
I2Q: A Fully Decentralized Q-Learning Algorithm

Jiechuan Jiang
School of Computer Science

Peking University
jiechuan.jiang@pku.edu.cn

Zongqing Lu†

School of Computer Science
Peking University

zongqing.lu@pku.edu.cn

Abstract

Fully decentralized multi-agent reinforcement learning has shown great potential
for many real-world cooperative tasks, where the global information, e.g., the ac-
tions of other agents, is not accessible. Although independent Q-learning is widely
used for decentralized training, the transition probabilities are non-stationary since
other agents are updating policies simultaneously, which leads to non-guaranteed
convergence of independent Q-learning. To deal with non-stationarity, we first
introduce stationary ideal transition probabilities, on which independent Q-learning
could converge to the global optimum. Further, we propose a fully decentralized
method, I2Q, which performs independent Q-learning on the modeled ideal tran-
sition function to reach the global optimum. The modeling of ideal transition
function in I2Q is fully decentralized and independent from the learned policies
of other agents, helping I2Q be free from non-stationarity and learn the optimal
policy. Empirically, we show that I2Q can achieve remarkable improvement in a
variety of cooperative multi-agent tasks.

1 Introduction

Multi-agent reinforcement learning (MARL) has shown great potential in real-world applications,
including UAV [20], IoT [3], and games [29]. A number of MARL methods have been proposed for
training agents to cooperatively maximize the cumulative shared reward, most of which follow the
paradigm of centralized training and decentralized execution (CTDE), where the information of all
agents is collected and used in the training phase. However, in many industrial applications where
agents may belong to different companies, e.g., autonomous vehicles or robots, the actions of other
agents may not be accessible, so that CTDE methods cannot work. One way to address this challenge
is fully decentralized learning, where the agents only use local experiences without the actions of
other agents in both training and execution.

Independent Q-learning [28, 27] is one of the most straightforward decentralized methods. However,
since other agents are treated as a part of the environment, from the perspective of an individual
agent, the transition probabilities that also depend on the policies of other agents will change as
other agents are updating their policies simultaneously [7]. Whether the agent updates the individual
Q-values using the off-policy experiences, which are stored in the decentralized replay buffer, or
the on-policy experiences, which are collected under the latest learned policies of all agents, the
transition probabilities are non-stationary, thus the convergence of independent Q-learning is not
theoretically guaranteed.

To tackle the non-stationarity problem, we propose a novel variant of independent Q-learning. First,
we introduce ideal transition probabilities for each agent, which is induced by the optimal conditional
joint policy of other agents, conditioned on action of this agent. We theoretically show that if all
agents independently perform Q-learning on respective ideal transition probabilities, their policies

†Corresponding Author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

converge to the optimal joint policy when there is only one optimal joint policy. Certainly, such
ideal transition probabilities are unknown in advance, but they can be deliberately learned by each
agent in a decentralized way. We let each agent learn the QSS-value [6], the value of state and next
state, which will converge on its replay buffer and be equivalent with the optimal joint Q-value in
deterministic environments. Then, for each agent, the next state under ideal transition probabilities,
given a state and an action, is the one with the highest QSS-value. Therefore, each agent can model
an ideal transition function by learning QSS value and perform independent Q-learning on the ideal
transition function, which guarantees the convergence to the optimal policy.

The proposed method, ideal independent Q-learning (I2Q), is fully decentralized, without the
information of other agents. Although the theoretical proof is built on deterministic environments,
I2Q can also be applied in stochastic environments. We theoretically analyze the value gap and
experimentally demonstrate its effectiveness in stochastic environments. We evaluate I2Q on a variety
of multi-agent cooperative tasks, i.e., matrix games, MPE-based differential games [15], Multi-Agent
MuJoCo [5], and SMAC [23], covering fully and partially observable, deterministic and stochastic,
discrete and continuous environments. Empirically, I2Q outperforms baselines, verifying the analyzed
convergence and optimality, and the modeled ideal transition function.

2 Related Work

CTDE. Most recent MARL methods follow the paradigm of centralized training and decentralized
execution (CTDE). Policy-based methods [15, 8, 32, 37, 25, 18] extend policy-gradient into multi-
agent cases by designing different optimization objectives. Value factorization methods [26, 22,
24, 31, 21] decompose the joint value function into individual value functions according to the
Individual-Global-Max condition. In these methods, the information of all agents can be accessed in
a centralized way during training, and the convergence can be guaranteed. Unlike these methods, we
focus on decentralized learning where global information is not available.

DTDE. When agents cannot obtain global information, they have to adopt decentralized training and
decentralized execution (DTDE). The most straightforward decentralized methods are independent Q-
learning [27] and independent PPO [4]. However, since all agents are updating policies simultaneously,
from the perspective of each agent, the transition probabilities are non-stationary, and thus the
convergence of these methods may not be guaranteed. Fingerprints [7] uses iteration number and
exploration rate to alleviate the problem of obsolete experiences in replay buffer for independent
Q-learning. Hysteretic-QL [16] and Lenient-QL [17] let the agents be optimistic and attach less
importance to the value punishment. However, none of these variants guarantees the convergence
of independent Q-learning. Some theoretical methods [2, 38] guarantee the convergence to a Nash
equilibrium, but the converged equilibrium may not be the optimal one when there are multiple
equilibria [35]. Moreover, these methods cannot use replay buffer and have to re-collect experiences
once the policies are updated, which is not practical. Our I2Q is a practical method to learn the
optimal policy using replay buffer. Some studies [36, 11] consider decentralized learning with
communication. However, in our fully decentralized settings, agents cannot share any information.

3 Method

We first introduce the problem setting and analyze the non-stationarity in independent Q-learning.
Then, we construct ideal transition probabilities, on which the agents are theoretically guaranteed
to converge to the optimal joint policy via independent Q-learning. Finally, we propose I2Q, which
performs independent Q-learning on the modeled ideal transition function.

