
Published as a conference paper at COLM 2024

Investigating Instruction Tuning Large Language Models on
Graphs

Kerui Zhu*, Bo-Wei Huang*, Bowen Jin*∗, Yizhu Jiao, Ming Zhong, Kevin Chang
Shou-De Lin, Jiawei Han
University of Illinois at Urbana-Champaign, National Taiwan University
{keruiz2, boweiwh2, bowenj4}@illinois.edu

Abstract

Inspired by the recent advancements of Large Language Models (LLMs)
in NLP tasks, there’s growing interest in applying LLMs to graph-related
tasks. This study delves into the capabilities of instruction-following LLMs
for engaging with real-world graphs, aiming to offer empirical insights
into how LLMs can effectively interact with graphs and generalize across
graph tasks. We begin by constructing a dataset designed for instruction
tuning, which comprises a diverse collection of 79 graph-related tasks from
academic and e-commerce domains, featuring 44,240 training instances
and 18,960 test samples. Utilizing this benchmark, our initial investigation
focuses on identifying the optimal graph representation that serves as a
conduit for LLMs to understand complex graph structures. Our findings in-
dicate that JSON format for graph representation consistently outperforms
natural language and code formats across various LLMs and graph types.
Furthermore, we examine the key factors that influence the generalization
abilities of instruction-tuned LLMs by evaluating their performance on
both in-domain and out-of-domain graph tasks.1

1 Introduction

The success of Large language models (LLMs) in understanding and reasoning the semantic
structure in natural language has brought a great interest in applying this capability to assist
tasks with other modalities such as graphs. Graph stores information through the explicit
connections between nodes and the attributes associated with the nodes and edges, which
is quite different from natural language. To fill the gap between graph and LLM, Ye et al.
(2023); Wang et al. (2024b); He & Hooi (2024); Luo et al. (2024) focus on instruction tuning
LLM on linearized graph representations so that the LLM can learn the graph structure and
solve graph-related tasks based on instructions. Results show that graph instruction-tuned
LLMs outperform traditional Graph Neural Networks (GNNs) (Ye et al., 2023).

However, we notice a lack of fundamental study of the graph representation and deeper
analysis of the instruction-tuned LLM’s generalization ability over empirical graph tasks.
For the graph representation, Chen et al. (2023); Zhao et al. (2023); Wang et al. (2024a)
translate graphs into natural language, while Wang et al. (2024b) represents the graph in
a code-like format. However, it is still unclear how the choice of graph representation
would affect the efficiency of graph instruction tuning. For the generalization, the LLMs
are expected to solve tasks with new requirements, new graph structure distribution, and
even unseen algorithms. This is critical for a general graph problem solver due to the
complexity and variety of graph-related problems. Guo et al. (2023) establish a benchmark
with 10 tasks to assess the proficiency of LLMs in understanding graph data. In this work,
we instruction-tune LLMs on graphs with more fine-grained tasks and comprehensively
analyze their capability concerning generalization.

∗The first three authors contribute equally.
1Code is available at https://github.com/ZhuKerui/graph-instruction-tuning

1

https://github.com/ZhuKerui/graph-instruction-tuning

Published as a conference paper at COLM 2024

Graph sample
Amazon Metadata

Product12

Brand2

Product15

Product13
also_buy

als
o_
bu
y

also_view

prod
uct_

of

MAPLE

Paper9

Author5

Author2
written_by

wr
itte
n_
by

publis
hed_

on

Paper7

cite

Venue2

Graph representation

Natural language
Product12 is also bought together with product15,
product13, is a product of brand2. product13 is also
viewed with product15.

DOT
digraph G {
 product12 -> {product15, product13} [label="also_buy"];
 product12 -> {brand2} [label="product_of"];
 product13 -> {product15} [label="also_view"]
}

JSON
{"product12": {"also_buy": ["product15", "product13"],
"brand": "brand2"}, "product13": {"also_view":
["product15"]}}

Task Generalization

Seen Question
Q: What are the also_buy nodes of Product12?
A: Product13, Product15

Unseen Sub-Task
Q: What are the product_of nodes of Product12?
A: Brand2

Unseen Domain
Q: What are the written_by nodes of Paper9?
A: Author2, Author5

Unseen Answer Type
Q: How many also_buy nodes does Product12 have?
A: 2

Figure 1: Examples of graph representations and three levels of generalization.

To facilitate the analysis of generalization, we build a benchmark for graph instruction
tuning consisting of 14 tasks with 7 categories. We further derive 79 sub-tasks from the 14
tasks and sample 63.2k question-graph pairs from academic and e-commerce networks.

In general, our work focuses on two research questions regarding graph instruction-tuning:

• RQ1: What is the optimal graph representation that serves as a conduit for LLMs to
learn graph structures effectively? For the first question, we experiment with three types
of graph representation: natural language, structured text representation (JSON), and
code (DOT). Figure 1 shows an example of each representation. We instruction-tune LLMs
with each representation separately and evaluate their performance on our constructed
benchmark. The result shows the JSON format offers the best performance across various
LLMs and graph domains.

