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Figure 1. We introduce Lightplane Renderer and Splatter, a pair of highly-scalable components for neural 3D fields (left). They address
the key memory bottleneck of 2D-3D mapping (i.e. rendering and lifting), and reduce memory usage by over three orders of magnitude,
which dramatically increases the number of images that can be processed. We showcase how they can boost various 3D applications (right).

Abstract

Contemporary 3D research, particularly in reconstruc-
tion and generation, heavily relies on 2D images for in-
puts or supervision. However, current designs for these
2D-3D mapping are memory-intensive, posing a significant
bottleneck for existing methods and hindering new appli-
cations. In response, we propose a pair of highly scalable
components for 3D neural fields: Lightplane Renderer and
Splatter, which significantly reduce memory usage in 2D-3D
mapping (over 1000×). These innovations enable the pro-
cessing of vastly more and higher resolution images with
significantly small memory and computational costs. We
demonstrate their utility across various applications, from
optimizing with image-level losses to enabling a versatile
pipeline for scaling 3D reconstruction and generation.1

1. Introduction
Recent advancements in neural rendering and generative
modeling have significantly advanced 3D reconstruction
and generation. However, these methods often rely heav-
ily on 2D images for inputs or supervision, necessitating ef-
fective mapping between 2D and 3D spaces. For instance,
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Neural Radiance Fields (NeRFs) [50] rely on photometric
loss on rendered images without 3D supervision. Simi-
larly, many methods [11, 13, 91] employ 2D images as in-
puts and lift them into 3D space for feedforward processing.
This 2D-to-3D mapping is crucial in 3D research due to the
scarcity of 3D data for training versatile models and the rel-
ative ease of acquiring large-scale 2D image datasets.

Despite its crucial role and widespread use, the current
2D-3D mapping incurs a high resource cost, especially in
neural 3D fields with volumetric rendering, which under-
pins many of the most powerful 3D representations. Neural
3D fields are continuous functions that assign values (e.g.,
density, color) to any point in 3D space, regardless of the
presence of a physical surface. This makes them powerful
and flexible, avoiding the need for initialization in point ren-
dering [37] or topology constraints for meshes [46]. How-
ever, they require operations across numerous 3D points
spanning an entire volume. While these operations can be
relatively simple (e.g. computing a tiny MLP or average in-
put features), performing them at all points in a differen-
tiable manner is extremely memory intensive as all interme-
diate values must be kept in memory for backpropagation.

Even in modest settings, existing 2D-3D mapping meth-
ods can easily consume dozens of GBs of memory, taking
a significant portion of available resources. This substantial



memory demand poses a critical bottleneck for many 3D
models and a formidable barrier to new applications. For
example, the memory requirements to render even a single
low-resolution image of a neural 3D field can be prohibitive
enough to prevent the application of image-level losses such
as LPIPS [95] or SDS [57]. Omitting such losses leads to
a massive performance loss, as e.g. demonstrated by the
SOTA Large Reconstruction Model [3, 29]. Additionally,
memory inefficiencies limit the number of input views and
the size of the 3D model that can be used.

We aim to solve this bottleneck by introducing two
highly scalable components for neural 3D fields: Light-
plane Renderer and Splatter. These innovations enable 2D-
3D mapping with more than 1000× memory saving while
maintaining comparable speed. Moreover, their designs can
be easily extended to various ‘hashed’ 3D representations
(e.g. voxel grids, triplanes and more), providing a universal
and practical method for 2D-3D mapping across various 3D
representations, especially for lifting images to 3D.

Lightplane Renderer renders 2D images from 3D models
via the standard emission-absorption equations popularized
by NeRF [50]. To save memory, we creatively re-configure
inner computations and fuse operations over casted rays in-
stead of 3D points. Specifically, it sequentially calculates
features (e.g., colors) and densities of points along the ray,
updating rendered pixels and transmittance on-the-fly with-
out storing intermediate tensors. This design significantly
saves memory at the cost of a challenging backpropagation,
which we solve by efficiently recomputing forward activa-
tions as needed. Note that the latter differs from the stan-
dard “checkpointing” trick, whose adoption here would be
of little help, as it still entails caching many intermediate
ray-point values as we march along each ray.

