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ABSTRACT

Efficient code snippet search using natural language queries can be a great pro-
ductivity tool for developers (beginners and professionals alike). Recently neu-
ral code search has been popular, where a neural method is used to embed both
the query (NL) and the code snippet (PL) into a common representation space;
which is further used to obtain the most relevant PL satisfying the intent in the
query. Transformers-based pre-trained language models (such as CodeBERT,
GraphCodeBERT, and UniXCoder) have been especially effective to learn such
representation. These models often make mistakes such as retrieving snippets
with incorrect data types, and incorrect method names or signatures; even when
exposed to the underlying structural information of the code (such as Abstract
Syntax Tree and other static analysis outputs) during pre-training. The generaliza-
tion ability beyond the training data is also limited (as the code retrieval datasets
vary in the ways NL-PL pairs are collected). In this work, we propose a structure-
aware hard negative sampling method combined with a mastering-rate based cur-
riculum learning technique (SYNC) that enhances the pre-trained representation
using both soft (random) and the (synthesized) hard negative samples. Our ex-
periments show significant improvements (up to 5% in MRR) over all three state-
of-the-art pre-trained language models (for PL) over four Python code retrieval
datasets (under both in-distribution and out-of-distribution settings).

1 INTRODUCTION

Learning dense representations for programming languages using NLP techniques has proven effec-
tive for both downstream retrieval and generative tasks. Representations have evolved from fixed
token-wise representations (such as Code2Vec, Code2Seq) to contextualized Transformers-based
representations such as CodeBERT (Feng et al. (2020)), and GraphCodeBERT (Guo et al. (2020)).
Parallel to the evolution of NLP models, universal cross-modal models such as UniXCoder (Guo
et al. (2022)) and generative models such as AlphaCode (Li et al. (2022)) have achieved state-of-
the-art in public benchmarks. Unlike natural language, (ideally) the output programming language
is expected to be consumed by compilers (or interpreters) which expect the code to follow well-
defined syntax and semantics. In this work, we explore whether such information about syntax and
semantics expressed in natural languages is preserved while retrieving corresponding code snippets
in the code retrieval task (primarily for Python). Our initial exploration shows that state-of-the-art
Transformers-based code embedding models consistently make mistakes such as retrieving intents
with wrong data types (sets instead of lists), wrong method names or signatures and wrong argu-
ments (strftime vs strptime from python library) as shown in Tab. 1.

As a remedy, we look towards contrastive learning using dynamic structure-aware negative sam-
pling. Recently, researchers (Robinson et al. (2021); Ahrabian et al. (2020)) have shown how syn-
thesized hard negative sampling can be used along with a contrastive loss objective to learn efficient
representations. To stabilize training (Xuan et al. (2020)), we utilize a mix of random negative sam-
ples, alongwith hard negatives generated using perturbations of the Abstract Syntax Tree for the
positive NL-PL pair. To balance the hardness and the learning state of the model, we use the master-
ing rate-based curriculum approach to sample a mix of soft and hard negatives, while hard negatives
are sampled using a parametrized distribution over model scores Robinson et al. (2021). We ob-

1



Under review as a conference paper at ICLR 2023

Query Expected Retrieved Error Type

Sorting a list of lists in Python c2.sort(key=lambda row:
(row[2], row[1]))

sorted(list of strings,
key=lambda s: s.split(’,’)[1])

Sorts list of strings instead
of list of lists

Using %f with strftime() in
Python to get microseconds?

datetime.datetime.now()
.strftime(’%H:%M:%S.%f’)

time.strptime(’30/03/09 16:31:
32.123’,’%d/%m/%y %H:%M:%S.%f’) Wrong function call

How to remove symbols from a
string with Python? re.sub(’[\\ˆw]’, ’ ’, s) re.sub(’\’, ’’, ’aas30dsa20’)

Correct function call,
wrong arguments

Table 1: We show the search query (from CoNaLa test set), the corresponding expected PL snippet,
the top ranked snippet by GraphCodeBERT. We mention the type of retrieval error in the last column.

serve that our approach helps boost learning efficiency for three code embedding models across four
code retrieval datasets (CoNaLa, PyDocs, CodeSearchNet, and WebQuery). Our experiments show
that the proposed AST-based curriculum approach (SYNC) with a contrastive loss can be used to
effectively integrate structure information of programming languages during the fine-tuning stage
for SOTA code embedding models, including ones such as UniXcoder, which is exposed to ASTs in
the pre-training stage. Specifically, our contributions are the following. We propose 1) a structure
aware, AST perturbation based hard negative sampling approach; and 2) a mastering rate-based cur-
riculum for balancing hard and soft negatives in contrastive learning. We perform 3) comprehensive
evaluation of our approach on three SOTA models across four retrieval datasets.

