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Abstract

Large-scale multimodal data have greatly ac-
celerated the progress of vision-language mod-
els. However, selecting high-quality and di-
verse training data under limited data budgets
remains an under-explored problem. We pro-
pose DOSE, a novel data selection pipeline that
uses off-the-shelf models—without any fine-
tuning on the target corpus—to independently
evaluate text quality and image—text alignment.
These scores are combined into a joint qual-
ity—alignment distribution, from which we ap-
ply adaptive weighted random sampling to se-
lect informative samples while preserving long-
tail diversity. Extensive experiments on general
VQA and math benchmarks show that DOSE
enables a flexible trade-off between model per-
formance and data selection efficiency. Re-
markably, DOSE achieves near full-dataset per-
formance using only 20% of the original data,
and can even surpass the full-dataset baseline
when using larger subsets. Since DOSE only re-
quires inference-time computation and no addi-
tional fine-tuning, it is particularly suitable for
resource-constrained settings and fast model
development cycles.

1 Introduction

Visual instruction tuning has been widely adopted
for training MLLMs (Liu et al., 2023; Bai et al.,
2023), enabling these models to understand lan-
guage instructions based on visual content. Current
approaches typically rely on collecting or synthesiz-
ing large instruction tuning datasets to improve the
model capabilities (Zhao et al., 2023; Wang et al.,
2024a; Shi et al., 2024; Nguyen et al., 2023). These
datasets, while effective, lead to increased compu-
tational resource strain and high costs in model
development due to its enormous volume. Inspired
by (Zhou et al., 2023), which showed that a high-
quality subset of data can deliver performance com-
parable to that of full-scale data, we aim to develop
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Figure 1: Comparison of data selection methods. (A)
The methods that rely on a single metric from either
vision or text model (dashed line). (B) The methods that
leverage VLMs for data quality assessment. Notably,
the VLMs are already trained on the target data that will
be filtered. (C) Our approach constructs data distribu-
tion by harnessing existing pre-trained models that have
not been exposed to the target data.

a data selection method that retains only the most
valuable examples. This method should substan-
tially reduce computational cost, while maintain-
ing or even exceeding the performance of models
trained on the full dataset.

Effective multimodal data selection consists of
two interdependent components—quality assess-
ment and sampling strategy. Quality assessment
encompasses (1) lightweight, model-agnostic cues
such as early-training loss norms in EL2N (Paul
et al,, 2021) and confidence margins in Self-
Filter (Chen et al., 2024), and (2) sophisticated,
model-driven measures such as gradient-influence
scores in LESS (Cao et al., 2023), multi-task con-
sensus in ICONS (Wu et al., 2024b), and small-
model activation grouping in COINCIDE (Lee
et al., 2024). Lightweight metrics add negligible
overhead but suffer from ignoring high-value long-



tail examples (Marion et al., 2023a), which de-
grades downstream accuracy; by contrast, gradient-
based and clustering approaches yield more pre-
cise quality estimates yet demand costly backward
passes or expensive clustering pipelines that under-
mine overall efficiency. Sampling strategies add
another layer of complexity: fixed-threshold filters
hoard only the highest-scoring samples (Cao et al.,
2023), neglecting mid-range and tail instances (Wu
et al., 2024a); stratified or weighted schemes rely
on fragile density or distribution estimates that mag-
nify biases when miscalculated; and iterative, multi-
round pipelines only compound inefficiencies (Wu
et al., 2024b). Critically, most techniques validate
exclusively on near-domain splits and offer scant
insight into true cross-domain or long-tail general-
ization (Lee et al., 2024), leaving the development
of efficient, semantically diverse, and robust se-
lection strategies for novel domains still largely
unexplored.