Conversely, Lightplane Splatter lifts (splats) 2D inputs
into 3D structures, which are then processed by neural net-
works. This innovative design directly stores splatted fea-
tures into the hash structure underlying the 3D model, with-
out emitting a value for each 3D point. Unlike existing
methods [11, 92] that require 3D positions for projection,
Splatter can directly lift inputs into 3D hash structures even
without clearly defined 3D positions, such as triplane or
hash-table. Like Lightplane Renderer, its computations are
reconfigured for significant memory savings. We imple-
mented these components in Triton [75], a GPU program-
ming language that is efficient, portable, and easy to modify.
The code will be released as an open-source package.

Like flash-attention [17], our components are designed
as building blocks to boost a variety of 3D models and appli-
cations, from optimizing with image-level loss to improv-
ing performance of the state-of-the-art Large Reconstruc-
tion Model [29]. Empowered by the Lightplane, we devise
a pipeline taking up to input 100 images, significantly scal-
ing the communication between 2D and 3D. We extensively

evaluate on the CO3Dv2 dataset, reporting significant per-
formance improvements in color and geometry accuracy for
3D reconstruction, and better 3D generation in FID/KID.

2. Related Work
3D reconstruction using neural 3D fields. Tradi-
tional 3D reconstruction models represented shapes as
meshes [23, 79], point clouds [19, 88], or voxel grids [16,
22]. With the introduction of NeRF [50], however, the fo-
cus has shifted to implicit 3D representations, often utiliz-
ing MLPs to represent occupancy and radiance functions
defined on a 3D domain. NeRF has been refined in many
ways [4–6, 38, 43, 78, 94], including replacing the opacity
function with a signed-distance field to improve the recon-
struction of surfaces [7, 44, 56, 63, 67, 80, 83, 89, 93].

Storing an entire scene in a single MLP requires evalu-
ating a complex function at every 3D point, which is very
costly for both time and memory. Many authors propose
represent radiance fields with smaller, more local compo-
nents to improve speed, including using point clouds [87],
tetrahedral meshes [39] or voxel grids [33, 47, 58, 71, 90].
Voxel grids could be further replaced by more compact
structures like low-rank tensor decompositions [15], tri-
planes [10], hashing [52], and their combination [59].

Instead of focusing on speed, Lightplane significantly
reduces memory demands for neural 3D fields with volu-
metric rendering. Our approach specifically targets neu-
ral 3D fields, whereas point-based rendering methods like
3DGS [12, 37, 72] fall outside this scope, as they don’t
model every 3D point in the space and rely on rasteriza-
tion rather than volumetric rendering. While 3DGS offers
fast convergence, it requires careful surface initialization. In
contrast, NeRFs can converge from random initialization,
making them more versatile for single-scene optimization.

Amortized 3D reconstruction. Amortized (Generaliz-
able) 3D reconstruction utilizing implicit shape represen-
tations was initially approached in [28, 53, 61, 76, 82, 91]
by warping/pooling features from source views to a target to
estimate the color of the underlying scene surfaces. [64, 84]
introduces latent transformer tokens to support the recon-
struction. Generalizable triplanes [29, 30, 42], ground-
planes [66], and voxel grids [32] were also explored.

These methods are memory-intensive, limited to few-
view (≤10), leading to suboptimal geometries and consis-
tency. Lightplane supports over 100 input views, enabling
large-scale training and more accurate reconstructions.

Image-supervised 3D generators. With the advent of
Generative Adversarial Networks [24] (GAN), many meth-
ods attempted to learn 3D generative models given large
uncurated image datasets. [20, 27, 54] learned to generate



voxel grids whose renders were indistinguishable from real
object views according to an image-based deep discrimina-
tor. The same task was later tackled with Neural Radiance
Fields [10, 25, 55, 65, 68], and meshes [21, 86]. The suc-
cess of 2D generative diffusion models [18] led to image-
supervised models such as [26, 35, 36, 48, 49, 74, 85],
which directly model the distribution of 3D models. Simi-
larly, RenderDiffusion [1] and ViewsetDiffusion [73] learn
a 2D image denoiser by means of a 3D deep reconstructor.
GeNVS [11] and HoloFusion [34] proposed 3D generators
with 2D diffusion rendering post-processors. We demon-
strate that Lightplane brings a strong performance boost to
ViewsetDiffusion and generates realistic 3D scenes.