2 RELATED WORK

Neural Code Search. Transformer-based pre-trained language models (such as BERT, RoBERTa,
and GPT) have proven to be quite successful across various language understanding tasks. Sim-
ilar models when trained on code corpora with programming language (PL) oriented pre-training
objectives Kanade et al. (2019); Feng et al. (2020) perform well on various PL understanding
tasks such as code search, clone detection, code translation, and code refinement. For neural code
search, both encoder-only and encoder-decoder architectures exist, with decoder-only models (Svy-
atkovskiy et al. (2020); Lu et al. (2021)) being more successful for generative tasks (Guo et al.
(2022)). Encoder-only models use a bidirectional transformer with a “masked language modeling”
(MLM) objective along with PL specific objectives. CodeBERT Feng et al. (2020) is trained on
github public repositories using replaced token detection (RTD) objective apart from MLM, which
allows it to use both bimodal and unimodal data. GraphCodeBERT Guo et al. (2020) incorporates
dataflow information as input as well as two additional pre-training objectives of edge prediction
and node alignment. SYNCOBERT Wang et al. (2021a) is a syntax guided pre-training approach
which uses two additional objectives of Identifier Prediction and AST Edge Prediction and optimizes
mutual information between multiple modalities. AstBERT (Liang et al. (2022)) uses pruned AST
of source code as input for training. TreeBERT Jiang et al. (2021) changes the AST of code into
a collection of composition paths, adds a node position embedding, and uses two new objectives -
Tree Masked Language Modeling (TMLM) and Node Order Prediction (NOP).
Among encoder-decoder models, BART-based PLBART Ahmad et al. (2021) is pre-trained using
denoising strategies for better understanding of program syntax and style. CodeT5 Wang et al.
(2021b) supports multitask learning and uses a pre-training objective that depends on code token
type information such as identifiers, and keywords. UniXcoder Guo et al. (2022) is a unified cross-
modal model which incorporates the AST of the code, a denoising objective shown to be effective
for encoder-decoder models & code fragment representation learning tasks in addition to MLM and
causal language modeling (CLM). In this work, we propose a structure-aware AST perturbation-
based approach to generate hard negatives and combine it with a mastering rate-based curriculum
Willems et al. (2020) to improve the underlying code representation. To this end, we test the ef-
fectiveness of our approach on CodeBERT, GraphCodeBERT, and UniXcoder as they span various
input modalities such as text, dataflow, and AST as well as encoder-decoder and encoder-only ar-
chitecture configurations.
Contrastive Learning with Hard Negatives. Mining hard negatives for efficient contrastive
learning has found several applications in the field of image processing. Recent work (Xuan et al.
(2020)) shows why hard negatives lead to unstable training behavior, but can be useful with some
simple fixes. Robinson et al. (2021) proposes a learnable distribution that models the hardness using
the inner product between the examples and underlying model embedding. Using this hardness as a
re-weighting mechanism, authors show how to sample suitable hard negatives that can most benefit
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the learning process. Hard negatives are difficult to learn from in the early stages of training, which
prompted researchers to explore curriculum learning strategies Chu et al. (2021). However Chu
et al. (2021) proposes a static curriculum where negative samples are scored, sorted from easy-to-
hard, and batched. Willems et al. (2020) propose a mastering-rate-based framework that generates
a probability distribution over interdependent tasks based on the dependency relationship between
them and the degree to which they have been learned (or mastered) by the model. We employ a
mastering rate curriculum which guides the model to learn from both soft (randomly sampled) and
hard AST-guided negatives while taking the model learning state into account.
Inducing & Detecting Bugs in Software. Our AST guided perturbations for generating hard neg-
atives draw upon literature to induce and detect bugs in software Allamanis et al. (2021); Patra &
Pradel (2021); Pradel & Sen (2018), detect API misuse Wen et al. (2019), and name value pair con-
sistencies Patra & Pradel (2022). Pradel & Sen (2018) use simple code transformations to create
artificially seeded bugs to learn a name-based semantic bug detector. They build bug detectors for
detecting accidentally swapped arguments, incorrect binary operators and operands for JavaScript
code. Patra & Pradel (2021) propose a technique to semantically adapt bug patterns to local context
by learning token embeddings that capture semantic similarities between variables and literals. Patra
& Pradel (2022) dynamically analyze the assignment of values to a variable and learn a model to pre-
dict if a variable name is appropriate for the value it holds. Wen et al. (2019) propose eight mutation
operators (altering API call sequences, conditional branching, API call arguments, etc.) to detect
API misuse using mutation testing. We draw upon some of these patterns as sources of inspiration
for our AST perturbation rules. Allamanis et al. (2021) propose PyBugLab, a code rewriting-based
approach for Python to induce typographical bugs that might arise from copy-paste errors and are
statistically common Karampatsis & Sutton (2020); Just et al. (2014). They learn a pointer network
Merity et al. (2017) to localize the bug and a set of rules (variable, function argument swapping,
operator substitution & operand corruption) and associated score functions to determine the most
likely bug. Some of the rules proposed in this work are similar in nature (rule 6 and “wrong op-
erator”, rule 4, 5 and “wrong literal”), but we generate all possible corrupted candidates applying
one rule at a time, and use the current model weights to rank the corrupted code snippets against the
intent to find code snippets the model is likely to be confused by.

3 METHOD

For neural code search, Transformers based pretrained encoders are finetuned on annotated NL-PL
pairs. Our method is targeted towards improving the learnt representation during this finetuning
stage, by utilizing carefully synthesized hard negative samples. In this stage, we follow the triplet
network architecture (proposed by Hoffer & Ailon (2015)), where the NL query (x), a positive PL
snippet (y+) and a negative PL (y−) snippet are sampled and fed to a network individually. In
general, this network is a unified representation learner, that is trained to embed both text and code
into a joint embedding space. Here, we use transformer-based pretrained encoders. After the triplet
is encoded, we use the contrastive loss to minimize the relative distances between the positive pair
(⟨x, y+⟩) with respect to the negative pair (⟨x, y−⟩). Negative sampling lies at the core of this
training paradigm. In this work, we propose an improvement on the regular contrastive learning, by
additionally finetuning the network with synthesized hard negatives (negative PL snippets) through
well-specified AST-based perturbation rules. The set of rules are inspired by generic code constructs
and the abstract type of errors the SOTA models are observed to make. In a way, these perturbation
rules are targeted to fix such known types of errors, while making representation learner more robust.
As these synthesized hard negatives are harder to distinguish (i.e., not easy to learn from) in the
initial phases of learning, we further adopt the mastering rate based curriculum learning Willems
et al. (2020) approach to learn from both soft and hard negatives.

3.1 GENERATING NEGATIVE SAMPLES THROUGH AST PERTURBATION

For code retrieval, most errors made by Transformers-based SOTA methods can be mapped to spe-
cific syntactic and semantic constructs. We group the errors into three broad categories: Type-1
(Data type mismatch): incorrect data types or data structures used (e.g. list comprehension instead
of set comprehension, the addition of a string to a variable instead of an integer, etc.) Type-2 (Func-
tion call errors): Incorrect function is called or correct function is called with incorrect arguments.
Type-3 (Incorrect conditional checks): Errors in branching, incorrect comparison (“==” instead of
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Figure 1: SYNC: Various stages of the proposed AST-guided curriculum.

“!=”) or logical operators (and, or). The first example in Table 1 represents an error of Type-1 while
the other two represent errors of Type-2. To make models robust against making such errors, we
use contrastive learning with synthesized hard negatives based on AST-perturbation rules. We first
generate a set of candidate hard negatives and sample the final hard negatives using the underlying
code search model dynamically. We explain the two steps below.
Generation of Candidate Hard Negatives. We use AST-perturbation rules to generate hard neg-
atives, as outlined in Table 2. We carefully design these rules to capture the common patterns in
mistakes made by SOTA models with inspiration from previous works Allamanis et al. (2021); Wen
et al. (2019). An AST-perturbation rule substitutes a node of a specific type in the AST with a dif-
ferent node. Most1 of the rules ensure that the perturbed code snippets do not satisfy the intent of
the original code, i.e. for a code snippet C, if a rule produces a code snippet C ′, then there exists a
test case t such that the output of C, C(t) is not equal to C ′(t) (i.e., ∃t ∋ C(t) ̸= C ′(t)).

We will now briefly explain how the rules directly address the error types outlined above. Rule-1
addresses Type-2 errors, by replacing standard library functions with the closest library function
based on function name and signature. To find the closest library functions, we retrieve k(=10)
functions from a list of 5.9k function specifications gathered from standard python modules and
some well-known data science libraries like NumPy, pandas, etc. present in the dataset by scor-
ing their similarity based on lexical and function signature overlap (detailed in Appendix section
A.2). Notably, we just change the name of the function in the invocation and not the arguments.
Rule-4 addresses errors of Type-1 by replacing integer or floating point constants with quoted string
versions of them (e.g. x+3 to x+"3") and replacing string constants with integer or float val-
ued constants equal to the length of the string (e.g. "hi"*n to 2*n). Finally rules such as rules
5, 6, 7, and 9 address errors of Type-3 by removing branching (rule 9), flipping conditional ex-
pressions (rule 5, 6), or altering composite conditions (rule 7). We do not chain the application
of multiple rules, as it can lead to a code snippet that ends up satisfying the original intent. For
example, if x == True:print("Hello") would be semantically equivalent to if x !=
False:print("Hello"), which can be obtained from the original code snippet by chained
application of rules 5 and 6.

As shown in Algorithm 1 (in Appendix), we generate a set of corrupted code candidates by applying
the rules discussed above. To implement our AST perturbation algorithm, we parse the code snippets
into abstract syntax trees (ASTs) using Python’s AST parser2 module (for Python 3.7). Then we use
node level substitutions to perturb the AST and unparse it using the AST unparser tool3 to recover
the corresponding code.