To balance downstream accuracy, computational
cost, and cross-domain generalization, we intro-
duce a two-stage pipeline. In the first stage—the
Quality Scoring via Off-the-Shelf Models—we
leverage instruction-tuned LLMs with carefully en-
gineered prompts to assign each long text or ques-
tion—answer pair an approval probability (Sachdeva
et al., 2024) , and use a vision—language match-
ing network to compute an alignment score for
every image—caption pair (Hessel et al., 2021).
Both metrics require only a single forward pass,
avoiding any backward propagation or additional
training, and leverage their rich pre-trained rep-
resentations to produce quality estimates with
strong cross-domain generalization. In the sec-
ond stage—Weighted Random Sampling—we fit
empirical density estimates to these approval and
alignment scores, then perform adaptive weighted
sampling: higher-scoring samples are propor-
tionally more likely to be selected, while ev-
ery score interval—including low-density long-
tail regions—retains a nonzero chance of inclu-
sion. This two-stage approach produces a com-
pact, information-rich coreset that preserves rare
but valuable examples, matches or exceeds full-
dataset performance on both near-domain and truly
unseen tasks, and enables rapid, resource-efficient
training without sacrificing robustness or semantic
diversity.

We conducted extensive evaluations on general
VQA benchmarks and specialized math tasks, us-
ing LLaVA-1.5-7B and LLaVA-1.5-13B as base-

lines. Remarkably, with only 20 % of the data,
DOSE retains 96 % of full-data performance on
general VQA with 20 % of the data and even sur-
passes full-data results on math tasks using 20 %
subset. Moreover, in terms of both efficiency and
performance, DOSE outperforms methods that re-
quire prior exposure to the filtered data, demon-
strating a superior balance of performance, com-
putational cost, cross-domain generalization, and
sample diversity.
Our contributions are summarized as follows:

* We propose DOSE, a data selection method
for multimodal LLMs. It leverages existing
pre-trained, off-the-shelf models to evaluate
text quality and image-text relevance, thereby
identifying high-quality training samples.

» Extensive experiments demonstrate that our
method consistently outperforms various base-
lines. By leveraging Pareto optimality, our
method achieves advanced performance in
both effectiveness and efficiency.

* Further experiments on multimodal math
benchmarks validate that our approach can
can generalize well to the training data in spe-
cialized domain and merely a small fraction
of training data can achieve comparable per-
formance of full training set.

2 Related Work
2.1 Data Quality Scoring

Quality-score was originally developed for impor-
tance sampling but is now widely used in training
LLMs. The scoring algorithm evaluates sample
importance using various methods, including mea-
suring disagreement rates between models (Chitta
et al., 2021), assessing whether a sample is likely
to be "forgotten" (Toneva et al., 2019), "memo-
rized" (Feldman and Zhang, 2020), or "unlearn-
able" (Mindermann et al., 2022), and applying
perplexity filtering to prioritize low-perplexity sam-
ples while discarding high-perplexity ones (Wen-
zek et al., 2019; Marion et al., 2023b; Muen-
nighoff et al., 2023). Recent advancements have en-
abled perplexity estimation through efficient model-
based simulators, eliminating the need for full LLM
inference (Guu et al., 2023). Additionally, some
approaches select training data by minimizing the
distance between the selected data distribution and



high-quality sources such as Wikipedia or books.
This is often achieved through contrastive classi-
fiers or feature-space matching (Radford et al.,
2019; Anil et al., 2023; Javaheripi et al., 2023). To
more effectively assess the comprehensive quality
of multimodal image-text data, we introduce the
CLIP-Score (Hessel et al., 2021) for evaluating
image-text relevance. For textual data, we lever-
age the reasoning capabilities of instruction-tuned
LLMs to directly evaluate sample quality. Specifi-
cally, we use the acceptance probability assigned
by the LLM to measure the likelihood that a given
text is valid and meaningful.

2.2 Data Selection on Distribution

Data selection is crucial for improving model train-
ing quality and can be divided into two categories:
distribution-agnostic filtering and distribution-
aware selection. Distribution-agnostic methods
focus on the quality of individual samples, typ-
ically using thresholds to identify subsets. For
example, these methods may detect mismatched
text-image pairs or misleading elements in images.
Specifically, (Nguyen et al., 2023; Mahmoud et al.,
2023) employ BLIP to identify mismatches be-
tween captions and images, while (Maini et al.,
2023) leverage OCR models to filter images where
text is the only feature correlated with the caption.
In contrast, distribution-aware methods optimize
subset selection by statistically analyzing the over-
all data distribution. Classical techniques, such
as those proposed in (Wei et al., 2015; Raskutti
and Mahoney, 2016; Coleman et al., 2019), aim to
maximize subset performance under a fixed budget.
More recently, (Wang et al., 2023) introduced an
approach that replaces traditional models with a
trained codebook, clusters samples, and selects rep-
resentative samples from each cluster. Our method
builds upon these ideas by constructing a joint dis-
tribution of image-text relevance and text quality.
We carefully analyze the impact of different regions
and diversity within this joint distribution on data
quality, ultimately selecting the most representative
samples for training.

