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ABSTRACT

In this work, we propose a novel adversarial defence mechanism for image classi-
fication – CARSO – blending the paradigms of adversarial training and adversarial
purification in a mutually-beneficial, robustness-enhancing way. The method
builds upon an adversarially-trained classifier, and learns to map its internal rep-
resentation associated with a potentially perturbed input onto a distribution of
tentative clean reconstructions. Multiple samples from such distribution are clas-
sified by the adversarially-trained model itself, and an aggregation of its outputs
finally constitutes the robust prediction of interest. Experimental evaluation by
a well-established benchmark of varied, strong adaptive attacks, across different
image datasets and classifier architectures, shows that CARSO is able to defend
itself against foreseen and unforeseen threats, including adaptive end-to-end at-
tacks devised for stochastic defences. Paying a tolerable clean accuracy toll, our
method improves by a significant margin the state of the art for CIFAR-10 and
CIFAR-100 ℓ∞ robust classification accuracy against AUTOATTACK.

1 INTRODUCTION

Vulnerability to adversarial attacks (Biggio et al., 2013; Szegedy et al., 2014) – i.e. the presence
of specific inputs, usually crafted on purpose, able to catastrophically alter the behaviour of high-
dimensional models (Bortolussi & Sanguinetti, 2018) – constitutes a major hurdle towards ensuring
compliance of deep learning systems with the behaviour expected by modellers and users, and their
adoption in safety-critical scenarios or tightly-regulated environments. This is particularly true for
adversarially-perturbed inputs, where a norm-constrained perturbation – often hardly detectable by
human inspection (Qin et al., 2019; Ballet et al., 2019) – is added to an otherwise legitimate input,
with the intention of eliciting a potentially malicious anomalous response (Kurakin et al., 2018).

Given the pervasiveness of the issue (Ilyas et al., 2019), and the serious concerns raised about safety
and reliability of data-learned models in the lack of appropriate mitigation (Biggio & Roli, 2018),
adversarial attacks have been extensively studied. Yet, that of obtaining generally-robust machine
learning (ML) systems remains a longstanding issue, and a major open challenge.

Research in the field has been animated by two opposing (yet complementary) efforts. On the one
hand, the study of failure modes in existing models and defences, with the goal of understanding
their origin and developing stronger attacks with varying degrees of knowledge and control over
the target system (Szegedy et al., 2014; Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016;
Tramèr et al., 2020). On the other hand, the construction of increasingly capable defence mechanisms.
Though alternatives have been explored (Cisse et al., 2017; Tramèr et al., 2018; Carbone et al., 2020;
Zhang et al., 2022), most part of the latter is based on adequately leveraging adversarial training
(Goodfellow et al., 2015; Madry et al., 2018; Tramèr & Boneh, 2019; Rebuffi et al., 2021; Gowal
et al., 2021; Jia et al., 2022; Singh et al., 2023; Wang et al., 2023; Cui et al., 2023; Peng et al., 2023),
i.e. training a ML model on a dataset composed of (or enriched with) adversarially-perturbed inputs
associated with their correct, pre-perturbation labels. And indeed, adversarial training has been the
only technique so far able to consistently provide an acceptable level of defence (Gowal et al., 2020),
while still incrementally improving up to current state of the art (Cui et al., 2023; Peng et al., 2023).

Another defensive approach is that of adversarial purification (Shi et al., 2021; Yoon et al., 2021),
where a generative model is used – akin to denoising – to recover a perturbation-free version of
the input before classification occurs. Nonetheless, such attempts have generally fallen short of
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expectations due to inherent limitations of the generative models used, or due to decreases in robust
accuracy1 when attacked end-to-end (Gu & Rigazio, 2015) – resulting in subpar robustness if the
defensive structure is known to the adversary (Tramèr et al., 2020). More recently, the rise of
diffusion-based generative models (Huang et al., 2021) and their use for purification enabled more
successful results (Nie et al., 2022; Chen et al., 2023) – though at the cost of lengthy inference and
training times.