1For some rules such as rules 2 & 3, which convert list comprehensions into set comprehensions and vice-
versa, it is possible to design code snippets that have the same output for all test cases irrespective of whether
a set or list is used. Additionally, for rule 1 the substituted function call might end up being identical both in
behavior and input specifications to the original function call in rare cases.

2https://docs.python.org/3.7/library/ast.html
3https://github.com/python/cpython/blob/3.7/Tools/parser/unparse.py
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Sampling of Hard Negatives. Once we generate a candidate set of hard negatives ci through AST
perturbation, we use the current model weights to score them against the NL intent or query q and
sample hard negatives by using the probability distribution given by the softmax over the scores, as

eq
T ci∑

i e
qT ci

similar to Robinson et al. (2021) (equivalent to von Mises-Fisher distribution with uniform

prior over candidates). The concentration parameter β controls the hardness of the sample hard
negatives. A high beta leads to a distribution that picks candidates that the model thinks are most
similar to the intent, leading to harder negatives, while a low beta is close to a uniform distribution,
making each hard negative candidate equally likely, leading to softer negatives.

Rule Input Pattern Perturbed Output Description

1 Library function substitution f(exp1, exp2, . . . expn) f ′(exp1, exp2, . . . expn)
Replace standard library functions
with closest library function based
on function name and signature

2 List comprehension to
set comprehension

[exp1, exp2, ...expn]
[x for x in exp1 if exp2]

{exp1, exp2, . . . expn}
{x for x in exp1 if exp2}

Replace list comprehension with
set comprehension (Box brackets
to curly brackets)

3 Set comprehension to
list comprehension

{exp1, exp2, . . . expn}
{x for x in exp1 if exp2}

[exp1, exp2, . . . expn]
[x for x in exp1 if exp2]

Replace set comprehension with
list comprehension (Curly
brackets to box brackets)

4 Convert integer/float constants to
strings and vice versa

dig1 . . . dign
dig1 . . . dign.dig′1 . . . dig

′
m

“char1 . . . charn”
“char1 . . . charn”

“dig1 . . . dign”
“dig1 . . . dign.dig′1 . . . dig

′
m”

n
n.0

Substitute integer constant with
string (enclose in quotation
marks) and replace string with
integer or floating value equal
to the length of the string

5 Flip boolean constants exp == True
exp != False

exp == False
exp != True

Replace ‘True‘ with ‘False‘ and
vice-versa

6 Flip comparators

exp1 == exp2
exp1 != exp2
exp1 < exp2
exp1 > exp2
exp1 ≥ exp2
exp1 ≤ exp2

exp1 != exp2
exp1 == exp2
exp1 ≥ exp2
exp1 ≤ exp2
exp1 < exp2
exp1 > exp2

Flip comparators <to >=,
>to <=, == to !=, “is” to
“is not”, “in” to “not in” and
vice-versa

7 Flip boolean operators exp1 or exp2
exp1 and exp2

exp1 and exp2
exp1 or exp2

Replace “and” with “or” and
vice-versa in composite
boolean expressions

8 Replace function calls with
identifier name

f(exp1, . . . expn)
v op= f(exp1, . . . expn)
v = exp′ op f(exp1, . . . expn)

f
v op= f
v = exp′ op f

Replace function call with
identifier of the same name

9 Replace If-Else statement or
expression with its body

if exp: s1; else s2;
if exp1: s1; elif exp2: s2; . . . else: sn;
expr1 if exp2 else exp3

s1
s1
exp1

Remove branching in the form of
if-else statements, if-else if ladders
or inline if-else expressions with
the body of the if statement

Table 2: AST perturbation rules and their corresponding grammars in Python’s Abstract Syntax De-
scription Language (or ASDL) format. ASL has 4 inbuilt data types: identifier, int, string, constant

3.2 TRAINING CURRICULUM

To carefully learn from both soft and hard negatives (Zhan et al. (2021)), we use a mastering-rate
(Willems et al. (2020)) based training curriculum approach. Willems et al. (2020) define curriculum
learning by 1) a curriculum i.e. a set of tasks C = {c1, . . . , cn}, where a task is set of examples
of similar type with a sampling distribution, and 2) a program which for each training step defines
the tasks to train the learner given its learning state and the curriculum. Formally, the program
d : N → DC , is a sequence of distributions over C. To learn tasks that are learnable but not learnt
yet, the mastering-rate based algorithm requires as input a directed graph over tasks in C. An edge
from A to B indicates that learning task A before B is preferable. The learnability for each task
depends on mastering rate (Mc(t)) estimated from the normalized mean accuracy for that task at
time-step t. To estimate the distribution over examples, at each time-step, the algorithm computes
attention (a : N → AC) over the tasks (ac(t)) from mastering rates of its ancestors and successors
(in the DAG). Finally, it uses an attention-to-distribution converter (∆ : AC → DC) which converts
the attention to a distribution over C, which is used to sample minibatches during training.

For our curriculum, we consider two sub-tasks, i.e., hard negative and soft negative learning, where
learning from soft negatives is preferable before hard negatives. We generate a distribution over
these two tasks as a function of the current mastering rate (windowed triplet accuracy) for each

learning task. We compute the mastering rate for a task L at the tth step usingM(t)
L =

∑k
i=0(Ta)

(t−i)
L

k ,
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where (Ta)(t−i)
L is the triplet accuracy at the (t − i)th step for L, and k is the window size. The

mastering rates are used to determine the attention over the hard (a(t)h ) and soft negative (a(t)s )
learning tasks at the tth step as follows:

a(t)s = (δ · (1−M(t)
s ) + (1− δ) · γ̂linreg

s (t)) · (1−M(t)
h ) (1)

a
(t)
h = (M(t)

s )p · (δ · (1−M(t)
h ) + (1− δ) · γ̂linreg

s (t)). (2)

Here γ̂linreg
s is the slope of the linear regression over the values of the triplet accuracy for the last

k steps (window size), while δ is a coefficient that weighs the contribution of the mastering rates
M(t)

s andM(t)
h , and γ̂linreg

s . Finally, we compute ∆(a(t)), the probability distribution over the two
learning tasks at the tth step, as shown in Eqn. 3 as the weighted combination between the softmax
over the attention weights and a bias distribution ∆bias with epsilon being the weight of the bias
distribution. Willems et al. (2020) assume a uniform distribution as the bias distribution, but we find
a weight of 0.8 for soft negatives and 0.2 for hard negatives to be more suitable for our setting.