3.1 Preliminaries

There are N agents in multi-agent MDP Menv =< S,O,A, R, Penv, γ > with the state space S and
the joint action space A. At each timestep, each agent i performs an individual action ai, and the
environment transitions to the next state s′ by taking the joint action a with the transition probabilities
Penv (s

′|s,a). For simplicity of theoretical analysis, we let all agents obtain the state s [13], though
in practice each agent i may learn based on the observation oi ∈ O. All agents get a shared reward
r = R (s, s′) and learn to maximize the expected return E

∑∞
t=0 γ

trt, where γ is the discount factor.
We consider the fully decentralized learning, where Menv is partially observable to each agent since

2

each agent only observes its own action ai instead of the joint action a. From the perspective of
each agent i, there is an MDP Mi =< S,Ai, R, Pi, γ > with the individual action space Ai and the
transition probabilities

Pi (s
′|s, ai) =

∑
a−i

Penv (s
′|s,a)π−i(a−i|s), (1)

where a−i and π−i respectively denote the joint action and the joint policy of all agents except agent
i. Each agent performs independent Q-learning:

Qi(s, ai) = EPi(s′|s,ai)

[
r + γmax

a′
i

Qi(s
′, a′i)

]
. (2)

In this paper, all Q values denote the optimal values Q∗, we refer to Q∗ as Q for simplicity. According
to (1), the transition probabilities depend on the policies of other agents. Since other agents are
updating their policies continuously, Pi becomes non-stationary during training. Concretely, if each
agent i updates Qi in an off-policy way, using the experiences stored in the replay buffer Di, which
does not contain other agents’ actions, the transition probabilities Pi in the replay buffer could be seen
as the ones depending on the average policy π̄−i along the training process, which is non-stationary
and outdated [7]. If each agent learns in an on-policy way, only using the most recent experiences,
Pi could be seen as the one under the latest learned policy π−i, which is not outdated but still non-
stationary. The convergence of Q-learning on non-stationary transition probabilities is not guaranteed.
How to solve the non-stationarity? In the next section, we introduce ideal transition probabilities and
prove that if all agents perform independent Q-learning on the ideal transition probabilities, they will
converge to the optimal joint policy.

3.2 Ideal Transition Probabilities

Assume there is only one optimal joint policy π∗(s) = argmaxa Q(s,a), where Q is the optimal
joint Q-function,

Q(s,a) = EPenv(s′|s,a)

[
r + γmax

a′
Q(s′,a′)

]
. (3)

The unique optimal policy π∗(s) must be deterministic [19]. Thus, π∗ can be uniquely factorized
into deterministic optimal individual policies π∗ = ⟨π∗

1 , π
∗
2 , · · · , π∗

N ⟩. For agent i, we build a
deterministic optimal joint policy of other agents which is conditioned on ai:

π∗
−i(s, ai) = argmax

a−i

Q(s, ai,a−i). (4)

There may exist multiple π∗
−i, and we can choose one arbitrarily. If other agents act the policy

π∗
−i(s, ai), the transition probabilities viewed by agent i is Pi (s

′|s, ai) = Penv

(
s′|s, ai,π∗

−i(s, ai)
)
,

which are defined as ideal transition probabilities. Then we have the following theorem.
Theorem 1. If agent i performs Q-learning on the ideal transition probabilities Pi (s

′|s, ai) =
Penv

(
s′|s, ai,π∗

−i(s, ai)
)
, its policy will converge to the optimal individual policy π∗

i .

Proof. According to the fixed-point formulation of Q-learning, we have

Qi(s, ai) = EPenv(s′|s,ai,π∗
−i(s,ai))

[
r + γmax

a′
i

Qi(s
′, a′i)

]
, (5)

max
a−i

Q(s, ai,a−i) = max
a−i

EPenv(s′|s,a)

[
r + γmax

a′
i

max
a′

−i

Q(s, a′i,a
′
−i)

]
(6)

= EPenv(s′|s,ai,π∗
−i(s,ai))

[
r + γmax

a′
i

max
a′

−i

Q(s, a′i,a
′
−i)

]
, (7)

where (6) is from taking maxa−i
on both sides of (3), and (7) is by folding maxa−i

into Penv. From
(5) and (7), we see Qi(s, ai) and maxa−iQ(s, ai,a−i) have the same stationary Bellman operator.
According to the contraction mapping theorem, the Bellman operator converges to a unique fixed
point. Thus,

Qi(s, ai) = max
a−i

Q(s, ai,a−i).

3

Then, we have:
max
ai

Qi(s, ai) = max
ai

max
a−i

Q(s, ai,a−i) = Q(s,π∗(s)). (8)

By contradiction, if an ãi ̸= π∗
i (s) but satisfies Qi(s, ãi) ≥ Qi(s, π

∗
i (s)) = Q(s,π∗(s)), it contra-

dicts that π∗ is the unique optimal joint policy. Therefore, π∗
i (s) = argmaxQi(s, ai).

By extending this theorem, if all agents perform Q-learning on such ideal transition probabilities
under the conditional optimal joint policy, they will converge to the respective optimal individual
policies, and arrive at the optimal joint policy ⟨π∗

1 , π
∗
2 , · · · , π∗

N ⟩.

3.3 I2Q

How to obtain the ideal transition probabilities from the non-stationary replay buffer for each agent?
We first introduce the QSS-learning [6]. Following the setting of QSS [6], we assume the environment
is deterministic.1 Each agent i learns a value function Qss

i (s, s′) using the experiences in its own
replay buffer Di:

Qss
i (s, s′) = r + γ max

s′′∈N (s′)
Qss

i (s′, s′′) , (9)

where N (s′) is the neighboring state set of the state s′ (the set of all next states of s′). The value
function Qss

i has several advantages. First, it has been proven in QSS [6] that Qss
i and Q learn

equivalent values, which means

max
s′

Qss
i (s, s

′) = max
a

Q(s,a). (10)

The equivalence shows that agent i can independently infer the next state under the optimal joint
policy according to argmaxs′ Q

ss
i (s, s

′). Second, as Qss
i (s, s′) decouples the action ai from the

value and the implied transition probabilities: P (s′|s, s′) = 1,∀s′ ∈ N (s), are always stationary, Qss
i

converges to the optimal value even on its own replay buffer, without the information of other agents.
Third, since all agents act in the same environment, they collect the same state set and the same next
state set in their own replay buffers. Therefore, they will converge to the same Qss

i independently,
which builds the consensus between the learned policies of agents.

