
Under review as submission to TMLR

Sparse Decomposition of Graph Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

Graph Neural Networks (GNN) exhibit superior performance in graph representation learn-
ing, but their inference cost can be high due to an aggregation operation that can require
a memory fetch for a very large number of nodes. This inference cost is the major obstacle
to deploying GNN models with online prediction to reflect the potentially dynamic node
features. To address this, we propose an approach to reduce the number of nodes that are
included during aggregation. We achieve this through a sparse decomposition, learning to
approximate node representations using a weighted sum of linearly transformed features
of a carefully selected subset of nodes within the extended neighbourhood. The approach
achieves linear complexity with respect to the average node degree and the number of layers
in the graph neural network. We introduce an algorithm to compute the optimal parame-
ters for the sparse decomposition, ensuring an accurate approximation of the original GNN
model, and present effective strategies to reduce the training time and improve the learning
process. We demonstrate via extensive experiments that our method outperforms other
baselines designed for inference speedup, achieving significant accuracy gains with compa-
rable inference times for both node classification and spatio-temporal forecasting tasks.

1 Introduction

Graph neural networks (GNN) have demonstrated impressive performance for graph representation learning
(Hamilton et al., 2017; Veličković et al., 2018; Qu et al., 2019; Rampášek et al., 2022). Although there are
numerous designs for GNN models, the essential idea is to represent each node based on its features and its
neighbourhood (Wu et al., 2020; Zhou et al., 2020). The procedure of aggregating features from neighbour
nodes is empirically and theoretically effective (Xu et al., 2019) in representing the graph structures and
blending the features of the nodes. However, deploying GNN models to process large graphs is challenging
since collecting information from the neighbour nodes and computing the aggregation is extremely time-
consuming (Zhang et al., 2021; Tian et al., 2023; Wu et al., 2023; Liu et al., 2024).

In this work, we tackle the efficient inference problem for GNN models in the online prediction setting
(Crankshaw, 2019). Specifically, we need to compute the representations of a few arbitrary nodes. The main
advantage is that the prediction can reflect potential dynamic features1 of the input. The computational
complexity is dominated by the number of receptive nodes, which rapidly increases as the number of layers
in the model grows, for most message-passing-based and graph-transformer-based GNNs (Zeng et al., 2020;
Min et al., 2022).

Our goal is to reduce the inference time to linear complexity with respect to the number of layers and the
average node degree. Recently, several studies have attempted to address this problem by combining the
performance of GNN and the efficiency of MLPs (Zhang et al., 2021; Hu et al., 2021; Tian et al., 2023; Wang
et al., 2023; Wu et al., 2023; Liu et al., 2024; Tian et al., 2024; Winter et al., 2024; Wu et al., 2024). Knowledge
distillation (Hinton et al., 2015) and feature/label smoothing are used to construct effective MLP models
to eliminate the cumbersome neighbour collection and aggregation procedure. Although efficient, these
methods have a fundamental limitation: the features gathered at each node are assumed to contain sufficient
information to predict the node label accurately. However, to achieve their full potential, especially when

1The features of a sample may vary over time, e.g., dynamical features from sensors (Dawson et al., 2016), dynamic features
in the recommendation systems (Chu & Park, 2009).

1

Under review as submission to TMLR

Optimization

Node Features
Transformation

Function

N X D

Approx. GNN EmbeddingSparse WeightsTransformed
Features

B

A C

D E

F

SDGNN Prediction
MLP

Target GNNOriginal Graph

GNN Embedding

N X D

Target Model Prediction
MLP

Figure 1: The pipeline overview for SDGNN framework (bottom pipeline). To compute GNN embedding
efficiently, we use a transformation function to adapt node features and introduce sparse vectors associated
with each node to gather information from critical neighbours. The parameters in the transformation function
and the sparse vectors are determined by optimization to approximate the target GNN embeddings.

features can change at inference time, GNN models should take into account the features from neighbourhood
nodes and the graph structure (Battaglia et al., 2018; Pei et al., 2020). Therefore, we ask the question: given
any graph neural network model that relies on both the graph structure and the features of the neighbourhood,
can we infer the representation of a node in linear time?

Present work. We propose sparse decomposition for graph neural networks (SDGNN), an approximation to
any target GNN models that can infer node representations efficiently and effectively. The SDGNN consists
of a feature transformation function and sparse weight vectors for nodes in the graph. The representation of
each node is then a weighted sum of the transformed features from a small set of receptive nodes. The sparsity
of the weight vectors guarantees low inference complexity. The learnable feature transformation function
and the sparse weight vectors grant the SDGNN flexibility to approximate a wide range of targeted GNN
models. To find the optimal parameters in SDGNN, we formulate the approximation task as an optimization
problem and propose a scalable and efficient solution that iterates between the learning of the transformation
function and the optimization of the sparse weight vectors. We verify the approximation power of SDGNN
and the scalability of our algorithm on seven node classification datasets and demonstrate how SDGNN
can be effectively applied under the online prediction setting with two spatio-temporal forecasting datasets.
SDGNN consistently outperforms recent state-of-the-art models designed for GNN inference speedup.

2 Preliminaries and Problem Definition

Consider a graph G = {V, E} with |V| = n nodes and |E| = m edges. Denote by X ∈ Rn×D the feature
matrix, with a dimension of D, in which the ith row Xi∗ denotes the feature vector of node i. We address the
task of graph representation learning, which involves learning an embedding g(z, X|G) ∈ Rd for each node
z, where d denotes the embedding dimension of a GNN. Such representations are fed to additional MLPs
f(·) for application in downstream tasks, e.g., node classification/regression, link prediction/regression, and
graph classification/regression.

2.1 Graph Representation via GNN

We summarize the framework from (Hamilton et al., 2017) as an example to demonstrate the basic concepts
of GNNs. We stress that our approach can be applied to any GNN formulation that produces fixed-dimension
node embeddings. Let hl

z be the embedding vector of node z at layer l. Denote by N (z) the set of neighbour

2

Under review as submission to TMLR

nodes of z. hl
z is iteratively evaluated as

hl
N (z) = AGGREGATEl

(
{hl−1

v |∀v ∈ N (z)}
)

,

hl
z = UPDATEl(hl−1

z , hl
N (z)),

where AGGREGATEl(·) is any permutation invariant operation that aggregates a set of vectors, and
UPDATEl(·) is any transformation function, possibly incorporating learnable parameters and non-linear
transformations. h0

z is usually initialized as the node features of z, i.e., Xz∗.

g(z, X|G) := hL
z , (1)

where L is a predefined hyperparameter indicating the number of layers. An additional decoder module f(·)
can be applied over g(z, X|G) to map the GNN representation to the target label f(g(z, X|G)).

2.2 Online Prediction for Node Representations from GNN

Online predicton is a model serving paradigm that computes the prediction of a few arbitrary samples
upon request (Crankshaw, 2019). It has stringent requirements for low latency and high throughput. The
advantage of online prediction is that it reflects dynamic features. In the case of node-level online prediction
for GNNs, we need to compute the embeddings in (1) of a few nodes efficiently upon request.

The complexity of computing a node representation in (1) is proportional to the number of receptive nodes.
Specifically, for the message-passing-based models, the number of receptive nodes potentially grows expo-
nentially with the number of GNN layers (Zeng et al., 2020). For a graph transformer, one of the primary
motivations is to enlarge the number of receptive nodes even if they are not connected to the target node,
so the number of receptive nodes is usually larger than the message-passing-based models (Min et al., 2022).
Therefore, deploying an online prediction system for GNN models is challenging due to the potentially very
large number of receptive nodes. For any GNN model, we aim to find an approximate computation ĝ(z, X|G),
so that the inference complexity is linear with respect to the number of GNN layers L and the average node
degree d̄, i.e., O(d̄L). We require that ĝ(z, X|G) should be close to g(z, X|G) for ∀z ∈ V.

Remarks. We aim to invent a fundamental solution for the challenging case where prediction could benefit
from potentially dynamic node features, especially for those from a few critical neighbours. For example, the
recent purchasing behaviour of one’s closest friend might probably influence her online shopping preference;
the traffic flow of an intersection in the near future should be correlated with the status of its neighbouring
intersections, etc. Therefore, we want to develop a technique to efficiently summarize or approximate the
dynamic and potentially critical neighbour features to fully convey the power of GNNs. Without dynamic
node features, we always have an easy workaround method to cache all the predictions instead of cumbersome
computation upon request; without the critical dependency on neighbour features, one could train a decent
model without GNN to get an optimized performance.

3 Related Work

To the best of our knowledge, we are the first work to study the efficient inference of GNN models under the
challenging but rewarding online prediction setting. Some simple adaptions of existing works can partially
solve this problem but cannot tackle the intrinsic challenges.

Neighbourhood Sampling methods process subsets of edges for each node, selected according to statistical
approaches. Hamilton et al. (2017) propose recursively sampling a fixed number of neighbours. However, this
approach still suffers from an exponentially growing aggregation complexity. The layer-wise and graph-wise
sampling techniques (Chen et al., 2018; Zou et al., 2019; Chiang et al., 2019; Zeng et al., 2020) enhance node-
wise sampling by using the common neighbours of nodes in the same mini-batch, but they are optimized for
training, and they are not suitable for the online prediction setting.

Embedding Compression methods reduce inference time by compressing embeddings with lower accuracy.
Zhao et al. (2020) use neural architecture search over the precision of parameters and adopts attention and

3

Under review as submission to TMLR

Table 1: Comparison of the related techniques. Inference complexity depicts the asymptotic complexity
measured by the number of receptive nodes. Memory overhead is the overall memory required. Neighbour
feature-aware indicates whether the inference model can reflect neighbour features. Dynamic Features rep-
resents whether the inference model can be efficiently applied with dynamic features. L: number of the
target GNN layers; L′: number of a shallower GNN layers where L′ < L; |V|: node number; d̄: average node
degree; s: sampling budget; D: node feature dimension.