• RQ2: To what extent can LLMs fine-tuned on limited graph-related tasks generalize
to unseen tasks? To further analyze the generalization of the graph instruction-tuned
model, we propose three levels of generalization, namely Unseen Sub-Task, Unseen Domain,
and Unseen Answer Type, where each level tests the LLM on a scenario not seen during the
training. Figure 1 shows an example question at each level. We conduct comprehensive
experiments on the LLM’s capability to the three levels of generalization. The result indi-
cates that the LLM can generally be improved over a wide range of graph-related tasks
after a limited graph instruction tuning. However, the LLM may easily get overfitted on
simple counting tasks and doesn’t generalize well on inductive reasoning tasks like link
prediction. In addition, our findings also reveal LLM is capable of handling tasks requir-
ing graph algorithms not seen during training, which indicates that graph instruction
tuning enables LLM to derive new algorithms itself based on its understanding of the
graph and the algorithms learned during training.

To summarize, our key contributions are threefold:

• We create a benchmark with fine-grained tasks from two different domain networks,
which allows a comprehensive study of the generalization problem.

• We investigate the influence of different graph representations in graph instruction tuning,
including natural language, JSON, and code. The result shows the JSON format gives the
LLMs the best performance after tuning.

• We propose three levels of generalization for graph-related tasks and conduct extensive
experiments to investigate the generalization of the instruction-tuned LLMs. Our experi-
ments reveal tasks where LLM could be overfitted or hard to generalize. Our experiments
also show LLM can derive algorithms from the learned algorithms.

2

Published as a conference paper at COLM 2024

2 Related Work

2.1 LLMs on Graphs

Inspired by the recent achievements of large language models (LLMs) in natural language
processing tasks, researchers are investigating the use of LLMs for tackling graph-related
tasks (Jin et al., 2023a). Existing works can be organized into two categories depending on
the functions of LLMs. The first category typically relies on LLMs to serve as pretrained
feature extractors (Chien et al., 2021) for graph neural networks (GNNs) (Wu et al., 2020) .
For example, TextGNN (Zhu et al., 2021) proposes to conduct LLM text feature extraction
before GNNs for sponsored search tasks. TAPE (He et al., 2023) adopts LLMs to generate
augmented texts before feeding into medium-scale LMs and GNNs. The second category is
graph-incorporated LLM architectures (Jin et al., 2023b). Specifically, GraphFormers (Yang
et al., 2021) and Edgeformers (Jin et al., 2023c) propose graph-empowered language model
architecture for homogeneous text-attributed graphs and textual-edge graphs respectively.
Heterformer (Jin et al., 2023d) further introduces textless node encoding and proposes
an architecture for heterogeneous text-attributed graphs. However, most existing works
mainly focus on applying LLMs as off-the-shelf encoders or exploring LLM architecture
improvement for graphs. In our work, we investigate the problem of instruction tuning
large language models on graphs.

2.2 Instruction Tuning for LLMs

Instruction tuning (Ouyang et al., 2022; Sanh et al., 2022) is crucial for the latest generation of
LLMs to cater to explicit user commands. In this stage, LLMs are trained using datasets with
specific instructions and the expected responses, which improves LLMs in understanding
and reacting to various human queries in natural language. Instruction tuning can be seen
as a form of meta-learning where the model learns to adapt using the instructions (Zhang
et al., 2023a; Longpre et al., 2023). As a result, these models acquire zero-shot learning ability
which emerges as natural interactions with users. Currently, this paradigm has already
demonstrated its impressive effectiveness across a wide range of natural language tasks,
such as coding generation (Luo et al., 2023), complex reasoning (Mukherjee et al., 2023),
information extraction (Jiao et al., 2023), and creative writing (Li et al., 2023).

Inspired by the success of instruction tuning on texts, recently an increasing research interest
has tried to enable LLMs to generate more accurate and contextually appropriate responses
for graph-structured data. These works typically align the language capacity of LLMs
with the nuances of graph learning tasks. Specifically, Ye et al. (2023) instruction tunes the
LLMs to perform graph tasks with graph structure described in natural language through
highly scalable prompts. Wang et al. (2024b) uses a code-like format to describe graph
information. Luo et al. (2024) is a concurrent work closest to ours. It instruction tunes
LLM on homogeneous graphs and studies the generalization to the graph size, graph
description languages, node ID representation, and out-of-domain tasks. In contrast, we
instruction tunes LLMs on heterogeneous graphs and design fine-grained sub-tasks to
study the generalization. Besides, our work discusses the effect of graph representation on
instruction tuning, which is not well-studied yet.

3 Instruction Tuning on Graph

3.1 Preliminaries

Formally, a general graph can be represented as G = (V, E, TV , TE, ϕV , ϕE), where V is the
set of nodes, E ⊆ V × V is the set of edges, TV and TE are the sets of node types and edge
types, and ϕV : V → TV and ϕE : E → TE are functions that map each node and edge to
its respective type. To facilitate the expression of graph relationships, we introduce the
notation N(v) to denote the set of neighbors of node v, P(u, v) to represent the set of paths
connecting nodes u and v, pu,v as a specific path between nodes u and v, and d(u, v) as the
minimum number of edges on any path between nodes u and v.

