cancer segmentation on MSD
Task01 BrainTumour (4-channel inputs) and MSD Task06 Lung datasets. #FLOPs are reported for
4-channel inputs with 96x96x96 volumes. The bold and underlined values highlight the best and
second best values in each column. Note: Tumor Core (TC), Whole Tumor (WT), Non-enhancing
Tumor (NET).

Architecture #Params (M) ↓ #FLOPs (G) ↓ Task01 BrainTumour Task06 Lung
CancerTC WT NET Avg.

UNETR (Hatamizadeh et al., 2022) 92.78 82.6 79.77 89.83 57.47 75.69 65.38
TransBTS (Wenxuan et al., 2021) 31.60 110.4 80.09 88.38 55.89 74.79 63.57
nnFormer (Zhou et al., 2021) 159.03 204.2 83.19 90.14 60.15 77.82 69.79
3D UX-Net (Lee et al., 2022) 53.01 632.0 82.90 91.13 61.72 78.58 71.46
SwinUNETR (Hatamizadeh et al., 2021) 62.19 328.6 83.19 91.36 62.62 79.06 65.12
SlimUNETR (Pang et al., 2023) 1.78 5.25 79.86 87.95 50.18 72.66 67.66
UltraLightUNet3D (Ours) 0.453 3.68 82.98 90.30 60.23 77.92 70.32
UltraLightUNet3D-M (Ours) 1.42 7.33 83.41 91.51 61.92 78.95 71.53

Figure 4: Qualitative results of our UltraLightUNet and SOTA methods. The incorrect segmented
regions by different methods are highlighted using the red rectangular box.

A.10 3D SEGMENTATION RESULTS ON SYNAPSE DATASET

Table 12 presents the results of our UltraLightUNet3D models on the Synapse Multi-Organ Segmen-
tation benchmark, compared to several state-of-the-art (SOTA) methods. Our models demonstrate
competitive performance across both 8-organ and 13-organ segmentation tasks, while requiring sig-
nificantly fewer #Params and #FLOPs. For example, UltraLightUNet3D-M achieves a DICE score
of 82.58% for the 8-organ segmentation with only 1.42M #Params and 7.1G #FLOPs, whereas
SwinUNETR achieves a slightly higher score of 83.98% but with 62.19M #Params and 328.61G
#FLOPs. Similarly, nn-UNet performs comparably (82.96%), but it requires 31.2M #Params and
743.3G #FLOPs, thereby making it less suitable for resource-constrained applications.

Even our lightweight versions, UltraLightUNet3D-S and UltraLightUNet3D, perform strongly, with
DICE scores of 81.89% and 81.87%, respectively, on the 8-organ task, significantly outperforming
3D U-Net (80.12%) with a much smaller model size. Although UltraLightUNet3D-T, our small-
est model, achieves lower scores (78.78%), it still outperforms 3D U-Net while using only 0.061M
parameters. The comparatively lower performance of our models in the 13-organ task can be at-
tributed to the added complexity of handling a greater number of organs, yet UltraLightUNet3D-
M and UltraLightUNet3D-L still deliver comparable results with much lower computational costs.
These results showcase the capability of our UltraLightUNet3D models to achieve high segmenta-
tion accuracy with minimal computational resources, thus making them well-suited for point-of-care
services and real-time applications.

A.11 3D BRAIN TUMOR AND LUNG CANCER SEGMENTATION RESULTS

Table 13 shows that our UltraLightUNet3D-M achieves the best DICE scores in Tumor core
(83.41%), Whole tumor (91.51%), and Lung cancer (71.53%) segmentation while maintaining re-
markably lower computational costs compared to heavyweight methods like SwinUNETR (62.19M
parameters, 328.6G FLOPs) and 3D UX-Net (53.01M parameters, 632.0G FLOPs). Furthermore,
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Table 14: Computational complexity (#Params, #FLOPs, Training Time (sec.), Inference Time
(sec.)) comparisons of different architectures including our UltraLightUNet. We train each model
for 200 epochs using a batch size of 16 with a total 1000 sample images of resolution 256×256 to
get the total training time (sec.) on a NVIDIA RTX A6000 GPU. While we run the inference on
500 samples on the same GPU with a batch size of 1 and report the average inference time (ms) per
image. We report the average DICE scores of six binary segmentation datasets (i.e., BUSI, Clin-
icDB, ColonDB, ISIC2018, DSB2018, EM) here for reasonable comparison. Note: The bold and
underlined values highlight the best and second best values in each column.

