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Abstract—Neural networks are vulnerable to meticulously crafted
adversarial examples, resulting in high-confidence misclassifications
in image classification tasks. Due to their stealthiness and difficulty
in detection, black-box transfer attacks have become a significant
focus of defense. In this article, we propose a purification defense
based on probabilistic scheduling algorithm of pre-trained mod-
els (ProbSched-PTM) to counter diverse transfer attacks. We first
quantify the differences among various models based on their output
scores and verify the linear negative correlation between adversarial
transferability and model difference. Subsequently, guided by the
model difference probability, we integrate the negative momentum
probability as a regularization factor to construct ProbSched-PTM.
It selects the most appropriate substitute model from multiple pre-
trained models to generate strong-transferability adversarial examples
for training the purification model, which enables the purification
model to effectively eliminate diverse adversarial perturbations. The
ProbSched-PTM-based purification defense provides robust defense
against unseen adversarial attacks from different substitute models.
In a black-box attack scenario, utilizing ResNet-34 as the target
model, our approach achieves average defense rates of over 94.8% on
CIFAR-10 and over 71.2% on Mini-ImageNet, demonstrating state-
of-the-art performance.

Index Terms—deep learning security, adversarial example,
adversarial defense, computer vision, image classification

I. INTRODUCTION

The convolutional neural network (CNN) is a deep neural
network that incorporates convolution operations, which has
been used in diverse visual tasks, including image recogni-
tion [1], object detection [2], and semantic segmentation [3].
However, recent research has shown that there exist adversarial
examples [4]–[7] that do not affect human judgment but can
perplex classification models based on CNN. Specifically,
introducing imperceptible adversarial perturbations to clean
examples can lead pre-trained models to make highly con-
fident but entirely incorrect predictions. For instance, when a
classification model correctly identifies a rock beauty in Fig. 1,
and then a meticulously designed adversarial perturbation is
introduced, the model misclassifies it as a malamute. Defend-
ing against adversarial attacks has become one of the important
challenges in protecting deep learning models.

Transfer attack [6], [7], [10], [11] is a classic black-box
attack, which refers to generating adversarial examples on a
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Fig. 1. Clean example and adversarial example. When the adversarial
perturbations are added to a rock beauty, it is misclassified as a malamute
by the pre-trained classification model.

substitute model and then using them to deceive the target
model. Since there’s no need to obtain detailed information
about the target model or query its output multiple times,
transfer attacks completely evade suspicion from the defense
side, making it one of the most popular adversarial attack
methods currently. Differing from adversarial training [5]
aimed at enhancing the robustness of the target model, in-
put transformations [6], [12]–[16] defend against adversarial
attacks by applying random transformations to adversarial
examples to disrupt adversarial perturbations, or by denoising
them to eliminate adversarial perturbations.

In input transformation, random transformation methods
[14], [15] refer to introducing randomness into the process
of transforming adversarial examples by randomly rotating,
scaling, and translating, thus disrupting the overall structural
perturbation. However, random transformations also obscure
the original distribution in the input examples, inevitably
leading to a significant decrease in its natural accuracy. De-
noising methods [12], [13] eliminate adversarial perturbations
by introducing denoising blocks in the classification model
or deploying denoisers externally to the model, exhibiting
strong specificity and mediocre generalizability. Specifically,
the defense effectiveness of denoising methods is stronger
when the substitute model is similar to the target model,
while it significantly decreases when there is a large difference
between the substitute model and the target model.

In this article, we propose a purification defense based on
the probabilistic scheduling algorithm of pre-trained models
(ProbSched-PTM) to eliminate adversarial perturbations from
adversarial examples. At a low level, a channel-attention U-Net
(CAU-Net) is utilized as the purification model, reconstruct-
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ing the adversarial examples by eliminating the adversarial
perturbations within them. At a high level, we seek strong-
transferability adversarial examples from the model difference
perspective to enhance the robustness of purification model.
Specifically, we quantify the differences among various models
and demonstrate a linear negative correlation between adver-
sarial transferability and model difference. Based on these
model differences and scheduling records, we define the model
difference probability and negative momentum probability.
ProbSched-PTM effectively integrates these two probabilities
to select the most appropriate substitute model from multiple
pre-trained models, thereby generating strong-transferability
adversarial examples to train the purification model. Compared
to previous defense strategies, the ProbSched-PTM-based pu-
rification defense exhibits superior effectiveness in countering
unseen types of adversarial attacks.