3. Method
We introduce Lightplane Renderer and Splatter, two core
components for differentiable 2D-3D mapping that signifi-
cantly reduce memory usage. First,we discuss the memory
bottlenecks in existing methods used for rendering and lift-
ing (Sec. 3.1). Then, we define the hashed 3D representa-
tions used in our framework (Sec. 3.2) and outline the func-
tionality of the proposed components (Sec. 3.3). Finally, we
discuss our memory-efficient designs (Sec. 3.4).

3.1. Preliminary

2D-3D Mapping. Mapping between 2D images and 3D
models is a major practical bottleneck of many algorithms
(Sec. 1), particularly when using powerful implicit 3D rep-
resentations such as neural 3D fields. The memory bottle-
neck comprises a large number of 3D points from rendering
rays and their intermediate features, which are cached in
GPU memory for the ensuing backpropagation.

In rendering (3D to 2D mapping), an entire ray of 3D
points contributes to the color of a single pixel in the ren-
dered image. With M pixels and R points per ray, M×R
MLP evaluations are needed to obtain colors and opacities.
All intermediate results, including outputs of all MLP layers
for every 3D point, are stored in memory for backpropaga-
tion, leading to huge memory usage. Using a tiny MLP with
L=6 layers and K=64 hidden units, M×R×L×K memory
is required to just store the MLP outputs, which totals 12
GB for a 2562 image with R=128 points per ray.

Similarly, to lift N input features to 3D (2D to 3D map-
ping), models like PixelNeRF [91] and GeNVS [11] project
each 3D point to N input views individually and average
N sampled features as the point feature. Without consid-
ering any MLPs, this process uses N×|M| memory, where
|M| is the size of the 3D structure M. For a 1283 voxel
grid with 64-dimensional features, |M| requires 512 MB in
FP32, resulting in 5 GB of memory for 10 input views.

Moreover, this lifting process requires 3D structures’ 3D
positions for projection and cannot be easily used with other
popular hash-based structures like triplanes or hash-tables.

Elements in such structures (e.g., 2D grids on triplanes, or
buckets in hash-table) lack clearly defined 3D positions and
cannot be easily projected back to input images for features.
Lifting multi-view inputs to them remains an open problem.

The memory bottleneck impacts multiple aspects. For
3D to 2D mapping (i.e. rendering), methods like NeRF [50]
and PixelNeRF [91] are limited to a few low-resolution
images per training iteration (even using 40GB GPUs) or
to subsample rendered pixels, which prohibits image-level
losses such as LPIPS [95] and SDS [57]. For 2D to 3D map-
ping, memory demands restrict the number of input views
and the size of 3D representations. This substantial mem-
ory usage not only occupies resources that could enhance
model sizes and capacities but also limits model training
and inference on devices with limited memory.

Neural 3D fields. For 3D point x ∈ R3, a neural 3D field
is a volumetric function f that maps each point x to a vector
f(x) ∈ RC . NeRF [50] represented such functions using a
single MLP. While simple, the MLP must represent entire
3D scenes, requiring it to be large and costly to evaluate.

Several methods are proposed to solve this problem,
by decomposing information into local buckets (optionally
with tiny MLP), which is more efficient than evaluating
the global MLP. Most famously, [51] utilizes hash tables,
but other representations such as voxel grids [70] and var-
ious low-rank decompositions such as triplanes [10], Ten-
soRF [14] and HexPlane [8, 9] also follow this pattern.

3.2. Hybrid representation with 3D hash structure

Following the idea in Sec. 3.1, we use a hybrid representa-
tion for neural 3D fields f , and decompose f = g◦h, where
h : R3 → RK is a hashing scheme (sampling operation) for
3D hash structure θ, and g : RK → RC is a tiny MLP,
inputing hashing features and outputting final values.

In this paper, we generalize the concept of 3D hash struc-
tures to structures like voxel grids [70], triplanes [10], Hex-
Plane [8, 9] and actual hash table [51], as obtaining infor-
mation from these structures only requires accessing and
processing the small amount of information stored in a par-
ticular bucket. The associated hashing scheme h typically
samples 3D point features from hash structure θ via inter-
polation, which is highly efficient. In practice, we opera-
tionalize θ with voxel grids and triplanes as they are easy to
process by neural networks, although other structures with
a differentiable hashing scheme could be easily supported.