In this work, we draw inspiration from neurocognitive processes underlying cued recall and re-
cognition (Tulving & Thomson, 1973; Eich, 1980; Medina, 2008) to devise a novel adversarial
defence for supervised image classification, dubbed CARSO (Counter-Adversarial Recall of Synthetic
Observations). The approach relies on an adversarially-trained classifier (called hereinafter simply
the classifier), endowed with a generative stochastic model (called hereinafter the purifier). The
latter learns to generate – from the ordered tensor2 of activations registered at neuron level in the
former, upon classification of a potentially-perturbed input – samples from a distribution of plausible,
perturbation-free reconstructions. At inference, a (numerous) sample of such reconstructions is clas-
sified by the very same classifier, and the original input robustly labelled by aggregating its outputs.
Such method – to the best of our knowledge the first attempt to organically merge the adversarial
training and purification paradigms – avoids the vulnerability pitfalls typical of the mere stacking of
a purifier and a classifier (Gu & Rigazio, 2015), while still being able to take advantage of individual
improvements to its parts (i.e. in adversarial training or generative modelling, independently).

Empirical assessment3 of the defence in the ℓ∞ white-box setting is also provided – using a conditional
(Sohn et al., 2015; Yan et al., 2016) variational autoencoder (Kingma & Welling, 2014; Rezende
et al., 2014) as purifier, and existing state of the art (or otherwise notable) pre-trained models as
classifiers. Such choices are meant to give to existing approaches – and to the adversary attacking our
architecture end-to-end as part of evaluation – the strongest advantage possible. Yet, in all scenarios
considered, CARSO improved significantly upon the robustness of the adversarially pre-trained
classifier – including in case of attacks specifically devised to fool stochastic defences. Remarkably,
with tolerable clean accuracy toll, our method also improves by a significant margin the current state
of the art for CIFAR-10 (Krizhevsky, 2009) and CIFAR-100 (Krizhevsky, 2009) robust classification
accuracy against AUTOATTACK (Croce & Hein, 2020a).

In summary, the paper makes the following contributions:

• CARSO, a novel adversarial defence method synergistically blending adversarial training
and purification;

• A bag of tricks to make possible and ease the training of such architecture, when the purifier
is a conditional variational autoencoder – but potentially applicable to other scenarios as
well;

• Experimental assessment of the method proposed, against standardised benchmark ad-
versarial attacks – showing higher robust accuracy w.r.t. to existing state of the art adversarial
training or purification approaches, and defying unforeseen end-to-end attacks.

The rest of the manuscript is structured as follows. In section 2 we provide an overview of specific
contributions in the fields of adversarial training and purification-based defences – with focus on
image classification. In section 3, a deeper analysis is given of two integral parts to our experimental
assessment: PGD adversarial training, and (conditional) variational autoencoders. Section 4 is
dedicated to the intuition behind CARSO, its architectural description, and the tricks used during its
training. Section 5 contains details about the experimental setup, results, and comments. Section 6
concludes the paper and outlines directions of future development.

1The test set accuracy of the frozen-weights trained classifier – computed on a dataset entirely composed of
adversarially-perturbed examples, generated against the model.

2Which we call internal representation.
3Implementation of the method and code for the experiments (based on PyTorch (Paszke et al., 2019),

AdverTorch (Ding et al., 2019), TorchAttacks (Kim, 2020), and ebtorch (Ballarin, 2023)) can be
found in Supplementary Materials.
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2 RELATED WORK

Adversarial training as a defence The idea of training a model on adversarially-generated examples
as a way to make it more robust can be traced back to the very beginning of research in the area.
The seminal work by Szegedy et al. (2014) proposes to perform training on a mixture of clean and
adversarial data, generated beforehand.

The introduction of FGSM (Goodfellow et al., 2015) enables the efficient generation of adversarial
examples during training – with a single normalised gradient step. Its iterative evolution PGD (Madry
et al., 2018) – discussed in section 3 – improves significantly the effectiveness of adversarial examples
produced, making it still the de facto standard for the synthesis of adversarial training inputs (Gowal
et al., 2020). Further incremental improvements have also been developed, some focused specifically
on robustness assessment (e.g. adaptive-stepsize variants, as in Croce & Hein (2020a)).

Most recent adversarial training protocols further rely on synthetic data to increase the numerosity
of training datapoints (Gowal et al., 2021; Rebuffi et al., 2021; Wang et al., 2023; Cui et al., 2023;
Peng et al., 2023), and adopt tweaked loss functions to balance robustness and accuracy (Zhang
et al., 2019a) or generally foster the learning process (Cui et al., 2023). The entire model architecture
may also be tuned specifically for the sake of robustness enhancement (Peng et al., 2023). Such
ingredients are often required to reach the current state of the art in robust accuracy.