3

Published as a conference paper at COLM 2024

3.2 Task Definition

The core of instruction tuning is to involve as diverse a range of tasks as possible to enhance
the model’s generalization capabilities across different tasks. Therefore, in the context of
graphs, we collect various graph tasks with diverse challenges, spanning from structural
analysis to predictive inference. To comprehensively assess LLM’s capabilities in addressing
graph tasks, we categorize tasks according to their target answer type. The answer type
delineates the nature of the output required for a graph task. We identify seven distinct
answer types: node, pair, count, boolean, path, graph and link prediction. Node task seeks
to identify specific nodes within the graph. Pair task seeks to identify node pairs connected
by specific relationships or properties. Count task requires counting the number of certain
nodes or paths. Boolean task provides a true/false answer to indicate the existence of
specific structures. Path task necessitates finding a sequence of nodes that connect two
specified nodes. Graph task demands extracting a subgraph represented as a set of node
pairs. Link prediction task, different from previous answer types, aims to infer missing
edges between nodes based on observed patterns of existing data.

For each answer type, we design a set of tasks, where each task requires a specific graph
algorithm. All the tasks are listed in Table 1, along with their category, mathematical
description, and an example. Furthermore, we subdivided each task into 2 to 4 sub-tasks,
which share the same graph algorithm but focus on different node or edge types. For
example, the Find neighbors task can be subdivided into sub-tasks like finding the brand of
a product and finding the “also view” product of a product. These fine-grained sub-tasks
could facilitate a more detailed analysis of generalization, which will be introduced in
Section 3.3.

Answer Type Task Description Examples

Node
Find neighbors {v ∈ N(u)|ϕE(u, v) ∈ T′

E} What are the products of brand1?
Nodes shared

neighbors {v|∀te ∈ T′
E , ∃w ∈ V, ϕE(u, w) =

ϕE(v, w) = te}
What are the products that share
“also view” products with product1?

N-hop neighbors {v|ϕV (v) ∈ T′
V , d(u, v) <= c} What are the product nodes within 3-

hop to product11?

Pair Find pairs {(v1, v2)|ϕ(v1, v2) ∈ T′
E , u ∈ {v1, v2}} What are the pairs connected by

“also view” edge and containing prod-
uct11?

Pairs shared
neighbors {(v1, v2)|∃W ⊂ V : ∀w ∈

W, ϕE(v1, w) = ϕE(v2, w) ∈
T′

E ∧ |W| = c}

What are the pairs that share 3
“also buy” nodes?

Count
Degree count {|V ′ ||V ′ ⊆ N(u) : ∀v ∈ V ′ , ϕE(u, v) ∈

T′
E}

How many “also view” nodes does
product11 have?

Node count
within N-hop {|V ′ ||V ′ ⊂ V : ∀v ∈ V ′ , d(u, v) <= c} How many brand nodes are within 3-

hop to product11?
Path count {|P′ ⊆ P(u, v)||∀pu,v ∈ P′ , len(pu,v) =

c}
How many 3-hop simple paths exist be-
tween product11 and product12?

Bool Linked by edge {ϕE(u, v) ∈ T′
E} Does a “also view” edge exist between

product11 and product12?
Has path {P(u, v) ̸= ∅} Does a path exist between product11

and product12?

Path Find paths {P′ ⊆ P(u, v)|len(pu,v) = c, pu,v ∈ P′} What are the 3-hop paths between prod-
uct11 and product12?

Shortest path {p′u,v ∈ P(u, v)|len(p′u,v) =
min(len(pu,v)|pu,v ∈ P(u, v))}

What are the shortest paths between
product11 and product12?

Graph Ego graph {(v1, v2) ∈ E|d(u, v1) <=
c, d(u, v2) <= c}

What is the ego graph with radius 2
centered at product11?

Link Prediction Link Prediction (E′ , T′
E) → {0, 1} Predict whether there is a “also view”

edge between product11 and prod-
uct12.

Table 1: The overview of all tasks. T′
E ⊆ TE, T′

V ⊆ TV and c ∈ Z+ are the edge types, node
types, and number restrictions in the task.

4

Published as a conference paper at COLM 2024

3.3 Evaluation Splits

To assess the generalization capabilities of the fine-tuned LLM on graph tasks, we propose
three distinct types of unseen tasks: unseen sub-tasks, unseen domain, and unseen answer type.
Each unseen type offers unique insights into the LLM’s ability to adapt and perform on
novel challenges beyond its training data.

Unseen sub-tasks evaluate the LLM’s capacity to apply similar graph algorithms to sub-
tasks slightly different from the ones seen during training. For instance, a model may be
trained to find the shortest path between products and tested to find the shortest path
between brands in an e-commerce network.

Unseen domain tasks evaluate the LLM’s adaptability with graphs from out-of-domain
networks. While the algorithms remain consistent with those learned during training, new
node and edge types, and graph structures are introduced, testing the LLM’s generalization
across different domains.

Unseen answer type tasks push the boundaries of the LLM’s capabilities by requiring it
to generate answer types not encountered during training. Evaluating the model on these
tasks assesses its capacity to innovate and extrapolate beyond its training data to develop
new graph algorithms.

Generally, these three evaluation types collectively provide a comprehensive assessment of
the LLM’s generalization abilities across various dimensions of unseen tasks, which may
bring useful insights into graph instruction tuning.

3.4 Data Collection

In this section, we outline the strategies and pipelines used to collect our dataset.