In more detail, for voxel-grids, θ is a H×W×D×K ten-
sor and h is the tri-linear interpolation on θ given position
x. For triplane, θ is a list of three tensors of dimensions
H×W×K, W×D×K, and D×H×K. Then, h(x, y, z) is
obtained by bilinear interpolation of each plane at (x, y),
(y, z), (z, x), respectively, followed by summing the result-
ing three feature vectors. Again, this design could be easily
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Figure 2. GPU memory usage of our Lightplane Renderer vs. a
standard autograd NeRF renderer.

generalized to other hashed 3D structures θ with their cor-
responding hashing scheme (sampling operation) h.

3.3. Rendering and splatting

We now detail Lightplane Renderer and Splatter, two com-
ponents using hybrid representations with 3D hash struc-
tures. They are mutually dual as one maps 3D information
to 2D via rendering, and the other maps 2D images to 3D.

Renderer. Renderer outputs pixel features v (e.g. colors,
depths) in a differentiable way from a hybrid representation
f=g◦h, givenM rays {ri}Mi=1 andR+1 points per ray. We
make its high-level design consistent with existing hybrid
representations [8, 10, 51, 70] as they have proven to be
powerful, while re-designing the computations in Sec. 3.4
to achieve significant memory savings.

Following NeRF [50], Renderer uses a generalized
Emission-Absorption (EA) model and calculates transmit-
tance Tij , which is the probability that a photon emitting at
xij (j-th sampling points on the i-th ray) reaches the sensor.
Accordingly, the rendered feature vi of ray ri is:

vi =

R∑
j=1

(Ti,j−1 − Tij)fv(xij). (1)

where fv(xij) is the feature (e.g. color) of the 3D point
xij , obtained from the hybrid representation fv; Tij =

exp(−
∑j

n=0 ∆ · σ(xin)), ∆ is the distance between two
sampled points, and σ(xin) is the opacity of the n-th sam-
pled point; (Ti,j−1 − Tij) ∈ [0, 1] is the visibility of the
point xij . Given a 3D point, Renderer samples its feature
from the 3D representation and feeds the feature to an MLP
gσ to calculate the opacity. fv(xij) is calculated by another
MLP gv , with sampled feature and view directions as inputs.

Splatter. Lifting 2D inputs to 3D structures is crucial
in 3D, particularly for feed-forward models. Existing
works [11, 34, 35, 73] project 3D points (voxel grid cen-
ters) back to input views and interpolate (pull) input fea-
tures based on these projected positions to obtain point fea-
tures. After this lifting, a neural network (e.g., 3D-UNet)
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Figure 3. Lightplane Splatter illustration. (a) On a hash grid
with vertex features vi: sampling gets point features vp by in-
terpolating vertex features weighted by inverse distance; splatting
updates vertex features by accumulating point features to vertex
features using the same weights. (b) Lightplane Splatter involves
three steps. For each 3D point along the ray, Splatter samples its
features from prior 3D hash θ̂ (1), calculates features to be splatted
using MLP (2), and splats them to zero-initialized θ (3).

can be applied to the lifted 3D structures (e.g., voxel grids)
for further processing, such as reconstruction. However,
this lifting operation is memory-intensive and relies on the
points’ 3D positions for projection, making it incompatible
with other popular 3D hashed structures, like triplanes or
hash tables, where buckets (e.g., points on triplane or hash
keys for hash-table) lack clearly defined 3D positions.

Instead of looping over 3D points and pulling informa-
tion from inputs, Splatter is designed to loop over input
pixels/rays and directly push information to 3D structures.
This approach makes Splatter a reverse of Renderer, elim-
inating the reliance on 3D points’ positions and enabling a
unified lifting operation compatible with various 3D hashed
structures, as long as they have a clearly defined renderer
function. Additionally, since Renderer also loops over pix-
els/rays, Splatter can leverage similar memory optimization
strategies, significantly reducing memory usage.