Purification as a defence Among the first attempts of purification-based adversarial defence, Gu
& Rigazio (2015) investigate the use of denoising autoencoders (Vincent et al., 2008) to recover
examples free from adversarial perturbations. Despite its effectiveness in the denoising task, the
method may indeed increase the vulnerability of the model when attacks are generated against it
end-to-end. The improvement proposed in such latter work (Gu & Rigazio (2015)) adds a smoothness
penalty to the reconstruction loss, mitigating such downside. Similar in spirit, Liao et al. (2018)
tackle the issue by computing reconstruction loss between the last-layers representations of the
(frozen-weights) attacked classifier, receiving respectively as input the clean and the tentatively
denoised example.

In Samangouei et al. (2018), Generative Adversarial Networks (GANs) Goodfellow et al. (2014)
learned on clean data are used at inference time to find a plausible synthetic example – close to
perturbed input – belonging to the unperturbed data manifold. Despite positive results, the delicate
training process of GANs and the existence of known failure modes (Zhang et al., 2018) affect the
method. More recently, a similar approach (Hill et al., 2021) employing energy-based models (LeCun
et al., 2006) suffered from poor sample quality.

Purification approaches based on (conditional) variational autoencoders include Hwang et al. (2019)
and Shi et al. (2021).

Finally, already-mentioned techniques relying on score- (Yoon et al., 2021) and diffusion- based (Nie
et al., 2022; Chen et al., 2023) models have also been proposed, with surprisingly favourable results –
often balanced in practice by longer inference and training times.

3 PRELIMINARIES

PGD adversarial training The task of finding model parameters robust to adversarial perturbations
is framed by Madry et al. (2018) as a min-max optimisation problem seeking to minimise adversarial
risk. The inner optimisation (i.e. the generation of worst-case adversarial examples) is solved by an
iterative algorithm – Projected Gradient Descent – interleaving gradient ascent steps in input space
with the eventual projection on the border of an ϵ-ball centred around an input datapoint.

In this manuscript, we will use the shorthand notation ϵp to denote ℓp norm-bound perturbations of
maximum magnitude ϵ.

Formal details of the method are provided in Appendix A.

(Conditional) Variational Autoencoders Variational autoencoders (VAEs) (Kingma & Welling,
2014; Rezende et al., 2014) allow the learning, from data, of approximate generative latent-variable
models of the form p(x, z) = p(x | z)p(z), whose likelihood and approximate posterior are para-
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meterised by deep artificial neural networks (ANNs). The problem is cast as the maximisation of a
variational lower bound.

In practice, optimisation is performed iteratively – on a loss determined by the mixture of reconstruc-
tion loss and empirical KL divergence w.r.t. the prior, computed on minibatches of data.

Conditional Variational Autoencoders (Sohn et al., 2015; Yan et al., 2016) extend VAEs by concat-
enating a conditioning vector c – expressing specific characteristics of each example – to z during
training. This allows the learning of a decoder model capable of conditional data generation.

Further details on the functioning of such models are given in Appendix B.

4 DEVELOPMENT AND STRUCTURE OF CARSO

The core ideas informing the design of our method are driven more by first-principles and analogical
reasoning rather than arising from specific formal requirements. This section is dedicated to the
discussion of such ideas, the specification of the architectural details of CARSO, and to practical
enhancements to its training process.

4.1 ARCHITECTURAL OVERVIEW AND PRINCIPLE OF OPERATION

From a purely architectural viewpoint, CARSO is composed of two ANN models – the already
mentioned classifier and purifier – operating in close synergy. The only requirement of the former is
that of having been adversarially trained to solve the classification task of interest – thus allowing
free reuse of pre-trained models, and retaining contributions to overall robustness from established
adversarial training techniques.

The key element of novelty lies in the intertwined operation of classifier and purifier – aimed at
learning a distribution of purified examples (to be generated from each potentially-perturbed input)
from the internal representation of the classifier, and to classify some samples harvested from it –
without increasing (and indeed much reducing) the overall adversarial vulnerability in the process.

The purifier is also independent from specific architectural choices, provided it can sample, during
inference, multiple (different) tentative reconstructions of the input conditionally on the internal
representation of the classifier alone – i.e. without requiring further datapoint-dependent information.
In the rest of the paper, we adopt a conditional variational autoencoder as the purifier of choice,
receiving the internal representation of the classifier as conditioning set and operating decoder-only
during inference. Such choice was due to its light computational training requirements and exact
algorithmic differentiability (Baydin et al., 2018). The latter condition ensures that the purifier does
not contribute to gradient obfuscation (Athalye et al., 2018a) when end-to-end adversarial attacks are
produced against the whole architecture.

A diagram of the overall architecture is shown in Figure 1, and its detailed principles of operation
described below.