3 Methodology

Multimodal data selection mainly focuses on as-
sessment data quality, with existing methods typi-
cally assessing text quality and the overall quality
of image-text pairs. To achieve comprehensive
quality assessment, we combine these methods and

create a unified scoring strategy. Existing text qual-
ity evaluation methods either introduce bias toward
noisy samples with information or face the issue
where the evaluation model has already seen the
data during training. To address this, we introduce
the Text-Quality Score, which leverages the reason-
ing capabilities of a pre-trained LLM to assess text
quality. Additionally, we use the widely adopted
CLIP-Score to evaluate the quality of image-text
pairs. Meanwhile, selecting data using a static
threshold may lead to a loss of diversity and the
discarding of valuable edge cases, potentially lim-
iting performance. To address this, we introduce
a weighted sampling strategy that integrates data
diversity with score-based selection. This approach
enables us to select a high-quality subset while
maintaining stability and representativeness, ensur-
ing both performance and diversity are preserved.

3.1 Off-the-Shelf Quality Assessment

We leverage the reasoning capabilities of pre-
trained LLMs and multimodal language mod-
els to evaluate data quality. Inspired by Ask-
LLM (Sachdeva et al., 2024), we prompt the LLM
to predict whether an input sample is suitable for
fine-tuning a multimodal language model. As il-
lustrated in Table 3, the LLM predicts “yes” when
the text is informative, well-formatted, and aligned
with visual instruction tuning objectives. The soft-
max probability assigned to the “yes” token serves
as the Text-Quality Score for the sample.

In addition, similar to (Nguyen et al., 2023; Mah-
moud et al., 2023; Maini et al., 2023; Fang et al.,
2023), we use the CLIP-ViT-B32 (OpenAl, 2023)
to obtain CLIP-Score (Hessel et al., 2021) to assess
the alignment between images and their captions.
The CLIP model projects both images and text into
a shared embedding space, and the cosine similarity
between these embeddings quantitatively measures
the image-text relevance.

3.2 Weighted Random Sampling

After obtaining the Text-Quality (x;) and Image-
Text Relevance Scores (y;), we can use Kernel Den-
sity Estimation (KDE) to establish the density dis-
tribution of the data. We define this distribution
as the original distribution p(z). And, to better
accommodate high-quality data in terms of x; and
yi, we construct a new distribution for Weighted
Random Sampling (WRS). We refer to this new
distribution as the target distribution ¢(x), and by
performing random sampling from ¢ (), we obtain



the final sampling results.

Sampling Procedure First, we compute the sta-
tistical properties of the original data, including the
mean [4data and standard deviation og,e,. Next, we
use KDE to fit the probability density function of
the original data:

N
KDE(z) = ﬁ ;K<x 1)

where K () is the Gaussian kernel, N is the
number of samples, and & is the bandwidth. We
first remove outliers via DBSCAN (label = —1),
then compute the KDE on the remaining data and
locate its principal mode:
KDE(z). (2)
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where /; is the DBSCAN label for x;. We then set
the final target center to

Hpeak_kde T UDB
Mpeak_wrs = 2 .

Based on fipeak_wrs,» Wwe model the target distribu-
tion g(x) and the original distribution p(x) as Gaus-
sians with means fipeak_wrs and i, respectively.