∆(a(t)) := (1− ϵ) · ea
(t)
c∑

c′ e
a
(t)

c′
+ ϵ ·∆Bias (3)

We compute the triplet accuracy Ta to estimate the mastering ratesM(t)
S andM(t)

H using Eqn. 4:

Ta =

∑N
i=0 1∥xi−y+

i ∥2<∥xi−y−
i ∥2

N
, (4)

where xi, y+i , and y+i represent the anchor text, positive code snippet and negative code snippet
representations respectively, while 1i is an indicator variable which is 1 if i > 0 and 0 otherwise).
Loss function We use the following triplet loss function: Lϕ(xi, y

+
i , y

−
i ) = max{∥xi − y+i ∥2 −

∥xi − y−i ∥2 + 1, 0}, where xi, y+i and y−i represent the intent, positive code sample and negative
code sample respectively. We use the default margin of 1. Ablations with different margins for hard
and soft negatives don’t lead to better performance.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We conduct several experiments on four popular Python code retrieval datasets, namely CoNaLa,
PyDocs, WebQuery and CodeSearchNet.
CoNaLa. The CoNaLa dataset (Yin et al. (2018)) has 2.4k training and 500 test examples with
intents and corresponding code curated by human annotators. They also automatically mine 600k
intent-snippet pairs from StackOverflow. Due to its size, we utilize this set of mined pairs as the
main pre-training corpus for our experiments. Based on Xu et al. (2020) and our pilot studies (see
table 7 in Appendix), we filter out the 100k most relevant NL-PL pairs (detailed in Appendix) to
reduce noise in the dataset and achieve better performance.
PyDocs. The PyDocs dataset is curated from function signatures and corresponding documen-
tation from Python’s standard library API reference by Xu et al. (2020). The authors heuristically
generate syntactically correct function calls from their specifications and queries from their docu-
mentation. Next, they resample the data to match the distribution of CoNaLa by retrieving k most
relevant API NL-PL pairs based on CoNaLa NL and PL separately. They further use the frequen-
cies of the retrieved NL-PL pairs to build the sampling distribution with a temperature parameter to
balance between uniform sampling and matching the distribution of the CoNaLa data. In this work
we use the data corresponding to both NL and PL based retrieval with the lowest temperature(=2)
(most similar to CoNaLa) and set aside 365 queries and 416 corresponding documents as a test set
while the remaining training and validation data has 9.7k NL-PL pairs.
WebQuery. The WebQuery test set is associated with the CoSQA corpus: a dataset of 20.6K
human annotated query-code pairs curated by Huang et al. (2021). The NL queries in this dataset
are “web queries” with a code searching intent as judged by human annotators while the code can-
didates are functions which are annotated for relevance to the query using the docstring, function
header and body. WebQuery test set has 523 NL queries and 803 unique code candidates in it.
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CodeSearchNet. The CodeSearchNet corpus Husain et al. (2019) is collected from the most pop-
ular open-source Github repositories for six programming languages including Python. The authors
extract functions from the codebases automatically along with their respective documents using
heuristic regular expressions; discarding functions with very short (or no) documentations. They
truncate documentations to the first paragraph to make their length comparable to search queries,
filter out functions shorter than 3 lines, functions containing the substring “test” and standard exten-
sion methods (e.g. str dunder method in Python) and near duplicates (using Allamanis (2019)
and Lopes et al. (2017)). We utilize the Python subset of the test set which has 21.5k queries and
22k documents. Since the “queries” are function documentation written by the authors of the codes,
they have a very different distribution than regular search queries.

4.2 EXPERIMENTS

Training. We train the transformer-based models on both CoNaLa and PyDocs to compare the
generalizability based on the training dataset (Tab. 3) and proceed with CoNaLa mined pairs as the
primary dataset based on the results. Additionally, we also compare the effect of using the top 100k
most relevant NL-PL pairs instead of the whole dataset (Tab. 7). We train the transformer models
on the CoNaLa 100k data with regular fine-tuning, dynamic negative sampling-based fine-tuning
(DNS), and our AST-guided curriculum and show the results over, all 4 test sets described in the
previous section, in Tab. 4 along with other modeling baselines, explained in the following section.
Model Selection. We use a retrieval style validation with 14k queries and 18.3k code candidates
and the recall@5 metric to pick the best model.
Testing. We test all the models, except UniXcoder on all 4 datasets. UniXcoder is not tested on
CodeSearchNet as it is part of its pre-training corpus. The summary statistics of each test set are
shown in Table 6. We average the metrics over all test sets to report the generalization performance
and use the average performance barring CoNaLa to report out-of-domain (OOD) generalization.
Metrics. We use Normalized Discounted Cumulative Gain (NDCG), recall@k (for k = 5, 10), and
Mean Reciprocal Rank (MRR) as the metrics for evaluation.

Model Trained on MRR NDCG Recall@5 Recall@10

CodeBERT CoNaLa 58 68.13 66.62 77.52
GraphCodeBERT CoNaLa 50.65 61.19 61.58 72.62
UniXcoder CoNaLa 63.8 73.37 72.92 83.33
CodeBERT PyDocs 49.64 60.15 54.17 61.07
GraphCodeBERT PyDocs 52.42 62.94 58.82 67.18
UniXcoder PyDocs 49.22 60.42 54.83 63.42

Table 3: Effect of training dataset on the generalizability of models.

Baselines. We train our baselines in a siamese configuration similar to Husain et al. (2019) but use
the same architecture for both the text & code encoders. We train them using a binary cross entropy
loss function objective where x and y are the code snippet and intent representation, whereas 1n is
an indicator variable which is 1 if intent and snippet are related to each other and 0 otherwise.

Lϕ(x, y) = −[1n · log(
1

1 + e−xT y
) + (1− 1n) · log(

e−xT y

1 + e−xT y
)], (5)

We obtain binary classification data of roughly 950k NL-PL pairs for training and 237.6k for valida-
tion with a roughly even class distribution from the CoNaLa data by random sampling of negatives.
• Neural Bag of Words (n-BOW): Here, we treat the intent and code snippet as a bag of words and
computes their representation via a 1-D mean pool over all the tokens. We use CodeBERT tokenizer
to obtain the tokens, and the token-level embeddings are initialized from the 768 dimensional em-
bedding layer of CodeBERT.
• CNN Baseline: For the CNN baseline, we use three successive 1-D convolutions with a kernel of
width 16. We use padding, residual connections and dropout of 0.2 at each layer. Finally, we pool
across the sequence by using an attention-like weighted sum. The architecture closely follows the
CNN baseline proposed in Husain et al. (2019).

7



Under review as a conference paper at ICLR 2023

Model MRR (∆) NDCG (∆) Recall@5 (∆) Recall@10 (∆)

n-BOW 6.15 19.21 7.05 10.17
CNN 2.96 16.76 2.6 5.19
RNN 6.7 21.42 8.21 13.54

CodeBERT (zero shot) 6.24 19.37 7.41 9.94
CodeBERT 58 68.13 66.62 77.52
CodeBERT + DNS 60.95 (+2.95) 70.51 (+2.38) 69.88 (+3.26) 79.43 (+1.91)
CodeBERT + AST 63.04 (+5.04) 72.21 (+4.08) 72.48 (+5.86) 82.44 (+4.92)
CodeBERT + AST (hard neg) 30.02 43.97 36.08 45.6

GraphCodeBERT (zero shot) 16.45 28.04 19.65 22.88
GraphCodeBERT 50.65 61.19 61.58 72.62
GraphCodeBERT + DNS 52.97 (+2.32) 63.88 (+2.69) 62.34 (+0.76) 73.79 (+1.17)
GraphCodeBERT + AST 56.15 (+5.50) 66.39 (+5.20) 65.09 (+3.51) 75.93 (+3.31)
GraphCodeBERT + AST (hard neg) 33.79 47.09 41.43 52.59

UniXcoder (zero shot) 44.39 56.51 50.59 57.21
UniXcoder 63.8 73.37 72.92 83.33
UniXcoder + DNS 64.2 (+0.40) 73.68 (+0.31) 74.66 (+1.74) 83.39 (+0.06)
UniXcoder + AST 65.13 (+1.33) 74.58 (+1.21) 74.83 (+1.91) 84.68 (+1.35)
UniXcoder + AST (hard neg) 50.9 62.94 61.44 72.78