Training During training, adversarially-perturbed examples are generated against, and fed to, the
classifier. The tensor of classifier activations across all layers (in arbitrary but fixed order) is then
extracted. At this point, the conditional VAE is trained on denoised input reconstruction as customary,
conditioned on their corresponding previously extracted internal representations.

Upon completion of the training process, the encoder network may be discarded – as it will not be
used for inference.

Inference The example requiring classification is fed to the pre-trained classifier. Its corresponding
internal representation is extracted and used to condition the generative process described by the
decoder of the VAE – whose stochastic latent variables are sampled from the original priors. Each
element in the resulting set of denoised examples is classified by the same pre-trained classifier, and
individually predicted classes are aggregated. The result of the aggregation is the robust prediction of
the input class.
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Figure 1: Schematic representation of the CARSO architecture used in the experimental phase of this
work. The subnetwork bordered by the red dashed line is used only during training of the purifier.
The subnetwork bordered by the blue dashed line is re-evaluated on different samples of z and the
resulting individual ŷi aggregated into ŷrob. The classifier f(·;θ) is always kept frozen; the remaining
network is trained on LVAE(x, x̂). Precise details on the functioning of the networks are provided in
subsection 4.1.

Remarkably, the only link between the initial potentially-perturbed input and the resulting purified
reconstructions (and thus, predicted class) is through the internal representation of the classifier –
that serves as a featurisation of the original input. The whole process is also exactly differentiable,
end-to-end.

4.2 A FIRST-PRINCIPLES JUSTIFICATION

If we consider a trained ANN classifier, subject to a successful adversarial attack by means of a
slightly perturbed example, we observe that – both in terms of ℓp magnitude and human perception – a
small variation on the input side of the network is amplified to a significant amount on the output side,
thanks to the layerwise processing by the model. Given the deterministic nature of such processing
at inference time, we conclude that the trace obtained by sequentially collecting activation values
within the network, along the forward pass, constitutes a richer characterisation of such amplification
process compared to input alone. And indeed, it is possible to learn a direct mapping from such
featurisation of the input, to a distribution of possible perturbation-free input reconstructions – as
explained earlier – that takes advantage of such additional knowledge.

Furthermore, we claim that using the same classifier for both internal representation extraction and
classification of reconstructed inputs has a positive effect in shielding the entire architecture from
gradient-based end-to-end attacks. Indeed, if one considers the total gradient arising at the level of
individual neurons in the classifier – when an attack is performed against the whole architecture – it
receives contributions from the two roles played at once by those neurons: as conditioning set for the
VAE, and as part of the classifier architecture. Since the individual direction of those contributions is
a priori not aligned, it is likely that – in expectation – the resulting gradient direction is not aligned
with that of the gradient of the unshielded classifier, and its magnitude in such direction decreased.

4.3 EXAMPLE AND INTERNAL REPRESENTATION PRE-ENCODING

Given the high variability of datasets and classifier architectures across instances of robust classi-
fication – one potential limitation of the approach described so far comes from the heterogeneity in
relative size and structure between data x to be modelled and their corresponding conditioning set c.
Indeed, the training of a conditional VAE requires (Sohn et al., 2015) concatenation of the two, and
further concatenation of the latter with a sample of stochastic latent variables z ∼ qθE(z |x;θE).
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Additionally, the a priori lack of spatial structure in c strongly limits the use of convolutional neural
networks (CNNs) (LeCun et al., 1998) within the encoder, whereas the use of fully-connected networks
(FCNs) on images is deemed unsatisfactory – given the hardness of learning locally-convolutional
structures from data (Ingrosso & Goldt, 2022).

Mitigating both issues, we propose to insert in the architecture two additional auxiliary encoders –
again parameterised by ANNs – to be learned jointly with the VAE during training on the purification
task: one relative to data D(·;θD) and one to the context C(·;θC).
The resulting encoded examples x′ := D(x;θD) and context c′ := C(c;θC) may be used in place of
x and c respectively, within the VAE. This allows to effectively decouple data- and context-specific
processing before autoencoding occurs: in the design of D and C, the |c|/|x| balance is ensured by
tuning output sizes of the auxiliary encoders; structural heterogeneity is addressed by choosing the
inductive biases (Mitchell, 1980) deemed the most suitable to the respective inputs.

In order to sample from the generative model at inference time, C must be preserved after training,
and used to encode the internal representations extracted. D may instead be discarded.