Graph Sampling. Given the impractical size of the original network against LLMs’ limited
context, we sample subgraphs from the original network and task LLMs over the subgraphs.
To generate a subgraph, we sample an ego graph with a radius of 2, centered around a
designated set of nodes. However, it’s imperative to note that the number of nodes grows
exponentially with each increment in hop count. Thus, we implement edge downsampling
at each step. This downsampling process involves imposing a maximum limit on the number
of edges for each type or establishing a ratio for downsampling. Different downsampling
strategies can yield different graph structure distributions, which is useful for cross-domain
generalization analysis.

Node De-identification. Given our objective of assessing LLMs’ capacity for reasoning
graph structures, textual information such as node names or titles becomes extraneous.
To mitigate the potential influence of such textual data, we opt to de-identify nodes by
representing them solely with their node type and a unique ID. For instance, a product in
an e-commerce network might be denoted as “product11”.

Question-Graph Collection. Each sample in our dataset contains a question as input and
a graph as the context. Given that link prediction necessitates inductive reasoning, while
the other answer types involve structure-based queries, distinct pipelines are developed to
generate question-graph pairs.

For link prediction, we initiate by randomly sampling positive and negative samples in the
form of (head, relation, tail) triples. Then, to augment the local structural understanding of
the head and tail nodes, we sample a subgraph centered at each of these nodes.

Conversely, for the structure-based query tasks, we start by selecting two random nodes
from the original graph and subsequently sampling subgraphs. Task-specific requirements
dictate the identification of nodes within the subgraph that may harbor an answer, and graph
algorithms are applied accordingly to uncover these answers. It is noteworthy that since the
subgraph is sampled without considering the specific task, the resultant graph structure

5

Published as a conference paper at COLM 2024

remains independent of the task. Consequently, this approach facilitates the unbiased
learning of general graph algorithms, irrespective of the graph’s structural characteristics.

3.5 Graph Representation

Choosing the appropriate format for prompts is essential when utilizing LLMs, as it signifi-
cantly affects the model’s capacity to accurately interpret and process the information. We
explore three primary prompt types: natural language, JSON, and DOT format.

Natural language prompts are versatile and intuitive for LLMs, offering a broad range of
applications due to their human-like conversational style. Meanwhile, the JSON format for
adjacency lists offers a structured, efficient means of information representation, aligning
with LLMs’ systematic processing capabilities for precise tasks. Additionally, the DOT
format, a standard graph description language (code), enables a visual depiction of network
relationships, beneficial for analyzing complex connections. We will delve deeper into their
implications for LLM performance in Section 4.

3.6 Graph Instruction Tuning

To graph instruction tune the LLMs, we concatenate each sample’s question Xq with its
graph representation Xg to form the prompt and train the LLM to predict the answer Y
based on the prompt. We follow the implementation of Wang et al. (2023) to use the original
auto-regressive training objective and mask the prompt tokens from loss computation. The
loss function is

L = −∑
i

log pθ(yi|Xq, Xg, Y<i)

where yi is the ith token in the Y.

4 Experiments

Node # Edge Training size Testing size # Sub-Task # Avg Nodes # Avg Edges

Amazon MetaData 2.07 m 16.3 m 22.4 k 9.6 k 40 87.14 111.63
MAPLE 2.15 m 13.3 m 21.84 k 9.36 k 39 67.09 74.18

Table 2: Dataset statistics

4.1 Experiment Settings

4.1.1 Datasets

We construct two separate domain graphs from two distinct datasets:

Amazon Metadata (Ni et al., 2019) contains product metadata across 29 general categories
on Amazon. We extract products, brands, and categories as nodes, connecting them via
attributes “also buy”, “also view”, “brand”, and “category”. The graphs are built using
metadata from the CDs and Vinyl, Movies and TV, and Arts Crafts and Sewing categories.

MAPLE (Zhang et al., 2023b) is derived from the Microsoft Academic Graph, featuring
19 scientific fields. We extract the authors, papers, and venues as nodes, and created edges
using the “citation”, “authorship”, and “publication” relationships. This graph utilizes
subjects Political Science, Computer Science, and Geology from this dataset.

We collect 800 samples for each sub-task and divide them into training and test sets with a
ratio of 7:1. The statistics of the collected graphs and datasets are presented in Table 2.

6

Published as a conference paper at COLM 2024

4.1.2 Models and Training

Models We perform graph instruction tuning with the Llama-2 7B (Touvron et al., 2023),
Mistral 7B (Jiang et al., 2023), and Gemma 7B (Team et al., 2024) models and compared them
with their instruction-tuned versions, which are not explicitly tailored to process structural
information, to illustrate the benefits of our special graph instruction tuning.

Fine-tuning We employ LoRA (Hu et al., 2021) as our parameter-efficient fine-tuning
approach. To ensure all models can access complete graph information, we train and test
all models using samples that could fit within Llama-2’s 4k context window. To assess the
LLM’s generalization to unseen sub-tasks and unseen domains, we train the models on part
of the sub-tasks for each task, leaving the rest as the unseen sub-tasks. We also train the
models on each domain separately, leaving the other domain as the unseen domain. We
conduct a separate training for the evaluation of unseen answer types.

4.1.3 Metrics

In our experiments, we evaluate performance using two key metrics, the Exact Match (EM)
and the F1 score. Specifically, we use EM for the Count, Boolean, and Link prediction tasks,
and F1 for the Node, Pair, Path, and Graph tasks. For the Path task, we treat each path as a
single value and calculate the F1 score between the extracted and the ground truth paths.