Related Techniques Inference
complexity

Memory
overhead

Neighbour
feature-aware

Dynamic
features

Neighbour Sampling O(sL) O(|V|d̄ + |V|D) " "

Embedding Compression O(d̄L) O(|V|d̄ + |V|D) " "

GNN Knowledge Distillation O(d̄L′) O(|V|d̄ + |V|D) " "

MLP Knowledge Distillation O(1) O(|V|D) % "

Heuristic Decoupling O(1) O(|V|D) " %

SDGNN (ours) O(d̄L) O(|V|d̄L + |V|D) " "

pooling to speed up inference. Zhou et al. (2021) compress the embedding dimension by learning a linear
projection. Ding et al. (2021) employ vector quantization to approximate the embeddings of subsets of nodes
during training. Tan et al. (2020) hash the final representations. These works do not reduce the complexity
of neighbour fetching and aggregation.

GNN Knowledge Distillation techniques employ GNN models as teachers to train students of smaller
GNN models for inference. Gao et al. (2022) distill the original GNN to a GNN with fewer layers. Yan et al.
(2020) learn one GNN layer with self-attention to approximate each 2 GNN layers, which halves the total
number of GCN layers in the student model. These methods trade off some performance for better efficiency.
However, the student is still a GNN model which suffers from the large number of receptive nodes.

MLP Knowledge Distillation. Recently, a series of works dramatically reduced the inference complexity
by training MLP-based models solely on the (augmented) features of the target node to approximate GNN
representations (Yang et al., 2024; Zhang et al., 2021; Hu et al., 2021; Tian et al., 2023; Wang et al., 2023;
Wu et al., 2023; Liu et al., 2024; Tian et al., 2024). Moreover, Winter et al. (2024); Wu et al. (2024) directly
learn MLP models with label smoothing regularized by the graph structure instead of learning from a trained
GNN model. However, these models cannot consider the features of neighbour nodes during inference and
are prone to have limited expressive power compared to general GNN models.

Heuristic Decoupling. Bojchevski et al. (2020) use personalized PageRank to construct shallow GNN
weights instead of performing layer-wise message passing. Duan et al. (2022); Chen et al. (2021); Wu et al.
(2019); Chen et al. (2019); Nt & Maehara (2019); Rossi et al. (2020); He et al. (2020) generate augmented,
informative node features using techniques such as message passing or PageRank. Winter et al. (2024) pre-
compute propagated labels from the training set and add them to the node features. During inference, the
models rely solely on these cached augmented node features. These hand-crafted rules to generate informative
node features are prone to be sub-optimal. Besides, under the online prediction setting, heuristic decoupling
methods have to periodically update the augmented features to support dynamic features, which have great
computational overhead.

Position of Our Work: Compared to existing works, our proposed SDGNN offers linear complexity in
terms of inference time but can still process the most relevant neighbour features during inference. Table 1
depicts a detailed illustration of our work’s position with asymptotic analysis on memory overhead and
inference complexity.

4 Sparse Decomposition of Graph Neural Networks

We aim to develop a flexible approach to approximate the node representation from a wide range of GNN
models but maintain low inference complexity. To this end, we introduce a feature transformation function

4

Under review as submission to TMLR

ϕ(·; W) : RD → Rd that maps each row of X ∈ R|V|×D to dimension of the target GNN representation d,
where W represents the learnable parameters. For simplicity, we extend the ϕ notation to the matrix input
X to ϕ(X; W) ∈ R|V|×d where ϕ(·; W) is applied to each row of X. For each node z, we define a sparse
vector θz ∈ R|V| and model the representation of node z as a linear combination over the transformed node
features via θz. We thus define the sparse decomposition of graph neural network for node z as

ĝ(z, X|G) := θz
⊺ϕ(X; W). (2)

Intuitively, the sparsity of θz and the node-wise dependency on ϕ(·; W) ensure that the computation of
ĝ(z, X|G) depends on a limited set of node features. Hence, the inference complexity can be controlled to
be O(d̄L). The learnable θz and ϕ(·; W) give SDGNN sufficient flexibility to approximate a wide range of
GNN models.

Matrix form. Let (θ1, θ2, . . . , θ|V|) be the columns of the matrix Θ. Denote the node representation matrix
as Ω ∈ R|V|×d, where the zth row Ωz∗ := g(z, X|G). Correspondingly, we define Ω̂ := Θ⊺ϕ(X; W).

4.1 Relation to Existing Methods

We compare SDGNN to the types that have linear complexity summarized in Table 1. If we assign an
identity matrix to Θ, the SDGNN degrades to a model solely based on the self-node features. This covers
most of the methods under the umbrella of MLP knowledge distillation. For models that augment the node
features, like NOSMOG Tian et al. (2023), SDGNN can also trivially adopt such features. Moreover, if we fix
Θ as the personalized PageRank matrix or power of the normalized adjacent matrix, SDGNN is equivalent
to the heuristic decoupling approach. Therefore, SDGNN has at least the expressive power of the models
from MLP knowledge distillation and heuristic decoupling.

5 SDGNN Computation

We formulate the task of identifying the optimal Θ and ϕ(·; W) as an optimization problem:

minimize
Θ,ϕ(·;W)

L(Θ, W) = 1
2∥Θ⊺ϕ(X; W) − Ω∥2

F + λ1∥Θ∥1,1 + λ2∥W∥2
F , (3)

where λ1 ≥ 0 is a hyperparameter that controls the sparsity of Θ via the column-wise L1 regularization
term ∥Θ∥1,1, and λ2 ≥ 0 is the hyperparameter for L2 regularization of W. In common models such as a
multi-layer perceptron (MLP), the L2 regularization implicitly upper bounds the row-wise norm of ϕ(X; W)
for a given X. This prevents the degenerate case of an extremely sparse Θ with small elements.

5.1 Optimization

Jointly learning Θ and W is challenging due to the sparsity constraint on Θ. We optimize them iteratively,
fixing one while updating the other, termed Phase Θ and Phase ϕ.

Phase Θ. For each node z ∈ V, we update θz with the solution of the following optimization problem:

argmin
θ

1
2∥θ⊺ϕ(X; W) − Ωz∗∥2

2 + λ1∥θ∥1 (4)

s.t. θ ≥ 0. (5)

The constraints in (5) are not necessary for the general case, but we empirically find that it makes the
optimization procedure more robust. We adopt Least Angle Regression (LARS) (Efron et al., 2004) to solve
this Lasso problem, where the maximum number of receptive nodes can be controlled explicitly by setting
up the maximum iteration of LARS.

Phase ϕ. We update W with the solution of the following optimization problem:

argmin
W

1
2∥Θ⊺ϕ(X; W) − Ω∥2

F + λ2∥W∥2
F , (6)

5

Under review as submission to TMLR

and solve it with the gradient descent (GD) algorithm. For efficient training, we take the W from its last
iteration as a warm start and only update it for a few steps instead of reaching a converged solution.

We iteratively update Θ and W until the change of the loss L in (3) is smaller than some predefined
threshold.

Convergence. Let Θt, Wt be the parameters after the tth iteration with the corresponding loss L(Θt, Wt).
From the definition of loss in (3), we have L(Θt, Wt) ≥ 0 for ∀t. From the alternative optimization procedure
with a proper setting of learning rate for Phase W, for ∀t, we also have

L(Θt, Wt) ≥ L(Θt+1, Wt) ≥ L(Θt+1, Wt+1).

Therefore, L(Θt, Wt) is guaranteed to converge as t grows.

Per iteration complexity. Since L is non-convex, providing the asymptotic convergence rate is challenging.
We analyze the per-iteration complexity to get insight into the empirical computation overhead. For Phase
Θ, we first need to compute ϕ(X; W), which has a complexity of O(Dd+L′d2) for each node, where L′ is the
number of layers in the MLP ϕ and assuming the hidden dimension is always d. The complexity of computing
the solution for each node is O(|V|3 + |V|2d) (Efron et al., 2004)2. Then the complexity for Phase Θ is
O(|V|(Dd+L′d2+|V|3+|V|2d)). For Phase W, assuming we need k gradient descent iterations, the complexity
is O(k|V|(Dd + L′d2)). Overall, the per-iteration complexity is Θ is O(|V|(k(Dd + L′d2) + |V|3 + |V|2d), and
and the asymptotic complexity for |V| is O(|V|4). The O(|V|4) factor is the bottleneck for efficient training
for large graphs.

5.2 Scaling to Large Graphs

The naive optimization algorithm does not scale to large graphs due to the bottleneck at Phase Θ, which has
an asymptotic per-iteration complexity of O(|V|4). We propose two main techniques to tackle the scalability
issue: stochastic mini-batch training and narrowing the candidate nodes.

Stochastic mini-batch Training. We perform stochastic mini-batch updates. Specifically, we randomly
select B ⊂ V nodes at each iteration and only update the θz where z ∈ B. As for W, we select the same subset
B of nodes and the corresponding rows of Θ⊺ϕ(X; W) − Ω to include in the loss term for each mini-batch,
i.e., we solve:

argmin
W

1
2

∑
z∈B

∥θ⊺
z ϕ(X; W) − Ωz∗∥2

2 + λ2∥W∥2
F . (7)

Narrowing the candidate nodes. The computation required to solve (4) rapidly grows as the size of V
increases. Specifically, the computational overhead comes from the inference of ϕ(X; W) and the computation
time of the LARS solver. To reduce the required computation, we define a much smaller candidate node set
Cz for each node z and only consider the candidate nodes to determine θz. We solve the following problem
instead of (4).

argmin
θ

1
2∥θ⊺ϕ(X; W) − Ωz∗∥2

2 + λ1∥θ∥1 (8)

s.t. θi ≥ 0 ∀i ∈ Cz, θi = 0 ∀i /∈ Cz. (9)

(9) defines the reduced candidate set for solving θz. We only need to infer ϕ(Xz∗; W) for node z that appears
in the candidate set, and the complexity of the LARS solver only depends on the size of the candidate set
instead of |V|.

