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Abstract001

Large-scale multimodal data have greatly ac-002
celerated the progress of vision-language mod-003
els. However, selecting high-quality and di-004
verse training data under limited data budgets005
remains an under-explored problem. We pro-006
pose DOSE, a novel data selection pipeline that007
uses off-the-shelf models—without any fine-008
tuning on the target corpus—to independently009
evaluate text quality and image–text alignment.010
These scores are combined into a joint qual-011
ity–alignment distribution, from which we ap-012
ply adaptive weighted random sampling to se-013
lect informative samples while preserving long-014
tail diversity. Extensive experiments on general015
VQA and math benchmarks show that DOSE016
enables a flexible trade-off between model per-017
formance and data selection efficiency. Re-018
markably, DOSE achieves near full-dataset per-019
formance using only 20% of the original data,020
and can even surpass the full-dataset baseline021
when using larger subsets. Since DOSE only re-022
quires inference-time computation and no addi-023
tional fine-tuning, it is particularly suitable for024
resource-constrained settings and fast model025
development cycles.026

1 Introduction027

Visual instruction tuning has been widely adopted028

for training MLLMs (Liu et al., 2023; Bai et al.,029

2023), enabling these models to understand lan-030

guage instructions based on visual content. Current031

approaches typically rely on collecting or synthesiz-032

ing large instruction tuning datasets to improve the033

model capabilities (Zhao et al., 2023; Wang et al.,034

2024a; Shi et al., 2024; Nguyen et al., 2023). These035

datasets, while effective, lead to increased compu-036

tational resource strain and high costs in model037

development due to its enormous volume. Inspired038

by (Zhou et al., 2023), which showed that a high-039

quality subset of data can deliver performance com-040

parable to that of full-scale data, we aim to develop041
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Figure 1: Comparison of data selection methods. (A)
The methods that rely on a single metric from either
vision or text model (dashed line). (B) The methods that
leverage VLMs for data quality assessment. Notably,
the VLMs are already trained on the target data that will
be filtered. (C) Our approach constructs data distribu-
tion by harnessing existing pre-trained models that have
not been exposed to the target data.

a data selection method that retains only the most 042

valuable examples. This method should substan- 043

tially reduce computational cost, while maintain- 044

ing or even exceeding the performance of models 045

trained on the full dataset. 046

Effective multimodal data selection consists of 047

two interdependent components—quality assess- 048

ment and sampling strategy. Quality assessment 049

encompasses (1) lightweight, model-agnostic cues 050

such as early-training loss norms in EL2N (Paul 051

et al., 2021) and confidence margins in Self- 052

Filter (Chen et al., 2024), and (2) sophisticated, 053

model-driven measures such as gradient-influence 054

scores in LESS (Cao et al., 2023), multi-task con- 055

sensus in ICONS (Wu et al., 2024b), and small- 056

model activation grouping in COINCIDE (Lee 057

et al., 2024). Lightweight metrics add negligible 058

overhead but suffer from ignoring high-value long- 059
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tail examples (Marion et al., 2023a), which de-060