We summarize the main contributions as follows:
• Compared to previous deep denoising methods that relied

on a single substitute model, the proposed ProbSched-
PTM-based purification defense incorporates multiple
diverse pre-trained models, strategically scheduling them
to generate strong-transferability adversarial examples for
enhancing the robustness of the purification model.

• To the best of our knowledge, we first quantify the
model difference based on the output scores and validate
the linear negative correlation between this difference
and adversarial transferability. Additionally, negative
momentum mechanism is introduced as a regularization
factor to adjust the usage of certain elements.

• The evaluation demonstrates that the ProbSched-PTM-
based purification defense exhibits strong robustness,
effectively defending against unseen types of adversarial
attacks from various substitute models in a black-box
attack environment.

II. RELATED WORK

We study related work from three perspectives: adversarial
examples, attack methods to generate transferable adversarial
examples, and defense methods to counter them.

A. Adversarial Examples

The generation of adversarial examples can be represented
as a constrained optimization problem. Let C(·) be the pre-
trained classification model such that C(x) : x → ℓ, where
x ∈ Rm is a clean example and ℓ ∈ Z+ is the output of the
model. Let A(·) be the attack method used by the attacker,
denoted as A(θ,x) → x + ρ, where θ is the parameter
of the model and ρ ∈ Rm is the adversarial perturbation.
To ensure that the semantic information in natural examples
used for human recognition is not compromised, the generated
adversarial perturbation ρ is often bounded by a norm. For
example, constraining the perturbation ρ within ∥ρ∥p < ϵ,
where ∥ρ∥p denotes the Lp norm and ϵ is the adversarial
perturbation budget. The adversarial example x̄ ∈ Rm is
obtained by adding the adversarial perturbation ρ to the natural
example x, represented as x+ρ→ x̄. The generation problem

of adversarial examples is essentially the problem of solving
adversarial perturbations, which can be represented by the
following constrained optimization process:

argmax
ρ

L (θ, x̄, ℓ) s. t. ∥ρ∥p < ϵ . (1)

In Equation 1, L (θ, x̄, ℓ) represents the loss of the model
with parameter θ regarding adversarial example x̄ and label
ℓ, typically computed using the cross-entropy loss function.
Therefore, the generation of adversarial examples can be
summarized as finding adversarial perturbations that maximize
the model’s loss without causing human cognitive errors.
Adversarial examples are typically generated through gradient-
based single-step or multi-step iterative attacks [4], [8] when
the model’s parameters and defense strategies are known to the
attacker. In cases where the model’s parameters and defense
strategies are unknown to the attacker, adversarial examples
are usually generated from substitute models based on its
transferability [7], [9], [10].

B. Attack Methods

Transfer attacks are built on the transferability of adversarial
examples, meaning that adversarial examples generated against
substitute models can attack the target models [17]. Represen-
tative methods include the fast gradient sign method (FGSM)
[4], the basic iterative method (BIM) [8], and the projected
gradient descent (PGD) [5]. The FGSM is a one-step gradient-
based method that computes norm-bounded perturbations,
while BIM and PGD optimize the gradient direction through
multiple iterations [6]. The core concept of the three methods
mentioned above is to perform gradient ascent on the loss
surface of the model to deceive it, which also forms the basis
of many adversarial attacks.

However, some stronger transfer attacks enhance adversar-
ial examples’ transferability by integrating attack techniques,
transforming images, and so on. Diverse inputs iterative FGSM
(DIM) [10] applies random image transformations during
the iteration of FGSM, in order to enhance the transferabil-
ity of adversarial examples. Built upon momentum iterative
FGSM (MI-FGSM) [18] and Nesterov iterative FGSM (NI-
FGSM) [11], respectively, variance tuning MI-FGSM (VMIM)
and variance tuning NI-FGSM (VNIM) [7] use the gradient
variance to optimize the gradient direction and escape local
optima. Additionally, there are also attack methods that aim
to enhance the transferability by integrating gradients from
multiple iterations or multiple models, such as large geometric
vicinity (LGV) [19], transferable adversarial attack based on
integrated gradients (TAIG) [20] and adaptive model ensemble
adversarial attack (AdaEA) [21].

C. Defense Methods

Adversarial defense methods are generally divided into
two main classes, including adversarial training and input
transformation methods. Adversarial training [5] is a form
of data augmentation that enhances the robustness of target
models by adding adversarial examples to the training data.



Fig. 2. The training process of standard purification defense.