Starting from a zero-initialized 3D structure θ, Splatter
samples R+1 equispaced 3D points xij along the ray ri
(cast from an input pixel), and splats (pushes) these 3D
points’ features into θ. 3D point’s feature vij is inherited
from the pixel’s feature vi, and the splatting operation is
inverse to the sampling operation used in rendering. Specif-
ically, this is achieved by accumulating vij into hash cells
containing xij , with the accumulation weighted by splat-
ting weights (Fig3(a)). After looping over all M rays, each
hash cell is normalized by the sum of all splatting weights
assigned to that cell. For triplanes, a hash cell is a 2D grid
on a plane, and splatting weights are the normalized inverse
distances between the 2D point and the four grid vertices.

Assigning the same pixel feature to all points along the
ray works well for voxel grids, while fails for more compact
representations like triplanes, which have less 3D spatial
awareness when reducing from 3D space to 2D planes. To
this end, we introduce another MLP gs to regress a more ex-
pressive feature vector vij for points xij , taking pixel fea-
ture vi, interpolated prior shape encoding hθ̂(xij), and the
positional encoding direnc(ri) of ray direction ri as input.



For each sample xij , the splatted feature ṽij is

ṽij = gs(vi, hθ̂(xij),direnc(ri)) (2)

θ̂ is a another hashed 3D structure, and hθ̂(·) is the cor-
responding hashing scheme used to obtain features given
xij . This MLP allows points along the same ray to have
distinct spatial-aware features, effectively improving the
model’s expressive capability. In practice, θ̂ can either be
a randomly initialized learnable 3D structure (serving as
a learnable 3D positional encoding) or the splatted results
from previous steps. This enables iterative refinement of
3D representations based on the current input and previous
results. We provide illustrations in Figure 3 and detailed
pseudocode in the supplementary material.

3.4. Memory-efficient Designs

We discuss the practical designs of Lightplane Renderer and
Splatter, which makes them memory-efficient and scalable.

Fusing operations along the ray. As analyzed, treating
3D points as basic entities and storing intermediate results
for each point is extremely memory-intensive. Alterna-
tively, we treat rays as the basic entities and reconfigure the
computations to process sequentially along the ray without
storing intermediate results, leading to significant memory
savings. Operations along the ray are fused into a single
GPU kernel, which is parallelly spawned for each ray.

As Eq. 1, a Renderer kernel sequentially conducts fea-
ture sampling, MLP evaluation, and rendered result updat-
ing along the ray without saving any intermediate results. In
the example from Sec. 3.1, this approach reduces memory
usage from O(MKRL) to O(MK), dropping from 12 GB
to 2 KB for a 2562 image with R = 128 samples per ray
in FP32. This is less than 0.02% of the memory required
by the naı̈ve implementation. Since Splatter is designed to
process rays emanating from input pixels as well (Sec. 3.3),
it benefits from the same optimization practice.

Recalculation for backpropagation. Skipping the stor-
age of intermediate results during forward propagation dras-
tically reduces memory usage, though these tensors are cru-
cial for backpropagation. To manage this, we recompute in-
termediate results during backpropagation for gradient cal-
culation. While recalculating the MLP increases floating-
point operations by less than 50 compared to the naı̈ve im-
plementation, this cost is incurred only during backpropa-
gation and leads to significant memory savings.

Using GPU memory hierarchy. The speed can be further
optimized by leveraging the GPU’s memory hierarchy. By
fusing operations into a single GPU kernel, we maximize
on-chip SRAM usage and minimize slower HBM access,

which often bottlenecks performance. This approach keeps
our kernel efficient, even with the overhead of recalculating
intermediate results during backpropagation. For more on
GPU memory hierarchy, see flash-attention [17].

Emission-absorption backpropagation. Renderer and
Splatter are dual not only in functionality but also in their
implementation. Splatter ’s backpropagation mirrors Ren-
derer ’s forward pass, as it samples 3D point gradients from
3D structures’ gradient field and aggregates them along the
ray to form input pixel gradients. Conversely, Renderer ’s
backward process resembles Splatter ’s forward pass.