Table 4: The averaged metrics over all 4 test sets: CoNaLa, PyDocs, CodeSearchNet, WebQuery
(CodeSearchNet is excluded for UniXcoder) for all models and baselines when trained on CoNaLa.
The ∆ represents improvements in each model when using DNS & AST compared to the base model

MRR NDCG Recall@5 Recall@10

Model IID OOD IID OOD IID OOD IID OOD

CodeBERT 54.7 59.1 65.33 69.06 62.2 68.09 77.4 77.56
CodeBERT+DNS 54.96 62.95 65.8 72.08 66.2 71.1 79.8 79.3
CodeBERT+AST 56.62 65.17 67.08 73.92 68.0 73.97 82.4 82.46
GraphCodeBERT 57.4 48.4 67.78 59.94 69.8 58.84 83.2 69.1
GraphCodeBERT+DNS 59.28 50.87 69.26 62.08 67.6 60.59 80.8 71.45
GraphCodeBERT+AST 58.28 55.44 68.37 65.73 68.4 63.99 83.6 73.38
UniXcoder 59.82 65.79 69.53 75.3 69.6 74.59 83.0 83.49
UniXcoder+DNS 59.13 66.74 69.02 76.01 72.4 75.79 84.2 82.99
UniXcoder+AST 60.21 67.6 70.06 76.83 72.4 76.05 84.8 84.61

Table 5: Breakdown of in-distribution performance on CoNaLa and out-of-distribution performance
on other datasets for CodeBERT, GraphCodeBERT, and UniXcoder for all 3 training variants.

•RNN Baseline: We use a 2-layered Bi-LSTM architecture with a dropout of 0.2. Similar to Husain
et al. (2019), we use a final attention-like weighted sum layer across all hidden states to calculate
the final representation.
• Dynamic Negative Sampling (DNS): We propose a strong baseline loosely based on the STAR
and ADORE algorithms Zhan et al. (2021). STAR uses a mixture of static hard negatives and ran-
domly sampled soft negatives to train both the query and document encoder. ADORE runs a retrieval
over all document embeddings for each mini-batch to dynamically find hard negatives, while freez-
ing the document encoder and only updating the query encoder. Zhan et al. (2021) sequentially
train the query and document encoder with STAR and then further train the query encoder only with
ADORE. This procedure doesn’t translate directly to our setting since we use the transformer mod-
els as universal encoders for both queries (NL) and documents (code/PL) simultaneously. We strike
a balance by performing an ADORE-like retrieval for each mini-batch of queries and documents but
on the limited set of documents present in a mini-batch instead of the whole corpus and update the
combined document and query encoder at each step (Fig. 3 in the Appendix). We find this approach
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to be stable during training and see significant improvements in performance for CodeBERT and
GraphCodeBERT and modest improvement for UniXcoder as outlined in section 5.

5 RESULTS AND DISCUSSION

Effect of Training Data on Generalization. Before measuring the effect of our approach on the
generalization capability of models, we measure the effect of the training data on generalization by
comparing the performance of the models when trained on PyDocs and CoNaLa. The results in
Tab. 3 show that training on CoNaLa leads to significantly better generalization for CodeBERT and
UniXcoder; and better performance for recall for GraphCodeBERT but slightly worse performance
for MRR and NDCG. Therefore we use CoNaLa as the training data for all subsequent experiments.
Effect of AST-guided Curriculum on Generalization. We compare the performance of the base-
lines, and the three transformer models in zero-shot, regular contrastive learning, dynamic negative
sampling (DNS), and AST-guided curriculum learning settings (AST) (results in Tab. 4). We ob-
serve significant improvement in the performance over the regular training for DNS and AST for
CodeBERT (+2.625 & +4.975 over all metrics) and GraphCodeBERT (+1.735 & +4.38). For UniX-
coder we observe comparably less improvement (+0.6275 and +1.45 for DNS and AST), potentially
because it already incorporates some AST information during pre-training. Interestingly, Graph-
CodeBERT performs worse than CodeBERT over generalization, due to poor performance over the
CodeSearchNet corpus as shown in the dataset-wise breakdown in Table 8 in the Appendix. Ad-
ditionally, we observe that the transformer models dominate the simpler models even in zero-shot
settings, especially UniXcoder which has a +39.708 gain over the RNN baseline & +30.42 over
zero-shot GraphCodeBERT. We also investigate the importance of curriculum design, with experi-
ments that use only the hard negatives (“hard neg” in Table 4) and a naive curricula (Table C.3 in
Appendix). The results showcase the effectiveness of the mastering-rate based curriculum in making
the most of the hard negatives and stabilizing the training.
Analysis of In-Distribution & Out-of-Distribution Performance. Table 5 shows the in-domain
and out-of-domain performance of each model (CodeBERT, GraphCodeBERT, and UniXcoder) for
regular training, DNS and AST-guided curriculum-based training. The metrics indicate that the use
of AST-guided curricula leads to significant performance gains in out-of-domain generalization over
the base training as well as DNS while achieving similar performance on in-domain data for UniX-
coder and GraphCodeBERT and significant improvement for CodeBERT.
Qualitative Analysis. Our structure-aware training curriculum leads to improvements over the
error classes identified in section 3.1. We show some motivating examples in Tab. 9 (in Appendix).
For the first example, all the top 5 retrieved code snippets for the AST model invoke the correct
function call extend compared to the base model. In the second example, three of the top five
retrieved code snippets for the AST model have a tuple of tuples or a list of tuples data structure,
while the baseline model retrieval results feature 1D lists instead. Finally, for the third example, the
highest ranked candidate gets all 3 function arguments correct.

We also perform analogy testing (of the form a:b::c:? for each rule) over the code representations to
quantify their sensitivity to the perturbation patterns introduced by our AST-guided hard negatives.
We observe that our approach leads to better performance overall for CodeBERT and GraphCode-
BERT, with equivalent or slightly better performance over each rule pattern. For UniXcoder we
observe a slight drop in performance over certain rule types (details in Appendix Section C.6).

6 CONCLUSION

For neural code search, state-of-the-art Transformers-based pretrained encoders make certain com-
mon mistakes that indicate limited understanding in code syntax and semantics. We notice three
broad error categories such as retrieving code with wrong data-type, method with incorrect signature
or incorrect arguments or incorrect branching for CodeBERT, GraphCodeBERT and UniXCoder. To
learn more efficient representation during fine-tuning, we propose a structure-aware hard negative
sampling through AST perturbation alongwith a mastering-rate based curriculum, where our AST
perturbation rules are motivated by above error categories and generic code constructs. Our exper-
iments show significant improvement on above three models on four code retrieval datasets (in IID
and OOD settings). Interestingly, our method shows improvement even for UniXCoder which is
exposed to underlying AST structure of the code snippets during pre-training.
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A METHOD

A.1 ALGORITHM OUTLINE FOR AST PERTURBATION

Algorithm 1: Pseudocode for AST guided code perturbation
Data: ρ,R /* ρ is program snippet, R is set of rules */
Result: P = {ρ′1, . . . ρ′n} /* ρ′i is ith corrupted program snippet */