Input transformation methods aim to eliminate the attack
nature of adversarial examples. These methods can be cate-
gorized into random transformation methods and denoising
methods. In random transformation methods, total variance
minimization (TVM) [22] randomly selects a small group of
pixels and reconstructs the “simplest” image that does not
include adversarial perturbations. Pixel deflection [23] corrupts
adversarial perturbations by redistributing the pixel values and
applying adaptive soft-thresholding in the wavelet domain.
Mixup inference [16] overlays adversarial examples randomly
with other clean examples to reduce the adversarial nature.
In denoising methods, feature denoising [13] adds denoising
blocks in the classification model and combines it with adver-
sarial training to enhance the model’s adversarial robustness.
High-level representation guided denoiser (HGD) [12] revises
the loss function to pull adversarial examples back to the
original clean distribution. Learning defense transformation
(LDT) [24] employs parameterizing the affine transformations
and the boundary information of neural network as a defense
mechanism against adversarial attacks.

III. METHODOLOGY

A. Purification Defense

In this paper, we design a purification defense to eliminate
adversarial perturbations in adversarial examples. It mainly
contains a target model Ct with the parameter θt and a
purification model E(·) with the parameter ζ. The protected
target model can be any commonly used classification models
such as ResNet [1], GoogLeNet [25], MobileNet [26], etc. The
purification model here is the U-Net [27] with the channel-
attention [28]. It is deployed externally to the target model and
responsible for eliminating implicit adversarial perturbations
from adversarial examples, thereby countering adversarial at-
tacks. The reconstructed examples will then be input to the
target model for classification. To differentiate it from the
following, we will refer to the purification defense designed
here as “standard purification defense”.

The training process of standard purification defense is
shown in Fig. 2. Firstly, the clean example x is input into
the target model Ct for generating the adversarial example
x̄ using the attack method. The adversarial example x̄ is
then fed into the purification model E(·), resulting in a
reconstructed example x̂ after the elimination of adversarial

perturbations, denoted as E(x̄) → x̂. Subsequently, the re-
constructed example x̂ is fed into the target model to obtain
the probability distribution of predicted labels. Finally, the
cross-entropy is computed between the probability distribution
of the predicted label and that of the true label, following
which the purification model’s weights are updated with the
back-propagation algorithm. The optimization objective of the
purification defense can be expressed by Equation 2.

argmin
ζ

L [θ, x̂, ℓ] . (2)

The standard purification defense aims to enhance the purifi-
cation model’s ability to eliminate the adversarial perturbation,
ensuring that the reconstructed examples align more effectively
with the clean examples in data distribution. Specifically, when
protecting the target model, purification defense first elimi-
nates adversarial perturbations from the adversarial examples.
It then feeds the reconstructed examples into the target model
for classification. The inference process of purification defense
is the protection process for the target model.

B. Adversarial Transferability and Model Difference
Adversarial transferability is a phenomenon in which ad-

versarial examples generated using substitute classification
models can effectively attack the target model. In practice,
it has been found that adversarial transferability is correlated
with the differences between the substitute model and the
target model. However, in the case of significantly different
structures and a large number of parameters involved, how
can we quantify the model differences and analyze their
correlation with adversarial transferability?

We propose a model differences quantifying method based
on their output score, specifically designed to analyze the
transferability of adversarial examples. A model’s output
scores reflect its intrinsic characteristics to some extent; a
larger difference in output scores indicates a greater difference
between two models. For the target classification model Ct
and the substitute classification model Ci(i = 1, 2, · · · , N),
suppose that the output scores they produce on the same
dataset can be expressed as

Et = Ct(x), Ei = Ci(x), i = 1, 2, · · · , N . (3)

After obtaining the output scores of both the target model
and substitute models, we represent the differences between



Fig. 3. A data distribution plot of model differences and error rates. The horizontal axis represents the difference value between the target model and the
substitute model, while the vertical axis indicates the error recognition rate (%) of the target model on adversarial examples generated by the substitute model.

TABLE I

Spearman correlation analysis of model differences and error rates. SCC
denotes the Spearman correlation coefficient, while Sig. represents the sig-
nificance coefficient. The sample number for all four analyses is 100.

Tar. Model Att. Method SCC Sig. Num.

ResNet-18 BIM -0.665 1.15×10−13 100

PGD -0.662 1.57×10−13 100

DPN-26 BIM -0.776 3.96×10−21 100

PGD -0.774 5.99×10−21 100

the models by calculating the L1 norm Wasserstein distance
between them. The difference between the target model Ct and
the substitute classification model Ci can be expressed as

Wt,i = inf
γ∈Γ(Et,Ei)

∫
R×R
|u− v|dγ(u, v) . (4)

In Equation 4, Γ(Et, Ei) is the set of all joint distributions
whose marginal distributions are Et and Ei, respectively. γ
represents a joint distribution that describes how to “transport”
or “transfer” probability mass between the two distributions.
Wt,i has good mathematical properties, such as non-negativity
(Wt,i ≥ 0) and symmetry (Wt,i = Wi,t).