Then, how to build the ideal transition function from Qss
i ? As the environment Penv and the opti-

mal conditional joint policy of other agents π∗
−i(s, ai) are deterministic, under the ideal transition

probabilities Penv

(
s′|s, ai,π∗

−i(s, ai)
)
, the environment from the perspective of agent i will deter-

ministically transition to the next state that has the highest Qss
i among all neighboring states given ai:

s′∗ = argmax
s′∈N (s,ai)

Qss
i (s, s

′), (11)

where N (s, ai) is the neighboring state set of s given ai. This is proved in the proof of the following
theorem.
Theorem 2. In deterministic environments, all agents will converge to the optimal policies, if each
agent i performs Q-learning on the transition function s′∗ = argmaxs′∈N (s,ai)Q

ss
i (s, s

′).

Proof. The proof is given in Appendix A, which shows that s′∗ = argmaxs′∈N (s,ai)Q
ss
i (s, s

′) is
the ideal transition function.

To model the stationary ideal transition function s′∗ = argmaxs′∈N (s,ai)Q
ss
i (s, s

′), we train a neural
network fi(s, ai) to predict s′∗ and update fi(s, ai) by maximizing:

Es,ai,s′∼Di

[
λQss

i (s, fi(s, ai))− (fi(s, ai)− s′)2
]
. (12)

The first term enforces that the predicted next state has the highest Qss
i , and the second term constrains

the predicted next state to be in the set N (s, ai). The hyperparameter λ is the coefficient. Based on
the transition model fi(s, ai), Qss

i is updated by minimizing the TD-error:

Es,ai,s′,r∼Di

[(
Qss

i (s, s′)− r − γQ̄ss
i (s

′, fi(s
′, a′∗i))

)2]
, a′∗i = argmax

a′
i

Qi(s
′, a′i). (13)

1Although the environment Penv is deterministic, from the perspective of each agent i, the viewed environ-
ment Pi would still be non-stationary.

4

Algorithm 1. I2Q for each agent i

1: Initialize transition model fi, Q-networks Qi and Qss
i , and the target networks Q̄i and Q̄ss

i .
2: Initialize the replay buffer Di.
3: for t = 1, . . . ,max_iteration do
4: All agents interact in the environment and store experiences (s, ai, s′, r) in replay buffer Di.
5: Sample a mini-batch from Di.
6: Update fi by maximizing (12).
7: Update Qss

i by minimizing (13).
8: Update Qi by minimizing (14) or (15).
9: Update the target networks Q̄i and Q̄ss

i .
10: end for

And Qi is updated by minimizing:

Es,ai,r∼Di

[(
Qi (s, ai)− r − γmax

a′
i

Q̄i(fi(s, ai), a
′
i)
)2

]
. (14)

Q̄ is the target network of Q. When updating Qi (14), the target value is not computed on the next
state sampled from replay buffer Di, but on the one predicted by the modeled ideal transition function
fi(s, ai). In (14), the reward r is simplified to depending just on s. When r depends on both s and s′,
given s and ai, the next state under the ideal transition function (11) satisfies:

Qss
i (s, s

′∗) = r(s, s′∗) + γmax
s′′

Qss
i (s

′∗, s′′)

= r(s, s′∗) + γmax
a′

Q(s′∗,a′)← (10)

= r(s, s′∗) + γmax
a′
i

Qi(s
′∗, a′i)← (8)

= Qi(s, ai)← (deterministic ideal transition probabilities).

Therefore, we can update Qi by minimizing:

Es,ai∼Di

[(
Qi (s, ai)− Q̄ss

i (s, fi(s, ai)
)2]

. (15)

The training procedure of I2Q is summarize in Algorithm 1, where each agent i learns fi, Qss
i ,

and Qi. Although all the modules update simultaneously, as the convergence of Qss
i is guaranteed,

the transition function fi derived from Qss
i will be stationary in the later stage. Thus Qi will also

converge. I2Q can be applied in environments with both discrete and continuous state-action space.
In continuous action space, we build I2Q on DDPG [14], where a policy network πi(s) is trained
by maximizing Qi(s, πi(s)) as a substitute of argmaxai Qi(s, ai). In continuous state space, since
fi(s, ai) is differentiable, (12) can be maximized by gradient ascent. In discrete state space or large
state space, we can map the state space to a continuous embedding space, and apply I2Q on the
embedding space. We also provide an implementation without forward model fi in Appendix B.7.

3.4 Assumptions

We will further discuss the two assumptions. The prime one is that there is only one optimal joint
policy, but I2Q can easily solve tasks with multiple optimal joint policies. With multiple optimal
actions (with the max Qi(s, ai)), if each agent arbitrarily selects one of the optimal independent
actions, the joint action might not be optimal. To address this, we can set a performance tolerance
ε and introduce a fixed randomly initialized reward function r̂(s, s′) in the range (0, r̂max], where
r̂max = (1 − γ)ε. Then all agents perform I2Q on the shaped reward r + r̂ and learn the value
function Q̂i(s, ai) in terms of r + r̂. Since r̂ is positive, Q̂i(s, ai) > Qi(s, ai). In Q̂i(s, ai),
the maximal contribution from r̂ is r̂max/(1 − γ) = ε, so the minimal contribution from r is
Q̂i(s, ai)− ε > Qi(s, ai)− ε, which means that the maximal performance drop is ε when selecting
actions according to Q̂i. Moreover, since the reward function r̂(s, s′) is randomly initialized, it is a
small probability event to find multiple optimal joint policies on the reward function r + r̂. Thus, if ε
is set to be small enough, I2Q could solve the task with multiple optimal joint policies.

The secondary one is deterministic environments. In stochastic environments, (10) does not hold, and
Qss

i (s, s
′) can be considered the “best possible value” [6]. So s′∗ = argmaxs′∈N (s,ai)Q

ss
i (s, s

′) is

5

,𝑠0 𝑟0

,𝑠
1
1

𝑟
1
1

,𝑠
2
1

𝑟
2
1 ,𝑠

||

1
𝑟

||

1

𝐚1 𝐚2 𝐚|𝐴|

⋯

,𝑠
1
2

𝑟
1
2

,𝑠
2
2

𝑟
2
2 ,𝑠

||

2
𝑟

||

2

𝐚1 𝐚2 𝐚|𝐴|

⋯

,𝑠
1
3

𝑟
1
3

,𝑠
2
3

𝑟
2
3 ,𝑠

||

3
𝑟

||

3

𝐚1 𝐚2 𝐚|𝐴|

⋯

⋯

⋯ ⋯ ⋯

⋯ ⋯ ⋯

 stages𝐿

Figure 1: Illustration of the matrix games.