1 T ← parseAST(ρ);
2 S ← ∅; /* Traverse AST & collect applicable rule sites */
3 η ← getRoot(T );
4 W ← {η} ;
5 whileW ̸= ∅ do
6 η ←W.pop();
7 for r ∈ R do
8 if isValidSite(η,r) then
9 S.push(⟨η,r⟩); /* Collect valid candidate rule sites without

modifying AST */

10 for n ∈ succ(η) do
11 W.push(n);

12 P ← ∅;
13 for ⟨η,r⟩ ∈ S do
14 Tc ← copy(T ); /* Create a copy of the AST to modify later into a

corrupted program snippet */
15 Tc ← applyRule(Tc, η,r); /* Apply rule on valid site node and

transform AST */
16 ρ′ ← unparseAST(Tc); /* Regain program snippet from transformed AST

*/
17 P.push(ρ′); /* Collect set of corrupted program snippets */

We discuss the pseudo-code of our AST perturbation in algorithm 1. To detect valid sites for each
rule application we use checks on the type of the node (each node type has a dedicated Python
class representation). In fact Python’s ast module provides visit functions for each type of node
(for e.g. visit List for nodes of List type). The function visit Type is called whenever
a node of type Type is visited, and we override these functions to keep a track of certain nodes
which are sites for valid rule applications. An additional detail that might not be apparent from the
pseudo-code is that we successively apply a rule on all of its valid sites at a time, but we apply at
most one rule at a time. For e.g. while applying rule 5 on if x == True and y == False,
we substitute all occurrences of True with False and False with True, to obtain if x ==
False and y == True. Our procedure is guaranteed to give syntactically correct corrupted
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Figure 2: AST perturbation in action: For the given code snippet, rule 5, 6, 7 & 9 are applicable,
leading to 4 AST-based hard negative candidates. Rule 5 flips the leaf nodes corresponding to the
named constants “True” & “False”, while rule 6 replaces boolean “and” operator leaf node with an
“or” leaf node, rule 7 flips the “==” leaf nodes to “!=” leaf nodes and finally rule 9 replaces the code
snippet with the body of the if statement “print(’Hello’)”. Rule 9 is not shown due to a lack of space.

codes as output, as the unparse module fails to recover the code string if the transformed AST is
invalid. Now we will briefly cover the approach we use to score and rank candidate function calls
for the function call substitution rule (rule 1 in 2). Fig. 2 shows our algorithm in action for if x
!= True and y != False: print("Hello").

A.2 FUNCTION SIMILARITY SCORING FOR FUNCTION CALL SUBSTITUTION (RULE 1)

For a target, function call Fi to be substituted by a target function call Fj we compute the score
sij as the sum of the function name match score snij and the function signature match score ssij
(sij = snij + ssij). We compute snij using the token sort ratio measure, implemented by the
fuzzwuzzy4 python package, between the function strings after replacing underscores with spaces
and normalizing it to be between 0 to 1, instead of 0 to 100. ssij also has two components: a return
type match score sretij and a parameter match score spij and is compute as spij = sretij + spij . sretij is
1 if both function calls have the same return type and 0 otherwise, while spij attempts to match the
parameter kinds (positional argument vs keyword argument) and default values, from left to right and
normalizes it by the maximum possible score. We do not use the data type information for function
arguments, as it is not available for several of the function calls (Python doesn’t require explicit
data types in function specifications and data type information can only be given as optional hints
or annotations). Each component score in sij , varies between 0 to 1, leading to sij itself ranging
from 0 to 3 (as sij = snij + sreti j + spij). We recognize that prior work like Patra & Pradel (2022)
has applied learned semantic embeddings to match code entities, but we avoid doing it for function
names here to enable faster matching over larger candidate sets (≈ 5.9k candidates). Efficient ways
to incorporate learned embeddings or even the current model weights to match candidate functions
could be a promising extension of our work.

B DATASET STATISTICS

We show number of unique queries and documents (code snippets) alongwith representative exam-
ples for each of the four test sets in Table 6. Notably, PyDocs, WebQuery and CodeSearchNet all
vary from CoNaLa in the way queries are expressed. WebQuery and CodeSearchNet contain larger
code snippets compared to PyDocs and CoNaLa.

4https://pypi.org/project/fuzzywuzzy/
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Dataset #Queries #Docs Intent Code Snippet

CoNaLa 365 490 How can I send a signal
from a python program? os.kill(os.getpid(), signal.SIGUSR1)

PyDocs 365 416
Return the current collection
counts as a tuple of
(count0, count1, count2).

gc.get count()

WebQuery 523 803 python git get latest commit

def latest commit(self) ->git.Commit:
”””:return: latest commit :rtype: git.Commit object”””
latest commit: git.Commit = self.repo.head.commit
LOGGER.debug(’latest commit: %s’, latest commit)
return latest commit

CodeSearchNet 21504 22176 str->list Convert XML to URL
List. From Biligrab

def sina xml to url list(xml data):
”””str->list Convert XML to URL List. From Biligrab.”””
rawurl = []
dom = parseString(xml data)
for node in dom.getElementsByTagName(’durl’):
url = node.getElementsByTagName(’url’)[0]
rawurl.append(url.childNodes[0].data)
return rawurl

Table 6: Statistics of each dataset: CoNaLa, PyDocs, WebQuery, CodeSearchNet.

C EXPERIMENTAL DETAILS

Figure 3: We create a feedback loop in the model training by using the current model weights to
pair each intent-snippet pair with the closest snippet from another intent. These create the hardest
negatives at a batch level, which are expected to be harder than randomly sampled negatives.

C.1 HYPER PARAMETER VARIATIONS

We explore some variations of the various hyper-parameters associated with the mastering-rate
curriculum-learning algorithm. Figure 4 shows various variations of the β (used for the sampling in
3.1) and p (used in equation 2 for curriculum learning) for UniXcoder. We observe that increasing
p generally leads to better performance, which indicates that hard negative attention needs to be
sensitive to a drop in the mastering rate/accuracy of the soft negative learning task. Additionally,
we see that for very low βs (almost uniform distribution over hard negatives) lead to a better perfor-
mance with lower values of p, peaking a p = 2. This intuitively makes sense, as low βs correspond
to softer hard negatives, reducing the gap between hard and soft negative learning tasks. However
similar variations with CodeBERT & GraphCodeBERT indicated p = 2 and β = 0.01 to be overall
better. We perform a large parameter sweep over various values of warmup steps (number of steps
for which only soft negatives are used). For UniXcoder and CodeBERT we use a batch size of 48,
which leads to 5000 steps per epoch for CoNaLa-100k (80:20 train-validation split and 3 negative
samples per NL-PL pair), while for GraphCodeBERT a batch size of 32 was used, leading to 7500
steps per epoch, so we investigate variations in warmup steps in increments of 1000 for UniXcoder
(Fig. 7) and CodeBERT (Fig. 5) and for increments of 2500 for GraphCodeBERT (Fig. 6). These
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Figure 4: Hyperparameter search over the p and β for UniXcoder

Figure 5: Effect of warmup steps on performance of CodeBERT over all 4 metrics, with p = 2 &
β = 0.01

experiments indicate a general upward trend in performance, with a lot of fluctuations between con-
secutive points. For UniXcoder the upward trend is a lot weaker, which leads to the fluctuations
being more significant overall. We also observe that varying the warmup steps seems to have more
impact on the performance than p and β. We find that p = 2, β = 0.01 & 17k warmup steps work
best for CodeBERT, while p = 2, β = 0.0001 & 13k warmup steps work best for UniXcoder and
p = 2, β = 0.01 & 12.5k warmup steps work best for GraphCodeBERT. For all experiments we
used ϵ = 0.8 and δ = 0.5. Future work would also examine the effect of these parameters on the
overall performance.