For each node, we use the knowledge of the graph structure to heuristically determine the moderate-sized
candidate set that includes the most relevant nodes. Specifically, we include all K1-hop neighbour nodes.

2Efron et al. (2004) mentioned that the complexity is O(d3) with saturated least-squares fit when |V| ≫ d. We adopted the
implementation from the scikit-learn library, and empirically, it’s always O(|V|3 + |V|2d). From the practical point of view, we
count the complexity to always be O(|V|3 + |V|2d)

6

Under review as submission to TMLR

Algorithm 1 SDGNN Computation
1: procedure SDGNN(Ω, G, X)
2: Prepare the candidate sets Cz for ∀z ∈ V according to Narrowing the Candidate Nodes.
3: for t = 1 to T do ▷ Main training loop.
4: Get the current mini-batch of the node set Bt ⊂ V.
5: for each z in Bt do
6: Update θz with Phase Θ.
7: end for
8: Update W with Phase ϕ.
9: end for

10: for z in V do ▷ Fix W and finalize the Θ.
11: Update θz with Phase Θ.
12: end for
13: return W and θz for ∀z ∈ V.
14: end procedure

From those nodes, we recursively sample a fixed number s of neighbours for an extra K2 hops (similar to
the mechanism of graphSAGE (Hamilton et al., 2017)) and combine all visited nodes as the candidate set.
As for practical guidelines for selecting K1, K2 and s, we can refer to the receptive nodes of the target GNN
models and set the hyper-parameters so that the selected candidate nodes can roughly cover them. After
that, a grid search could be conducted around that set of hyper-parameters to get better performance.

Per iteration complexity. The size of Cz is roughly O(d̄K1sK2), where d̄ is the average node degree and
s is the sampling budget, and |Cz| ≪ |V| for very large graphs. Then in Phase Θ, the complexity for each
node is O(|Cz|3 + |Cz|2d). With similar analysis in Sec. 5.1, the overall complexity will be O(|B|(k(Dd +
L′d2)|Cz| + |Cz|3 + |Cz|2d)), and the asymptotic complexity is O(|B||Cz|3). We can see that the asymptotic
per-iteration complexity is independent of the size of the graph |V|.

Considering the design strategies outlined above, the practical algorithm is presented in Algorithm 1. We
add an extra loop at Line 10 to align all θ with the latest version of W.

6 Experiments

6.1 Node Classification Tasks

We validate SDGNN’s approximation power and inference efficiency through node classification tasks in the
transductive setting.

6.1.1 Task

We consider the node classification task under the transductive setting. Given a graph G = {V, E} with
|V| = n nodes and |E| = m edges, the feature matrix of nodes X ∈ Rn×D and the labels from a subset of
nodes Vtrain ⊂ V, the task is to predict the labels for the remaining nodes.

6.1.2 Datasets

Following Zhang et al. (2021) and Tian et al. (2023), we conduct experiments on five widely used benchmark
datasets from Shchur et al. (2018), namely, Cora, Citeseer, Pubmed, Computer and Photo. We also examine
performance on two large-scale datasets, Arxiv and Products, from the OGB benchmarks (Hu et al., 2020).

6.1.3 Baselines and Target GNN Models

We select GLNN (Zhang et al., 2021), NOSMOG (Tian et al., 2023), CoHOp (Winter et al., 2024), SGC (Wu
et al., 2019), and PPRGo (Bojchevski et al., 2020) as the baselines. Specifically, GLNN and NOSMOG distill

7

Under review as submission to TMLR

Table 2: Mean F1 micro score and std. dev. for node classification tasks, best in bold and second best
underlined. * marks statistically significant results under Wilcoxon signed-rank test (Wilcoxon, 1992) at the
5% significance level.

Data/Target Model Target Model GLNN NOSMOG CoHOp PPRGo SGC SDGNN-Equal SDGNN(ours)
Cora/SAGE 85.43±1.22 86.86±1.39 85.82±1.39 85.49± 0.89 86.41±1.39 87.23±1.40 84.21±1.53 85.53±1.32
Cora/Geom-GCN 86.52±0.98 85.78±1.26 85.68±1.01 85.49± 0.89 85.40±1.37 85.99±1.38 80.79±1.31 86.64±0.85
Citeseer/SAGE 72.40±1.79 76.89±1.53 76.41±1.39 73.22 ± 1.21 77.19±1.16 76.29±1.37 73.13±1.95 73.62±2.04
Citeseer/Geom-GCN 79.91±0.94 79.34±1.40 79.88±0.93 73.22 ± 1.21 77.37±0.65 76.83±0.82 76.63±1.11 80.27±1.11
Pubmed/SAGE 87.17±0.56 89.21±0.66 87.98±0.62 84.81± 0.56 89.40±0.45 86.77±0.52 85.42±0.71 87.10±0.54
Pubmed/Geom-GCN 89.75±0.43 90.88±0.53 90.31±0.59 84.81± 0.56 89.35±0.38 86.24±0.76 85.81±0.46 89.77±0.47
Computer/SAGE 89.06±0.53 88.49±0.72 89.29±0.74 91.28±0.47 88.98±0.43 90.52±0.59 89.85±0.56 90.60±0.52
Computer/Exphormer 94.19±0.56 92.24±0.71 93.28±0.62 91.28 ± 0.47 89.45±0.60 90.71±0.65 93.44±0.58 94.29±0.52*
Photo/SAGE 92.90 ±0.67 93.87±0.33 94.27±0.50 95.48±0.31 94.93±0.49 93.54±0.55 93.01±0.59 93.96±0.39
Photo/Exphormer 96.54±0.35 95.58±0.56 95.35±0.52 95.48 ± 0.31 94.95±0.34 93.90±0.52 96.35±0.32 96.73±0.30*
Arxiv/SAGE 70.23±0.23 63.40±0.23 69.78±0.22 72.79±0.09 66.05±0.24 69.95±0.29 69.83±0.24 70.50±0.33
Arxiv/DRGAT 73.78±0.09 65.92±0.17 72.16±0.15 72.79±0.09 68.16±0.19 72.09±0.14 73.45±0.10 73.72±0.11*
Products/SAGE 78.37±0.55 62.87±0.53 77.33±0.32 81.67±0.25 70.15±0.59 74.97±0.61 78.03±0.65 78.07±0.61
Products/RevGNN 82.79±0.25 64.49±0.17 80.91±0.23 81.67±0.25 73.93±0.20 79.76±0.28 82.64±0.22 82.87±0.21*

the GNN into an MLP with and without augmenting with position encodings. CoHOp is a recent method
that trains an MLP to replace the GNN, using label propagation to incorporate graph information. SGC
and PPRGo adopt the heuristic of selecting a critical subset of nodes and assigning aggregation weights. To
make a fair comparison, we match the number of receptive nodes to SDGNN by truncating, where for each
node z, we keep the top kz most significant weights, kz being the corresponding number of receptive nodes
in SDGNN at node z. We also include a degraded version of SDGNN where for each θz, we replace the
learned non-zero weights with normalized equal weights (SDGNN-Equal).

Regarding the targeted GNN models, we include GraphSAGE (Hamilton et al., 2017) with mean aggregator.
This is the base model for all experiments reported in Zhang et al. (2021) and Tian et al. (2023). To fully
evaluate the capacity of each efficient inference solution, we also add one of the most effective GNN models
for each dataset. In this selection process, we exclude the models that achieve impressive performance
via processing steps unrelated to graph learning, e.g., label re-use (Wang & Leskovec, 2021) and feature
augmentation. Given that no single GNN model achieves the best performance across all datasets, we select
distinct target models that excel on each dataset. Specifically, we choose Geom-GCN (Pei et al., 2020) for
Cora, Citeseer and Pubmed. We adopt Exphormer (Shirzad et al., 2023) for Computer and Photo. We
select DRGAT (Zhang et al., 2023) for Arxiv and RevGNN-112 (denoted by RevGNN) (Li et al., 2021) for
Products.

6.1.4 Evaluation

For the 5 small datasets (Cora, Citeseer, Pubmed, Computer and Photo), we randomly split the nodes with
a 6:2:2 ratio into training, validation and testing sets. Experiments are conducted using 10 random seeds,
as in Pei et al. (2020). We report the mean and standard deviation. For Arxiv and Products, we follow the
fixed predefined data splits specified in Hu et al. (2020), run the experiments 10 times, and report the mean
and standard deviation.