Based on this, we define the target distribution
¢(z) and the original distribution p(z) as normal
distributions with the following probability density
functions:
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where fipeax 18 the mean of the target distribution,
and ogaq, 1S the standard deviation (consistent with
the original data). To perform WRS, we calculate
the weight for each data point x; as the ratio of the
probability density under the target distribution to
that under the original distribution:

q(w;)
w; = ————, 4
" op() e @
where € = 1071 is a small constant added to avoid
division by zero. Subsequently, we normalize the

weights:

/ Wy
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Finally, based on the normalized weights w}, we
perform weighted random sampling to select M
samples (without replacement) from the original
data:

sz{xhaxigwnaxi]\{}v (6)

where i are indices randomly drawn according
to the weights w/. Through these steps, we gener-
ate a new sample set S that better aligns with the
characteristics of the target distribution ¢(z). Also,
based on the Image-Text Relevance Scores (y;), we
can apply the same sampling strategy to obtain the
corresponding subset:

’ yi]u}a (7)

Combined Sampling Once the positions of all
data points are determined in a two-dimensional
coordinate space—where each point is defined by
x; (text quality) and y; (image-text relevance)—we
construct a density-like distribution that captures
the frequency of data points within local regions.
This distribution reveals patterns in the data, en-
abling us to analyze and compare the data distri-
bution before and after sampling. Based on this
distribution, we design a sampling strategy that
prioritizes regions with both high densities and fa-
vorable characteristics in terms of z; and y;. Specif-
ically, we define subsets S, and S, which capture
key features along the x; and y; dimensions, re-
spectively. By combining the intersection of S,
and S, we derive the final sampling results.

Sy = {yiluyi27"‘

DOSE = {(z,yi) | (xi,y:) € Sz NSy} (8)

This approach ensures that the sampled points
not only reflect the underlying data distribution but
also align with preferred ranges for text quality and
image-text relevance.

4 Experiments

In this section, we first describe our implementa-
tion and benchmark setups, then present results
on VLM evaluations and ablation studies. We as-
sess general VQA performance across nine bench-
marks (see the Appendix for dataset details) and,
following ICONS and COINCIDE, report the aver-
age relative performance (Rel.) to quantify cross-
benchmark generalization.



Method VQAv2 GQA VizWiz SQA-I TextVQA POPE MME MMBench LLaVA-W | Rel. (%)
en cn Bench
Full ‘ 79.1 63.0 47.8 68.4 58.2 86.4 14769 66.1 589 67.9 ‘ 100
Methods that already used full data before data selection
COINCIDE | 76.5 59.8 46.8 69.2 55.6 86.1 14956 63.1 545 67.3 97.4
ICONS 76.3 60.7 50.1 70.8 55.6 87.5 14857 63.1 558 66.1 98.6
Methods that never used full data before data selection
Random 75.7 57.6 44.7 66.5 54.2 84.1 1389.0 622 54.8 65.0 94.5
CLIP-Score | 734 514 43.0 65.0 54.7 853 13316 552 520 66.2 91.2
EL2N 76.2 58.7 43.7 65.5 53.0 843 14395 532 474 64.9 92.0
Perplexity 75.8 57.0 47.8 65.1 52.8 82.6 13414 52.0 458 68.3 91.6
SemDeDup 74.2 54.5 46.9 65.8 55.5 84.7 13769 522 485 70.0 92.6
D2-Pruning 73.0 584 419 69.3 51.8 857 13912 65.7 57.6 63.9 94.8
Self-Sup 74.9 59.5 46.0 67.8 493 835 13359 614 538 63.3 934
Self-Filter 73.7 58.3 53.2 614 52.9 83.8 13062 48.8 453 64.9 90.9
Ours | 773 586 465 672 544 83.6 14622 625 548 658 | 96.0

Table 1: Comparisons with baseline methods. For a fair comparison, all models are trained by 20% of full training
data and the data subsets are selected by different methods. The best and second best results for each benchmark
are shown in bold and underlined, respectively. Our method achieves the highest relative performance (98.6%),
consistently outperforming existing methods, including COINCIDE (97.4%) (Lee et al., 2024) and D2-Pruning
(94.8%) (Maharana et al., 2023), while methods like EL2N (Paul et al., 2021), Perplexity (Marion et al., 2023a), and
CLIP-Score (Hessel et al., 2021) show limited effectiveness with relative performance around 91-92%.