4.2 Results

Amazon Maple

Avg Tokens # Max Nodes # Max Edges # Avg Tokens # Max Nodes # Max Edges

NL 1869.56 226 324 1033.61 280 326
JSON 1972.44 199 289 1161.03 277 321
DOT 2011.01 192 288 1181.22 277 321

Table 3: Statistics of different graph representations in 4k context

Amazon Maple

Node Pair Count Bool Path Graph LP AVG Node Pair Count Bool Path Graph LP AVG

Baselines

Llama-2-chatNL 1.97 2.08 0.00 62.83 15.39 10.98 41.79 12.91 2.85 3.26 0.16 58.91 16.21 18.96 47.33 14.56
Llama-2-chatJSON 2.16 2.04 0.00 62.83 3.87 7.78 41.79 11.48 4.12 1.90 0.00 58.91 8.32 10.68 47.33 12.98
Llama-2-chatDOT 2.48 1.66 0.00 62.83 1.56 12.78 41.79 11.78 2.31 2.34 0.00 58.91 4.42 22.16 47.33 13.36

Mistral-InstNL 0.01 3.98 12.89 37.55 18.15 7.27 58.21 13.84 0.03 5.81 14.04 42.98 20.54 6.70 52.67 15.04
Mistral-InstJSON 2.91 8.38 12.43 37.30 12.29 8.86 58.21 14.75 4.24 10.81 14.45 41.09 9.74 7.74 52.67 15.77
Mistral-InstDOT 1.65 5.28 8.00 37.17 18.43 12.50 58.21 14.02 3.07 4.85 12.41 41.09 23.34 9.72 52.67 15.74

Gemma-InstNL 13.85 25.19 2.59 65.92 34.64 28.85 44.96 24.42 15.17 29.95 3.53 72.75 34.65 23.03 48.72 26.35
Gemma-InstJSON 15.50 26.54 6.67 65.14 30.00 29.45 36.00 24.74 8.51 26.45 8.42 65.61 29.32 22.19 45.59 23.50
Gemma-InstDOT 16.83 35.91 4.06 64.76 31.19 37.69 60.33 28.72 18.17 34.76 2.38 64.99 29.22 36.98 42.86 27.25

Finetuned

Llama-2-GraphInstNL 74.34 65.97 45.76 93.57 55.16 64.83 85.47 67.26 73.28 67.78 44.05 96.13 53.65 77.69 67.07 66.74
Llama-2-GraphInstJSON 80.20 68.49 46.48 96.48 52.75 65.39 85.02 69.46 75.33 68.42 46.62 98.11 55.21 80.06 64.42 68.30
Llama-2-GraphInstDOT 73.64 64.26 43.76 91.20 50.07 61.39 77.11 64.69 70.59 63.69 47.32 94.35 54.47 74.83 69.08 65.86

Mistral-GraphInstNL 87.43 75.38 48.47 98.13 66.55 80.09 75.23 75.16 86.17 76.39 48.86 97.80 68.55 86.14 76.97 75.69
Mistral-GraphInstJSON 89.63 81.18 50.77 98.73 62.16 83.32 76.15 77.11 82.96 79.58 50.94 99.16 68.61 84.13 75.95 75.64
Mistral-GraphInstDOT 86.30 72.91 46.24 96.97 68.71 81.01 77.98 74.44 79.01 74.96 50.74 98.95 66.47 85.69 79.02 74.03

Gemma-GraphInstNL 87.34 76.30 46.51 97.36 68.06 77.31 85.17 75.43 88.90 74.76 47.84 97.49 61.50 86.04 77.53 75.20
Gemma-GraphInstJSON 90.15 78.11 49.98 99.23 65.68 78.08 82.42 76.98 88.50 75.33 51.74 98.64 63.39 83.15 70.91 75.50
Gemma-GraphInstDOT 87.43 78.09 47.96 96.36 67.43 83.50 83.94 76.37 85.75 74.00 50.14 98.43 68.14 88.71 70.77 75.29

Table 4: Experimental results of three graph representations, including natural languages
(NL), JSON, and DOT.

7

Published as a conference paper at COLM 2024

4.2.1 Graph Representation

Scalability Table 3 presents the average length in tokens and the maximum graph size in
a 4k context concerning node and edge number for each of the three graph representations,
natural language (NL), JSON, and DOT, in the two datasets. It is shown that natural
language has the most compact representation and can handle the largest graph in a limited
context budget.

Performance Table 4 presents the performance of both vanilla LLMs and graph instruction-
tuned LLMs on the test sets of two datasets. The results reveal notable improvements in all
tasks when comparing the graph instruction-tuned models with their text instruction-tuned
counterparts. This suggests that the LLMs fine-tuned on our benchmark exhibit an enhanced
understanding of graph structures, leading to improved reasoning capabilities for answering
questions. Notably, the graph representations in JSON format consistently outperform those
in other formats across various tasks, yielding the best overall performance for all three
models.

Llama-2-GraphInst-7b Llama-2-GraphInst-13b
Model Scale

64

66

68

70

72

74

Av
g.

 P
er

fo
rm

an
ce

Graph Representation
NL
JSON
DOT

Figure 2: Compare LLMs of dif-
ferent scales using three graph
representations.