C.2 FILTERING CONALA CORPUS

As mentioned in the Experiments section, we use 100k most relevant pairs of CoNaLa for finetuning,
as it achieves comparable or better performance on CoNaLa test set. Details are shown in Table 7.

C.3 EFFECT OF CURRICULUM

We examine the impact of the curriculum design by trying some simple variations, like using only
soft negatives (“soft neg”), using only hard negatives (“hard neg”), using a naive or random curricu-

15



Under review as a conference paper at ICLR 2023

Figure 6: Effect of warmup steps on performance of GraphCodeBERT over all 4 metrics, with p = 2
& β = 0.01

Figure 7: Effect of warmup steps on performance of UniXcoder over all 4 metrics, with p = 2 &
β = 0.0001

Model MRR NDCG Recall@5 Recall@10

CodeBERT 62.2 78 51.9 63.4
CodeBERT 100k 62.2 77.4 54.7 65.3
GraphCodeBERT 66.2 79.2 57 67.3
GraphCodeBERT 100k 69.8 83.2 57.4 67.8
UniXcoder 69.2 83 59.8 69.5
UniXcoder 100k 69.6 83 59.8 69.5

Table 7: Pilot study comparing the effect of training on the entire CoNaLa mined pairs dataset
(roughly 600k NL-PL pairs) vs training on the 100k most ”relevant” pairs based on the ”prob”
score. Using these 100k NL-PL pairs leads to similar or better performance in 1

6

th the training time.

lum (“rand curr”) where we sample soft or hard negative instances with equal probability and our
mastering rate curriculum (“MR curr”). The results are outlined in Table C.3. We see that using hard
negatives only leads to the worst performance while just introducing some soft negatives through
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Model Curriculum
Type MRR NDCG Recall@5 Recall@10

CodeBERT soft neg 58 68.13 66.62 77.52
CodeBERT hard neg 30.02 43.97 36.08 45.6
CodeBERT rand curr 57.18 67.5 66.25 76.24
CodeBERT MR curr 63.04 72.21 72.48 82.44
GraphCodeBERT soft neg 50.65 61.19 61.58 72.62
GraphCodeBERT hard neg 33.79 47.09 41.43 52.59
GraphCodeBERT rand curr 50.35 61.58 59.84 70.6
GraphCodeBERT MR curr 56.15 66.39 65.09 75.93
UniXcoder soft neg 63.8 73.37 72.92 83.33
UniXcoder hard neg 50.9 62.94 61.44 72.78
UniXcoder rand curr 61.12 71.29 72.07 82.26
UniXcoder MR curr 65.13 74.58 74.83 84.68

the random curriculum greatly improves the performance, but still doesn’t do as well as just using
soft negatives. This shows how challenging it is to design a curriculum like the mastering rate based
curriculum used here to make the most of the hard negatives, and achieve better performance than
just using soft negatives.

C.4 DATASET-WISE PERFORMANCE BREAKDOWN

CoNaLa PyDocs WebQuery CodeSearchNet

Model MRR NDCG R@5 R@10 MRR NDCG R@5 R@10 MRR NDCG R@5 R@10 MRR NDCG R@5 R@10

n-BOW 6.19 20.76 8 9.6 16.21 30.55 18.51 27.88 1.51 16.77 0.96 2.29 0.67 8.78 0.72 0.92
CNN 6.05 21.88 5.4 10.4 3.23 17.46 3.12 6.49 2.43 19.01 1.82 3.73 0.12 8.67 0.06 0.13
RNN 13.02 29.28 16.2 25.6 6.73 21.91 8.41 14.42 6.49 24.42 7.74 13.29 0.55 10.06 0.49 0.86

CB
(zero shot) 2.76 16.75 3 5 6.48 20.37 8.65 12.26 1.62 16.97 1.24 3.35 14.1 23.41 16.76 19.14

CB 54.7 65.33 62.2 77.4 64.33 72.23 74.52 83.89 42.65 58.91 52.01 66.63 70.32 76.04 77.74 82.16
CB+DNS 54.96 65.8 66.2 79.8 69.76 76.39 78.37 86.3 43.18 59.23 52.77 66.06 75.91 80.61 82.16 85.55
CB+AST 56.62 67.08 68 82.4 71.09 77.47 79.81 87.98 46.66 62.05 57.65 71.61 77.78 82.25 84.46 87.79
CB+AST
(hard neg) 21.2 36.64 27 37.8 18.34 32.48 23.56 32.45 26.15 44.71 32.41 45.7 54.38 62.06 61.34 66.46

CB+AST
(rand curr) 51.43 63.04 61.6 76.6 60.8 69.11 71.63 79.09 41.97 58.38 51.43 65.77 70.12 75.8 77.31 81.58

GCB
(zero shot) 9.89 23.72 12 17.2 53.93 62.86 64.66 70.91 1.88 16.98 1.91 3.25 0.12 8.6 0.03 0.14

GCB 57.4 67.78 69.8 83.2 67.41 74.69 78.85 86.78 43.84 59.92 54.49 69.5 33.96 45.2 43.18 51.01
GCB+DNS 59.28 69.26 67.6 80.8 70.44 77.08 79.09 88.7 44.45 60.55 55.35 70.08 37.72 48.62 47.32 55.57
GCB+AST 58.28 68.37 68.4 83.6 78.47 83.32 85.58 91.11 47.04 62.49 55.64 70.46 40.82 51.37 50.75 58.57
GCB+AST
(hard neg) 30.77 45.17 37.8 49.8 51.1 61.22 62.26 75.72 32.79 50.5 39.87 53.63 20.49 31.47 25.81 31.2

GCB+AST
(rand curr) 56.53 67.14 66 80.4 68.98 75.67 79.33 85.82 43 59.36 52.39 66.92 32.9 44.15 41.66 49.25

UX
(zero shot) 20.7 34.9 24 30.4 83.02 86.94 90.87 93.99 29.46 47.7 36.9 47.23 - - - -

UX 59.82 69.53 69.6 83 83.42 87.27 89.9 94.71 48.17 63.32 59.27 72.28 - - - -
UX+DNS 59.13 69.02 72.4 84.2 84.77 88.31 91.35 94.47 48.71 63.71 60.23 71.51 - - - -
UX+AST 60.21 70.06 72.4 84.8 84.2 87.87 91.59 93.99 50.99 65.8 60.52 75.24 - - - -
UX+AST
(hard neg) 39.42 52.92 48 63 70.86 77.3 82.21 88.22 42.43 58.61 54.11 67.11 - - - -

UX+AST
(rand curr) 57.4 67.88 68.4 82.2 78.22 83.02 87.02 90.87 47.75 62.96 60.8 73.71 - - - -

Table 8: A breakdown of the performance of all models and baselines when trained on CoNaLa-
100k over each test set (CoNaLa, PyDocs, WebQuery, CodeSearchNet). CB: CodeBERT, GCB:
GraphCodeBERT, and UX: UniXcoder

The dataset-wise performance breakdown for all the 3 transformer models (CodeBERT, Graph-
CodeBERT, and UniXcoder) and all 3 training variants (regular triplet training, dynamic negative
sampling (DNS), and our proposed AST-guided training curriculum (AST)) is shown in table 8.