4.1 Setup

Implementation Details Our method has been
validated on both pre-training and downstream
tasks for VLMs. For the pre-training task, we fol-
low the settings of LLaVA-1.5-7b (Liu et al., 2023)
and score and filter the data in stage 2 of LLaVA,
retrain stage 2, and compare the performance dif-
ferences across various data scales and filtering
methods. For the downstream task, we follow
the settings of Math-LLaVA (Wang et al., 2024b)
and apply the same method to score and filter the
MathV360k (Shi et al., 2024) dataset. Based on
the pre-trained LLaVA-1.5-13b (Liu et al., 2023),
we perform continuous fine-tuning. In the Text-
Quality Scoring phase, we score the 665k text data
using Vicuna-7b (Team, 2023), obtaining its orig-
inal distribution. Based on this distribution, we
adaptively fit a WRS sampling. Similarly, we use
CLIP-Score (Hessel et al., 2021) to obtain another
distribution and perform sampling. By combining
this with the proposed combined sampling strategy,
we obtain the final sampling results, which are used
for the main results.

4.2 Main Results

Comparisons with Baselines We compare our
DOSE against a suite of established data-selection
methods using a 20 % subset of LLAVA-1.5’s
Stage-2 data, shown in Table 2. Baselines in-

clude Random sampling; CLIP-Score (Hessel
et al., 2021) for image—text alignment; EL2N (Paul
et al., 2021) based on embedding L2 norms; Per-
plexity (Marion et al., 2023a) from language-
model likelihoods; SemDeDup (Abbas et al., 2023)
for semantic deduplication; D2-Pruning (Maha-
rana et al., 2023) for distribution-aware pruning;
and Self-Sup (Sorscher et al., 2022) leveraging
self-supervised signals. We also include vision-
language—specific approaches Self-Filter (Chen
et al., 2024) and COINCIDE (Lee et al., 2024).
DOSE achieves the highest overall relative perfor-
mance (96.0 %), surpassing all unseen-selection
baselines by over 1 pp—e.g., improving on D2-
Pruning (94.8 %)—and closing the gap to seen-data
methods like ICONS (98.6 %) to just 2.6 pp. No-
tably, DOSE outperforms Random on every bench-
mark (e.g., GQA: 58.6 vs 57.6; TextVQA: 54.4 vs
54.2) and matches or exceeds stronger baselines
across tasks from VQA-v2 through MMBench,
demonstrating its ability to select a small, high-
value subset that nearly rivals full-data finetuning.

While DOSE achieves strong unseen-data selec-
tion performance (96.0 % Rel.), it trails seen-data
methods such as ICONS (Wu et al., 2024b) (98.6
%) and COINCIDE (Lee et al., 2024) (97.4 %).
The reason is that those approaches first fine-tune
on the full dataset and then use their own learned
model parameters to rank or cluster samples, giving
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Figure 2: DOSE Data-Selection Efficiency and Wall-Clock Time Trade-Offs. (Left) Average relative performances
of all coreset selection techniques at different sampling ratios for the LLaVA-1.5 dataset. (Right) Comparison of
coreset selection techniques on average relative performance and wall-clock time cost. The wall-clock time cost
includes both the data selection and finetuning of the target LVLM. The time cost is measured in hours of running

time on a computing node with 4xV100 GPUs.

them direct access to downstream performance sig-
nals. In contrast, DOSE relies only on off-the-shelf
pre-trained models—no additional finetuning—so
it cannot leverage those proprietary performance
cues. However, this independence from any prelim-
inary full-data training is also DOSE’s key advan-
tage: it avoids the redundant, expensive pass over
the entire dataset purely for selection purposes, dra-
matically reducing computation and resource costs
while still delivering near—state-of-the-art results
on much smaller subsets.

Different Selection Ratio. As shown in Figure
4, we compare DOSE (red solid line with circles)
against ten baselines—Random (black), Perplex-
ity (Marion et al., 2023a), CLIP-Score (Hessel
et al., 2021), EL2N (Paul et al., 2021), SemD-
eDup (Abbas et al., 2023), Self-Sup (Sorscher et al.,
2022), D2-Pruning (Maharana et al., 2023), COIN-
CIDE (Lee et al., 2024), ICONS (Wu et al., 2024b),
and Self-Filter—across sampling ratios from 5 % to
60 %. DOSE rapidly climbs to 99 % Rel. by 40 %
sampling, matching or exceeding all other unseen-
data methods and even approaching the seen-data
ICONS (Wu et al., 2024b) curve at higher ratios.