Furthermore, we conduct studies to compare how differ-
ent graph representations perform with different scales
of LLMs. Concretely, we instruction-tune both Llama-
2-7b and Llama-2-13b on the Amazon dataset with the
three graph representations. As illustrated in Figure 2,
the observation is in line with our previous finding that
JSON format is the best bridge for LLMs interacting with
graphs and can yield the best performance on both scales.

We postulate that this superiority of JSON representations
stems from their clearer structural depiction compared
to natural language. Moreover, JSON is a more prevalent
format in the pre-training data compared to DOT. Conse-
quently, models trained with graph instruct-tuning tend
to find JSON particularly effective in comprehending and
reasoning about complex graph structures.

Given the consistently strong performance associated with the use of JSON format, our
analysis in the following sections focuses primarily on models trained with JSON format.

4.2.2 Sub-task Generalization

0

25

50

75

100

Sc
or

e

Amazon Llam
a-2-G

raphInst

Maple

0

25

50

75

100

Sc
or

e

M
istral-G

raphInst

Node Pair Count Bool Path Graph LP
Answer type

0

25

50

75

100

Sc
or

e

Node Pair Count Bool Path Graph LP
Answer type

G
em

m
a-G

raphInst

Seen
Unseen

Figure 3: Experiment results of sub-task generalization on two datasets.

As mentioned in Section 3.3, we show the performance of models over the in-domain seen
and unseen sub-tasks under each answer type. In Figure 3, all models present an excellent
generalization on the unseen sub-tasks of Node, Pair, Bool, and Graph tasks, with a small

8

Published as a conference paper at COLM 2024

drop in the performance, but fail to generalize to the unseen sub-tasks of Count, Path, and
Link prediction tasks. We examine the failure cases and conclude the following reasons for
the failure of these three types.

For the Count task, the greatest performance drops occur in sub-tasks of Degree count, which
require only single-hop information of the queried node. Compared to the sub-tasks of
Find neighbors, which also requires only single-hop information but returns a set of nodes,
the Count answer type is more abstract, and thus, overfits the model to the seen sub-tasks.
For the Path task, the most significant cause of failure in unseen sub-tasks is the incorrect
starting nodes in the generated paths. For example, for the Llama-2 model trained on
the MAPLE dataset, around 77.12% of the generated paths fail to start with the queried
source node and 71.46% of the failure cases start with the paper node, which is the source
node type in the seen sub-tasks. Our manual checking confirms that the model can still
generate partially correct paths in the unseen sub-tasks, indicating that the model does
learn the path-finding algorithm, but fails due to the overfit in the starting node. For the
link prediction task, this failure makes sense because the model is only trained to infer the
existence of a subset of edge types, while different edge types may be inferred from different
graph patterns, the model fails to generalize this inductive reasoning to the unseen edge
types.

4.2.3 Domain Generalization

Amazon Maple
Test Domain

45

50

55

60

65

70

75

Sc
or

e 61.22

53.47
50.6

59.9

Llama-2-GraphInst

Amazon Maple
Test Domain

71.51

65.98
67.84 67.39

Mistral-GraphInst

Amazon Maple
Test Domain

70.84 69.36
66.31

68.87

Gemma-GraphInst

Training Domain
Amazon
Maple

Figure 4: Compare LLMs of different scales on domain generalization.

To evaluate the domain generalization of the instruction-tuned model, we compare the
models separately trained on the two datasets by their performance on the unseen sub-
tasks of both in-domain and out-of-domain datasets. This approach allows us to assess
their performance on unseen tasks in cross-domain scenarios. Figure 4 demonstrates the
averaged performance of all unseen sub-tasks in the corresponding dataset except for the
link prediction due to the conclusion from Section 4.2.2. In most scenarios, the model trained
on a different domain has an acceptable performance drop compared to the model trained
on the tested domain. In addition, the models trained on the Amazon Metadata network
have a smaller performance drop (6.43% for Llama-2, 1.41% for Mistral and -0.49% for
Gemma) than the models trained on the Maple network (10.62% for Llama-2, 3.67% for
Mistral and 4.53% for Gemma). According to the statistics in Table 2, the subgraphs from
the Amazon Metadata network are generally larger than the subgraphs from the Maple
network. This may indicate that training on larger graphs can better generalize the model
to smaller out-of-domain graphs.

4.2.4 Answer type Generalization

In Table 5, we aim to assess the capacity of instruction-tuned LLMs for generalizing across
different answer types. As highlighted in Section 3.3, this represents a particularly chal-
lenging scenario due to the potentially large discrepancy between the training tasks and
the testing tasks. To this end, we specifically exclude Pair, Bool and Graph from the training
dataset, and subsequently instruction-tune the LLM as Mistral-GraphInst-masked.

Regarding the results, Mistral-GraphInst-masked indicates compromised performance on the
unseen Pair, Bool, and Graph tasks, a direct consequence of their absence during training.
Despite this, it still manages to surpass Mistral-Inst, which is not fine-tuned with graph
structures, in terms of performance. The findings suggest that our instruction design

9

Published as a conference paper at COLM 2024

effectively enables the LLM to grasp structural information and apply it to successfully
tackle questions beyond its initial training scope.