6.1.5 SDGNN Integration

We start with a trained GNN model, e.g., GraphSAGE (Hamilton et al., 2017), DeeperGCN (Li et al.,
2021), or graph transformers (Yun et al., 2019; Rampášek et al., 2022; Ma et al., 2023; Shirzad et al.,
2023). We adopt the intermediate representation constructed by the architecture immediately before the
final prediction as the target node representation g(z, X|G), and learn the SDGNN ĝ(z, X|G). Using the
label and the representation ĝ(z, X|G) for the nodes within Vtrain, we train a decoder function f(ĝ(z, X|G))
to map the node representation to the predicted labels. We employ an MLP for the decoder model. During
inference, upon a request for prediction for a node z, we refer to θz to retrieve the receptive node features

8

Under review as submission to TMLR

75

80
NOS-Rev

NOS-SAGE

GL-Rev-w4
GL-Rev-w8

GL-SAGE-w4

GL-SAGE-w8
SAGE-L2-N20

SAGE-L2-full
SAGE-L3-N20

SAGE-L3-full

SDGNN-Rev

SDGNN-SAGE

100 101 102
60

65 GL-Rev

GL-SAGE

MLP

SAGE-L1-N20
SAGE-L1-fullAc

cu
ra

cy

Log Scale Inference Time (ms)

Figure 2: Accuracy v.s. mean inference wall-clock time over 10,000 randomly sampled nodes on the Products
test set. GL→GLNN, NOS→NOSMOG, Rev→RevGNN. w4, w8: student size enlarged 4, 8 times. L1, L2,
and L3 denote GNN layers. N20: a neighbour sampling size of 20.

and compute the prediction with f(ĝ(z, X|G)) over the receptive nodes. The overall pipeline of integrating
the SDGNN is depicted in Figure 1.

Remark. Our method requires the predicted representation from the GNN for all nodes to get optimized
θz. Although the approximation with static node features has limited practical value, we include these
experiments to compare the approximation power and efficiency of the proposed SDGNN with the common
benchmarks. The primary use-case for SDGNN is when there are dynamic node features under the online
prediction setting. We demonstrate this via a spatio-temporal forecasting task in later sections.

6.1.6 Main Results

We compare the accuracy among GLNN, NOSMOG, CoHOp, PPRGo, SGC and SDGNN for seven datasets
with different target GNN models in Table 2. The “Target Model” column indicates the performance of
the original GNN models. CoHOp, SGC and PPRGo do not rely on the target GNN embeddings. We
duplicate the results of CoHOp within each dataset to compare the performance better. SGC and PPRGo
have different performances under different target GNN models since we truncate the neighbours according
to the patterns from the corresponding SDGNN models. Overall, SDGNN can approximate the target for
all scenarios well, achieving accuracy close to the target model. Other techniques like NOSMOG, CoHOP,
etc., though provided with a target GNN model, are not designed to solely approximate the target but also
integrate other modules to intervene in the outputs. As a result, with a weaker target GNN model, SDGNN
can be outperformed by those techniques. In contrast, with SOTA GNN targets, SDGNN achieves the best
performance in 6/7 scenarios, including 2/2 scenarios on large-scale datasets.

Specifically, GLNN and NOSMOG often outperform the SAGE target model, but the performance gap is
more pronounced for GLNN on larger datasets like Arxiv and Products. For example, on Products/RevGNN
the performance gap for GLNN is 18.30 percent. An essential difference between GLNN and NOSMOG is
that NOSMOG calculates a positional encoding (derived using DeepWalk) for each node and stores this
as an additional feature. This is highly effective for the Products and Arxiv datasets. CoHOp augments
the node features with neighbour labels and trains an MLP with a label smoothing loss on the graph. It
outperforms the weak SAGE models for all datasets, but it cannot achieve accuracy levels close to those
of the SOTA target GNN models. PPRGo and SGC adopt different heuristics to select the neighbours,
and their performance varies across different datasets. Due to the optimized neighbour selection and weight
assignment, SDGNN outperforms these heuristic-based methods for all scenarios involving more powerful
target GNN models.

9

Under review as submission to TMLR

Table 3: Mean Absolute Percentage Error (MAPE, %) for next-step forecasting on the PeMS04 and PeMS08
datasets. The receptive field size of the SDGNN model is set to 6 for both datasets. * indicates SDGNN is
stat. significantly better than the next-best (excluding the target), for a paired Wilcoxon signed-rank test
at the 5% significance level.

MAPE GRU-GCN GRU GLNN NOSMOG PPRGo SDGNN
PeMS04 1.17±0.09 2.09±0.6∗ 1.51±0.10∗ 1.53±0.31∗ 2.63±0.18∗ 1.33±0.09
PeMS08 0.89±0.03 1.69±0.06∗ 1.55±0.08∗ 1.68±0.03∗ 1.63±0.07∗ 0.97±0.04

Ablation study: Replacing the learned θz with normalized equal values decreases the performance. This
demonstrates that SDGNN locates important neighbours and assigns appropriate aggregation weights to
approximate target GNN embeddings more effectively. Even with normalized weights, the approximation
still outperforms the other baselines for the scenarios with larger graphs and more powerful target GNN
models. This highlights that the receptive node selection aspect of SDGNN is highly effective.

6.1.7 Inference Time

We performed inference for 10, 000 randomly sampled nodes for each dataset to assess the trade-off between
inference time and accuracy. Here, we provide results and a discussion of the Products dataset; the results
for other datasets are qualitatively similar and are provided in the Appendix. Fig. 2 illustrates the testing
accuracy versus the average computation time per node for different models and approximation techniques.
We observe that SDGNN-Rev (SDGNN based on RevGNN) achieves the best accuracy (82.87%) with in-
ference time (0.74 ms), while the MLP-based methods (MLP, GL-Rev, GL-SAGE, NOS-SAGE, NOS-Rev)
have the fastest inference time around 0.45 ms. SDGNN is slower due to the additional computation costs
of performing feature transformation on multiple nodes and aggregation to incorporate neighbour features.

The SAGE series, such as SAGE-L3-full (a 3-layer SAGE model without sampling during inference) and
SAGE-L2-N20 (a 2-layer SAGE model that samples 20 neighbours), exhibit rapidly growing inference times
as the number of layers increases (up to 128 ms), making them impractical for real-world applications. We
also detail the results for GL-SAGE-w4 (GL-SAGE with hidden dimension 4 times wider) and GL-Rev-w4
(a 4 times wider version of GL-Rev). Although their accuracy improves compared to their base versions,
their inference times also increase substantially. We conclude that SDGNN offers superior performance in
terms of accuracy, and its inference time is sufficiently close to the fastest MLP models.

6.2 Spatio-Temporal Forecasting

We demonstrate how SDGNN can be applied to tasks with dynamic node features through spatio-temporal
forecasting tasks, which are aligned with the online prediction setting.

6.2.1 Task

We have a graph G = {V, E} with |V| = n nodes and |E| = m edges. The nodes are associated with signals
in discrete time X1:T = (X1, X2, . . . , XT) ∈ Rn×T ×C , and each Xt ∈ Rn×C denotes C channel signals for all
n nodes at time t. The task is to predict XT +1 ∈ Rn×C .

6.2.2 Datasets

We consider the traffic datasets PeMS04 and PeMS08 from Guo et al. (2021) and apply the data preprocessing
of Gao & Ribeiro (2022). Given a fixed graph G, the signals on the nodes are partitioned into snapshots.
Each snapshot s contains discrete signals Xs

1:T and the corresponding target Xs
T +1 to predict.

6.2.3 Baselines and Target GNN Model

We select GLNN (Zhang et al., 2021), NOSMOG (Tian et al., 2023), and PPRGo (Bojchevski et al., 2020)
as the baselines.

10

Under review as submission to TMLR

2 4 6 8 10
Mean Size of Receptive Field

0.008

0.010

0.012

0.014

0.016

M
AP

E

SDGNN
(GRU-GCN-L2)

SDGNN
(GRU-GCN-L2)

GRU-GCN-L2

SDGNN
(GRU-GCN-L1)

GRU-GCN-L1

GLNN

PPRGo
NOSMOG

GRU SDGNN
GRU-GCN
GLNN
PPRGo
NOSMOG
GRU

(a)

0.000 0.005 0.010 0.015 0.020 0.025
MAE(GRU) - MAE(SDGNN)

0.000

0.005

0.010

0.015

0.020

0.025

M
AE

(G
RU

) -
 M

AE
(G

RU
-G

CN
)

(b)

Figure 3: (a) MAPE v.s. mean receptive field size on PeMS08 dataset. L1, L2 denote one and two GCN
layers, respectively. GLNN and MOSMOG are learned with GRU-GCN-L2. Targets of SDGNN are indicated
in brackets. Error bar shows standard deviation. (b) Scatter plot of MAE reduction at each node (compared
to GRU) for GRU-GCN (y-axis) with SDGNN (x-axis). Dashed line is y = x. The improvements are highly
correlated, with a slight bias in favour of the more computationally expensive GRU-GCN.

As for the target GNN model, we adopt the time-then-graph framework with the GRU-GCN model from
Gao & Ribeiro (2022). For each Xs

1:T ∈ Rn×T ×C , GRU-GCN uses a gated recurrent unit (GRU) to encode
the signal at each node into the representation Hs ∈ Rn×d = GRU(Xs

1:T), d being the dimension of the
representation. Then a graph neural network (GCN) is applied to Hs to obtain Zs ∈ Rn×d = GCN(Hs).
Finally, an MLP decoder is used at each node to derive the prediction X̃s

T +1 = MLP(Zs) ∈ Rn×C .

6.2.4 Evaluation

We split the snapshots into train, validation, and test sets. We report the test set’s mean absolute percentage
error (MAPE). We run each setting 10 times and report the mean and standard deviation of MAPE.

6.2.5 SDGNN Integration

We apply SDGNN to replace the GNN module. After training the GRU-GCN, we have GRU, GCN, and
MLP decoder modules. For all the snapshots in the training set, we take Hs as the input to SDGNN and
Zs as the output to approximate. During training, we aggregate the loss and minimize over all snapshots:

minimize
Θ,ϕ(·;W)

1
2

∑
s

∥Θ⊺ϕ(Hs; W) − Zs∥2
F + λ1∥Θ∥1,1 + λ2∥W∥2

F ,

We further train an MLP to map from the SDGNN output to the prediction. We also adopt various
strategies to improve the robustness (please see the Appendix for details). During inference for node z, we
refer to θz to fetch the relevant node signals and apply the GRU. Then, we apply the SDGNN followed by
the MLP to get the final prediction.