Pareto Superior. Among all data selection base-
lines showen in Figure 4, DOSE achieves the
largest performance gains among methods that do
not rely on prior exposure to the training data,
outperforming baselines such as Random, CLIP-
Score, EL2N, SemDeDup, Perplexity, Self-Sup,
D2-Pruning, and Self-Filter by 1-4 percentage

points under identical sampling ratios and time
budgets. Even against the two leading seen-data
methods, ICONS and COINCIDE, DOSE holds
clear advantages. ICONS and COINCIDE both
require an expensive full-data fine-tuning pass be-
fore sample selection—a cost that would recur for
any new dataset yet is omitted from their reported
compute comparisons—whereas DOSE skips this
phase entirely, relying solely on off-the-shelf pre-
trained models for scoring and weighted sampling.
As aresult, direct comparisons of compute costs are
misleading. Moreover, DOSE’s linear-time scoring
lets it reach 97.4 % relative performance in 12 h
and 98.5 % in 22 h, whereas COINCIDE needs 15
h/97.4 % and 25 h/98.4 %, and ICONS—Iacking
a time-optimized pipeline—Ilags further behind. Fi-
nally, DOSE requires no clustering hyperparam-
eters, gradient-influence computations, or extra
network training—its runtime scales linearly with
dataset size and is immediately deployable—while
seen-data methods add complexity that complicates
tuning and extension.

Unseen-task Generalization. As shown in Table
2, we filtered the MathV360K (Shi et al., 2024)
dataset and performed continuous fine-tuning on
LLaVA-1.5-13B (Liu et al., 2023) using high-
quality subsets of varying proportions. In this pro-
cess, we strictly adhered to the experimental set-
tings of Math-LLaVA (Shi et al., 2024). Since the
evaluation on MathVista requires GPT-3.5 (Brown
et al., 2020) to extract key results, and the perfor-
mance of different period versions may vary, we



Size Math-LLaVA on MathVista
FQA GPS MWP TQA VQA ALG | ARI GEO LOG NUM SCI STA | Rel.% Aver.

Random selection on MathV360K

5% 22,7 38.0 30.7 41.1 386 367 | 314 381 21.6 306 385 239 | 884 32.7

20% 309 442 429 399 335 399 | 365 439 288 27.8 451 29.6 | 98.7 36.9

40% 323 524 43,0 373 352 456 | 357 523 162 278 419 359 | 976 38.0
DOSE selection on MathV360K

5% 334 389 30.1 36.1 34.1 363 | 295 368 243 264 36.1 319 | 884 32.8

10% 30.5 399 339 399 318 374 | 300 402 162 267 402 319 | 86.8 33.2

20% 33.1 457 457 424 369 431 | 385 452 297 313 410 359 | 1048 39.1

40% 327 495 473 437 346 470 | 37.1 494 189 278 40.2 375 | 1004 38.8

65% 30.5 495 538 424 29.1 448 | 374 485 8.1 243 419 375 | 93.1 37.3

80% 324 534 495 456 363 484 | 394 519 162 278 467 382 | 103.5 40.5
100%" | 379 528 468 443 279 484 | 332 519 189 236 451 419 100 394

Table 2: Comparison with different data selection scales on domain-specific benchmarks. ' represents our
reproduced results of Math-LLaVA-13B. The best results in all tasks are in bold. MathVista is divided in two ways:
task type or mathematical skill, and we report the accuracy under each subset. Rel.% keep same setting with general
benchmarks, and Aver. means the average score of all tasks.

reproduced the results of Math-LLaVA as a bench-
mark for comparison. The experimental results
demonstrate that our method achieves performance
comparable to Math-LLaVA (Shi et al., 2024) when
using only 20% of the high-quality data. Further-
more, when using 80% of the data, the overall
performance of the model improves by 1 percent-
age point. This demonstrates that the knowledge
embedded in CLIP (Hessel et al., 2021) and Vi-
cuna7B (Team, 2023), which we used for data fil-
tering, is sufficiently comprehensive to not only
select high-quality general data but also be effec-
tively applied in special domains.