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

al
iz

ed
re

w
ar

d

I2Q

IQL

(a) L = 3

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

al
iz

ed
re

w
ar

d

I2Q

IQL

(b) L = 4

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

al
iz

ed
re

w
ar

d

I2Q

IQL

(c) L = 5

2× 105 4× 105 6× 105 8× 105 10× 105

timestep

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

al
iz

ed
re

w
ar

d

I2Q

IQL

(d) L = 6

Figure 2: Learning curves on 100 random matrix games with different stage L.

the best possible transition function, rather than the ideal transition function. The difference between
the learned Qi of I2Q and the true value under the ideal transition function Qsto

i is guaranteed by the
following theorem.

Theorem 3. ∥Qsto
i −Qi∥∞ ≤ ∆r

1−γ

∥∥∥∥ 1−Penv(s′∗|s,ai,π
∗
−i(s,ai))

1−γPenv(s′∗|s,ai,π∗
−i(s,ai)))

∥∥∥∥
∞

, where ∆r = rmax − rmin.

Proof. The proof is given in Appendix A.

Theorem 3 shows that Qi of I2Q is closer to the true value if the transition probability of s′∗ is higher
in stochastic environments. Since we sample transitions fromDi to update fi by maximizing (12), the
second term of (12) makes the predicted next state fi(s, ai) be close to the high-frequency next states
in replay buffer Di given s and ai, which means that the transition probability of the predicted next
state Penv

(
fi(s, ai)|s, ai,π∗

−i(s, ai)
)

would not be too small. Thus, Qi of I2Q will be close to the
true value and the worst cases where the predicted next states have very small transition probabilities
can be avoided. That is the reason why I2Q can be successfully applied in stochastic environments

4 Experiments

In experiments, we first evaluate I2Q on a class of randomly generated matrix games to verify our
theoretical analysis. Second, we compare I2Q with a series of Q-learning variants on MPE-based [15]
differential games to illustrate the convergence and optimality of I2Q on more complex tasks with
continuous action. Third, we test I2Q on two popular MARL benchmarks: Multi-Agent MuJoCo
[18] and SMAC [23]. The experiments cover both fully and partially observable, deterministic
and stochastic, discrete and continuous environments. Since we consider the fully decentralized
settings, I2Q and the baselines do not use parameter-sharing. The results are presented using mean
and standard deviation (std) with different random seeds. More details about hyperparameters are
available in Appendix C.

4.1 Matrix Games

To support the theoretical analysis of I2Q, we perform experiments on a class of two-agent matrix
games with L stages. The action space of each agent is 3, so the joint action space |A| = 9. The
payoff tree is shown in Figure 1, where the reward r is randomly generated in the range [−1, 1] and
fixed in each matrix game. Without loss of generality, we randomly generate 100 matrix games for
each stage L, train the agents for four different seeds in each game, and plot the mean normalized
return (normalized by the optimal return) and std over the 100 matrix games. Since the states are
countable, we adopt Q-tables instead of neural networks, where Qi table and Qss

i table are updating
simultaneously, and use ϵ-greedy policies. Figure 2 shows the learning curves with different stages L
under ϵ = 0.5. IQL cannot converge to the optimal policies and shows large std, because it is afflicted

6

0.25× 105 0.5× 104 0.75× 105 1.0× 105

timestep

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

al
iz

ed
re

w
ar

d

I2Q

IQL

(a) ϵ = 0.1

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

al
iz

ed
re

w
ar

d

I2Q

IQL

(b) ϵ = 0.3

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

al
iz

ed
re

w
ar

d

I2Q

IQL

(c) ϵ = 0.5

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

0.5

0.6

0.7

0.8

0.9

1.0

no
rm

al
iz

ed
re

w
ar

d

I2Q

IQL

(d) ϵ = 0.7

Figure 3: Learning curves with different ϵ on 100 random matrix games with stage L.
Published as a conference paper at ICLR 2021

a2

a1 A(1) A(2) A(3)

A(1) 8 -12 -12
A(2) -12 0
A(3) -12 0

(a) Payoff of a harder matrix game

0 100 200 300 400 500
Iterations

0

2

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

QPLEX
QTRAN
QMIX
VDN

Qatten
OW-QMIX
CW-QMIX
Optimal

(b) Deep MARL algorithms

0 150 300 450 600 750
Iterations

0

2

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

QPLEX-3L10H
QPLEX-3L4H
QPLEX-2L10H
QPLEX-2L4H
Optimal

(c) Learning curves of ablation study

Figure 2: (a) Payoff matrix for a harder one-step game. Boldface means the optimal joint action
selection from the payoff matrix. The strikethroughs indicate the original matrix game proposed by
QTRAN. (b) The learning curves of QPLEX and other baselines. (c) The learning curve of QPLEX,
whose suffix aLbH denotes the neural network size with a layers and b heads (multi-head attention)
for learning importance weights λi (see Eq. (9) and (10)), respectively.

Proposition 2. Given the universal function approximation of neural networks, the action-value
function class that QPLEX can realize is equivalent to what is induced by the IGM principle.

In practice, QPLEX can utilize common neural network structures (e.g., multi-head attention modules)
to achieve superior performance by approximating the universal approximation theorem (Csáji et al.,
2001). We will discuss the effects of QPLEX’s duplex dueling network with different configurations
in Section 4.1. As introduced by Son et al. (2019) and Wang et al. (2020a), the completeness of
value factorization is very critical for multi-agent Q-learning and we will illustrate the stability and
state-of-the-art performance of QPLEX in online and offline data collections in the next section.