grades downstream accuracy; by contrast, gradient-061

based and clustering approaches yield more pre-062

cise quality estimates yet demand costly backward063

passes or expensive clustering pipelines that under-064

mine overall efficiency. Sampling strategies add065

another layer of complexity: fixed-threshold filters066

hoard only the highest-scoring samples (Cao et al.,067

2023), neglecting mid-range and tail instances (Wu068

et al., 2024a); stratified or weighted schemes rely069

on fragile density or distribution estimates that mag-070

nify biases when miscalculated; and iterative, multi-071

round pipelines only compound inefficiencies (Wu072

et al., 2024b). Critically, most techniques validate073

exclusively on near-domain splits and offer scant074

insight into true cross-domain or long-tail general-075

ization (Lee et al., 2024), leaving the development076

of efficient, semantically diverse, and robust se-077

lection strategies for novel domains still largely078

unexplored.079

To balance downstream accuracy, computational080

cost, and cross-domain generalization, we intro-081

duce a two-stage pipeline. In the first stage—the082

Quality Scoring via Off-the-Shelf Models—we083

leverage instruction-tuned LLMs with carefully en-084

gineered prompts to assign each long text or ques-085

tion–answer pair an approval probability (Sachdeva086

et al., 2024) , and use a vision–language match-087

ing network to compute an alignment score for088

every image–caption pair (Hessel et al., 2021).089

Both metrics require only a single forward pass,090

avoiding any backward propagation or additional091

training, and leverage their rich pre-trained rep-092

resentations to produce quality estimates with093

strong cross-domain generalization. In the sec-094

ond stage—Weighted Random Sampling—we fit095

empirical density estimates to these approval and096

alignment scores, then perform adaptive weighted097

sampling: higher-scoring samples are propor-098

tionally more likely to be selected, while ev-099

ery score interval—including low-density long-100

tail regions—retains a nonzero chance of inclu-101

sion. This two-stage approach produces a com-102

pact, information-rich coreset that preserves rare103

but valuable examples, matches or exceeds full-104

dataset performance on both near-domain and truly105

unseen tasks, and enables rapid, resource-efficient106

training without sacrificing robustness or semantic107

diversity.108

We conducted extensive evaluations on general109

VQA benchmarks and specialized math tasks, us-110

ing LLaVA-1.5-7B and LLaVA-1.5-13B as base-111

lines. Remarkably, with only 20 % of the data, 112

DOSE retains 96 % of full-data performance on 113

general VQA with 20 % of the data and even sur- 114

passes full-data results on math tasks using 20 % 115

subset. Moreover, in terms of both efficiency and 116

performance, DOSE outperforms methods that re- 117

quire prior exposure to the filtered data, demon- 118

strating a superior balance of performance, com- 119

putational cost, cross-domain generalization, and 120

sample diversity. 121

Our contributions are summarized as follows: 122

• We propose DOSE, a data selection method 123

for multimodal LLMs. It leverages existing 124

pre-trained, off-the-shelf models to evaluate 125

text quality and image-text relevance, thereby 126

identifying high-quality training samples. 127

• Extensive experiments demonstrate that our 128

method consistently outperforms various base- 129

lines. By leveraging Pareto optimality, our 130

method achieves advanced performance in 131

both effectiveness and efficiency. 132

• Further experiments on multimodal math 133

benchmarks validate that our approach can 134

can generalize well to the training data in spe- 135

cialized domain and merely a small fraction 136

of training data can achieve comparable per- 137

formance of full training set. 138

2 Related Work 139

2.1 Data Quality Scoring 140

Quality-score was originally developed for impor- 141

tance sampling but is now widely used in training 142

LLMs. The scoring algorithm evaluates sample 143

importance using various methods, including mea- 144

suring disagreement rates between models (Chitta 145

et al., 2021), assessing whether a sample is likely 146

to be "forgotten" (Toneva et al., 2019), "memo- 147

rized" (Feldman and Zhang, 2020), or "unlearn- 148

able" (Mindermann et al., 2022), and applying 149

perplexity filtering to prioritize low-perplexity sam- 150

ples while discarding high-perplexity ones (Wen- 151

zek et al., 2019; Marion et al., 2023b; Muen- 152

nighoff et al., 2023). Recent advancements have en- 153

abled perplexity estimation through efficient model- 154

based simulators, eliminating the need for full LLM 155

inference (Guu et al., 2023). Additionally, some 156

approaches select training data by minimizing the 157

distance between the selected data distribution and 158
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high-quality sources such as Wikipedia or books.159