C.5 QUALITATIVE ANALYSIS

We show the qualitative effect of our approach through examples in Table 9.
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Model, Dataset
& Query Gold Candidates AST Hits@5 Baseline Hits@5 Error

Type

Model: CodeBERT
Dataset: CoNaLa
Query: Append elements of
a set to a list in Python

a.extend(b)
a.extend(list(b))

a.extend(list(b))
c.extend(a)
a.extend(b)
list2.extend(list1)
list1.extend(mylog)

list(set(source list))
list(set(t))
my list.append(l2)
dict(((x, l.count(x)) for x in set(l)))
list2.extend(list1)

Type-2

Model: CodeBERT
Dataset: CoNaLa
Query: How do I convert
tuple of tuples to list in one
line (pythonic)?

from functools import reduce
reduce(lambda a, b: a + b,
((‘aa’,),(‘bb’,),(‘cc’,)))
map(lambda a: a[0],
((‘aa’,),(‘bb’,),(‘cc’,)))

tuple(l)
map(lambda a: a[0],
((‘aa’,), (‘bb’,), (‘cc’,))
zip(*[(‘a’, 1), (‘b’, 2),
(‘c’, 3), (‘d’, 4)])
zip(*[(‘a’, 1), (‘b’, 2),
(‘c’, 3), (‘d’, 4), (‘e’,)]
[val for pair in zip(l1,
l2) for val in pair]

tuple(l)
“““, ”””.join(‘(’ + ‘, ’
.join(i) + ‘)’ for i in L)
print([item for item in [1, 2, 3]])

list(t)

“““,”””.join(l)

Type-1

Model: GraphCodeBERT
Dataset: PyDocs
Query: Asynchronous version
of socket.getaddrinfo ( ) .
With arguments “host”,
“port”, “family”.

loop.getaddrinfo(
host, port, family=0)

loop.getaddrinfo(
host, port, family=0)
dispatcher.create socket(
family=socket.AF INET)
socket.gethostbyname(
hostname)
socket.getfqdn()
socket.getservbyname(
servicename)

asyncio.open connection(
port=None)
dispatcher.create socket(
family=socket.AF INET)
asyncio.BaseProtocol

asyncore.dispatcher with send
async exit stack.push async exit(
exit)

Type-2

Table 9: Qualitative Examples, that show how Type-1, Type-2 errors get corrected through our
AST-guided curriculum.

C.6 ANALOGY TESTS FOR CODE REPRESENTATIONS

We perform analogy testing of the form a:b; c:? for each rule category, to gauge the effectiveness
of the AST guided curriculum on the sensitivity of the code embeddings towards transformations
based on the rules. To create the dataset we first apply the AST rules over the CoNaLa mined pairs
train set and then sample 100 pairs of original code and transformed code for each of the 9 rule
categories. Then we sample 200 examples from all possible 2 element combinations of the pairs to
get an analogy test bed of 1800 examples of the form a:b; c:d with 200 samples per rule category.
Some examples are shown in table C.6. During the sampling process, we also filter out code snippets
smaller than 30 characters, to ensure example quality.

Model Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 Rule 9 Total Score

CodeBERT 82.5 96 93 94 96.5 96.5 96 86.5 92.5 92.611
CodeBERT+AST 85 96.5 93.5 95.5 96.5 96.5 96 89 93 93.5
GraphCodeBERT 86.5 94 90.5 94.5 96.5 96.5 96 85 92 92.389
GraphCodeBERT+AST 87 96.5 90.5 94.5 96.5 96.5 96 90 95 93.611
UniXcoder 89.5 96.5 94.5 96.5 96.5 96.5 96 95 96.5 95.278
UniXcoder+AST 89 96.5 95.5 96.5 96.5 96.5 96 91 95.5 94.778

Table 10: Analogy test results (recall@5) for the retrieval task of fetching d given b + c − a from
1800 candidates from the CoNaLa dataset. Rule-wise and overall performance are shown, with 200
samples from each rule (transformation corresponding to the rule generates b from a and d from c).
Euclidean distance is used here to score similarity between b+ c− a and candidate ds.

Model Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 Rule 9 Total Score

CodeBERT 82.5 96 93.5 94 96.5 96.5 96 86 93 92.667
CodeBERT+AST 83.5 96.5 93.5 95 96.5 96.5 96 89.5 93.5 93.389
GraphCodeBERT 86 94 90.5 94.5 96.5 96.5 96 85 93 92.444
GraphCodeBERT+AST 87 96.5 90.5 94.5 96.5 96.5 96 90 95 93.611
UniXcoder 89 96.5 94.5 96.5 96.5 96.5 96 94 96.5 95.111
UniXcoder+AST 89 96.5 95.5 96.5 96.5 96.5 96 91 96 94.833

Table 11: Analogy test results similar to Table 10 using cosine similarity instead of euclidean dis-
tance to rank ds for a given b+ c− a
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Rule a b c d

1 print(‘elements are not unique’) pprint(‘elements are not unique’) print(‘y = {0}’.format(y.value)) spring(‘y = {0}’. normalize(y.value))

2 [x for x in something iterable if x != ‘item’] {x for x in something iterable if (x != ‘item’)} [len(list(group)) for value, group
in itertools.groupby(b List) if value]

{len(list(group)) for (value, group)
in itertools.groupby(b List) if value}

5 date ceased to act =
models.DateField(blank=True, null=True)

date ceased to act =
models.DateField(blank=False, null=False) print(df.to csv(sep=‘\t’, index=False)) print(df.to csv(sep=‘\t’, index=True))

6 def isPrime(n): if n < 2: pass def isPrime(n): if (n >= 2): pass

import dill
import pickle
s = pickle.dumps(lambda x, y: x + y)
f = pickle.loads(s)
assert f(3, 4) == 7

import dill
import pickle
s = pickle.dumps((lambda x, y: (x + y)))
f = pickle.loads(s)
assert (f(3, 4) != 7)

Table 12: Some examples from the analogy test data. The columns “a” and “b” are the examples
shown to indicate the pattern being, applied, while column “c” is the input and column “d” is the
target snippet to be retrieved (a:b::c:d). We chose (a, b) & (c, d) such that the same rule is applied
to get b from a and c from d, which is shown in the “Rule” column.

To evaluate the performance we measure all pairs’ euclidean distance between the embeddings c+
b− a and d and rank all possible candidates in the 1800 sample test set for each (a, b, c) triple. We
assign an analogy score of 1 to a sample if the correct d is among the top 5 retrieved candidates
out of 1800 (similar to recall@5). The overall performance is just the mean over each sample and
rule-wise performance is the mean over the samples involving transformations of a particular rule
class.

We observe an improvement or similar performance in each rule category for all the models except
UniXcoder where we see slightly worse performance for rules 1, 8, and 9. The highest performance
drop is on rule 8 which substitutes a function call with the function’s name as an identifier. This
is a somewhat strange kind of error for a developer to make and we theorize that since UniXcoder
has been pre-trained on CodeSearchNet data having function code and corresponding comments, it
might not be sensitive to unnatural perturbations like this.
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