Amazon

Node Pair∗ Count Bool∗ Path Graph∗

Mistral-InstJSON 2.91 8.38 12.43 37.30 12.29 8.86
Mistral-GraphInstJSON 89.63 81.18 50.77 98.73 62.16 83.32
Mistral-GraphInst-maskedJSON 88.09 56.43 49.91 90.18 59.31 53.65

Maple

Mistral-InstJSON 4.24 10.81 14.45 41.09 9.74 7.74
Mistral-GraphInstJSON 82.96 79.58 50.94 99.16 68.61 84.13
Mistral-GraphInst-maskedJSON 79.70 40.90 50.48 77.15 64.30 36.64

Table 5: Answer Type Generalization, where tasks Pair, Bool and Graph are unseen when
training Mistral-GraphInst-masked.

4.2.5 Case Study

Task:

Given the graph and text information, answer the question - What are the shortest
paths between brand37 and category65? Treat the graph as undirected and list all
the paths. The answer should only contain node ID sequences wrapped by '()' like
'(node1, node2, node3, ...)' and the sequences are separated by space. The graph is
represented in the json format.

Graph:

{"product17": {"also_buy": ["product16"], "product_of": ["brand37"], "belong_to":
["category61", "category62", "category63", "category64"]}, "product18": {"also_buy":
["product16", "product22", "product23", "product24"], "product_of": ["brand38"],
"belong_to": ["category63", "category67", "category68", "category62"]}, "product19":
{"also_buy": ["product16", "product26"], "product_of": ["brand37"], "belong_to":
["category62", "category63", "category64", "category61"]}, "product26": {"also_buy":
["product19"]}, "product20": {"product_of": ["brand36"], "belong_to": ["category62",
"category65", "category66"]}, "product21": {"product_of": ["brand36"], "belong_to":
["category62", "category65"]}, "product25": {"also_buy": ["product18", "product19"]}}

(brand37, product17, category62, product21, category65)
(brand37, product17, category62, product20, category65)
(brand37, product19, category62, product21, category65)
(brand37, product19, category62, product20, category65)

(brand37, product19, category62, product20, category65)
(brand37, product19, category62, product21, category65)

(37, 65)
Explanation: There is only one path between brand37 and
category65. It is (37, 65).

Input
Prompt

Expected
Response

Mistral-
GraphInst

Mistral-
Instruct

Figure 5: Case study on finding the shortest path between two non-product nodes in the
Amazon dataset, depicted through a graph in JSON format.

To demonstrate the effectiveness of graph-based instruction tuning, we explore the model’s
effectiveness in identifying the shortest path between two non-product nodes within an
undirected graph from the Amazon dataset. This task highlights the significant challenges
faced by LLMs, including the need to comprehend complex graph structures and apply
graph theory algorithms within a computational environment that requires processing large
amounts of data and evaluating many pathways at once.

As depicted in Figure 5, Mistral-GraphInst, with its specialized tuning for graph dataset analy-
sis, can better overcome these challenges by bridging the gap between natural language and
computational graph theory. Unlike Mistral-Instruct mainly optimized for broad language
tasks, Mistral-GraphInst is adept at navigating the intricacies of graph structures, enabling
it to perform sophisticated analyses like shortest path discovery with higher precision
and efficiency. Despite still occasionally missing a few shortest paths, Mistral-GraphInst’s
capability of handling complex network dynamics positions it as a superior tool for tasks
demanding in-depth exploration of graphs, thereby advancing our ability to interpret and
analyze complex data structures.

5 Conclusion

In this paper, we investigate instruction-tuning LLMs on graph-related tasks. We first
construct a dataset that contains comprehensive graph-related tasks from the academic
and e-commerce domains. We then conduct extensive experiments to explore the best
representation for LLMs to understand graphs and gain insights into the generalization
of graph instruction-tuned LLMs to different kinds of unseen tasks. Future studies can
consider applying such instruction-tuning techniques to graphs from other domains.

10

Published as a conference paper at COLM 2024

Acknowledgments

The research was supported in part by US DARPA KAIROS Program No. FA8750-19-2-1004
and INCAS Program No. HR001121C0165, National Science Foundation IIS-19-56151, and
the Molecule Maker Lab Institute: An AI Research Institutes program supported by NSF
under Award No. 2019897, and the Institute for Geospatial Understanding through an
Integrative Discovery Environment (I-GUIDE) by NSF under Award No. 2118329. Any
opinions, findings, and conclusions or recommendations expressed herein are those of the
authors and do not necessarily represent the views, either expressed or implied, of DARPA
or the U.S. Government.

References
Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Haifang Wen, Xiaochi Wei, Shuaiqiang Wang,

Dawei Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large
language models (llms) in learning on graphs. ArXiv, abs/2307.03393, 2023. URL https:
//api.semanticscholar.org/CorpusID:259375824.

Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica Milenkovic,
and Inderjit S Dhillon. Node feature extraction by self-supervised multi-scale neighbor-
hood prediction. arXiv preprint arXiv:2111.00064, 2021.

Jiayan Guo, Lun Du, and Hengyu Liu. Gpt4graph: Can large language models under-
stand graph structured data? an empirical evaluation and benchmarking. arXiv preprint
arXiv:2305.15066, 2023.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan
Hooi. Harnessing explanations: Llm-to-lm interpreter for enhanced text-attributed graph
representation learning. In The Twelfth International Conference on Learning Representations,
2023.