4.4 ADVERSARIALLY-BALANCED BATCHES

Calling ϵ the maximum ℓp perturbation-norm bound for the threat model against which the classifier
has been adversarially pre-trained, the purifier is trained on a mixture of clean and adversarially
perturbed examples – the latter evenly split among FGSMϵ/2, PGDϵ/2, FGSMϵ, and PGDϵ.

Additionally, care is put towards the preparation of batches each equally representative of the different
types and strengths of attacks, while relying solely on dataset shuffling to benefit from regularisation
due to stochastic approximation (Robbins & Monro, 1951; Bottou, 1999). Precisely, within an epoch
of training, a fixed fraction of every clean batch resulting from the shuffled dataset is kept unprocessed
– whereas the remaining portion perturbed by an even split among the attacks listed above.

Such choice is experimentally justified by the fact that any smaller subset of attack types or strength
used for training of the purifier, or a detailedly unbalanced batch composition, always results in a
worse-performing purification model. More details are provided in Appendix C.

4.5 INSTANCE-SPECIFIC TUNING

Further tuning of the VAE architecture and its usage protocol are possible – and mostly dependent on
the specific data of interest.

In our investigation, we focused on image data. As a consequence, we restricted the reconstruction
task to the image alone (instead of including also the conditioning tensor, as customary with class-
conditional VAEs) and designed the decoder of the purifier as a Deep Generative Deconvolutional
Network (DGDN) (Pu et al., 2016).

Finally, as a way to ease scalability of the method – which is proportional to the number of neurons in
the classifier – a carefully-chosen subset of layers is used instead of the whole internal representation.
Such trick, used extensively in experiments, does not significantly compromise the effectiveness of
CARSO while providing tangible computational benefits. More details about principles guiding the
choice of such representation subsets is provided in Appendix E.

Full details related to architectural choices and hyperparameters are contained in section 5 and in
Appendix D.

5 EXPERIMENTAL ASSESSMENT

Experimental evaluation of CARSO is carried out – in terms of robust and clean image classification
accuracy – within four different scenarios: (a), (b), (c) and (d). The white-box setting is assumed
throughout, as well as an ℓ∞ norm-bound threat model. Such latter specifications describe the
generally most demanding setup for adversarial defences.
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5.1 SETUP

Data In scenarios (a), (b) and (c), the CIFAR-10 (Krizhevsky, 2009) dataset is used; in scenario
(d), the CIFAR-100 (Krizhevsky, 2009) dataset.

Architectures In scenario (a), the pre-trained RESNET-18 (He et al., 2016) from Wong et al. (2020)
(1.1× 107 parameters) is used as the classifier. In scenario (b), the pre-trained PREACTRESNET-18
(He et al., 2016) from Rebuffi et al. (2021) (1.25 × 107 parameters) is used instead. In scenarios
(c) and (d), the WIDERESNETs -28-10 (Zagoruyko & Komodakis, 2016) from Cui et al. (2023)
(3.65× 108 parameters) are used, pre-trained on the respective datasets.

In all cases, the VAE purifier is composed of a one-layer convolutional input pre-encoder, a FCN
context pre-encoder, a FCN encoder, and a deep deconvolutional decoder. Exact details on such
architectures are given in Appendix D.

Outer minimisation In all scenarios, classifiers are obtained as pre-trained models from public
resources made available by the respective Authors (Wong et al., 2020; Rebuffi et al., 2021; Cui et al.,
2023).

The purifier is trained on the VAE loss, using summed pixel-wise channel-wise binary cross
entropy as reconstruction cost (for [0, 1]-normalised inputs). Optimisation is performed by
RADAM+LOOKAHEAD (Liu et al., 2020; Zhang et al., 2019b) with epochwise linear one-cycle
(Smith, 2017) learning rate scheduling. Scenario-specific details are provided in Appendix D.

Inner minimisation In all scenarios, ϵ∞ = 8/255 is set as the perturbation-norm bound. In training
the purifier, adversarial examples are obtained by maximising the categorical cross-entropy between
the prediction made by the classifier on the clean and perturbed inputs, in a class-untargeted fashion.

Maximisation is performed according to the procedure described in subsection 4.4 – optimised by
gradient ascent with a step size α = 0.01 in the case of PGD. Full details and hyperparameters of the
attacks are described in Appendix D.

Evaluation In each scenario, we report the clean and robust test-set accuracy – the latter by means
of AUTOATTACK (Croce & Hein, 2020a) – of both the classifier and the entire CARSO architecture.