This is often achieved through contrastive classi-160

fiers or feature-space matching (Radford et al.,161

2019; Anil et al., 2023; Javaheripi et al., 2023). To162

more effectively assess the comprehensive quality163

of multimodal image-text data, we introduce the164

CLIP-Score (Hessel et al., 2021) for evaluating165

image-text relevance. For textual data, we lever-166

age the reasoning capabilities of instruction-tuned167

LLMs to directly evaluate sample quality. Specifi-168

cally, we use the acceptance probability assigned169

by the LLM to measure the likelihood that a given170

text is valid and meaningful.171

2.2 Data Selection on Distribution172

Data selection is crucial for improving model train-173

ing quality and can be divided into two categories:174

distribution-agnostic filtering and distribution-175

aware selection. Distribution-agnostic methods176

focus on the quality of individual samples, typ-177

ically using thresholds to identify subsets. For178

example, these methods may detect mismatched179

text-image pairs or misleading elements in images.180

Specifically, (Nguyen et al., 2023; Mahmoud et al.,181

2023) employ BLIP to identify mismatches be-182

tween captions and images, while (Maini et al.,183

2023) leverage OCR models to filter images where184

text is the only feature correlated with the caption.185

In contrast, distribution-aware methods optimize186

subset selection by statistically analyzing the over-187

all data distribution. Classical techniques, such188

as those proposed in (Wei et al., 2015; Raskutti189

and Mahoney, 2016; Coleman et al., 2019), aim to190

maximize subset performance under a fixed budget.191

More recently, (Wang et al., 2023) introduced an192

approach that replaces traditional models with a193

trained codebook, clusters samples, and selects rep-194

resentative samples from each cluster. Our method195

builds upon these ideas by constructing a joint dis-196

tribution of image-text relevance and text quality.197

We carefully analyze the impact of different regions198

and diversity within this joint distribution on data199

quality, ultimately selecting the most representative200

samples for training.201

3 Methodology202

Multimodal data selection mainly focuses on as-203

sessment data quality, with existing methods typi-204

cally assessing text quality and the overall quality205

of image-text pairs. To achieve comprehensive206

quality assessment, we combine these methods and207

create a unified scoring strategy. Existing text qual- 208

ity evaluation methods either introduce bias toward 209

noisy samples with information or face the issue 210

where the evaluation model has already seen the 211

data during training. To address this, we introduce 212

the Text-Quality Score, which leverages the reason- 213

ing capabilities of a pre-trained LLM to assess text 214

quality. Additionally, we use the widely adopted 215

CLIP-Score to evaluate the quality of image-text 216

pairs. Meanwhile, selecting data using a static 217

threshold may lead to a loss of diversity and the 218

discarding of valuable edge cases, potentially lim- 219

iting performance. To address this, we introduce 220

a weighted sampling strategy that integrates data 221

diversity with score-based selection. This approach 222

enables us to select a high-quality subset while 223

maintaining stability and representativeness, ensur- 224

ing both performance and diversity are preserved. 225

3.1 Off-the-Shelf Quality Assessment 226

We leverage the reasoning capabilities of pre- 227

trained LLMs and multimodal language mod- 228

els to evaluate data quality. Inspired by Ask- 229

LLM (Sachdeva et al., 2024), we prompt the LLM 230

to predict whether an input sample is suitable for 231

fine-tuning a multimodal language model. As il- 232

lustrated in Table 3, the LLM predicts “yes” when 233

the text is informative, well-formatted, and aligned 234

with visual instruction tuning objectives. The soft- 235

max probability assigned to the “yes” token serves 236

as the Text-Quality Score for the sample. 237

In addition, similar to (Nguyen et al., 2023; Mah- 238

moud et al., 2023; Maini et al., 2023; Fang et al., 239

2023), we use the CLIP-ViT-B32 (OpenAI, 2023) 240

to obtain CLIP-Score (Hessel et al., 2021) to assess 241

the alignment between images and their captions. 242

The CLIP model projects both images and text into 243

a shared embedding space, and the cosine similarity 244

between these embeddings quantitatively measures 245

the image-text relevance. 246

3.2 Weighted Random Sampling 247

After obtaining the Text-Quality (xi) and Image- 248

Text Relevance Scores (yi), we can use Kernel Den- 249

sity Estimation (KDE) to establish the density dis- 250

tribution of the data. We define this distribution 251

as the original distribution p(x). And, to better 252

accommodate high-quality data in terms of xi and 253

yi, we construct a new distribution for Weighted 254

Random Sampling (WRS). We refer to this new 255

distribution as the target distribution q(x), and by 256

performing random sampling from q(x), we obtain 257
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the final sampling results.258

Sampling Procedure First, we compute the sta-259

tistical properties of the original data, including the260

mean µdata and standard deviation σdata. Next, we261

use KDE to fit the probability density function of262

the original data:263

KDE(x) =
1

Nh

N∑
i=1

K
(x− xi

h

)
, (1)264

where K(·) is the Gaussian kernel, N is the265

number of samples, and h is the bandwidth. We266

first remove outliers via DBSCAN (label = –1),267

then compute the KDE on the remaining data and268

locate its principal mode:269

µpeak_kde = arg max
x∈[xmin, xmax]

KDE(x). (2)270

Next, let271

µDB = max
i: ℓi ̸=−1

xi,272

where ℓi is the DBSCAN label for xi. We then set273

the final target center to274

µpeak_wrs =
µpeak_kde + µDB

2
.275

Based on µpeak_wrs, we model the target distribu-276

tion q(x) and the original distribution p(x) as Gaus-277

sians with means µpeak_wrs and µp, respectively.278

Based on this, we define the target distribution279

q(x) and the original distribution p(x) as normal280

distributions with the following probability density281

functions:282

q(x) = N
(
x; µpeak_wrs, σdata

)
,

p(x) = N
(
x; µpeak_wrs, σdata

)
.

(3)283

where µpeak is the mean of the target distribution,284

and σdata is the standard deviation (consistent with285

the original data). To perform WRS, we calculate286

the weight for each data point xi as the ratio of the287

probability density under the target distribution to288

that under the original distribution:289

wi =
q(xi)