To analyze the correlation between adversarial transfer-
ability and model difference, we select ten models, includ-
ing DenseNet, GoogLeNet, and ShuffleNetV2, as substitute
models for generating adversarial examples, with each model
containing 10 pre-trained instances. ResNet-18 and DPN-26
serve as the protected target models, while BIM and PGD are
employed as the adversarial attack methods. The attack results
of the substitute models on the target models are shown in
Fig. 3. The horizontal axis represents the model difference
value Wt,i between the target models and these substitute
models, while the vertical axis indicates the error recognition
rate (%) of the target models on adversarial examples. A higher
error rate reflects a stronger adversarial transferability.

From Fig. 3, it is evident that as the difference between the
target model and substitute model increases, the error rate of
adversarial examples decreases. To accurately describe their
statistical correlation, we calculate the Spearman correlation
coefficient (SCC), with the results presented in Table I. SCC

is found to be negative, with an absolute value ranging from
0.6 to 0.8, indicating a strong negative correlation between
model differences and error rates. By combining the fitted
line in Fig. 3, we can conclude that there is a linear negative
correlation between the adversarial transferability (error rate)
Ti and the model difference Wt,i, denoted as

Ti ∼ −Wt,i . (5)

Additionally, the significant coefficient is less than 0.001,
leading to the rejection of the null hypothesis and suggesting
an exceptionally significant statistical difference.

C. Probabilistic Scheduling Algorithm of Pre-trained Models
During training standard purification defense, the adversar-

ial examples used are solely derived from a single substitute
model. Due to the differences among adversarial examples
from various substitute models, it is difficult for the purifi-
cation defense trained on homologous adversarial examples to
restore them to the clean distribution. In the previous section,
we quantified the model differences and confirmed a linear
negative correlation between adversarial transferability and
these differences. How can we utilize this correlation to
enhance the robustness of purification defense?

Here, we propose the purification defense based on
the probabilistic scheduling algorithm of pre-trained mod-
els (ProbSched-PTM) from the perspective of model differ-
ences. It strategically schedules multiple pre-trained classifi-
cation models with different architectures to generate strong-
transferability adversarial examples, thereby enhancing the
robustness and generalization of the purification model.

ProbSched-PTM refers to selecting a pre-trained model
based on the scheduling probability generated from model
differences before training on current mini-batch. The selected
pre-trained model will be used as the substitute model to
generate adversarial examples of the current mini-batch. For
the k-th mini-batch, the scheduling probability of the i-th pre-
trained model Ci being selected can be expressed as

P i
k = h

{
P

(t,i)
diff ◦ P

(k,i)
neg

}
. (6)

In Equation 6, h{·} is the probability normalization transfor-
mation. For the variable Is(s = 1, 2, · · · , N),

h {Is} =
Is∑N
q=1 Iq

. (7)



Fig. 4. The training process of ProbSched-PTM-based purification defense.

P
(t,i)
diff represents the model difference probability between the

target model Ct and the pre-trained model Ci, P
(k,i)
neg represents

the latter negative momentum probability of latter at the k-th
mini-batch, and “◦” denotes the Hadamard product. Below, we
will discuss these two probability distributions separately.

During the training of purification defense, pre-trained
models capable of generating strong-transferability adversarial
examples are typically selected as substitute models, as this
can help the purification model adapt to diverse adversarial
inputs and boosts its robustness against unknown attacks.
Based on the linear negative correlation between adversarial
transferability and model difference, we convert the difference
Wt,i between the target model and the substitute model into a
model difference probability, which is expressed as

P
(t,i)
diff = h {exp (−Wt,i)} . (8)

In Equation 8, the difference probability P
(t,i)
diff of the pre-

trained model is negatively correlated with its difference from
the target model. This indicates that the model difference
probability will increase the scheduling frequency of pre-
trained models that have a smaller difference from the target
model, thereby generating more adversarial examples with
strong adversarial transferability.