Notably, Renderer’s backpropgation is more complex as
the visibility of 3D points is influenced by the transmittance
of previous points in the EA model. During the forward
pass, we sequentially calculate each 3D point’s visibility
and implement the rendering equation Eq. (1) by summing
in order j=1, 2, . . . , as visibility Tj is easily derived from
Tj−1 (ray index omitted for simplicity). For the backward
pass on a ray r, the vector-Jacobian product (i.e., the quan-
tity computed during backpropagation) is derived as:

p⊤ dv

dfσ(xq)
= −∆

dσ(xq)

dfσ(xq)

 R∑
j=q+1

(Tj−1 − Tj)aj − Tqaq

 (3)

where aj=p⊤fv(xj), p is the propogated gradient vector.
To backpropagate through Renderer efficiently, we com-

pute Eq. (3) by marching along each rendering ray in the re-
verse order q = R,R−1, . . . , since the vectors aj are accu-
mulated from sample q onwards, and the opacity fσ(xq) af-
fects only the visibility of successive samples xq,xq+1, . . ..
To make this possible, we cache the final transmittance TR,
which is computed in the forward pass(this amounts to one
scalar per ray). In backpropagation, we sequentially com-
pute σ(xj) for every 3D point along the ray, and calculate
Tj−1 = Tj · exp(∆σ(xj)) from Tj . In this way, similar to
the forward pass, the kernel only stores the accumulation of
per-point features instead of keeping them all in memory.

Difference from checkpointing. Note that the latter is
very different from “checkpointing” which can be trivially
enabled for the naive renderer implementation in autograd
frameworks such as PyTorch. This is because, unlike our
memory-efficient backward pass from Eq. (3), a check-
pointed backward pass still entails storing all intermediate
features along rendering rays in memory.

4. Example applications

Similar to flash-attention [17], Lightplane Renderer and
Splatter serve as highly memory-efficient building blocks
for rendering and lifting, which can be easily integrated into
existing models and pipelines. We demonstrate various 3D
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applications that can benefit from these components, rang-
ing from single-scene optimization with image-level losses
to a versatile framework for large-scale 3D reconstruction
and generation. Results are presented in Sec. 5.

Single-scene optimization with image-level losses. Due
to the intensive memory usage in rendering, existing volu-
metric methods are often limited to using pixel-level losses
(e.g. MSE) on a subset of rays, or image-level losses on
very low-resolution renderings 642 [45, 57], often requir-
ing complicated and inefficient deferred techniques. In con-
trast, Lightplane Renderer enables direct rendering of high-
resolution images (e.g. 5122) in a differentiable way, with
minimal memory overhead and without the need for addi-
tional tricks. It seamlessly supports image-level looses (e.g.
perceptual loss [31], LPIPS [95], or SDS [57],) on high-
resolution full images We show 3D neural style transfer re-
sults on Figure 5 and discuss more applications in Supp.

Multi-view reconstruction. Combining Renderer and
Splatter, we introduce a versatile pipeline for 3D recon-
struction and generation, as shown in Fig 1 (left). Given a
set of views (viewset) V={Ii}Ni=1 and corresponding cam-
eras {πi}Ni=1, we train a large-scale model Φ, which directly
outputs the 3D representations θ=Φ(V, π) of the scene by
learning 3D priors from large-scale data. Reconstruction
begins by extracting a pixel-wise feature map v=ψ(Ii)
from each image Ii and lifting them into the 3D represen-
tation θ̃ with Splatter. Model Φ takes θ̃ as input and out-
puts the final 3D representations θ=Φθ(θ̃). Finally, Ren-
derer outputs novel view images Î = R(θ, π) from θ, and
the model is trained by minimizing the loss L between the
novel rendered image and the corresponding ground truth I .

3D generation using viewset diffusion. Following recent
works [2, 73], above pipeline can be easily extended into a
diffusion-based 3D generator with minimal changes. This is
done by introducing a noised viewset as input to the network
and training the model to denoise the viewset. Specifically,

Org 3D Scene Stylization 1 Stylization 2

Figure 5. Single-scene optimization with image-level losses.
The memory efficiency of Lightplane allows rendering high reso-
lution images in a differentiable way and backpropagating image-
level losses. We show pre-optimized 3D scenes (in unseen views)
and their stylizations with perceptual losses.

each image Ii is replaced with Iit = αtIi + σtϵi where
t is the noising schedule, αt and σt =

√
1− α2

t are the
noise level, and ϵi is a random normal noise vector. During
inference, the model initializes the viewset with Gaussian
noise and iteratively denoises it by applying the reconstruc-
tion model. This process simultaneously generates multiple
views of the object as well as its 3D model.