Yufei He and Bryan Hooi. Unigraph: Learning a cross-domain graph foundation model
from natural language. arXiv preprint arXiv:2402.13630, 2024.

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. ArXiv,
abs/2106.09685, 2021. URL https://api.semanticscholar.org/CorpusID:235458009.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Yizhu Jiao, Ming Zhong, Sha Li, Ruining Zhao, Siru Ouyang, Heng Ji, and Jiawei Han.
Instruct and extract: Instruction tuning for on-demand information extraction. In Pro-
ceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
10030–10051, 2023.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language
models on graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023a.

Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, and Jiawei Han.
Patton: Language model pretraining on text-rich networks. arXiv preprint arXiv:2305.12268,
2023b.

Bowen Jin, Yu Zhang, Yu Meng, and Jiawei Han. Edgeformers: Graph-empowered
transformers for representation learning on textual-edge networks. arXiv preprint
arXiv:2302.11050, 2023c.

Bowen Jin, Yu Zhang, Qi Zhu, and Jiawei Han. Heterformer: Transformer-based deep node
representation learning on heterogeneous text-rich networks. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1020–1031, 2023d.

11

https://api.semanticscholar.org/CorpusID:259375824
https://api.semanticscholar.org/CorpusID:259375824
https://api.semanticscholar.org/CorpusID:235458009

Published as a conference paper at COLM 2024

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat
Lee. Textbooks are all you need ii: phi-1.5 technical report. arXiv preprint arXiv:2309.05463,
2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V Le, Barret Zoph, Jason Wei, et al. The flan collection: designing data and methods
for effective instruction tuning. In Proceedings of the 40th International Conference on Machine
Learning, pp. 22631–22648, 2023.

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, Xing Xie,
and Hai Jin. Graphinstruct: Empowering large language models with graph understand-
ing and reasoning capability. arXiv preprint arXiv:2403.04483, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang
Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large
language models with evol-instruct. In The Twelfth International Conference on Learning
Representations, 2023.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi,
and Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of
gpt-4. arXiv preprint arXiv:2306.02707, 2023.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-
labeled reviews and fine-grained aspects. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 188–197, Hong Kong, China, November 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-1018. URL https:
//aclanthology.org/D19-1018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F.
Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions
with human feedback. In NeurIPS, 2022. URL http://papers.nips.cc/paper files/
paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu,
Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chh-
ablani, Nihal V. Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang,
Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas
Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Ja-
son Alan Fries, Ryan Teehan, Teven Le Scao, Stella Biderman, Leo Gao, Thomas Wolf, and
Alexander M. Rush. Multitask prompted training enables zero-shot task generalization. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=9Vrb9D0WI4.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju,
Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al.
Gemma: Open models based on gemini research and technology. arXiv preprint
arXiv:2403.08295, 2024.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine
Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M.
Bikel, Lukas Blecher, Cristian Cantón Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan,
Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V. Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog,
Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross Taylor,

12

https://aclanthology.org/D19-1018
https://aclanthology.org/D19-1018
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://openreview.net/forum?id=9Vrb9D0WI4

Published as a conference paper at COLM 2024

Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models. ArXiv, abs/2307.09288, 2023. URL https://api.semanticscholar.org/CorpusID:
259950998.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia
Tsvetkov. Can language models solve graph problems in natural language? Advances in
Neural Information Processing Systems, 36, 2024a.

Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming Gao, and Julian McAuley. In-
structgraph: Boosting large language models via graph-centric instruction tuning and
preference alignment. arXiv preprint arXiv:2402.08785, 2024b.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi
Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh
Hajishirzi. How far can camels go? exploring the state of instruction tuning on open
resources, 2023.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip.
A comprehensive survey on graph neural networks. IEEE transactions on neural networks
and learning systems, 32(1):4–24, 2020.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit
Singh, Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for
representation learning on textual graph. Advances in Neural Information Processing Systems,
34:28798–28810, 2021.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natu-
ral language is all a graph needs. ArXiv, abs/2308.07134, 2023. URL https://api.
semanticscholar.org/CorpusID:260887732.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li,
Runyi Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A
survey. arXiv preprint arXiv:2308.10792, 2023a.

Yu Zhang, Bowen Jin, Qi Zhu, Yu Meng, and Jiawei Han. The effect of metadata on
scientific literature tagging: A cross-field cross-model study. In Proceedings of the ACM
Web Conference 2023, pp. 1626–1637, 2023b.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu,
and Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089,
2023.

Jason Zhu, Yanling Cui, Yuming Liu, Hao Sun, Xue Li, Markus Pelger, Tianqi Yang, Liangjie
Zhang, Ruofei Zhang, and Huasha Zhao. Textgnn: Improving text encoder via graph
neural network in sponsored search. In Proceedings of the Web Conference 2021, pp. 2848–
2857, 2021.

13

https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:260887732
https://api.semanticscholar.org/CorpusID:260887732

	Introduction
	Related Work
	LLMs on Graphs
	Instruction Tuning for LLMs

	Instruction Tuning on Graph
	Preliminaries
	Task Definition
	Evaluation Splits
	Data Collection
	Graph Representation
	Graph Instruction Tuning

	Experiments
	Experiment Settings
	Datasets
	Models and Training
	Metrics

	Results
	Graph Representation
	Sub-task Generalization
	Domain Generalization
	Answer type Generalization
	Case Study

	Conclusion