4 EXPERIMENTS

In this section, we first study didactic examples proposed by prior work (Son et al., 2019; Wang et al.,
2020a) to investigate the effects of QPLEX’s complete IGM expressiveness on learning optimality and
stability. To demonstrate scalability on complex MARL domains, we also evaluate the performance of
QPLEX on a range of StarCraft II benchmark tasks (Samvelyan et al., 2019). The completeness of the
IGM function class can express richer joint action-value function classes induced by large and diverse
datasets or training buffers. This expressiveness can provide QPLEX with higher sample efficiency to
achieve state-of-the-art performance in online and offline data collections. We compare QPLEX with
state-of-the-art baselines: QTRAN (Son et al., 2019), QMIX (Rashid et al., 2018), VDN (Sunehag
et al., 2018), Qatten (Yang et al., 2020), and WQMIX (OW-QMIX and CW-QMIX; Rashid et al.,
2020). In particular, the second term of Eq. (11) is the main difference between QPLEX and Qatten.
Thus, Qatten provides a natural ablation baseline of QPLEX to demonstrate the effectiveness of
this discrepancy term. The implementation details of these algorithms and experimental settings are
deferred to Appendix B. We also conduct two ablation studies to study the influence of the attention
structure of dueling architecture and the number of parameters on QPLEX, which are deferred to be
discussed in Appendix E. Towards fair evaluation, all experimental results are illustrated with the
median performance and 25-75% percentiles over 6 random seeds.

4.1 MATRIX GAMES

QTRAN (Son et al., 2019) proposes a hard matrix game, as shown in Table 4a of Appendix C. In this
subsection, we consider a harder matrix game in Table 2a, which also describes a simple cooperative
multi-agent task with considerable miscoordination penalties, and its local optimum is more difficult
to jump out. The optimal joint strategy of these two games is to perform action A(1) simultaneously.
To ensure sufficient data collection in the joint action space, we adopt uniform data distribution.
With this fixed dataset, we can study the optimality of multi-agent Q-learning from an optimization
perspective, ignoring the challenge of exploration and sample complexity.

As shown in Figure 2b, QPLEX, QTRAN, and WQMIX, which possess a richer expressiveness
power of value factorization can achieve optimal performance, while other algorithms with limited
expressiveness (e.g., QMIX, VDN, and Qatten) fall into a local optimum induced by miscoordination
penalties. In the original matrix proposed by QTRAN, QPLEX and QTRAN can also successfully
converge to optimal joint action-value functions. These results are deferred to Appendix C. QTRAN

6

0
0

(a) case 1

Published as a conference paper at ICLR 2021

a2

a1 A(1) A(2) A(3)

A(1) 8 -12 -12
A(2) -12 6 0
A(3) -12 0 6

(a) Payoff of a harder matrix game

0 100 200 300 400 500
Iterations

0

2

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

QPLEX
QTRAN
QMIX
VDN

Qatten
OW-QMIX
CW-QMIX
Optimal

(b) Deep MARL algorithms

0 150 300 450 600 750
Iterations

0

2

4

6

8

M
ed

ia
n

Te
st

 R
et

ur
n

QPLEX-3L10H
QPLEX-3L4H
QPLEX-2L10H
QPLEX-2L4H
Optimal

(c) Learning curves of ablation study

Figure 2: (a) Payoff matrix for a harder one-step game. Boldface means the optimal joint action
selection from the payoff matrix. The strikethroughs indicate the original matrix game proposed by
QTRAN. (b) The learning curves of QPLEX and other baselines. (c) The learning curve of QPLEX,
whose suffix aLbH denotes the neural network size with a layers and b heads (multi-head attention)
for learning importance weights λi (see Eq. (9) and (10)), respectively.

Proposition 2. Given the universal function approximation of neural networks, the action-value
function class that QPLEX can realize is equivalent to what is induced by the IGM principle.

In practice, QPLEX can utilize common neural network structures (e.g., multi-head attention modules)
to achieve superior performance by approximating the universal approximation theorem (Csáji et al.,
2001). We will discuss the effects of QPLEX’s duplex dueling network with different configurations
in Section 4.1. As introduced by Son et al. (2019) and Wang et al. (2020a), the completeness of
value factorization is very critical for multi-agent Q-learning and we will illustrate the stability and
state-of-the-art performance of QPLEX in online and offline data collections in the next section.

4 EXPERIMENTS

In this section, we first study didactic examples proposed by prior work (Son et al., 2019; Wang et al.,
2020a) to investigate the effects of QPLEX’s complete IGM expressiveness on learning optimality and
stability. To demonstrate scalability on complex MARL domains, we also evaluate the performance of
QPLEX on a range of StarCraft II benchmark tasks (Samvelyan et al., 2019). The completeness of the
IGM function class can express richer joint action-value function classes induced by large and diverse
datasets or training buffers. This expressiveness can provide QPLEX with higher sample efficiency to
achieve state-of-the-art performance in online and offline data collections. We compare QPLEX with
state-of-the-art baselines: QTRAN (Son et al., 2019), QMIX (Rashid et al., 2018), VDN (Sunehag
et al., 2018), Qatten (Yang et al., 2020), and WQMIX (OW-QMIX and CW-QMIX; Rashid et al.,
2020). In particular, the second term of Eq. (11) is the main difference between QPLEX and Qatten.
Thus, Qatten provides a natural ablation baseline of QPLEX to demonstrate the effectiveness of
this discrepancy term. The implementation details of these algorithms and experimental settings are
deferred to Appendix B. We also conduct two ablation studies to study the influence of the attention
structure of dueling architecture and the number of parameters on QPLEX, which are deferred to be
discussed in Appendix E. Towards fair evaluation, all experimental results are illustrated with the
median performance and 25-75% percentiles over 6 random seeds.

4.1 MATRIX GAMES

QTRAN (Son et al., 2019) proposes a hard matrix game, as shown in Table 4a of Appendix C. In this
subsection, we consider a harder matrix game in Table 2a, which also describes a simple cooperative
multi-agent task with considerable miscoordination penalties, and its local optimum is more difficult
to jump out. The optimal joint strategy of these two games is to perform action A(1) simultaneously.
To ensure sufficient data collection in the joint action space, we adopt uniform data distribution.
With this fixed dataset, we can study the optimality of multi-agent Q-learning from an optimization
perspective, ignoring the challenge of exploration and sample complexity.