5. Experiments
We first benchmark the proposed components’ performance
and then demonstrate their usage on various 3D tasks. The
scalability boost comes from improvements in both input-
size and modeling. For input-size, the components signifi-
cantly increase the amount of 2D information lifted to 3D
by enabling more input views and larger output sizes. For
modeling, the memory savings allow for increased model
complexity and larger batch sizes during training.

5.1. Memory & Speed Benchmark

We benchmark components’ speed and memory in Figure 4
and show more benchmarks in Supp. Overall, Lightplane
offers over 1000× memory savings with comparable speed
to baselines. Renderer (left column) is tested on a triplane
with 256 points per ray and compared to a PyTorch Au-
tograd renderer, adapted from [8, 10]. It easily supports
large images with very low memory usage, which is un-
feasible for the Autograd renderer. Splatter (right col.) is
tested on lifting N input feature maps into a 1603 voxel
grid. We benchmark it against the lifting operations from
GeNVS [11], disabling the MLPs in Splatter for a fair com-



Figure 6. Multi-view Large Reconstruction Model (LRM) with Lightplane. Taking four views as input (leftmost column), we show the
RGB renders (mid) and depth (rightmost column) of the 3D reconstruction.

Input LRM LRM + Lightplane
Figure 7. Adding Lightplane to LRM gives more accurate geometry and appearance with little additional computation and memory cost.

parison. As shown, Splatter can handle over a hundred
views efficiently, while existing methods are restricted to
just a few views. Notably, even for modest settings (i.e.
4 input views, 1282 rendered image size), existing designs
still consume over 20 GB of memory, which constitutes a
significant portion (25%) of an A100 GPU’s memory.
Table 1. Quantitative results of LRM. Lightplane effectively im-
proves the reconstruction results, especially geometry (depth L1).

Method PSNR↑ LPIPS↓ IOU↑ Depth L1↓
LRM [29] 23.7 0.113 0.904 0.208
Lightplane +LRM 24.1 0.106 0.916 0.168

Figure 9. Single Image 3D Recon. With a clean image (1st col.),
our model generates realistic 3D structures matching the input.

5.2. Multi-view LRM with Lightplane

We first validate Lightplane ’s efficacy by integrating it with
the Large Reconstruction Model (LRM)[29], with results
presented in Table1 and Figures 6, 7. LRM takes four im-
ages as input and outputs a triplane as the 3D representation
through a series of transformer blocks. Every 3 transformer
blocks (i.e. 5 blocks in total), we insert the Splatter layer,
which splats source view features into a new triplane, using
the previous block’s outputs (triplane) as a prior shape en-

Table 2. Amortized 3D Reconstruction. Lightplane trained
on the whole CO3Dv2 significantly outperforms baseline View-
Former [41]. We compare overfitting baselines (Voxel, NeRF [50])
to Lightplane, and to their scene-tuned versions (“Feedforward +
Overfit”). Initializing from Lightplane-feedforward removes de-
fective geometry leading to better depth error.

Method Mode #views PSNR↑ LPIPS↓ Depth corr.↑ Time↓
ViewFormer [41] Feedforward 9 16.4 0.274 N/A N/A
Lightplane Feedforward 10 20.7 0.141 0.356 1.6 sec
Lightplane Feedforward 20 20.9 0.136 0.382 1.9 sec
Lightplane Feedforward 40 21.4 0.131 0.405 2.5 sec
Lightplane Feedforward + Overfit 160 26.2 0.086 0.449 5 min
Voxel Overfit from scratch 160 26.5 0.086 0.373 35 min

NeRF Overfit from scratch 160 26.3 0.108 0.658 1 day

Table 3. Unconditional 3D Generation on CO3Dv2. Our Light-
plane significantly outperforms HoloDiffusion [35] and Viewset
Diffusion [73]. It even beats HoloFusion [34], a distillation-based
method, which takes 30 mins for one generation.