In the case of classifiers alone, the standard version of AUTOATTACK (AA) is used: i.e. , the worst-
case accuracy on a mixture of AUTOPGD attack on the cross-entropy loss (Croce & Hein, 2020a)
with 100 steps, AUTOPGD on the difference of logits ratio loss (Croce & Hein, 2020a) with 100 steps,
FAB (Croce & Hein, 2020b) with 100 steps, and the black-box SQUARE attack (Andriushchenko
et al., 2020) with 5000 queries.

For the end-to-end CARSO architecture, the number of reconstructed samples per input is set to 4
in scenarios (a) and (b), to 8 in scenarios (c) and (d). Results are aggregated by sum of softmaxes,
and the output class determined by its argmax. Due to the stochastic nature of the purifier, robust
accuracy is assessed by the version of AUTOATTACK suitable for stochastic defences (rand-AA) –
composed of AUTOPGD on the cross-entropy and difference of logits ratio losses, with 20 Expectation
over Transformation (EOT) (Athalye et al., 2018b) iterations, 100 steps each.

Computational infrastructure All experiments have been performed on an NVIDIA DGX A100
system. Training and evaluation in scenarios (a) and (b) were run on 1 NVIDIA A100 with 40 GB of
dedicated memory; in scenarios (c) and (d) on all 8 of the same devices.

Training times for the purifier in all scenarios are reported in Table 1.

Table 1: Total running times for the training of the purifier in the different scenarios considered. Scenarios (a)
and (b) employ 1× whereas scenarios (c) and (d) 8× GPU parallelism.

Scenario (a) (b) (c) (d)

Training time 129min 148min 178min 185min
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5.2 RESULTS AND DISCUSSION

An analysis of experimental results is performed in the subsection that follows, whereas their
systematic exposition is given in Table 2.

Table 2: Accuracy for the different models, datasets, and scenarios considered. Abbreviations, col. names:
AT/Cl: Clean accuracy for the adversarially-trained classifier, C+AT/Cl: Clean accuracy for CARSO, AT/AA:
Robust accuracy for the adversarially-trained classifier against standard AUTOATTACK, C+AT/rand-AA:
Robust accuracy for CARSO, against stochastic-defences AUTOATTACK, SotA AA: state of the art result,
per given dataset; Abbreviations, Arch.: RN-18: RESNET-18 from Wong et al. (2020), PARN-18:
PREACTRESNET-18 from Rebuffi et al. (2021), WRN-28-10: WIDERESNET-28-10 from Cui et al. (2023);
Abbreviations, SotA.: (AT): result obtained by SotA adversarial training (CIFAR-10: Peng et al. (2023);
CIFAR-100: Wang et al. (2023)), (P): result obtained by SotA adversarial purification (CIFAR-10: Chen et al.
(2023)).

Scen. Dataset Arch. AT/Cl C+AT/Cl AT/AA C+AT/rand-AA SotA AA

(a) CIFAR-10 RN-18 0.8380 0.7755 0.4336 0.7096 0.7107 (AT), 0.7324 (P)

(b) CIFAR-10 PARN-18 0.8353 0.7824 0.5668 0.6648 0.7107 (AT), 0.7324 (P)

(c) CIFAR-10 WRN-28-10 0.9216 0.8602 0.6773 0.7570 0.7107 (AT), 0.7324 (P)

(d) CIFAR-100 WRN-28-10 0.7385 0.6692 0.3918 0.6573 0.4267 (AT)

Scenarios (a) and (b) The adversarially pre-trained classifiers considered in scenarios (a) and
(b) share and almost-identical architecture and provide comparable clean classification accuracy
(≈ 83%). Their robust accuracy is instead evidently different, consequence of the much more
demanding, accuracy-focused training protocol of Rebuffi et al. (2021) compared to speed-focused
Wong et al. (2020). Still far from the SotA for CIFAR-10 (Peng et al., 2023; Chen et al., 2023),
results from scenario (b) are in line with the current adversarial training best, for a RESNET-18 on
CIFAR-10, achieved by Gowal et al. (2021): 87.35% clean and 58.63% robust accuracy.

The adoption of CARSO strongly improves the adversarial robustness of the resulting models –
attacked end-to-end – at the cost of decreased clean accuracy. Comparison in terms of robustness
alone is remarkably competitive with the first positions of the ROBUSTBENCH (Croce et al., 2021)
leaderboard (for the same dataset and threat model, e.g. Peng et al. (2023); Wang et al. (2023); Cui
et al. (2023)) – even though clean accuracy may become a limiting factor in this regard instead. This
motivates the investigation of models with a more refined pre-trained classifier.