Remark. For scenarios with dynamic node features, we can rely on the GNN embeddings from past snap-
shots to train the SDGNN. We then apply the SDGNN to infer future snapshots. Due to the optimized and
reduced number of receptive nodes, SDGNN can efficiently compute the prediction in the online prediction
setting.

6.2.6 Main Results

Table 3 presents MAPE results under various settings. In this experiment, SDGNN’s target model is GRU-
GCN with a 2-layered GNN model. GRU denotes the degraded version of GRU-GCN that removes the
GCN component. The GCN module integrates the information from neighbour nodes and reduces the error

11

Under review as submission to TMLR

significantly. With the target GRU-GCN model, GLNN and NOSMOG slightly outperform the GRU, but
the position encoding in NOSMOG does not help in this dynamic feature setting. SDGNN is closest to
the target GRU-GCN model and performs best among the efficient models. SDGNN can select the most
informative receptive nodes whose features have an impact on the labels. The heuristic-based neighbour
selection method PPRGo fails under the current setting, achieving similar or even worse performance than
GRU.

Figure 3a plots MAPE versus mean receptive field size for the PeMS08 dataset. We include the results of
GRU-GCN models with 1 and 2 GCN layers. NOSMOG and SDGNN are trained with a GRU-GCN target
of 2-layer GCN. SDGNN is trained in various settings for 1-layer and 2-layer GCN under different budgets of
receptive field sizes. Although efficient, GLNN and NOSMOG have little performance gain over the GRU.
SDGNN can effectively reduce the mean receptive field size with a slight accuracy sacrifice to the target
GCN model. Comparing the SDGNN trained with different target GCN models, the SDGNN with 2-layer
GCN is stronger than it trained with 1-layer GCN given a similar receptive field size. Training SDGNN
using a more powerful target model with an aggressive reduction in receptive field size is more effective.

6.2.7 Embedding Approximation Efficacy

Figure 3b shows a scatter plot of the MAE reduction (relative to the GRU) at each node achieved by the
GCN versus that achieved by SDGNN. The scatterplot is concentrated close to the y = x line, with a slight
bias in favour of the more computationally demanding GCN. The plot highlights how SDGNN successfully
approximates the GCN embeddings and thus derives a similar forecasting accuracy improvement at each
node.

7 Conclusion

In this work, we proposed a systematic approach to efficiently infer node representations from any GNN
models while considering both the graph structures and the features from neighbour nodes. Extensive
experiments on seven datasets on the node classification task and two datasets on the spatial-temporal
forecasting task demonstrate that SDGNN can effectively approximate the GNN target models with reduced
receptive field size. Our method provides a new tool for the efficient inference of GNN models under the
online prediction setting, which can benefit from both the power of GNN models and the real-time reflection
of dynamic node features.

References
Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz

Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rózem-
berczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with approximate
pagerank. In Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 2020.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via impor-
tance sampling. In Proc. Int. Conf. Learn. Representations, 2018.

Lei Chen, Zhengdao Chen, and Joan Bruna. On graph neural networks versus graph-augmented mlps. In
Proc. Int. Conf. Learn. Representations, 2021.

Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets necessary? a dissection on graph
classification. Int. Conf. Learn. Representations RLGM Workshop, 2019.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In Proc. ACM SIGKDD Int. Conf.
Knowl. Discovery Data Min., 2019.

12

Under review as submission to TMLR

Wei Chu and Seung-Taek Park. Personalized recommendation on dynamic content using predictive bilinear
models. In Proc. Int. Conf. World Wide Web., 2009.

Daniel Crankshaw. The Design and Implementation of Low-Latency Prediction Serving Systems. Univ. of
California, Berkeley, 2019.

Scott TM Dawson, Maziar S Hemati, Matthew O Williams, and Clarence W Rowley. Characterizing and
correcting for the effect of sensor noise in the dynamic mode decomposition. Exp. Fluids, 57:1–19, 2016.

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson, Furong Huang, and Tom Goldstein.
Vq-gnn: A universal framework to scale up graph neural networks using vector quantization. In Adv.
Neural Inf. Process. Syst., 2021.

Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong Chen, Xia Hu, and
Zhangyang Wang. A comprehensive study on large-scale graph training: Benchmarking and rethinking.
In Adv. Neural Inf. Process. Syst., 2022.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. Ann. Statist.,
32(2):407–499, 2004.

Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static equivariant graph repre-
sentations. In Proc. Int. Conf. Mach. Learn., 2022.

Xinyi Gao, Wentao Zhang, Yingxia Shao, Quoc Viet Hung Nguyen, Bin Cui, and Hongzhi Yin. Efficient
graph neural network inference at large scale. arXiv preprint arXiv:2211.00495, 2022.

Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. Learning dynamics and heterogeneity
of spatial-temporal graph data for traffic forecasting. IEEE Trans. on Knowl. and Data Eng., 34(11):5415–
5428, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Adv.
Neural Inf. Process. Syst., 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn: Simplifying
and powering graph convolution network for recommendation. In Proc. ACM SIGIR Conf. Res. Develop.
Inf. Retrieval, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. Stat, 1050:9,
2015.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Adv. Neural Inf.
Process. Syst., 2020.

Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao. Graph-mlp: Node
classification without message passing in graph. arXiv preprint arXiv:2106.04051, 2021.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks with
1000 layers. In Proc. Int. Conf. Mach. Learn., 2021.

Kang Liu, Zhenhua Huang, Chang-Dong Wang, Beibei Gao, and Yunwen Chen. Fine-grained learning
behavior-oriented knowledge distillation for graph neural networks. IEEE Trans. Neural Netw. Learn.
Syst., 2024.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, K. Dokania, Mark Coates, Philip H.S. Torr,
and Ser-Nam Lim. Graph Inductive Biases in Transformers without Message Passing. In Proc. Int. Conf.
Mach. Learn., 2023.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao, Junzhou
Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from architecture per-
spective. arXiv preprint arXiv:2202.08455, 2022.

13

Under review as submission to TMLR

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters. arXiv
preprint arXiv:1905.09550, 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In Proc. Int. Conf. Learn. Representations, 2020.

Meng Qu, Yoshua Bengio, and Jian Tang. Gmnn: Graph markov neural networks. In Proc. Int. Conf. Mach.
Learn., 2019.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. In Proc. Adv. Neural Inf. Process.
Syst., 2022.

Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein, and Federico Monti.
Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph
neural network evaluation. In Relat. Represent. Learn. Workshop NeurIPS, 2018.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop. Ex-
phormer: Sparse transformers for graphs. In Proc. Int. Conf. Mach. Learn., 2023.

Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu. Learning to hash with
graph neural networks for recommender systems. In Proc. Int. Web Conf., 2020.

Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and Nitesh Chawla. Learning mlps on graphs:
A unified view of effectiveness, robustness, and efficiency. In Proc. Int. Conf. Learn. Representations, 2023.

Yingjie Tian, Shaokai Xu, and Muyang Li. Decoupled graph knowledge distillation: A general logits-based
method for learning mlps on graphs. Neural Netw., 179:106567, 2024.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In Proc. Int. Conf. Learn. Representations, 2018.

Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propagation. In
Proc. Int. Conf. Learn. Representations, 2021.

Xiyuan Wang and Muhan Zhang. How powerful are spectral graph neural networks. In Proc. Int. Conf.
Mach. Learn., 2022.

Yiwei Wang, Bryan Hooi, Yozen Liu, and Neil Shah. Graph explicit neural networks: Explicitly encoding
graphs for efficient and accurate inference. In Proc. Int. Conf. on Web Search and Data Mining, 2023.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in Statistics: Methodology
and distribution, pp. 196–202. Springer, 1992.

Daniel Winter, Niv Cohen, and Yedid Hoshen. Classifying nodes in graphs without gnns. arXiv preprint
arXiv:2402.05934, 2024.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In Proc. Int. Conf. Learn. Representations, 2019.

Lirong Wu, Haitao Lin, Yufei Huang, and Stan Z Li. Quantifying the knowledge in gnns for reliable distillation
into mlps. In Proc. Int. Conf. Mach. Learn., 2023.

Lirong Wu, Haitao Lin, Zhangyang Gao, Guojiang Zhao, and Stan Z Li. A teacher-free graph knowledge
distillation framework with dual self-distillation. IEEE Trans. on Knowl. and Data Eng., 36(9):4375–4385,
2024.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst., 32(1):4–24, 2020.

14

Under review as submission to TMLR

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
Proc. Int. Conf. Learn. Representations, 2019.

Bencheng Yan, Chaokun Wang, Gaoyang Guo, and Yunkai Lou. Tinygnn: Learning efficient graph neural
networks. In Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., 2020.

Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, CUI Bin, Muhan
Zhang, and Jure Leskovec. Vqgraph: Rethinking graph representation space for bridging gnns and mlps.
In Proc. Int. Conf. Learn. Representations, 2024.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. In Adv. Neural Inf. Process. Syst., 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method. In Proc. Int. Conf. Learn. Representations, 2020.

Lei Zhang, Xiaodong Yan, Jianshan He, Ruopeng Li, and Wei Chu. Drgcn: Dynamic evolving initial residual
for deep graph convolutional networks. In Proc. AAAI Conf. Artif. Intell., 2023.

Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old mlps
new tricks via distillation. In Proc. Int. Conf. Learn. Representations, 2021.

Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jamnik, and Pietro Lio. Learned low precision
graph neural networks. arXiv preprint arXiv:2009.09232, 2020.

Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Viktor Prasanna. Accelerat-
ing large scale real-time gnn inference using channel pruning. In Proc. Conf. Very Large Data Bases
Endowment, 2021.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI Open, 1:57–81,
2020.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent importance
sampling for training deep and large graph convolutional networks. In Adv. Neural Inf. Process. Syst.,
2019.