p(xi) + ϵ
, (4)290

where ϵ = 10−10 is a small constant added to avoid291

division by zero. Subsequently, we normalize the292

weights:293

w′
i =

wi∑N
j=1wj

. (5) 294

Finally, based on the normalized weights w′
i, we 295

perform weighted random sampling to select M 296

samples (without replacement) from the original 297

data: 298

Sx = {xi1 , xi2 , . . . , xiM }, (6) 299

where ik are indices randomly drawn according 300

to the weights w′
i. Through these steps, we gener- 301

ate a new sample set S that better aligns with the 302

characteristics of the target distribution q(x). Also, 303

based on the Image-Text Relevance Scores (yi), we 304

can apply the same sampling strategy to obtain the 305

corresponding subset: 306

Sy = {yi1 , yi2 , . . . , yiM }, (7) 307

Combined Sampling Once the positions of all 308

data points are determined in a two-dimensional 309

coordinate space—where each point is defined by 310

xi (text quality) and yi (image-text relevance)—we 311

construct a density-like distribution that captures 312

the frequency of data points within local regions. 313

This distribution reveals patterns in the data, en- 314

abling us to analyze and compare the data distri- 315

bution before and after sampling. Based on this 316

distribution, we design a sampling strategy that 317

prioritizes regions with both high densities and fa- 318

vorable characteristics in terms of xi and yi. Specif- 319

ically, we define subsets Sx and Sy, which capture 320

key features along the xi and yi dimensions, re- 321

spectively. By combining the intersection of Sx 322

and Sy, we derive the final sampling results. 323

DOSE = {(xi, yi) | (xi, yi) ∈ Sx ∩ Sy}. (8) 324

This approach ensures that the sampled points 325

not only reflect the underlying data distribution but 326

also align with preferred ranges for text quality and 327

image-text relevance. 328

4 Experiments 329

In this section, we first describe our implementa- 330

tion and benchmark setups, then present results 331

on VLM evaluations and ablation studies. We as- 332

sess general VQA performance across nine bench- 333

marks (see the Appendix for dataset details) and, 334

following ICONS and COINCIDE, report the aver- 335

age relative performance (Rel.) to quantify cross- 336

benchmark generalization. 337
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Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA-W Rel. (%)
en cn Bench

Full 79.1 63.0 47.8 68.4 58.2 86.4 1476.9 66.1 58.9 67.9 100

Methods that already used full data before data selection
COINCIDE 76.5 59.8 46.8 69.2 55.6 86.1 1495.6 63.1 54.5 67.3 97.4
ICONS 76.3 60.7 50.1 70.8 55.6 87.5 1485.7 63.1 55.8 66.1 98.6

Methods that never used full data before data selection
Random 75.7 57.6 44.7 66.5 54.2 84.1 1389.0 62.2 54.8 65.0 94.5
CLIP-Score 73.4 51.4 43.0 65.0 54.7 85.3 1331.6 55.2 52.0 66.2 91.2
EL2N 76.2 58.7 43.7 65.5 53.0 84.3 1439.5 53.2 47.4 64.9 92.0
Perplexity 75.8 57.0 47.8 65.1 52.8 82.6 1341.4 52.0 45.8 68.3 91.6
SemDeDup 74.2 54.5 46.9 65.8 55.5 84.7 1376.9 52.2 48.5 70.0 92.6
D2-Pruning 73.0 58.4 41.9 69.3 51.8 85.7 1391.2 65.7 57.6 63.9 94.8
Self-Sup 74.9 59.5 46.0 67.8 49.3 83.5 1335.9 61.4 53.8 63.3 93.4
Self-Filter 73.7 58.3 53.2 61.4 52.9 83.8 1306.2 48.8 45.3 64.9 90.9

Ours 77.3 58.6 46.5 67.2 54.4 83.6 1462.2 62.5 54.8 65.8 96.0

Table 1: Comparisons with baseline methods. For a fair comparison, all models are trained by 20% of full training
data and the data subsets are selected by different methods. The best and second best results for each benchmark
are shown in bold and underlined, respectively. Our method achieves the highest relative performance (98.6%),
consistently outperforming existing methods, including COINCIDE (97.4%) (Lee et al., 2024) and D2-Pruning
(94.8%) (Maharana et al., 2023), while methods like EL2N (Paul et al., 2021), Perplexity (Marion et al., 2023a), and
CLIP-Score (Hessel et al., 2021) show limited effectiveness with relative performance around 91-92%.