4.3 Ablation Study

In this section, we conduct ablation experiments by
comparing different scoring strategies, score-based
sampling strategies, and the fusion of these two
strategies. The results are presented in Figure 3a,
Figure 3b, and Figure 4 in Appendix.

Effectiveness of Single Methods To verify the
effectiveness of Text-Quality and CLIP scores indi-
vidually, we first validated the data selection results
of each method in Stage 2 of the LLaVA training
program, as shown in Figure 3a. We compared
four strategies based on the Text-Quality Score: the
“Rand” strategy, which randomly samples from the
entire dataset; the “High” strategy, which samples
data above a certain threshold based on a scoring
method; the “Low” strategy, which samples data

below a threshold; and the “Gas” strategy, which
combines the overall data distribution with the high-
score threshold and uses an adaptive Gaussian func-
tion for WRS sampling. When evaluating and sam-
pling text data, performance generally improved
as the data size increased from 5% to 40%, but
the effectiveness of the strategies varied. Overall,
the “High” strategy consistently outperformed the
“Low” strategy, demonstrating that Text-Quality
Score can effectively assess data quality. However,
with smaller data sizes, the “High” strategy per-
formed worse than “Rand” indicating that diversity
is more important than quality when the data size
is small. By combining WRS sampling and balanc-
ing both diversity and quality, the “Gas” strategy
outperformed “Rand,” confirming the effectiveness
of the data selection method.

In our evaluation of image-text relevance, shown
in Figure 3b, we compared four sampling strate-
gies using the CLIP Score. The results revealed
that the “Gas” strategy significantly outperformed
the others. This suggests that as the filtering ratio
decreases, data quality differences become more
noticeable, making it suitable for large datasets
with low usage needs. However, as the dataset size
grows, the differences in quality between filtered
and unfiltered data become smaller. We also found
that in the GQA task, the data filtered by CLIP
Score did not show significant advantages, likely
because the original data already had strong image-
text relevance. This highlights a limitation of CLIP
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Figure 3: Overall performance comparisons across different strategies and datasets. (a) and (b) correspond to
ablation studies on individual selection stratege based on Text-Quality Score and CLIP-Score.

Score in selecting certain datasets. To address this
issue, we recommend using a combined sampling
approach for a better assessment of data quality.

Effectiveness of Combined Sampling As shown
in Figure 4, we identified 9 candidate regions based
on the original data distribution. These regions
represent clusters of data, reflecting the similari-
ties and differences among samples. To create the
combined distribution sampling data, we randomly
sampled 5% of the overall data from each candi-
date region. This method ensures diversity in the
samples while effectively capturing the underlying
structure of the data. After constructing the com-
bined distribution sampling data, we trained the
model using the same settings as the single-method
approach and tested it on several datasets, includ-
ing TextQA (Singh et al., 2019a), GQA (Hudson
and Manning, 2019a), POPE (Li et al., 2023a), and
MME (Fu et al., 2023). And, the performance re-
sults are shown in Figure 4, which indicate that in
the upper right area—where both CLIP and Text-
Quality Score are high—the model generally per-
forms better. This suggests that in general task, the
combination of the two sampling methods can ef-
fectively select data that helps improve the model’s
performance. By using this combined sampling
method based on the distribution, we enhance the

representativeness and quality of the data, thereby
improving the model’s training efficiency.

5 Conclusion

In this work, we proposed DOSE, an efficient
and practical method for selecting data for mul-
timodal instruction tuning. DOSE uses off-the-
shelf models to separately score text quality and
image—text alignment, and combines them into a
joint quality—alignment distribution. Using adap-
tive weighted random sampling, DOSE selects in-
formative samples while preserving data diversity.
Experimental results show that DOSE achieves a
strong balance between model performance and
data selection cost. On both general tasks and spe-
cialized math benchmarks, DOSE reaches the per-
formance of full-dataset training using only 20%
of the data, and even surpasses it when using 40%
to 80% subsets. Compared to existing methods,
DOSE outperforms unseen-data selection strategies
in both effectiveness and efficiency. Importantly,
DOSE operates entirely at inference time and does
not require any fine-tuning, significantly reducing
time and computational cost. These findings high-
light the importance of high-quality data selection
in multimodal learning and demonstrate that DOSE
is a scalable and practical solution, especially for
resource-constrained environments.