The model difference probability is a static attribute of
pre-trained models, remaining unchanged during training the
purification defense. This leads to a stable scheduling ratio
among the various pre-trained models as training iterations
increase, which is detrimental to the purification model’s
generalization. To address this issue, we propose the negative
momentum probability as a regularization factor to dynami-
cally adjust the model difference probability, expressed as

P (k,i)
neg = h {1− h {Mk,i}} . (9)

In Equation 9, Mk,i represents the total number of times model
Ci has been selected up to the k-th mini-batch. It can be ob-
served that P (k,i)

neg is negatively correlated with Mk,i, meaning
that for pre-trained models that are frequently utilized, P (k,i)

neg

will decrease the their scheduling probability; conversely,
for models that are rarely used, P

(k,i)
neg will increase their

scheduling probability. Contrary to the effect of traditional

Algorithm 1 The detailed training method of ProbSched-
PTM-based purification defense.
Input: Purification model E with the parameter ζ, target

classification model Ct with the parameter θt, N pre-
trained classification models Ci(i = 1, 2, · · · , N) with
the parameters θi, clean examples x, attack method A,
learning rate η and weight decay λ

Output: Robust purification model E
1: Initiate the parameter ζ of the purification model E ;
2: Freeze the parameters θ of all classification models, and

computer their output scores E on the same dataset;
3: Compute the model difference Wt,i between the target

model Ct and the pre-trained model Ci based on L1 norm
Wasserstein distance;

4: Get the model difference probability P
(t,i)
diff according to

the model difference Wt,i ;
5: Set the total scheduling times M0 = 1 ;
6: for k = 1 to maximum iterations do
7: Get the negative momentum probability P

(k,i)
neg based on

scheduling times Mk−1,i of the (k − 1)-th iteration ;
8: Generate the scheduling probability P i

k of the pre-
trained model Ci by combining P

(t,i)
diff and P

(k,i)
neg ;

9: Determine the final pre-trained model Cr based on the
scheduling probability P j

k ;
10: Update the total scheduling times of the pre-trained

model Cr: Mk,r = Mk−1,r + 1 .
11: Generate the adversarial example x̄ = A(θr,x) ;
12: Perform stratified sampling from clean and adversarial

examples to create a mixed example ẍ← [x, x̄] ;
13: Get the reconstructed example x̂ = E(ẍ) ;
14: Compute the cross-entropy loss l = L(θt, x̂, ℓ) ;
15: Update the parameter ζ ← ζ − η{∇ζl + λζ} .
16: end for

“momentum,” P
(k,i)
neg suppresses the excessive use of high-

difference-probability models during training, thereby enhanc-
ing the purification model’s generalization ability toward other
low-difference-probability models. Hence, P

(k,i)
neg is referred

to as “negative momentum” probability. Furthermore, when
high-difference-probability models are excessively suppressed
and low-difference-probability models are overutilized, the
negative weight probability will respectively amplify and di-
minish their model difference probabilities, thereby achieving
a dynamic balance in model scheduling.

The training process of the ProbSched-PTM-based purifica-
tion defense is shown in Fig. 4. In this approach, ProbSched-
PTM respectively computes the model difference probability
and the negative momentum probability according to the
model differences and scheduling records. It dynamically
utilizes various pre-trained models to generate a diverse set
of adversarial examples for training the purification model.
This strategy helps improve the robustness of the purification
model’s capability in capturing unknown adversarial perturba-
tions. Algorithm 1 summarizes the detailed training method
of the ProbSched-PTM-based purification defense.



TABLE II

Classification accuracy (%) of different methods in defending against unseen types of attacks on CIFAR-10 and Mini-ImageNet. ShuffleNet-V2-2× and
ResNet-V2-50 serve as substitute models, ResNet-34 serves as the target model. The best results are boldfaced, and the second best results are underlined.

Dataset Defenses Clean ShuffleNet-V2-2× ResNet-V2-50
FGSM BIM UPGD VMIM VNIM FGSM BIM UPGD VMIM VNIM

CIFAR-10

Nat. Training 95.82 51.24 9.90 6.18 2.50 2.93 46.33 8.78 4.97 2.49 2.44
Adv. Training 88.48 85.42 86.17 85.62 85.01 84.86 85.64 86.23 85.69 85.22 85.22
TVM 89.48 85.99 86.41 85.95 85.53 85.38 86.59 86.88 86.64 86.13 86.01
Feat. Denoising 88.48 85.53 86.54 85.79 85.44 85.42 86.05 86.94 86.40 86.42 86.39
Pix. Deflection 90.44 87.82 89.56 89.21 89.26 89.36 88.75 90.33 90.17 90.32 90.46
Mix. Inference 95.30 88.84 93.72 91.30 91.61 91.81 90.55 94.18 92.38 93.43 92.43
HGD 91.49 91.86 92.07 91.91 92.12 93.22 92.21 92.04 93.31 93.46 93.69
LDT 95.31 93.29 93.23 93.19 93.41 92.13 93.58 93.85 93.76 93.24 93.15
ProbSched-PTM 95.59 95.02 94.51 94.67 95.09 94.87 94.81 94.93 94.61 94.52 94.86