Scenario (c) The classifier considered in scenario (c) offers increased clean and robust accuracy
w.r.t. scenario (b), thanks to much more learnable parameters and a deeper structure. It currently
stands in 1st position per-architecture and 4th overall in the ROBUSTBENCH leaderboard, after > 2×
deeper and wider models.

The application of CARSO results – still at the cost of a clean accuracy penalty (−6.14%) – in
a significant increase (+7.97%) in robust accuracy – sufficient to overtake the current best from
adversarial training for CIFAR-10.

Such result also represents an improvement over the current CIFAR-10 overall best, reached by
diffusion-based adversarial purification in Chen et al. (2023) (93.16% clean and 73.24% robust
accuracies).

Scenario (d) Architecturally identical to that of scenario (c), the pre-trained classifier used in
scenario (d) is able to provide significant CIFAR-100 robust classification accuracy – in spite of
its smaller size compared to the first model in the ROBUSTBENCH leaderboard. In terms of robust
accuracy, it currently stands 1st per-architecture (WRN-28-10) and 2nd for CIFAR-100 overall.

In this case, our method produces a model able to conquer the overall SotA for CIFAR-100 (Wang
et al., 2023) – by a large margin (+23.06%). Not unlike previous cases, a clean accuracy toll
(−6.93%) is imposed by the method.
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Assessing the impact of gradient obfuscation Even though the CARSO architecture is end-to-end
algorithmically differentiable – and the integrated diagnostics included in rand-AA never identified the
issue when attacking it end-to-end – we additionally guard against the eventual gradient obfuscation
(Athalye et al., 2018a) induced by our method by repeating the evaluation at ϵ∞ = 0.9, verifying that
below-random robust accuracy is always achieved (Carlini et al., 2019). Results of such test in all
scenarios are shown in Table 3.

This concludes the evaluation of the method.

Table 3: Robust classification accuracy against AUTOATTACK, for ϵ = 0.9 – as a way to assess the (lack of)
impact of gradient obfuscation on robust accuracy evaluation.

Scenario (a) (b) (c) (d)

ϵ = 0.9 acc. ≤0.0778 ≤0.0359 ≤0.0475 ≤0.0048

5.3 LIMITATIONS AND OPEN PROBLEMS

In line with recent works aiming at the development of robustness against multiple perturbations
(Dolatabadi et al., 2022; Laidlaw et al., 2021), our method imposes a decrease in clean accuracy
w.r.t. the adversarially-trained classifier alone. In our case, such decrease is surely dependent on
the use of a VAE as the generative purification model – result of the deliberate choice of testing the
method in the worst-case for the defender. To overcome this limitation, more expressive and capable
purification techniques (e.g. based on diffusion or score modelling) may be adopted. Also, in an
attempt to improve cross-talk between classifier and purifier without harming the overall robustness –
a similar approach to that of Liao et al. (2018) may be worth of consideration.

Finally, scalability issues may limit the applicability of CARSO – as it requires to train a purifier
whose input is linear in the number of neurons of the classifier. Using a subset of layers as a surrogate
for the entire internal representation – as described in subsection 4.5 – does mitigate the problem in
practice. This, however, comes at the cost of a handcrafted, heuristic-driven selection of the most
suitable representation subsets.

6 CONCLUSION

In this work, we presented a novel adversarial defence mechanism tightly integrating input purification,
and classification by an adversarially-trained model – being ultimately able to improve upon current
state of the art in CIFAR-10 and CIFAR-100 ℓ∞ robust classification, both w.r.t. adversarial training
and purification approaches. Such results show the value of CARSO as a viable strategy to improve
adversarial robustness in visual tasks, with limited additional computational expenditure.

As a consequence, this motivates the scaling of CARSO to more challenging benchmarks and use-cases.
Such adaptation would require a general re-framing of our experimental setup, and the adoption of a
more capable purifier (e.g. based on diffusion- or score-based modelling) – able to handle increased
input size and a wider variability across more classes. Furthermore, with adversarial attack generation
against such generative models being an open field of research, a dedicated analysis and careful
comparison of obtained results becomes necessary.

Finally, such endeavour will require a deeper understanding and the development of general, auto-
mated criteria for the selection of relevant subsets of internal representations – to be used in the
conditioning the purification model. Candidate approaches in this regard may be rooted in the
analysis of layerwise intrinsic dimension (Ansuini et al., 2019), or novel metrics to quantify the most
informative neurons.