A Extended Experiment Settings on Node Classification Tasks

In this section, we provide additional details about our implementation to support the reproduction of our
reported results. We ran all the tests on the computer equipped with Intel(R) Xeon(R) Gold 6140 CPU @
2.30GHz CPU and NVIDIA Tesla V100 GPU.

A.1 Dataset

Table 4 shows the detailed specifications of the datasets. The Arxiv and Products datasets are significantly
larger than the other datasets.

A.2 Hyper-parameter Settings for Baselines

Table 5 shows the hyper-parameters for the base GNN models. Specifically, “lr” presents the learning rate;
“hidden dimension” shows the hidden dimension of the intermediate layers; “layer” depicts the number of
layers in the model; “weight decay” is the factor in the L2 regularizer for all learnable parameters. We adopt
the same hyper-parameter of SAGE models in (Zhang et al., 2021). We adopt the hyper-parameters from
those corresponding papers for geomGCN, Exphormer, DRGAT and RevGNN. Table 6 shows the hyper-
parameters for the MLP student models for the GLNN, and Table 7 shows the hyper-parameters for the
MLP student models for the NOSMOG. We adopt the same hyper-parameters from (Zhang et al., 2021) and
(Tian et al., 2023) for the corresponding datasets. Table 8 shows the hyper-paramters for CoHOp.

15

Under review as submission to TMLR

Table 4: Summary of the Node Classification Datasets.

Data Nodes Edges Attributes Classes
Cora 2,708 5,278 1,433 7
Pubmed 19,717 44,324 500 3
Citeseer 3,327 4,552 3,703 6
Computers 13,752 245,861 767 10
Photo 7,650 119,081 745 8
Arxiv 169,343 1,166,243 128 40
Products 2,449,029 61,859,140 100 47

Table 5: Summary of the hyper-parameters for base GNN models.

Dataset/Model lr hidden dimension layer weight decay
Cora/SAGE 0.01 64 3 0.0005
Cora/geomGCN 0.05 16 2 5.00E-06
Citeseer/SAGE 0.01 64 3 0.0005
Citeseer/geomGCN 0.05 16 2 5.00E-06
Pubmed/SAGE 0.01 64 3 0.0005
Pubmed/geomGCN 0.05 16 2 5.00E-06
Computer/SAGE 0.01 128 2 0.0005
Computer/Exphormer 0.001 80 4 0.001
Photo/SAGE 0.01 128 2 0.0005
Photo/Exphormer 0.001 64 4 0.001
Arxiv/SAGE 0.01 256 3 0.0005
Arxiv/DRGAT 0.002 256 3 0
Products/SAGE 0.001 256 3 0.0005
Products/RevGNN 0.003 160 7 0

A.2.1 Hyper-parameter Setting for SDGNN

Table 9 shows the important hyper-parameters of SDGNN that yield the main results in Table 2. K1
and K2 are the hyper-parameters defined in the subsection, “Narrowing the Candidate Nodes”. The K2
fanout parameter specifies the neighbour sampling size. These three values jointly influence the sizes of the
candidate sets, and hence the training time of SDGNN and the approximation quality. We conduct a grid
search over K1 = [1, 2, 3] and K2 = [1, 2], starting from the combination that results in smaller candidate
sets to larger ones. We select the combination such that the associated training time of SDGNN is feasible,
and the validation loss in (3) does not reduce by more than 0.01 compared with the next smaller setting.

16

Under review as submission to TMLR

Table 6: Summary of the hyper-parameters in the student MLP models for GLNN.

Dataset/Model lr hidden dimension layer weight decay
Cora/SAGE 0.005 128 2 0.0001
Cora/geomGCN 0.005 128 2 0.0001
Citeseer/SAGE 0.01 128 2 0.0001
Citeseer/geomGCN 0.01 128 2 0.0001
Pubmed/SAGE 0.005 128 2 0
Pubmed/geomGCN 0.005 128 2 0
Computer/SAGE 0.001 128 2 0.002
Computer/Exphormer 0.001 128 2 0.002
Photo/SAGE 0.005 128 2 0.002
Photo/Exphormer 0.005 128 2 0.002
Arxiv/SAGE 0.01 256 3 0
Arxiv/DRGAT 0.01 256 3 0
Products/SAGE 0.01 256 4 0.0005
Products/RevGNN 0.01 256 4 0.0005

Table 7: Summary of the hyper-parameters in the student MLP models for NOSMOG.

Dataset/Model lr hidden dimension layer weight decay
Cora/SAGE 0.01 128 2 0.0001
Cora/geomGCN 0.01 128 2 0.0001
Citeseer/SAGE 0.01 128 2 1.00E-05
Citeseer/geomGCN 0.01 128 2 1.00E-05
Pubmed/SAGE 0.003 128 2 0
Pubmed/geomGCN 0.003 128 2 0
Computer/SAGE 0.001 128 2 0.002
Computer/Exphormer 0.001 128 2 0.002
Photo/SAGE 0.001 128 2 0.001
Photo/Exphormer 0.001 128 2 0.001
Arxiv/SAGE 0.01 256 3 0
Arxiv/DRGAT 0.01 256 3 0
Products/SAGE 0.003 256 3 0
Products/RevGNN 0.003 256 3 0

Table 8: Summary of the hyper-parameters for CoHOp. If a hidden dimension is not stated, a linear model
is used.

Dataset hidden dimension # epochs patience tau gamma lr weight decay alpha
Cora - 200 50 0.5 0.025 0.1 0.0005 0.4
Citeseer - 200 50 0.6 0.005 0.1 0.0005 0.5
Pubmed - 200 50 0.2 0.01 0.1 0.0001 0.6
Computer - 200 50 0.2 0.01 0.01 0.0 0.05
Photo - 200 50 0.4 0.05 0.01 0.0005 0.1
Arxiv 512 200 100 0.5 0.0 0.1 0.001 0.6
Products 1024 1 1 0.5 0.5 0.001 0.0 0.1

0 2000 4000 6000
Time(s)

10 1

100

N
R

 (l
og

 s
ca

le
) K1 = 1

K1 = 2
K1 = 3
K1 = 4

Figure 4: Convergence curve under various candidate sets for Pubmed dataset with SAGE model.

17

Under review as submission to TMLR

Table 9: Summary of the Hyper-parameters for Training SGDNN.

Data/Target model K1 K2 K2 fanout lr l2

Cora/SAGE 2 2 10, 10 0.01 1e-05
Cora/geomGCN 2 2 10, 10 0.001 1e-07
Citeseer/SAGE 2 2 10, 10 0.001 1e-05
Citeseer/geomGCN 2 2 10, 10 0.001 1e-06
Pubmed/SAGE 2 1 10 0.001 1e-05
Pubmed/geomGCN 2 1 10 0.001 1e-06
Computer/SAGE 1 2 10, 10 0.01 1e-05
Computer/exphormer 1 2 10, 10 0.005 1e-05
Photo/SAGE 1 2 10, 10 0.01 1e-05
Photo/exphormer 1 2 10, 10 0.001 1e-05
Arxiv/SAGE 1 2 15, 15 0.001 1e-05
Arxiv/DRGAT 1 2 15, 15 0.0001 1e-07
Products/SAGE 1 2 10, 10 0.001 1e-05
Products/RevGNN 1 2 10, 10 0.0005 1e-07

18

Under review as submission to TMLR

B Additional Experimental Results for Node Classification Tasks

B.1 The Impact of Candidate Selection

We train the SDGNN with different settings for selecting the candidate sets and show the normalized regret
(NR) v.s. the wall clock time. The normalized regret is defined as

NR = 1
2|V|

∑
z∈V

∥θ⊺
z ϕ(X; W) − Ωz∗∥2

2
∥Ωz∗∥2

2
,

which characterize the average relative error with respect to the target GNN embeddings. Fig. 4 shows the
training curve for the Pubmed dataset with the SAGE model under four different settings of candidate sets,
i.e., including 1-hop, 2-hop, 3-hop or 4-hop neighbours, respectively. As we can see, the smaller candidate
sets, e.g. k1 = 1 or k1 = 2, leads to a faster convergence but converges to a sub-optimal point, while a large
candidate set converges much slower with a better result. With k1 = 4, the normalized regret even bounces
back and forth. Besides, if we adopt all the nodes as candidates, the training will take an extremely long
time (not shown in the figure). We conclude that with a proper setting of the candidate set, the learning of
SDGNN can be greatly boosted while losing little performance in terms of NR.

B.2 The Receptive Nodes from SDGNN

Table 10 presents the average receptive field sizes for SDGNN and the original graph. It also reports their
ratios. To make an efficient estimation, we compute the mean statistics from 1000 randomly sampled nodes.
For the original graph, we only count up to 2-hop neighbours for Products, due to the very rapid expansion
of the neighbourhood. We count up to 3-hop neighbours for the other scenarios.

SDGNN can significantly reduce the receptive field size against the original graph. Interestingly, the ratio
between the receptive field size of SDGNN and that from the original graph generally decreases as the hop
size increases. This indicates that, proportionally, SDGNN favours receptive nodes that are closer to the
center node. However, in each case, the majority of the nodes that SDGNN selects are not immediate
neighbours.

Table 10: The average number of receptive nodes for each node (“Overall”); the average number at a distance
of “1-hop”, “2-hops” and “3-hops” for (i) SDGNN, (ii) original graph (iii) the ratio between SDGNN and
original graph.