Mini-
ImageNet

Nat. Training 76.37 17.63 1.69 1.18 0.50 0.44 17.08 4.67 2.93 1.00 0.88
Adv. Training 58.39 56.13 56.28 55.85 55.57 55.59 57.05 57.28 57.10 56.90 56.99
TVM 66.21 59.29 61.28 58.97 58.85 59.45 62.88 64.00 62.63 62.83 63.33
Feat. Denoising 59.00 53.01 53.14 50.79 49.79 50.38 57.77 57.81 57.10 57.09 57.41
Pix. Deflection 67.28 59.74 62.01 59.93 59.53 59.76 64.54 65.40 64.40 63.98 64.48
Mix. Inference 73.81 63.41 64.74 63.75 63.52 64.08 67.67 69.17 68.58 67.88 69.09
HGD 72.41 66.79 64.18 62.08 64.18 64.43 70.21 67.65 68.63 68.23 68.66
LDT 73.76 63.25 65.14 62.21 64.27 63.68 69.25 67.32 66.08 68.33 69.39
ProbSched-PTM 74.96 68.78 69.87 68.46 69.45 69.62 75.03 71.01 71.53 72.58 72.20

IV. EXPERIMENTS

A. Experimental Setup

Attackers. This paper focuses on the defense against ad-
versarial attacks in image classification. The proposed method
primarily counters black-box attacks, which represent the most
common attack scenario. In this, attackers cannot access the
target model and its defense strategy, launching attacks based
on the transferability of adversarial examples. To emphasize
the accuracy of the evaluations, all attack methods in this paper
belong to the more potent non-targeted adversarial attacks.

Datasets. We use CIFAR-10 and Mini-ImageNet as the
datasets for this work. The resolution of CIFAR-10 remains
unchanged, and the resolution of Mini-ImageNet is set to
64 × 64. In Mini-ImageNet, for each class, 480 randomly
selected images are assigned to the training set, while the
remaining 120 images are designated for the test set.

Classification models. During training the ProbSched-
PTM-based purification defense, we use DenseNet [29], DPN
[30], GoogLeNet [25], MobileNetV2 [26], PyramidNet [31],
RegNet [32], ResNet [1], ResNeXt [33], SENet [28], and
WideResNet (WRN) [34] as pre-trained models to craft ad-
versarial examples. During the evaluation, ResNetV2 [35],
ShuffleNetV2 [36], VGG [37], and Vision Transformer [38]
are as substitute models to launch attacks. To encompass
wide attack sources, selected models include both classic and
advanced models, spanning from large-scale to light designs.

Baseline defense approaches. We compare to natural train-
ing and the following input transformation defense methods:
TVM [22], feature denoising [13], pixel deflection [23], mixup
inference [16], HGD [12] and LDT [24]. Except for natural
training, all defense methods incorporate adversarial train-
ing to enhance their defense performance. Unless otherwise
specified, all defense methods use ResNet-34 as the target

model, except for feature denoising which employs a ResNet-
34 model with denoising blocks.

Training details. During training process, attack methods
FGSM, DIM, and PGD are used to generate adversarial
examples. The adversarial perturbation budget is within the
range of (4/255, 12/255). The step size is set to 2/255, while
the number of steps is set to 20. The purification model E is
optimized using Adam. Their initial learning rate η and weight
decay λ are set to 0.01 and 0.

B. Defending Against Unseen Types of Attacks

We evaluated the effectiveness of different defense methods
against unseen types of adversarial attacks. The attack methods
include the one-step method FGSM, the multi-step method
BIM, as well as advanced transfer attack methods such as
Ultimate PGD (UPGD), VMIM, and VNIM. The adversarial
perturbation budget is L∞ = 8/255, and the step count is set
to 50 for iterative methods. For CNNs, the selected unseen
substitute models are ShuffleNet-V2-2× and ResNet-V2-50,
which have not been used in training framework for any
defense methods. The detailed evaluation results on CIFAR-10
and Mini-ImageNet are presented in Table II. For transformer-
based models, the selected unseen substitute model is ViT-
S/16, which has also not been employed in training framework
for any defense methods. The detailed evaluation results on
Mini-ImageNet are shown in Table III.