As shown in Figure 2b, QPLEX, QTRAN, and WQMIX, which possess a richer expressiveness
power of value factorization can achieve optimal performance, while other algorithms with limited
expressiveness (e.g., QMIX, VDN, and Qatten) fall into a local optimum induced by miscoordination
penalties. In the original matrix proposed by QTRAN, QPLEX and QTRAN can also successfully
converge to optimal joint action-value functions. These results are deferred to Appendix C. QTRAN

6

(b) case 2

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

−12

−8

−4

0

4

8

re
w

ar
d

I2Q

IQL

(c) curves on case 1

0.25× 105 0.5× 105 0.75× 105 1.0× 105

timestep

−4

−2

0

2

4

6

8

re
w

ar
d

I2Q

IQL

(d) curves on case 2
Figure 4: Learning curves on two specific one-stage matrix games.

with non-stationarity. I2Q converges to the global optimum on the matrix games, even when the stage
L grows, which confirms our theoretical analysis.

In Figure 3, we show the effect of exploration rate ϵ on the matrix games with L = 4. As ϵ increases,
I2Q converges faster, while the performance of IQL drops. In conventional decentralized methods
like IQL, there is a dilemma of exploration and exploitation. If ϵ is small, the weak exploration causes
low sample efficiency and slow learning. When ϵ is large, all agents act more randomly. From the
perspective of an individual agent, the transition probabilities will be much different from the real
ones under the learned policies of other agents, which causes bad performance. That is the reason
why IQL drops when ϵ increases. I2Q can avoid the dilemma, because Qss

i (s, s
′) is independent from

agent policies and converges faster with larger ϵ as it sees more states. Thus, I2Q can use large ϵ, e.g.,
0.5 or 0.7, to promote sample efficiency.

Moreover, we test I2Q on two one-stage matrix games proposed in QTRAN [24] and QPLEX [31]
as shown in Figure 4, which are special cases of Figure 1. In case 1, IQL converges to the local
optimum, and in case 2, IQL does not converge. Our I2Q can converge to the global optimum easily,
in a fully decentralized way.

4.2 MPE

To investigate the effectiveness of I2Q in complex continuous environments with neural network
implementation, we design a class of MPE-based differential games, where N agents can move in
the range [−1, 1]. In each timestep, agent i acts the action ai ∈ [−1, 1], and the position of agent i is
updated as xi = clip(xi + 0.1× ai,−1, 1) (i.e., the updated position is clipped to [−1, 1]). The state
is the position vector {x1, x2, · · · , xN}. The reward function of each timestep is defined as

r =


0.5 cos(lπ/m) + 0.5 if l ≤ m

0 if m < l ≤ 0.6

0.15 cos(5π(l − 0.8)) + 0.15 if 0.6 < l ≤ 1.0

0 if l > 1.0

, l =

√√√√ 2

N

N∑
i=0

x2
i , m = 0.13(N − 1).

The visualization of reward function of two-agent case is shown in Figure 5a. There is only one
global optimum (l = 0 and r = 1) but infinite sub-optima (l = 0.8 and r = 0.3), and the region with
r > 0.3 is very narrow and surrounded by the region with r = 0. So it is hard to learn the optimal
policies in a decentralized way. The episode contains 100 timesteps, and the agents’ positions are
randomly initialized at the beginning of each episode. To verify the scalability, we test I2Q in the
settings with different agent numbers N , and train the agents for eight random seeds in each setting.
The results are shown in Figure 6. IDDPG always falls into local optimum due to the non-stationarity
and outdated transition probabilities. To be optimistic towards the value punishment is an important
technique in decentralized MARL. Although adopting the optimistic update, Hysteretic IDDPG
[16] still falls into local optimum due to the non-stationarity problem. D3G [6] applies the idea

7

(a) reward function (b) Ideal (c) I2Q (d) IDDPG
Figure 5: (a): Visualization of reward function in differential game with two agents. (b)-(d): Visualizations of
learned values of agent 1 in differential game with two agents. x1-axis and x2-axis: agents 1 and 2’s positions,
respectively.

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

I2Q

D3G

Hysteretic IDDPG

IDDPG

(a) N = 2

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

I2Q

D3G

Hysteretic IDDPG

IDDPG

(b) N = 3

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

I2Q

D3G

Hysteretic IDDPG

IDDPG

(c) N = 4

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

I2Q

D3G

Hysteretic IDDPG

IDDPG

(d) N = 5

Figure 6: Learning curves on MPE-based differential games with different agent numbers N .

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

λ = 0.0

λ = 0.2

λ = 0.5

λ = 2.0

λ = 4.0

λ = 10.0

(a) N = 2

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

λ = 0.0

λ = 0.2

λ = 0.5

λ = 2.0

λ = 4.0

λ = 10.0

(b) N = 3

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

λ = 0.0

λ = 0.2

λ = 0.5

λ = 2.0

λ = 4.0

λ = 10.0

(c) N = 4

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

λ = 0.0

λ = 0.2

λ = 0.5

λ = 2.0

λ = 4.0

λ = 10.0

(d) N = 5

Figure 7: Learning curves on MPE-based differential games with different λ.

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

I2Q

IDDPG

(a) ξ = 0.02

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

I2Q

IDDPG

(b) ξ = 0.03

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

I2Q

IDDPG

(c) ξ = 0.04

1× 105 2× 105 3× 105 4× 105 5× 105

timestep

0

20

40

60

80

100

re
w

ar
d

I2Q

IDDPG

(d) ξ = 0.05

Figure 8: Learning curves on MPE-based differential games with different noise ξ.

of QSS in single-agent learning. To extend D3G into decentralized MARL, we train each agent
independently using D3G, without the information of other agents. However, D3G cannot learn the
optimal solution either, since the forward model in D3G requires the transition probabilities Pi to
be deterministic. However, when learning on the decentralized replay buffer, Pi is the average of
non-stationary transition probabilities and cannot be deterministic. Thus, D3G is not applicable to
decentralized multi-agent learning. Learning on the ideal transition function inferred from Qss

i (s, s
′),

I2Q can escape from local optimum and significantly outperform others. To thoroughly demonstrate
the effectiveness of I2Q, in Figure 5, we visualize the learned values of agent 1 in the two-agent case.
In Figure 5b, we let the agent 2 always act the optimal policy (moving to the position x2 = 0), which
means the agent 1 performs Q-learning on the true ideal transition probabilities. Thus, Figure 5b
shows the optimal values under ideal transition probabilities. In Figure 5c, both agents use I2Q. I2Q
values are very similar to the true ideal values, where the value of the center point (l = 0) is the
highest, which means that the modeled transition function in I2Q is close to the true one. In Theorem
4 (see Appendix A), we theoretically analyze that the difference between ideal values (Figure 5b) and
I2Q values (Figure 5c) is bounded by the model error. In Figure 5d, both agents use IQL, resulting in
that the value of the center point (l = 0) is the lowest and the suboptimal points (l = 0.8) have the
highest values.