4.1 Setup338

Implementation Details Our method has been339

validated on both pre-training and downstream340

tasks for VLMs. For the pre-training task, we fol-341

low the settings of LLaVA-1.5-7b (Liu et al., 2023)342

and score and filter the data in stage 2 of LLaVA,343

retrain stage 2, and compare the performance dif-344

ferences across various data scales and filtering345

methods. For the downstream task, we follow346

the settings of Math-LLaVA (Wang et al., 2024b)347

and apply the same method to score and filter the348

MathV360k (Shi et al., 2024) dataset. Based on349

the pre-trained LLaVA-1.5-13b (Liu et al., 2023),350

we perform continuous fine-tuning. In the Text-351

Quality Scoring phase, we score the 665k text data352

using Vicuna-7b (Team, 2023), obtaining its orig-353

inal distribution. Based on this distribution, we354

adaptively fit a WRS sampling. Similarly, we use355

CLIP-Score (Hessel et al., 2021) to obtain another356

distribution and perform sampling. By combining357

this with the proposed combined sampling strategy,358

we obtain the final sampling results, which are used359

for the main results.360

4.2 Main Results361

Comparisons with Baselines We compare our362

DOSE against a suite of established data-selection363

methods using a 20 % subset of LLAVA-1.5’s364

Stage-2 data, shown in Table 2. Baselines in-365

clude Random sampling; CLIP-Score (Hessel 366

et al., 2021) for image–text alignment; EL2N (Paul 367

et al., 2021) based on embedding L2 norms; Per- 368

plexity (Marion et al., 2023a) from language- 369

model likelihoods; SemDeDup (Abbas et al., 2023) 370

for semantic deduplication; D2-Pruning (Maha- 371

rana et al., 2023) for distribution-aware pruning; 372

and Self-Sup (Sorscher et al., 2022) leveraging 373

self-supervised signals. We also include vision- 374

language–specific approaches Self-Filter (Chen 375

et al., 2024) and COINCIDE (Lee et al., 2024). 376

DOSE achieves the highest overall relative perfor- 377

mance (96.0 %), surpassing all unseen-selection 378

baselines by over 1 pp—e.g., improving on D2- 379

Pruning (94.8 %)—and closing the gap to seen-data 380

methods like ICONS (98.6 %) to just 2.6 pp. No- 381

tably, DOSE outperforms Random on every bench- 382

mark (e.g., GQA: 58.6 vs 57.6; TextVQA: 54.4 vs 383

54.2) and matches or exceeds stronger baselines 384

across tasks from VQA-v2 through MMBench, 385

demonstrating its ability to select a small, high- 386

value subset that nearly rivals full-data finetuning. 387

While DOSE achieves strong unseen-data selec- 388

tion performance (96.0 % Rel.), it trails seen-data 389

methods such as ICONS (Wu et al., 2024b) (98.6 390

%) and COINCIDE (Lee et al., 2024) (97.4 %). 391

The reason is that those approaches first fine-tune 392

on the full dataset and then use their own learned 393

model parameters to rank or cluster samples, giving 394
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Figure 2: DOSE Data-Selection Efficiency and Wall-Clock Time Trade-Offs. (Left) Average relative performances
of all coreset selection techniques at different sampling ratios for the LLaVA-1.5 dataset. (Right) Comparison of
coreset selection techniques on average relative performance and wall-clock time cost. The wall-clock time cost
includes both the data selection and finetuning of the target LVLM. The time cost is measured in hours of running
time on a computing node with 4×V100 GPUs.