Overall 1-hop 2-hop 3-hop
Data/Model SDGNN 3-hop Neigh. Ratio SDGNN Original Ratio SDGNN Original Ratio SDGNN Original Ratio
cora/SAGE 36.1 128.1 .28 2.9 4.9 .59 10.1 31.7 .32 12.4 92.9 .13
cora/geomGCN 38.4 128.1 .30 2.2 4.9 .45 10.2 31.7 .32 13.6 92.9 .15
citeseer/SAGE 17.8 43.5 .41 2.7 3.9 .69 4.7 12.1 .39 6 29.8 .20
citeseer/geomGCN 14.2 43.5 .33 1.8 3.9 .46 3.5 12.1 .29 5 29.8 .17
pubmed/SAGE 25.5 394.6 .06 2.6 5.7 .46 13.1 54.8 .24 9.7 336.6 .03
pubmed/geomGCN 16.3 394.6 .04 1.1 5.7 .19 8 54.8 .15 7.2 336.6 .02
a-computer/SAGE 24.9 7493 .003 2.6 37.3 .07 15 1906.8 .008 7.4 5727.6 .001
a-computer/exphormer 46.9 7493 .006 5.3 37.3 .14 28.4 1906.8 .01 13.4 5727.6 .002
a-photo/SAGE 28.1 2519.4 .01 4.1 29 .14 17.4 759.3 .02 6.1 1689.8 .003
a-photo/exphormer 45.8 2519.4 .018 5.9 29 .2 28 759.3 .04 11.4 1689.8 .007
ogbn-arxiv/SAGE 30.3 18470.6 .0016 2 14 .14 12.9 3713 .003 16 15443.1 .001
ogbn-arxiv/DRGAT 36.1 18470.6 .0019 2.3 14 .16 14.2 3713 .004 20 15443.1 .001
ogbn-products/SAGE 24 3851.9 .006 2.1 51.9 .04 11.4 3919.2 .003 10.7
ogbn-products/RevGNN-112 23.6 3851.9 .006 1.8 51.9 .03 10.3 3919.2 .003 11.6

Figure 6 and Figure 5 show the empirical CDFs (calculated from 1000 randomly sampled center nodes) of the
number of receptive nodes and the theta values (node weights after l1 row normalization) for SDGNN, SGC
and PPRGo. For SGC and PPRGO, we include all the weights without truncating. For SGC, we include the
3-hop neighbours for all datasets except for Products, which includes only the 2-hop neighbours. SGDNN
consistently identifies a smaller number of receptive nodes and puts larger weights on a few focused nodes.

19

Under review as submission to TMLR

This is the main reason that SDGNN can significantly reduce the receptive field size. Although PPRGo
often selects a similar number of receptive nodes as SDGNN, it distributes the weights more evenly among
them.

B.3 Inference Time

To fairly compare the inference times, we always constrain the computation on a single CPU and compute
the prediction of 1 node at a time. This simulates the online prediction setting where the request comes
randomly. We show the inference times over 10000 randomly sampled testing nodes for all the datasets in
Table 11. Specifically, the MLP column presents the mean inference time for a 3-layered MLP model, and
SAGE-N20 presents the mean inference time of the SAGE models with a neighbour sampling size of 20. The
SDGNN-SAGE and SDGNN-SOTA columns report the inference times of SDGNN trained with the SAGE
model and the corresponding SOTA model in Table 2. We can see that SDGNN consistently has a much
smaller inference time compared to the SAGE counterpart, and it is on the same scale as the MLP models
(inference time is 1–4× larger).

Table 11: The average inference time per node over 10000 samples. (ms)

Dataset MLP SAGE-N20 SDGNN-SAGE SDGNN-SOTA
cora 0.2 11.5 0.5 0.8
citeseer 0.3 11 0.6 0.9
pubmed 0.2 10.8 0.3 0.5
a-computer 0.2 44.4 0.6 0.4
a-photo 0.2 7.4 0.6 0.4
ogbn-arxiv 0.2 15.6 0.2 0.4
ogbn-products 0.4 13.6 0.7 0.7

102 105

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(a) Arxiv/SAGE

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(b) Arxiv/SAGE

102 105

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(c) Arxiv/DRGAT

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00
C

D
F

SDGNN
SGC
PPRGo

(d) Arxiv/DRGAT

102 105

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(e) Products/SAGE

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(f) Products/SAGE

102 105

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(g) Products/RevGNN

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(h) Products/RevGNN

Figure 5: The empirical CDFs of the number of receptive nodes and the empirical CDFs of the row normalized
Θ for SDGNN, SGC and PPRGo for ArXiv (SAGE, DRGAT) and Ogbn-Products (SAGE, RevGNN-112).

20

Under review as submission to TMLR

101 103

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(a) Cora/SAGE

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(b) Cora/SAGE

101 103

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(c) Cora/geomGCN

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(d) Cora/geomGCN

100 101 102

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(e) Citeseer/SAGE

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(f) Citeseer/SAGE

100 101 102

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F
(g) Citeseer/geomGCN

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(h) Citeseer/geomGCN

101 102 103

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(i) Pubmed/SAGE

0.0 0.1 0.2
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(j) Pubmed/SAGE

101 103

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(k) Pubmed/geomGCN

0.0 0.1 0.2
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(l) Pubmed/geomGCN

101 103

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(m) Computer/SAGE

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(n) Computer/SAGE

101 103

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(o) Computer/exphormer

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(p) Computer/exphormer

101 103

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(q) Photo/SAGE

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(r) Photo/SAGE

101 103

Receptive Nodes

0.00

0.25

0.50

0.75

1.00

C
D

F

(s) Photo/exphormer

0.00 0.05 0.10 0.15
Theta Values

0.00

0.25

0.50

0.75

1.00

C
D

F

SDGNN
SGC
PPRGo

(t) Photo/exphormer

Figure 6: The empirical CDFs of the number of receptive nodes and the empirical CDFs of the row normalized
Θ for SDGNN, SGC, PPRGo for Cora, Citeseer and Pubmed (SAGE, geomGCN), and Computer and Photo
(SAGE, exphormer).

21

Under review as submission to TMLR

C Implementation Details for GRU-GCN and SDGNN and Analysis in
Spatio-temporal Tasks

The implementation of the target model for the spatio-temporal task follows the methodology outlined
by (Gao & Ribeiro, 2022). We strictly adhered to the implementation details of the GRU-GCN model as
described in that work. The overall architecture of GRU-GCN is illustrated at the top of Figure 7. It consists
of three main components: an RNN, a GCN, and a final MLP. The hidden dimensions for the RNN, GCN,
and MLP components are identical with a softplus as the activation function. The target GRU-GCN model
was trained for 1000 epochs, with early stopping applied using a patience of 30 epochs. The hyperparameters
used for the target model are summarized in Table 12.

Figure 7 (bottom) illustrates what we employed for integrating SDGNN in the spatio-temporal setting. We
directly adopted the trained RNN from the GRU-GCN model, followed by the SDGNN trained using the
embeddings from the GCN. This was then followed by a fine-tuned MLP, originally from the GRU-GCN
model. Ultimately, SDGNN consists of two components: an MLP and sparse weights. After obtaining the
target model, we trained SDGNN for 4000 epochs, employing an iterative training and optimization process
for the MLP and sparse weights. The sparse weights were optimized every 40 epochs. Following the training
of SDGNN, we fine-tuned the MLP for the low-level task over 30 epochs. The best-performing SDGNN
and low-level task MLP were selected based on their MAPE performance on the validation dataset. In a
spatio-temporal context, the task is essentially a regression problem. Unlike classification tasks, and due
to our method’s focus on approximating the final graph embedding, we observed that the last projection
layer or the final MLP is sensitive to differences between the approximated embeddings and the target GNN
embeddings. To enhance the robustness of the final MLP layer in the GRU-GCN model, we introduced
noise between the GCN and MLP during training. This noise was carefully calibrated as a hyperparameter
to avoid degrading the overall performance of the GRU-GCN while still providing the necessary robustness
to the final low-level task MLP. Specifically, we added Gaussian random noise N (0, 0.05) for the PeMS08
dataset and N (0, 0.01) for the PeMS04 dataset. The detailed hyperparameters for SDGNN are presented in
Table 13.

Table 12: Sets of hyperparameters for GRU-GCN in spatio-temporal setting experiment.

Dataset/Model lr hidden dim. GCN layer MLP layer weight decay patience
PeMS04 1e-3 16 2 2 1e-5 30
PeMS08 1e-3 16 2 2 1e-5 30

B

A C

D E

F

RNN GCN MLP

Prediction

GRU-GCN

RNN SDGNN MLP
Prediction

Node Features

Directly
Adopted Substituted Fine-tuned

Figure 7: The simplified architecture diagram of the GRU-GCN model is depicted at the top. Building on
the GRU-GCN architecture, we substitute the GCN module with SDGNN to enhance inference efficiency.
For a comprehensive overview of the SDGNN pipeline, please refer to Figure 1.

22

Under review as submission to TMLR

C.1 Optimization Schedule for the Sparse Weights

To ensure that the weights remain sparse, we implemented a specific optimization schedule tailored to the
characteristics of sparse weights. At the beginning of the training process, we set a larger maximum receptive
field size to allow for broader connections. As training progresses, we gradually reduce the maximum receptive
field size by 1 every 100 epochs. In our case, the largest receptive field size at the beginning of the training
was set to 46. Throughout 4000 training epochs, we gradually reduced the receptive field size. Specifically,
every 100 epochs, the maximum receptive field size was decreased by 1, resulting in a final receptive field
size of 6.

Table 13: Sets of hyperparameters for SDGNN in spatio-temporal setting experiment. Underlined values are
those selected by grid search.

Parameters hidden dim. num. layers noise level lr
PeMS04 {8,16,32} {1, 2, 4} {0.01, 0.05, 0.1, 0.15} {0.001, 0.0025, 0.005, 0.01}
PeMS08 {8,16,32} {1, 2, 4} {0.01, 0.05, 0.1, 0.15} {0.001, 0.0025, 0.005, 0.01}

0.0005
0.0010

0.0015
0.0020

0.0025
0.0030

MSE between target emb. and approx. emb.