8

0 2.5× 105 5× 105

timestep

−500

0

500

1000

1500

2000

re
w

ar
d

I2Q

D3G

Hysteretic IDDPG

IDDPG

(a) 2× 3 HalfCheetah

0 2.5× 105 5× 105

timestep

−1000

−500

0

500

1000

1500

2000

re
w

ar
d

I2Q

D3G

Hysteretic IDDPG

IDDPG

(b) 2|4 HalfCheetah

0 2.5× 105 5× 105

timestep

−200

0

200

400

600

800

1000

re
w

ar
d

I2Q

D3G

Hysteretic IDDPG

IDDPG

(c) 2× 4 Ant

0 2.5× 105 5× 105

timestep

−200

0

200

400

600

800

1000

re
w

ar
d

I2Q

D3G

Hysteretic IDDPG

IDDPG

(d) 6|2 Ant
Figure 9: Learning curves on Multi-Agent MuJoCo.

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

I2Q

Hysteretic IQL

IQL

(a) 8m

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

I2Q

Hysteretic IQL

IQL

(b) 3s_vs_4z

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

I2Q

Hysteretic IQL

IQL

(c) 2s3z

0 1× 106 2× 106

timestep

0

20

40

60

80

100

w
in

ra
te

%

I2Q

Hysteretic IQL

IQL

(d) 5m_vs_6m
Figure 10: Learning curves on SMAC.

To model the ideal transition function, next states predicted by fi should have the highest Qss
i values

(optimality) and be in the neighboring state set given state-action pair (referred to as neighborhood
constraint). To achieve this objective, λ in (12) controls the balance between optimality and neighbor-
hood constraint. Figure 7 shows the effect of λ. When λ is too small, the next state predicted by fi
cannot maximize Qss

i (s, s
′), and thus I2Q gets stuck at local optimum. Especially, when λ = 0, I2Q

degrades into a popular model-based method MBPO [9]. When λ is too large, e.g., λ = 10, paying
much more attention to maximize Qss

i (s, s
′), fi would generate out-of-neighborhood states, causing

that I2Q even cannot converge to local optimum. We notice that λ = 0.5 can generally achieve a
good performance in different settings of N .

Although we assume deterministic environments in theoretical analysis, I2Q can also obtain perfor-
mance gain in stochastic environments. To measure the impact of stochastic environments, we add a
noise to the position update: xi = clip(xi + 0.1× ai + ξ × z,−1, 1), where z is a uniform random
variable in [−1, 1], and ξ is a constant controlling the randomness. Figure 8 shows the performance
with different ξ in the three-agent case. In the stochastic environments, IDDPG still converges to
local optimum, while I2Q always escapes from local optimum when ξ = 0.02 and 0.03, free from
the impact of stochastic environments. When ξ = 0.04 and 0.05, the effect of stochasticity is nearly
half of the effect of action. I2Q cannot always learn optimal policies with the strong stochasticity but
still significantly outperforms IDDPG.

4.3 Multi-Agent MuJoCo and SMAC

To investigate the effectiveness of I2Q in partially observable environments, we perform experiments
on Multi-Agent MuJoCo [18], where each agent independently controls one or some joints of the
robot and could only observe the state of its own joints and bodies (with the parameter agent_obsk
= 0). The results are shown in Figure 9 with eight random seeds. I2Q achieves higher rewards
than IDDPG, which indicates that I2Q could be extended to partially observable tasks and obtain
performance gain by performing Q-learning on ideal transition probabilities instead of transition
probabilities in replay buffer. In the partially observable setting, we only consider two-agent cases.
When there are more agents, each agent can only control one or two joints, and the observation range
is too limited to learn strong policies. In Appendix B.4, we provide the 6-agent Walker and 8-agent
Ant experiments with the full observation setting to verify the scalability.

We test I2Q on partially observable and stochastic SMAC tasks [23] with the version SC2.4.10,
including both easy and hard maps [33]. We adopt the implementation of PyMARL [23] that takes as
input the trajectory of partial observations, which is high-dimensional and not differentiable on some
dimensions, meaning that directly optimizing (12) is hard. So the QSS model Qss

i is not built on the
trajectory of partial observations, but on the hidden state of Qi (the output of RNN layer), which is
64-dimension and differentiable, and the transition function fi predicts the next hidden state. We
train the agents for four random seeds. D3G can only be used in continuous action space, so we do

9

not compare with it in SMAC. As shown in Figure 10, I2Q is capable of handling high-dimensional
and stochastic tasks.

5 Closing Remarks

In this paper, we propose I2Q, a novel variant of independent Q-learning, to deal with the non-
stationarity in decentralized cooperative MARL. I2Q models the ideal transition function, which
depends on the optimal conditional joint policy of other agents and performs independent Q-learning
on the modeled ideal transition function. Theoretically, we prove that I2Q converges to the optimal
joint policy in deterministic environments. Empirically, I2Q obtains performance gain in a variety of
multi-agent tasks.

We focus on the base algorithm for fully decentralized learning in cooperative MARL, as it lay the
algorithmic foundation for decentralized learning. Although we did not consider explicit coordination
among agents, in partially observable environments coordination such as communication is desirable
to improve empirical performance. We envision that more methods can be further built on the base
algorithm. Moreover, currently, although fully decentralized learning algorithms may not empirically
perform as well as CTDE methods like QMIX [22] in some benchmarks, e.g., hard maps in SMAC, we
believe more efforts should be made by the MARL community on decentralized learning, considering
its abundant benefits over CTDE. First, fully decentralized algorithms do not require a centralized
learner during training, hence they are more applicable and cleaner, easier to implement [10].
Second, fully decentralized algorithms are more versatile as the individual learners are indifferent
to the number of other agents, thus they have better scalability [34]. Third, fully decentralized
algorithms make agents more robust to the presence of agents they were not trained with (such as
humans) [30]. Therefore, fully decentralized learning is a fundamental problem in cooperative MARL,
but remains to be investigated.