Method Feed- Hydrant Teddybear Apple Donut Mean Inference

forward FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓ Time

HoloFusion [34] × 66.8 0.047 87.6 0.075 69.2 0.063 109.7 0.098 83.3 0.071 30 min
HoloDiffusion [35] ✓ 100.5 0.079 109.2 0.106 94.5 0.095 115.4 0.085 122.5 0.102 < 2 min
Viewset Diffusion [73] ✓ 150.5 0.124 219.7 0.178 - - - - - - < 2 min
Lightplane ✓ 75.1 0.058 87.9 0.070 32.6 0.019 44.0 0.019 59.9 0.042 < 2 min

coding (Eq 2). Incorporating Splatter into LRM adds min-
imal computational overhead while clearly enhancing per-
formance. Also, replacing the original renderer with our
Renderer enables LPIPS loss without the added complexity
of the deferred backpropagation used in LRM [29].



Figure 8. Unconditional 3D Generation displaying samples from our Lightplane-augmented Viewset Diffusion trained on CO3Dv2 [60].

5.3. Large-Scale 3D Recon. and Gen.

As illustrated in Sec. 4 and Fig 1, we build a large-scale 3D
reconstruction and generation model based on Lightplane.
As a versatile pipeline, it could support various 3D hash
structures, e.g. voxel grids or triplanes. Without loss of gen-
erality, we utilize a UNet [62] with attention layers [77] to
process these 3D hash structures (Deep net in Fig 1). We
use CO3Dv2 [60] as our primary dataset, a collection of
real-world videos capturing objects across 51 common cat-
egories. We contract ray-point’s coordinates [5] to support
unbounded backgrounds. See more details in Supp..

Amortized 3D Reconstruction. Existing amortized 3D
reconstruction and novel view synthesis methods [60, 76,
81, 91, 96] are typically limited to a few input views (up
to 10) due to memory constraints. In contrast, we signifi-
cantly increase the number of input views. Unlike category-
specific models, we train a single model across all CO3Dv2
categories, aiming for a reconstruction model capable of
handling various object types and providing valuable 3D
priors for subsequent 3D optimizations. During training,
20 source images from each scene are used as inputs, with
MSE losses calculated on five additional novel views.

We evaluate our model in two ways: (1) comparing it
to other feedforward and single-scene overfitting methods
to assess performance; (2) finetuning feedforward results
using training views from a single scene to to show its effi-
cacy as a learned 3D prior. As few feedforward Nerf model
work across all categories, we use ViewFormer [40] as the
baseline, which directly outputs novel views from a Trans-
former. In (2), we input 80 views to the feedforward model
for initialization and report results of vanilla NeRF [50], and
voxel-grid overfits (i.e., trained from scratch). Results are
evaluated on novel views of unseen scenes.

Our model achieves compelling reconstructions with
a single forward pass, as shown in Tab. 2. After fine-
tuning, it matches overfitting baselines in color accuracy
(PSNR, LPIPS) and largely outperforms hash-based base-
lines (Voxel) in depth error. CO3D’s limited viewpoint cov-

erage leads to geometric defects in hashed representations
(see Supp.). Leveraging Lightplane ’s memory-efficient
pre-training, our model learns a robust surface prior, ensur-
ing defect-free geometry. NeRF excels in depth accuracy
but requires 50× longer training.
Generation. Our model supports unconditional genera-
tion with minimal modifications, specifically by accepting
noisy input images and rendering clean images through a
denoising process. Using Splatter and Renderer, we can
denoise more views (10 in our experiments) per iteration,
enhancing process stability and significantly improving re-
sults. During inference, we input 10 instances of pure noise
and proceed with 50 Denoising Diffusion Implicit Model
(DDIM) [69] sampling steps. We compare our method to
Viewset Diffusion [73] and HoloFusion [34] quantitatively
in Tab. 3 and evaluate qualitatively in Fig. 8. Our results sig-
nificantly outperform other feedforward generation models
and are comparable to distillation-based methods, which are
much more time-consuming. We can also introduce a clean
image as conditioning, enabling single-view reconstruction.
Our framework can also be extended to a text-conditioned
model by using captions as inputs. We present results and
comparisons in Figure 9 and the supplementary materials.

6. Conclusion
We have introduced Lightplane, a versatile framework that
provide two novel components, Splatter and Renderer,
which address the key memory bottleneck in network that
manipulate neural fields. We have showcased the potential
of these primitives in a number of applications, boosting
models for reconstruction, generation and more. Once re-
leased to the community, we hope that these primitives will
be used by many to boost their own research as well. 2
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