In Table II, it can be found that regardless of the defense
strategy employed, there will be a reduction in natural ac-
curacy. In comparison, the ProbSched-PTM-based purification
defense shows the least degradation in that. Furthermore, when
faced with previously unseen types of adversarial attacks,
the ProbSched-PTM-based purification defense consistently
demonstrates superior defensive performance and generaliza-
tion compared to other defense methods, always exhibiting
optimal performance against each type of attack. Its average



TABLE III

Classification accuracy rates (%) in defending against unseen types of attacks
on Mini-ImageNet (higher is better). ViT-S/16 and ResNet-34 serve as the
substitute model and target model, respectively. For each attack, we show the
most successful defense with bold and the second one with underline.

Defenses Clean FGSM BIM UPGD VNIM

Nat. Training 76.37 42.49 39.69 34.06 26.77
Adv. Training 58.39 56.71 57.07 56.59 56.15
TVM 66.22 60.61 62.90 61.12 59.33
Feat. Denoising 59.00 54.13 56.23 54.63 53.33
Pix. Deflection 67.28 61.29 63.50 62.08 59.53
Mix. Inference 73.81 61.89 62.52 61.89 61.04
HGD 72.41 60.73 62.25 62.31 61.20
LDT 73.76 61.76 61.97 62.65 60.27
ProbSched-PTM 75.19 64.27 65.02 65.51 64.02

defense performance on CIFAR-10 and Mini-ImageNet is
94.86% and 71.23%, respectively—1.39% and 4.09% higher
than the runner-up.

In Table III, the substitute model ViT-S/16 is based on a
transformer architecture, while the target model ResNet-34
relies on convolutional structures. Substantial structural dif-
ferences between them lead to significant distinctions in their
classification boundaries on Mini-ImageNet. Consequently, the
effectiveness of adversarial attacks on ViT-S/16 cannot be
readily transferred to ResNet-34. Specifically, the natural ac-
curacy drop after experiencing adversarial attacks in Table III
is not as pronounced as that in Table II. Similarly, because all
defense methods are trained using CNNs as hypothetical sub-
stitute models, the effectiveness of defending against adversar-
ial attacks from ViT-S/16 is not as strong as defending against
attacks from CNNs. This leads to a curious phenomenon as
shown in Table III: the adversarial attacks from ViT-S/16 are
not very strong, yet the defensive effectiveness against them
is also not very high. Nonetheless, the ProbSched-PTM-based
purification defense still demonstrates the strongest defensive
capabilities compared to other methods.

C. Defending Against Integrated Attacks

We evaluate the effectiveness of different defense methods
against integrated adversarial attacks. The integrated adversar-
ial attack methods include LGV [19], TAIG [20] and AdaEA
[21]. The basic attack method, adversarial perturbation budget,
and step count are set to BIM, L∞ = 8/255, and 50,
respectively. For LGV, the substitute model is ShuffleNet-
V2-2× and the number of weight sets is 10. For TAIG, the
substitute model is also ShuffleNet-V2-2×, and the example
augmentation factor is 20. For AdaEA, the substitute model
ensemble consists of ShuffleNet-V2-2×, ResNet-V2-50, and
VGG-19. For all defense methods, these substitute models
have never been encountered. The detailed evaluation results
on Mini-ImageNet are shown in Table IV. It is evident that
when confronted with ensemble attacks involving multiple
gradients or models, the ProbSched-PTM-based purification
defense continues to exhibit the highest natural accuracy and
defensive performance compared to other methods.

TABLE IV

Classification accuracy rates (%) in defending against integrated attacks on
Mini-ImageNet (higher is better). ResNet-34 serve as the target model under
attack. For each attack, we show the most successful defense with bold and
the second one with underline.

Defenses Clean LGV TAIG AdaEA

Nat. Training 76.37 7.03 0.37 0.98
Adv. Training 58.39 57.14 55.25 56.22
TVM 66.13 62.78 58.99 59.98
Feat. Denoising 59.00 55.52 50.18 53.66
Pix. Deflection 67.28 64.28 59.68 60.79
Mix. Inference 73.81 66.08 64.23 61.73
HGD 72.41 66.72 62.58 60.67
LDT 73.76 67.40 64.10 63.41
ProbSched-PTM 75.19 69.17 68.93 69.23

D. Transferability of Defensive Capability

We evaluated the transferability of different methods’ de-
fensive capabilities, i.e., their defensive effects on other tar-
get models with different structures. The adversarial attack
methods include FGSM, BIM, UPGD, VMIM, and VNIM.
The adversarial perturbation budget is L∞ = 8/255, and the
step count is set to 50 for iterative methods. The selected
unseen substitute models are ShuffleNet-V2-2× and ResNet-
V2-50. We only choose to compare HGD and LDT with
the ProbSched-PTM-based purification defense because their
defense and identification model can be separated. Therefore,
when the original identification model is replaced with new
target models VGG-19 and ViT-S/16, they can still function
properly. The detailed evaluation results on CIFAR-10 and
Mini-ImageNet are presented in Table V.