Acknowledgments and Disclosure of Funding

This work was supported by NSF China under grant 61872009. The authors would like to thank the
anonymous reviewers for their valuable comments.

References
[1] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[2] Natalia Akchurina. Multiagent reinforcement learning: algorithm converging to nash equilib-
rium in general-sum discounted stochastic games. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages 725–732. Citeseer,
2009.

[3] Zilong Cao, Pan Zhou, Ruixuan Li, Siqi Huang, and Dapeng Wu. Multiagent deep reinforcement
learning for joint multichannel access and task offloading of mobile-edge computing in industry
4.0. IEEE Internet of Things Journal, 7(7):6201–6213, 2020.

[4] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is Independent Learning All You Need in The
StarCraft Multi-Agent Challenge? arXiv preprint arXiv:2011.09533, 2020.

[5] Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin
Böhmer, and Shimon Whiteson. Deep Multi-Agent Reinforcement Learning for Decentralized
Continuous Cooperative Control. arXiv preprint arXiv:2003.06709, 2020.

[6] Ashley Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien
Ecoffet, Thomas Miconi, Charles Isbell, and Jason Yosinski. Estimating q (s, s’) with deep
deterministic dynamics gradients. In International Conference on Machine Learning (ICML),
2020.

[7] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip HS Torr,
Pushmeet Kohli, and Shimon Whiteson. Stabilising Experience Replay for Deep Multi-Agent
Reinforcement Learning. In International Conference on Machine Learning (ICML), 2017.

10

[8] Shariq Iqbal and Fei Sha. Actor-Attention-Critic for Multi-Agent Reinforcement Learning. In
International Conference on Machine Learning (ICML), 2019.

[9] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in Neural Information Processing Systems (NeurIPS),
2019.

[10] Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient,
decentralized algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

[11] Sachin G Konan, Esmaeil Seraj, and Matthew Gombolay. Iterated reasoning with mutual
information in cooperative and byzantine decentralized teaming. In International Conference
on Learning Representations (ICLR), 2021.

[12] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations (ICLR), 2021.

[13] Jakub Grudzien Kuba, Ruiqing Chen, Munning Wen, Ying Wen, Fanglei Sun, Jun Wang,
and Yaodong Yang. Trust region policy optimisation in multi-agent reinforcement learning.
International Conference on Learning Representations (ICLR), 2022.

[14] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations (ICLR), 2016.

[15] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-Agent
Actor-Critic for Mixed Cooperative-Competitive Environments. Neural Information Processing
Systems (NeurIPS), 2017.

[16] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Hysteretic q-learning: an
algorithm for decentralized reinforcement learning in cooperative multi-agent teams. In 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 64–69. IEEE,
2007.

[17] Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient Multi-Agent Deep
Reinforcement Learning. In International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), 2018.

[18] Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems (NeurIPS), 2021.

[19] Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming,
1994.

[20] Han Qie, Dianxi Shi, Tianlong Shen, Xinhai Xu, Yuan Li, and Liujing Wang. Joint optimization
of multi-uav target assignment and path planning based on multi-agent reinforcement learning.
IEEE access, 7:146264–146272, 2019.

[21] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances
in Neural Information Processing Systems (NeurIPS), 2020.

[22] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. QMIX: Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning. In International Conference on Machine Learning
(ICML), 2018.

[23] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. arXiv preprint arXiv:1902.04043, 2019.

[24] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN:
Learning To Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learn-
ing. In International Conference on Machine Learning (ICML), 2019.

11

[25] Kefan Su and Zongqing Lu. Divergence-Regularized Multi-Agent Actor-Critic. arXiv preprint
arXiv:2110.00304, 2021.

[26] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
Decomposition Networks for Cooperative Multi-Agent Learning Based on Team Reward. In
International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2018.

[27] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru,
Jaan Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement
learning. PloS one, 12(4):e0172395, 2017.

[28] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Interna-
tional Conference on Machine Learning (ICML), 1993.

[29] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
Level in StarCraft II Using Multi-Agent Reinforcement Learning. Nature, 575(7782):350–354,
2019.

[30] Caroline Wang, Ishan Durugkar, Elad Liebman, and Peter Stone. DM2: Distributed multi-agent
reinforcement learning for distribution matching. arXiv preprint arXiv:2206.00233, 2022.

[31] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex Dueling
Multi-Agent Q-Learning. In International Conference on Learning Representations (ICLR),
2021.

[32] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-
policy multi-agent decomposed policy gradients. In International Conference on Learning
Representations (ICLR), 2020.

[33] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

[34] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Multi-agent reinforcement learning: A
selective overview of theories and algorithms. arXiv preprint arXiv:1911.10635, 2019.

[35] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A
selective overview of theories and algorithms. Handbook of Reinforcement Learning and
Control, pages 321–384, 2021.

[36] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Basar. Fully decentralized
multi-agent reinforcement learning with networked agents. In International Conference on
Machine Learning (ICML), 2018.

[37] Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu. FOP: Factor-
izing Optimal Joint Policy of Maximum-Entropy Multi-Agent Reinforcement Learning. In
International Conference on Machine Learning (ICML), 2021.

[38] Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Peter Glynn, and Claire Tomlin.
Multi-agent online learning with imperfect information, 2018.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 3.4.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] As we

provide a new method for decentralized MARL, we do not see any potential negative
societal impacts at this stage.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We have clearly

stated the assumptions in Section 3.2 and 3.3, and further discussed them in Section
3.4.

(b) Did you include complete proofs of all theoretical results? [Yes] We include the proof
of Theorem 1 in Section 3.2, and include the proofs of Theorem 2,3,4 in Appendix A.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] We include the training details in Appendix C.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g.,

type of GPUs, internal cluster, or cloud provider)? [Yes] We include the details of
computation in Appendix C.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL?[Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We do not use any dataset in this paper.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Method
	Preliminaries
	Ideal Transition Probabilities
	I2Q
	Assumptions

	Experiments
	Matrix Games
	MPE
	Multi-Agent MuJoCo and SMAC

	Closing Remarks
	Proof
	Additional Results
	Hyperparameter
	Two Update Rules
	Independent PPO
	Scalability
	Multiple Optimal Joint Policies
	Discussion on D3G
	I2Q without Forward Model

	Hyperparameters