them direct access to downstream performance sig-395

nals. In contrast, DOSE relies only on off-the-shelf396

pre-trained models—no additional finetuning—so397

it cannot leverage those proprietary performance398

cues. However, this independence from any prelim-399

inary full-data training is also DOSE’s key advan-400

tage: it avoids the redundant, expensive pass over401

the entire dataset purely for selection purposes, dra-402

matically reducing computation and resource costs403

while still delivering near–state-of-the-art results404

on much smaller subsets.405

Different Selection Ratio. As shown in Figure406

4, we compare DOSE (red solid line with circles)407

against ten baselines—Random (black), Perplex-408

ity (Marion et al., 2023a), CLIP-Score (Hessel409

et al., 2021), EL2N (Paul et al., 2021), SemD-410

eDup (Abbas et al., 2023), Self-Sup (Sorscher et al.,411

2022), D2-Pruning (Maharana et al., 2023), COIN-412

CIDE (Lee et al., 2024), ICONS (Wu et al., 2024b),413

and Self-Filter—across sampling ratios from 5 % to414

60 %. DOSE rapidly climbs to 99 % Rel. by 40 %415

sampling, matching or exceeding all other unseen-416

data methods and even approaching the seen-data417

ICONS (Wu et al., 2024b) curve at higher ratios.418

Pareto Superior. Among all data selection base-419

lines showen in Figure 4, DOSE achieves the420

largest performance gains among methods that do421

not rely on prior exposure to the training data,422

outperforming baselines such as Random, CLIP-423

Score, EL2N, SemDeDup, Perplexity, Self-Sup,424

D2-Pruning, and Self-Filter by 1–4 percentage425

points under identical sampling ratios and time 426

budgets. Even against the two leading seen-data 427

methods, ICONS and COINCIDE, DOSE holds 428

clear advantages. ICONS and COINCIDE both 429

require an expensive full-data fine-tuning pass be- 430

fore sample selection—a cost that would recur for 431

any new dataset yet is omitted from their reported 432

compute comparisons—whereas DOSE skips this 433

phase entirely, relying solely on off-the-shelf pre- 434

trained models for scoring and weighted sampling. 435

As a result, direct comparisons of compute costs are 436

misleading. Moreover, DOSE’s linear-time scoring 437

lets it reach 97.4 % relative performance in 12 h 438

and 98.5 % in 22 h, whereas COINCIDE needs 15 439

h/97.4 % and 25 h/98.4 %, and ICONS—lacking 440

a time-optimized pipeline—lags further behind. Fi- 441

nally, DOSE requires no clustering hyperparam- 442

eters, gradient-influence computations, or extra 443

network training—its runtime scales linearly with 444

dataset size and is immediately deployable—while 445

seen-data methods add complexity that complicates 446

tuning and extension. 447

Unseen-task Generalization. As shown in Table 448

2, we filtered the MathV360K (Shi et al., 2024) 449

dataset and performed continuous fine-tuning on 450

LLaVA-1.5-13B (Liu et al., 2023) using high- 451

quality subsets of varying proportions. In this pro- 452

cess, we strictly adhered to the experimental set- 453

tings of Math-LLaVA (Shi et al., 2024). Since the 454

evaluation on MathVista requires GPT-3.5 (Brown 455

et al., 2020) to extract key results, and the perfor- 456

mance of different period versions may vary, we 457
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Size
Math-LLaVA on MathVista

FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA Rel.% Aver.

Random selection on MathV360K
5% 22.7 38.0 30.7 41.1 38.6 36.7 31.4 38.1 21.6 30.6 38.5 23.9 88.4 32.7

20% 30.9 44.2 42.9 39.9 33.5 39.9 36.5 43.9 28.8 27.8 45.1 29.6 98.7 36.9
40% 32.3 52.4 43.0 37.3 35.2 45.6 35.7 52.3 16.2 27.8 41.9 35.9 97.6 38.0

DOSE selection on MathV360K
5% 33.4 38.9 30.1 36.1 34.1 36.3 29.5 36.8 24.3 26.4 36.1 31.9 88.4 32.8

10% 30.5 39.9 33.9 39.9 31.8 37.4 30.0 40.2 16.2 26.7 40.2 31.9 86.8 33.2
20% 33.1 45.7 45.7 42.4 36.9 43.1 38.5 45.2 29.7 31.3 41.0 35.9 104.8 39.1
40% 32.7 49.5 47.3 43.7 34.6 47.0 37.1 49.4 18.9 27.8 40.2 37.5 100.4 38.8
65% 30.5 49.5 53.8 42.4 29.1 44.8 37.4 48.5 8.1 24.3 41.9 37.5 93.1 37.3
80% 32.4 53.4 49.5 45.6 36.3 48.4 39.4 51.9 16.2 27.8 46.7 38.2 103.5 40.5

100%† 37.9 52.8 46.8 44.3 27.9 48.4 33.2 51.9 18.9 23.6 45.1 41.9 100 39.4

Table 2: Comparison with different data selection scales on domain-specific benchmarks. † represents our
reproduced results of Math-LLaVA-13B. The best results in all tasks are in bold. MathVista is divided in two ways:
task type or mathematical skill, and we report the accuracy under each subset. Rel.% keep same setting with general
benchmarks, and Aver. means the average score of all tasks.