6 Limitations

While our method demonstrates strong perfor-
mance and high efficiency, our study is constrained
by the experimental cost and a limited exploration
budget. We evaluated only an array of sampling
ratios and primarily tested our method on LLaVA-
1.5 models (7B & 13B), without assessing more
fine-grained sampling ratios or more types of mod-
els. As a result, the generality of DOSE across
additional sampling ratios and diverse architectures
remains to be validated in future work.
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A Benchmarks

GQA (Hudson and Manning, 2019b), which fo-
cuses on reasoning about visual attributes like color
and shape, and VQA-v2 (Goyal et al., 2017), which
assesses broader visual reasoning. MME (Fu et al.,
2024) evaluates both perceptual abilities and cog-
nitive reasoning, while TextVQA (Singh et al.,
2019b) tests OCR-based reasoning. POPE (Li et al.,
2023b) addresses object hallucination, assessing
models’ ability to avoid generating non-existent
objects. VizWiz (Gurari et al., 2018) focuses on
basic visual reasoning for users who are blind, and
ScienceQA (Lu et al., 2022) evaluates knowledge-
grounded question answering. Together, these
benchmarks provide a comprehensive test of rea-
soning, perception, and understanding. Meanwhile,
for the Special VQA task, we use MathVista (Lu
et al., 2023), a benchmark designed to assess math-
ematical reasoning in visual contexts. It comprises
6,141 questions from various datasets and covers
categories such as FQA, GPS, MWP, TQA, and
VQA. With a focus on arithmetic, algebra, and
logic, MathVista includes a diverse range of image
types, making it an essential platform for evaluating
models’ capabilities in mathematical reasoning.

B Result Analysis

To understand how our proposed data selection
strategy enhances training performance and effi-
ciency, we conducted a visualization and analysis
of the data used in LLaVA stage 2, consisting of
665k data points. In the left panel of Figure 5, we
plotted the CLIP-Score and Text-Quality Score for
each data point, revealing a significant concentra-
tion of data points in the central area. This suggests
that the data likely follows a normal distribution in
both scores, indicating regions of higher data qual-
ity. These insights led us to examine performance
variations across different regions, as discussed in
Section 4.3. We found that areas with higher con-
centrations of data points generally correlated with
better performance. This understanding drove us
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to combine these insights with WRS to create a
high-quality data subset selection strategy.

We then visualized the distributions resulting
from random sampling (light blue) and WRS sam-
pling (light green) in the right panel of Figure
5. The WRS sampling distribution shows a pro-
nounced concentration in regions with higher CLIP
and Text-Quality Scores, effectively validating our
strategy for assessing data quality and demonstrat-
ing the benefits of our sampling approach.
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Tasks Examples of Task Templates

Original Template Question: " (image) What are the colors of the bus in the image? "
& p Answer: " The bus in the image is white and red. "

Question: " ## What are the colors of the bus in the image? The bus in the image is white and red. ### Does the previous
paragraph demarcated within ### contain informative signal for visual instruction tuning a vision-language model? An

informative data point should be well-formatted, contain usable knowledge of the world, and strictly NOT have any harmful,
racist, sexist, etc. content. OPTIONS: -yes -no "

Answer: " Response: yes"

Scoring Template

Table 3: Task template examples. "Original Template" represents the original format of the data, while "Scoring
Template" represents the format used to assist in evaluating the quality of the text within the data. (image) indicates
that the original data contains corresponding image information; in the scoring template, we only assess the quality

of the textual information, so this token is omitted.

Performance on TextQA Performance on GQA Performance on MME Performance on POPE

(%) K>ean22Y
(%) K020V
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Figure 5: (Left) The combined distribution of Text-Quality and CLIP Score. The combined distribution is
plotted with Text-Quality Score on the X-axis and CLIP Score on the Y-axis, forming a 2D distribution. The density
is illustrated, where lighter colors indicate lower densities and brighter colors represent higher densities. (Right)
The combined distribution of sampling results of 665K data of LLaVA Stage 2. The same axis settings as the

left figure are used, with an additional z-axis representing the data density. The height of the z-axis corresponds to
the density of data in the respective region.
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