Architecture #Params (M) ↓ #FLOPs (G) ↓ Training
Time (sec.) ↓

Inference
Time (sec.) ↓

Avg
DICE (%) ↑

U-Net (Ronneberger et al., 2015) 34.53 65.53 1732.11 0.0084 87.28
AttUNet (Oktay et al., 2018) 34.88 66.64 1988.31 0.0092 87.86
UNet++ (Zhou et al., 2018) 9.16 34.65 794.38 0.0073 88.16
PraNet (Fan et al., 2020) 32.55 6.93 685.37 0.0156 87.79
DeepLabv3+ (Chen et al., 2017) 39.76 14.92 695.82 0.0078 89.15
UACANet (Kim et al., 2021) 69.16 31.51 850.53 0.0231 87.81
TransUNet (Chen et al., 2021) 105.32 38.52 1523.68 0.0153 89.59
SwinUNet (Cao et al., 2021) 27.17 6.20 828.99 0.0124 88.84
DeformableLKA (Azad et al., 2024) 102.76 26.03 5450.26 0.0663 89.92
MedT (Valanarasu et al., 2021) 1.57 1.95 7138.91 0.1191 82.42
Rolling-UNet-S (Liu et al., 2024) 1.78 2.10 635.69 0.0175 87.36
CMUNeXt (Tang et al., 2023) 0.418 1.09 450.86 0.0057 88.25
UNeXt (Valanarasu & Patel, 2022) 1.47 0.57 216.26 0.0058 86.06
EGE-UNet (Ruan et al., 2023) 0.054 0.072 360.69 0.0099 83.82
UltraLight VM UNet (Wu et al., 2024) 0.050 0.060 318.04 0.0102 85.53
UltraLightUNet-T (Ours) 0.027 0.062 312.08 0.0071 87.87
UltraLightUNet-S (Ours) 0.093 0.125 348.78 0.0072 89.10
UltraLightUNet (Ours) 0.316 0.314 474.02 0.0072 89.75

UltraLightUNet3D-M achieves the second-best DICE scores in Non-enhancing tumor and aver-
age Brain tumor segmentation (78.95%), which demonstrates UltraLightUNet3D’s balanced perfor-
mance across tumor subregions.

Compared to the existing lightweight method SlimUNETR, UltraLightUNet3D-M achieves better
segmentation results on all tasks while maintaining similar computational efficiency (1.42M param-
eters, 7.33 GFLOPs vs. SlimUNETR’s 1.78M parameters, 5.25 GFLOPs).

Additionally, our base model, UltraLightUNet3D, demonstrates competitive performance com-
pared to heavyweight models like 3D UX-Net and SwinUNETR, while significantly outperforming
SlimUNETR, achieving the lowest computational cost (0.453M parameters, 3.68 GFLOPs). These
results validate UltraLightUNet’s ability to generalize to complex segmentation tasks with an excel-
lent balance between accuracy and efficiency.

A.12 QUALITATIVE RESULTS

In Figure 4, we report the segmentation maps of breast tumors, skin lesions, polyps, and cell seg-
mentation for representative test images. In breast tumor segmentation, UNet, UNet++, and UNeXt
show greater false segmentation, while TransUNet and our UltraLightUNet produce near-perfect
segmentation maps. Similarly, in skin lesion segmentation, UNet, ResUNet, UNet++, AttnUNet,
DeepLabV3+, PraNet, SwinuNet, and UNeXt miss part of the lesion (in red rectangular box). How-
ever, UACANet, TransUNet, ACC-UNet, and our UltraLightUNet can segment that challenging
region well. Our UltraLightUNet can also segment the polyp correctly, while all other methods in-
correctly segment another region as a polyp. In general, our UltraLightUNet produces the best over-
lapping segmentation map across all four tasks. The reason behind this well-rounded performance
by our UltraLightUNet with a very low computational budget is the use of multi-kernel depth-wise
convolutions along with gated and local attention mechanisms.

A.13 TRAINING AND INFERENCE TIME COMPARISONS

Table 14 highlights the trade-offs between training/inference time and efficiency. Our UltraLigh-
tUNet variants achieve competitive or superior DICE scores with significantly fewer #Params and
#FLOPs compared to all other architectures. For example, UltraLightUNet (474.02 sec training,
0.0072 sec inference) achieves 89.75% DICE with only 0.316M params and 0.314G FLOPs, thus
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outperforming heavier models like DeepLabv3+ (89.15% DICE, 39.76M params, 14.92G FLOPs)
and TransUNet (89.59% DICE, 105.32M params, 38.52G FLOPs).

While depth-wise convolutions slightly increase the training time due to reduced parallelism, they
enable extreme computational efficiency (#Params and #FLOPs), thus making UltraLightUNet ideal
for resource-constrained environments.

Finally, the inference time of our UltraLightUNet (0.0072 sec, 89.75% DICE) remains competitive
when compared to the best lightweight baseline (based on inference time), CMUNeXt (0.0057 sec,
88.25% DICE), while offering higher DICE score.

A.14 LIMITATIONS AND FUTURE DIRECTIONS

While UltraLightUNet excels in computational efficiency, its focus on extreme lightweight design
occasionally results in slightly lower performance compared to SOTA methods on complex datasets
(e.g., Synapse in Tables 2 and 12). This tradeoff reflects its primary goal of addressing resource
constraints in real-time and point-of-care applications.

Future work will explore hybrid architectures that combine lightweight and high-capacity compo-
nents to handle challenging tasks without sacrificing efficiency. Additionally, strategies like self-
supervised pretraining and domain-specific optimizations can enhance its performance further. We
also plan to extend UltraLightUNet to other dense prediction tasks, such as 2D/3D image recon-
struction, translation, enhancement, and denoising. This opens pathways to broaden the UltraLigh-
tUNet’s applicability across various computer vision tasks.
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