reproduced the results of Math-LLaVA as a bench-458

mark for comparison. The experimental results459

demonstrate that our method achieves performance460

comparable to Math-LLaVA (Shi et al., 2024) when461

using only 20% of the high-quality data. Further-462

more, when using 80% of the data, the overall463

performance of the model improves by 1 percent-464

age point. This demonstrates that the knowledge465

embedded in CLIP (Hessel et al., 2021) and Vi-466

cuna7B (Team, 2023), which we used for data fil-467

tering, is sufficiently comprehensive to not only468

select high-quality general data but also be effec-469

tively applied in special domains.470

4.3 Ablation Study471

In this section, we conduct ablation experiments by472

comparing different scoring strategies, score-based473

sampling strategies, and the fusion of these two474

strategies. The results are presented in Figure 3a,475

Figure 3b, and Figure 4 in Appendix.476

Effectiveness of Single Methods To verify the477

effectiveness of Text-Quality and CLIP scores indi-478

vidually, we first validated the data selection results479

of each method in Stage 2 of the LLaVA training480

program, as shown in Figure 3a. We compared481

four strategies based on the Text-Quality Score: the482

“Rand” strategy, which randomly samples from the483

entire dataset; the “High” strategy, which samples484

data above a certain threshold based on a scoring485

method; the “Low” strategy, which samples data486

below a threshold; and the “Gas” strategy, which 487

combines the overall data distribution with the high- 488

score threshold and uses an adaptive Gaussian func- 489

tion for WRS sampling. When evaluating and sam- 490

pling text data, performance generally improved 491

as the data size increased from 5% to 40%, but 492

the effectiveness of the strategies varied. Overall, 493

the “High” strategy consistently outperformed the 494

“Low” strategy, demonstrating that Text-Quality 495

Score can effectively assess data quality. However, 496

with smaller data sizes, the “High” strategy per- 497

formed worse than “Rand” indicating that diversity 498

is more important than quality when the data size 499

is small. By combining WRS sampling and balanc- 500

ing both diversity and quality, the “Gas” strategy 501

outperformed “Rand,” confirming the effectiveness 502

of the data selection method. 503

In our evaluation of image-text relevance, shown 504

in Figure 3b, we compared four sampling strate- 505

gies using the CLIP Score. The results revealed 506

that the “Gas” strategy significantly outperformed 507

the others. This suggests that as the filtering ratio 508

decreases, data quality differences become more 509

noticeable, making it suitable for large datasets 510

with low usage needs. However, as the dataset size 511

grows, the differences in quality between filtered 512

and unfiltered data become smaller. We also found 513

that in the GQA task, the data filtered by CLIP 514

Score did not show significant advantages, likely 515

because the original data already had strong image- 516

text relevance. This highlights a limitation of CLIP 517

7



5% 10% 20% 40%
Data Size

48

50

52

54

56

Pe
rfo

rm
an

ce
Performance on TextVQA

Strategy
Rand
Low
High
Gas

5% 10% 20% 40%
Data Size

52

54

56

58

60

Performance on GQA
Strategy

Rand
Low
High
Gas

5% 10% 20% 40%
Data Size

1050

1100

1150

1200

1250

1300

1350

1400
Performance on MME

Strategy
Rand
Low
High
Gas

5% 10% 20% 40%
Data Size

66

68

70

72

74

76

Performance on POPE
Strategy

Rand
Low
High
Gas

(a) Performance comparison of different strategies based on Text-Quality Score on TextVQA, GQA, MME, and POPE datasets.
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(b) Performance comparison of different strategies based on CLIP-Score on TextVQA, GQA, MME, and POPE datasets.

Figure 3: Overall performance comparisons across different strategies and datasets. (a) and (b) correspond to
ablation studies on individual selection stratege based on Text-Quality Score and CLIP-Score.

Score in selecting certain datasets. To address this518

issue, we recommend using a combined sampling519

approach for a better assessment of data quality.520

Effectiveness of Combined Sampling As shown521

in Figure 4, we identified 9 candidate regions based522

on the original data distribution. These regions523

represent clusters of data, reflecting the similari-524

ties and differences among samples. To create the525

combined distribution sampling data, we randomly526

sampled 5% of the overall data from each candi-527

date region. This method ensures diversity in the528

samples while effectively capturing the underlying529

structure of the data. After constructing the com-530

bined distribution sampling data, we trained the531

model using the same settings as the single-method532

approach and tested it on several datasets, includ-533

ing TextQA (Singh et al., 2019a), GQA (Hudson534

and Manning, 2019a), POPE (Li et al., 2023a), and535

MME (Fu et al., 2023). And, the performance re-536

sults are shown in Figure 4, which indicate that in537

the upper right area—where both CLIP and Text-538

Quality Score are high—the model generally per-539

forms better. This suggests that in general task, the540

combination of the two sampling methods can ef-541

fectively select data that helps improve the model’s542

performance. By using this combined sampling543

method based on the distribution, we enhance the544

representativeness and quality of the data, thereby 545

improving the model’s training efficiency. 546

5 Conclusion 547

In this work, we proposed DOSE, an efficient 548

and practical method for selecting data for mul- 549

timodal instruction tuning. DOSE uses off-the- 550

shelf models to separately score text quality and 551

image–text alignment, and combines them into a 552

joint quality–alignment distribution. Using adap- 553

tive weighted random sampling, DOSE selects in- 554

formative samples while preserving data diversity. 555

Experimental results show that DOSE achieves a 556

strong balance between model performance and 557

data selection cost. On both general tasks and spe- 558

cialized math benchmarks, DOSE reaches the per- 559

formance of full-dataset training using only 20% 560

of the data, and even surpasses it when using 40% 561

to 80% subsets. Compared to existing methods, 562

DOSE outperforms unseen-data selection strategies 563

in both effectiveness and efficiency. Importantly, 564

DOSE operates entirely at inference time and does 565

not require any fine-tuning, significantly reducing 566

time and computational cost. These findings high- 567

light the importance of high-quality data selection 568

in multimodal learning and demonstrate that DOSE 569

is a scalable and practical solution, especially for 570

resource-constrained environments. 571
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6 Limitations572