0.010

0.012

0.014

0.016

0.018

0.020

M
AP

E
pe

rfo
rm

an
ce

SDGNN checkpoint
Polynomial Fit (degree 3)

Figure 8: Prediction performance in MAPE relative to the MSE between SDGNN approximated embeddings
and target model embeddings in the spatio-temporal setting

C.2 Analysis of Final Performance Relative to the Distance Between SDGNN Approximated
Embeddings and Target Model Embeddings

Since SDGNN aims to approximate the target model embeddings, we hypothesize that the discrepancy
between the SDGNN embeddings and the target model embeddings will significantly impact the overall
model performance. Figure 8 illustrates the relationship between the mean squared error (MSE) of the
embeddings and the prediction performance. The x-axis represents the MSE between the target embeddings
and the SDGNN-approximated embeddings, while the y-axis indicates the prediction performance measured
by the MAPE metric. Each scatter point represents a checkpoint of SDGNN. We utilize checkpoints of
SDGNN during training at every 100 epochs and evaluate the performance on the test sets to generate the
plot. The figure reveals that higher approximation errors correspond to greater discrepancies in prediction
performance. This observation suggests that as the MSE between the SDGNN embeddings and the target
embeddings decreases, the model’s performance is likely to improve.

C.3 Analysis on Performance Degradation with Increasing Model Staleness

In this experiment, we analyze the prediction error between the ground truth and predicted values by
calculating the absolute error for each data point. The testing set is divided into 10 equal-sized chunks,
preserving the chronological order of the data. Figure 9 presents the mean absolute error with standard
deviation for every chuck of the test set for both PeMS04 and PeMS08 datasets. We can see that the

23

Under review as submission to TMLR

2 4 6 8 10
Time Chunks (Chronological Order)

0.013

0.014

0.015

0.016
M

ea
n

Ab
so

lu
te

 E
rro

r

2 4 6 8 10
Time Chunks (Chronological Order)

0.0110

0.0112

0.0114

0.0116

0.0118

0.0120

M
ea

n
Ab

so
lu

te
 E

rro
r

Figure 9: The mean absolute error per chronological chunk showing potential shifts in prediction accuracy
over time for PeMS04 (Left) and PeMS08 (Right) datasets. Error bars represent the standard deviation
within each chunk.

performance indeed degrades with later time chunks, but the degradation quickly saturated at a slightly
worse point than in the first chunk.

D Additional Analysis on Expressive Power of SDGNN

The analysis for a general GNN target is challenging. We demonstrate the expressive of SDGNN by showing
how SDGNN can approximate any Filter-Most-Expressive (FME) GNNs defined in (Wang & Zhang, 2022),
which covers a wide range of spectral GNNs. Let A denote the adjacency matrix and D denote the diagonal
matrix where Dii denotes the degree of node i. The normalized Laplacian matrix L := I − D−1/2AD−1/2

where I is the identity matrix. Let L = UΛU⊺ denote the eigendecomposition. Let the function β(Λ)
applies β element-wisely to the diagonal matrix Λ. We further denotes β̃(Λ) = Uβ(Λ)U⊺. Then, the FME
GNN is defined as

gFME(X) := α(Uβ(Λ)U⊺φ(X)) = α(β̃(Λ)φ(X)), (10)

where X ∈ R|V|×D is the node features, α(·) and φ(·) are functions like multi-layer perceptrons that operate
row-wisely on the input matrix and β(·) is arbitrary real-valued filter function. Consider the challenging case
that X is a random variable drawn from a certain distribution. We want to show that under mild conditions,
there exists an SDGNN equipped with some function f(·), such that the f(Θ⊺ϕ(X; W)) is close to gFME(X),
for ∀X drawn in such a distribution.

We set f(·) to be α(·; W) and ϕ(·) to be φ(·), respectively. Assuming α(·) is Lipschitz continuous, we only
need to show that there exists some Θ, such that Θ⊺φ(X) is close to β̃(Λ)φ(X). A trivial solution without
considering sparsity is to take Θ⊺ = β̃(Λ), and f(Θ⊺ϕ(X; W)) can perfectly express gFME(X). With sparsity
constraint, we can treat it as solving a Lasso problem to decide each column of Θ. Then, there is a trade-off
between the quality and sparsity. Specifically, for the nth column of Θ, if we set the number of non-zero
entries to be k, the quality depends on the smallest distance between the nth row of β̃(Λ)φ(X) and all the
subspaces spanned by k rows of φ(X). Such quality monotonically increases if we allow larger k. If most
rows of β̃(Λ)φ(X) are close to some subspaces spanned with small k, there exists a parameter setting of
SDGNN with sparse Θ that can approximate gFME(X).

E Limitations of SDGNN

Although SDGNN is very effective in approximating target GNN embeddings, there are a few limitations.
We present the naive cues from an engineering perspective and would like to explore principled solutions in
future works.

24

Under review as submission to TMLR

E.1 Incompatibility with Inductive Setting

SDGNN always requires the GNN embeddings from all nodes as the guiding signal to generate the optimal θ
and ϕ. Therefore, SDGNN cannot be applied directly in the inductive setting when new nodes may appear
during inference time. From the application perspective, a simple strategy to handle the novel nodes in
real-time could be collecting the θ for all/sampled 1-hop neighbour nodes and summing them up as the
proxy for the new nodes. Moreover, for the situation where we are allowed to do some preprocessing for the
novel nodes, we could use the inductive GNN to infer the GNN embedding, compute θ with Phase θ for
that node and cache it. Then, the actual online inference stage will be the same as the other nodes that are
seen during the training of SDGNN.

E.2 Unadaptability to Distribution Shift

For the online prediction setting, we train SDGNN based on past snapshots and apply it in future snapshots.
We did not consider the potential distribution shift between training and testing. If the time gap between
the training and the testing is large, such a shift might degrade the performance.

A typical and practical solution is periodically retraining new models based on recently collected data. This
can solve the distribution shift issue for both the target GNN model and SDGNN. If we trade the performance
for less computation overhead, we can periodically and partially update SDGNN for better training efficiency.
For example, we can keep the weight matrix W unchanged and only periodically perform a Phase Θ update
according to the latest data.

A fundamental approach could incorporate online learning so that the trainable weights from the target
GNN and SDGNN can be adapted as more data become available and the graph topology changes. However,
developing such a method is involved due to the challenges of enforcing a sparse solution. We would leave
this as a future work.

E.3 Inability to Represent Non-linear Interactions between the Features at Different Nodes

In standard GNN models, the recursive procedure of aggregating neighbour features followed by the feature
transformation may potentially model the non-linear feature interaction between nodes. However, SDGNN
is formulated as a linear combination of transformed node features. Although efficient, it seems not to have
the potential to model arbitrary feature interaction between nodes. One immediate fix is that for any target
node, we can augment the other candidate nodes’ features with the target node feature before feeding into
ϕ, which appears to integrate all the feature interaction between the neighbour nodes and the target nodes.
However, a general principled approach is worth exploring. Besides, we should have a theoretical analysis
of the expressiveness of SDGNN and explore under which conditions SDGNN is not as expressive as the
general GNN models.

E.4 Training Overhead and Challenge on Hyper-parameter Selection

We managed to finish the training of SDGNN in about 20 hours for the graph with millions of nodes like
OBGN-products, but training SDGNN on larger graphs is challenging. Regarding the hyper-parameter
selection, such a training overhead for each run is a nightmare. The main obstacle is the solver for the
Lasso problem. Implementing the LARS solver that supports the GPU speedup could be an immediate
workaround. As for a principled solution, since we iteratively optimize θ and ϕ, we don’t necessarily require
an optimized result for Phase θ at each iteration. Instead, we may propose a similar Lasso solver that can
rapidly trade-off between the computation complexity and the accuracy of the solution. During the training
of SDGNN, we could engage a schedule to gradually switch the Lasso solver from efficiently generating
intermediate results to accurately achieving optimal results.

25

	Introduction
	Preliminaries and Problem Definition
	Graph Representation via GNN
	Online Prediction for Node Representations from GNN

	Related Work
	Sparse Decomposition of Graph Neural Networks
	Relation to Existing Methods

	SDGNN Computation
	Optimization
	Scaling to Large Graphs

	Experiments
	Node Classification Tasks
	Task
	Datasets
	Baselines and Target GNN Models
	Evaluation
	SDGNN Integration
	Main Results
	Inference Time

	Spatio-Temporal Forecasting
	Task
	Datasets
	Baselines and Target GNN Model
	Evaluation
	SDGNN Integration
	Main Results
	Embedding Approximation Efficacy

	Conclusion
	Extended Experiment Settings on Node Classification Tasks
	Dataset
	Hyper-parameter Settings for Baselines
	Hyper-parameter Setting for SDGNN

	Additional Experimental Results for Node Classification Tasks
	The Impact of Candidate Selection
	The Receptive Nodes from SDGNN
	Inference Time

	Implementation Details for GRU-GCN and SDGNN and Analysis in Spatio-temporal Tasks
	Optimization Schedule for the Sparse Weights
	Analysis of Final Performance Relative to the Distance Between SDGNN Approximated Embeddings and Target Model Embeddings
	Analysis on Performance Degradation with Increasing Model Staleness

	Additional Analysis on Expressive Power of SDGNN
	Limitations of SDGNN
	Incompatibility with Inductive Setting
	Unadaptability to Distribution Shift
	Inability to Represent Non-linear Interactions between the Features at Different Nodes
	Training Overhead and Challenge on Hyper-parameter Selection