From Table V, it can be observed that the natural accu-
racy of the ProbSched-PTM-based purification defense closely
aligns with that of the target model. This suggests that the
proposed method rarely leads to misclassification of input
examples. When compared to HGD and LDT, the ProbSched-
PTM-based purification defense exhibits stronger robustness
and achieves the best defensive performance under each type
of attack, whether assisting the CNN model VGG-19 or the
transformer model ViT-S/16.

V. CONCLUSION

In this paper, our approach is to deploy a purification model
outside the target model to eliminate the adversarial perturba-
tions from adversarial examples. To enhance the generalization
of the proposed method, we propose the ProbSched-PTM-
based purification defense, which utilizes a CAU-Net as the
purification model, training it to eliminate adversarial perturba-
tions by using adversarial examples generated from pre-trained
models. Meanwhile, ProbSched-PTM integrates the model
difference probability and negative momentum probability
to dynamically schedule the pre-trained models, maximizing
the transferability of the generated adversarial examples. The
evaluation results demonstrate that the ProbSched-PTM-based
purification defense can effectively defend against various
types of adversarial attacks in a black-box environment.



TABLE V

Classification accuracy rates (%) of different methods for other target models in defending against unseen types of attacks on CIFAR-10 and Mini-ImageNet
(higher is better). ShuffleNet-V2-2× and ResNet-V2-50 serve as substitute models for generating adversarial examples, VGG-19 and ViT-S/16 serve as other
target models not included in the training framework. For each attack, we show the most successful defense with bold.

Target Model Dataset Defenses Clean ShuffleNet-V2-2× ResNet-V2-50
FGSM BIM UPGD VMIM VNIM FGSM BIM UPGD VMIM VNIM

VGG-19

CIFAR-10

Nat. Training 94.69 51.11 18.55 13.14 5.67 5.96 48.31 22.41 15.90 7.54 7.21
HGD 90.46 89.75 90.19 89.79 90.06 90.22 92.05 91.35 91.13 91.53 91.64
LDT 93.03 91.32 90.67 90.56 90.77 90.74 92.21 91.69 91.87 92.56 92.69
ProbSched-PTM 93.53 92.69 92.27 92.82 91.93 92.59 92.51 92.64 92.72 92.68 93.08

Mini-
ImageNet

Nat. Training 70.33 21.96 11.10 8.41 4.02 3.65 22.49 29.37 24.43 12.56 10.63
HGD 62.83 57.73 58.88 56.36 57.37 58.09 61.93 61.00 58.83 60.92 61.32
LDT 65.82 63.97 59.64 58.25 59.58 59.88 66.71 62.91 63.32 64.93 65.11
ProbSched-PTM 67.31 64.35 62.81 61.89 62.52 62.62 67.82 64.23 64.92 66.89 66.74

ViT-S/16

CIFAR-10

Nat. Training 98.67 85.30 82.77 78.26 67.31 68.07 88.01 85.03 81.21 73.14 73.58
HGD 95.20 94.07 93.76 93.52 93.48 93.43 95.14 94.30 94.15 94.71 94.32
LDT 97.22 96.04 95.60 95.41 95.42 95.53 96.89 95.80 95.79 96.04 96.24
ProbSched-PTM 97.65 96.81 96.03 95.89 96.12 96.23 97.28 96.57 96.38 96.57 96.30

Mini-
ImageNet

Nat. Training 90.53 68.77 69.18 63.00 52.30 50.86 73.45 76.28 71.03 59.88 60.38
HGD 84.36 80.04 79.74 78.03 79.57 79.89 82.16 81.55 80.11 81.06 81.43
LDT 87.19 84.97 83.32 82.42 83.39 83.68 86.80 84.33 84.18 85.30 85.58
ProbSched-PTM 88.62 86.12 85.23 84.81 85.54 85.63 87.32 86.20 86.27 87.23 87.12
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