While our method demonstrates strong perfor-573

mance and high efficiency, our study is constrained574

by the experimental cost and a limited exploration575

budget. We evaluated only an array of sampling576

ratios and primarily tested our method on LLaVA-577

1.5 models (7B & 13B), without assessing more578

fine-grained sampling ratios or more types of mod-579

els. As a result, the generality of DOSE across580

additional sampling ratios and diverse architectures581

remains to be validated in future work.582
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A Benchmarks 850

GQA (Hudson and Manning, 2019b), which fo- 851

cuses on reasoning about visual attributes like color 852

and shape, and VQA-v2 (Goyal et al., 2017), which 853

assesses broader visual reasoning. MME (Fu et al., 854

2024) evaluates both perceptual abilities and cog- 855

nitive reasoning, while TextVQA (Singh et al., 856

2019b) tests OCR-based reasoning. POPE (Li et al., 857

2023b) addresses object hallucination, assessing 858

models’ ability to avoid generating non-existent 859

objects. VizWiz (Gurari et al., 2018) focuses on 860

basic visual reasoning for users who are blind, and 861

ScienceQA (Lu et al., 2022) evaluates knowledge- 862

grounded question answering. Together, these 863

benchmarks provide a comprehensive test of rea- 864

soning, perception, and understanding. Meanwhile, 865

for the Special VQA task, we use MathVista (Lu 866

et al., 2023), a benchmark designed to assess math- 867

ematical reasoning in visual contexts. It comprises 868

6,141 questions from various datasets and covers 869

categories such as FQA, GPS, MWP, TQA, and 870

VQA. With a focus on arithmetic, algebra, and 871

logic, MathVista includes a diverse range of image 872

types, making it an essential platform for evaluating 873

models’ capabilities in mathematical reasoning. 874

B Result Analysis 875

To understand how our proposed data selection 876

strategy enhances training performance and effi- 877

ciency, we conducted a visualization and analysis 878

of the data used in LLaVA stage 2, consisting of 879

665k data points. In the left panel of Figure 5, we 880

plotted the CLIP-Score and Text-Quality Score for 881

each data point, revealing a significant concentra- 882

tion of data points in the central area. This suggests 883

that the data likely follows a normal distribution in 884

both scores, indicating regions of higher data qual- 885

ity. These insights led us to examine performance 886

variations across different regions, as discussed in 887

Section 4.3. We found that areas with higher con- 888

centrations of data points generally correlated with 889

better performance. This understanding drove us 890
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to combine these insights with WRS to create a891

high-quality data subset selection strategy.892

We then visualized the distributions resulting893

from random sampling (light blue) and WRS sam-894

pling (light green) in the right panel of Figure895

5. The WRS sampling distribution shows a pro-896

nounced concentration in regions with higher CLIP897

and Text-Quality Scores, effectively validating our898

strategy for assessing data quality and demonstrat-899

ing the benefits of our sampling approach.900
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Tasks Examples of Task Templates

Original Template Question: " ⟨image⟩ What are the colors of the bus in the image? "
Answer: " The bus in the image is white and red. "

Scoring Template

Question: " ### What are the colors of the bus in the image? The bus in the image is white and red. ### Does the previous
paragraph demarcated within ### contain informative signal for visual instruction tuning a vision-language model? An
informative data point should be well-formatted, contain usable knowledge of the world, and strictly NOT have any harmful,
racist, sexist, etc. content. OPTIONS: -yes -no "
Answer: " Response: yes"

Table 3: Task template examples. "Original Template" represents the original format of the data, while "Scoring
Template" represents the format used to assist in evaluating the quality of the text within the data. ⟨image⟩ indicates
that the original data contains corresponding image information; in the scoring template, we only assess the quality
of the textual information, so this token is omitted.
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Figure 4: Performance comparison of different part datasets.
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Figure 5: (Left) The combined distribution of Text-Quality and CLIP Score. The combined distribution is
plotted with Text-Quality Score on the X-axis and CLIP Score on the Y-axis, forming a 2D distribution. The density
is illustrated, where lighter colors indicate lower densities and brighter colors represent higher densities. (Right)
The combined distribution of sampling results of 665K data of LLaVA Stage 2. The same axis settings as the
left figure are used, with an additional z-axis representing the data density. The height of the z-axis corresponds to
the density of data in the respective region.

13


	Introduction
	Related Work
	Data Quality Scoring 
	Data Selection on Distribution

	Methodology
	Off-the-Shelf Quality Assessment
	Weighted Random Sampling

	Experiments
	Setup
	Main Results
	Ablation Study

	Conclusion
	Limitations
	Benchmarks
	Result Analysis