9
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A ON PROJECTED GRADIENT DESCENT ADVERSARIAL TRAINING

The task of determining model parameters θ⋆ that are robust to adversarial perturbations is cast by
Madry et al. (2018) as a min-max optimisation problem seeking to minimise adversarial risk, i.e.:

θ⋆ ≈ θ̂⋆ := argmin
θ

E(x,y)∼D

[
max
δ∈S
L (f (x+ δ;θ) , y)

]
whereD is the distribution over examples x and labels y, f(·;θ) is a model with learnable parameters
θ, L is a suitable loss function, and S is the set of allowed perturbations. In the case of ℓp norm-bound
perturbations of maximum magnitude ϵ, we can specify S := {δ | ∥δ∥p ≤ ϵ}.
The inner optimisation problem is solved, again by Madry et al. (2018), by Projected Gradient Descent
(PGD), an iterative algorithm whose goal is the synthesis of adversarial perturbation δ̂ = δ(K) after
K gradient ascent and projection steps defined as:

δ(k+1) ← PS

(
δ(k) + α sign

(
∇δ(k)Lce(f(x+ δ(k);θ), y)

))
where δ(0) is randomly sampled within S, α is a hyperparameter (step size), Lce is the cross-entropy
function, and PA is the Euclidean projection operator onto set A, i.e. PA(a) := argmina′∈A ∥a−
a′∥2 .

The outer optimisation is carried out by simply training f(·;θ) on the examples found by PGD against
current model parameters – and their pre-perturbation labels. The overall procedure just described
constitutes PGD adversarial training.

B ON THE FUNCTIONING OF (CONDITIONAL) VARIATIONAL AUTOENCODERS

Variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) learn, from data, a
generative distribution of the form p(x, z) = p(x | z)p(z), where probability density p(z) represents
a prior over latent variable z, and p(x | z) is the likelihood function, which can be used to sample
data of interest x, given z.

Training is carried out by maximising a variational lower bound −LVAE(x) on the log-likelihood
log p(x) – which is a proxy for the Evidence Lower Bound (ELBO) – i.e.:

−LVAE(x) := Eq(z |x)[log p(x | z)]−KL(q(z |x)∥p(z))

where q(z |x) ≈ p(z |x) is an approximate posterior and KL(·∥·) is the Kullback-Leibler divergence.

By parameterising likelihood with a decoder ANN pθD(x | z;θD) ≈ p(x | z), and a possible vari-
ational posterior with an encoder ANN qθE(z |x;θE) ≈ q(z |x), the parameters θ⋆

D of the generative
model better reproducing the data may be learned – jointly with θ⋆

E – as:

θ⋆
E,θ

⋆
D :=

argmin
(θE,θD)

LVAE(x) =

argmin
(θE,θD)

Ex∼D

[
−Ez∼qθE (z |x;θE) [log pθD(x | z;θD)] + KL(qθE(z |x;θE)∥p(z))

]
where D is the distribution over (training) examples x.

From the practical viewpoint, optimisation relies on the empirical evaluation of LVAE(x;θ) on
minibatches of data, with −Ez∼qθE (z |x;θE) [log pθD(x | z;θD)] replaced by a reconstruction cost

LReco(x,x
′) ≥ 0 | LReco(x,x

′) = 0 ⇐⇒ x = x′ .
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Generation of new data according to the fitted model is achieved by sampling from

pθ⋆
D
(x | z;θ⋆

D)

∣∣∣∣
z∼p(z)

i.e. decoding samples from p(z).

The setting is analogous in the case of conditional Variational Autoencoders (Sohn et al., 2015; Yan
et al., 2016) (see section 3), where (conditional) sampling is achieved by

xcj
∼ pθ⋆

D
(x | z, c;θ⋆

D)

∣∣∣∣
z∼p(z); c=cj

.

C JUSTIFICATION OF ADVERSARIALLY-BALANCED BATCHES

During the incipient phases of experimentation, preliminary tests were performed on the MNIST
(LeCun & Cortes, 2010) and Fashion-MNIST (Xiao et al., 2017) datasets – using a conditional
VAE as purifier, and small fully connected (FCN) or convolutional ANNs as classifiers. Adversarial
examples were generated against the (adversarially) pre-trained classifier, and tentatively denoised by
the purifier – sampling only once from the distribution of reconstructions. The resulting recovered
inputs were classified again by the classifier and the difference in overall accuracy recorded.

Importantly, such tests were not meant to assess the end-to-end adversarial robustness of the whole
architecture, but just to tune the training protocol for the purifier.

If the purification machinery had been trained with PGD-generated adversarial examples only – the
de facto standard for adversarial training of classifiers:

• Unsatisfactory clean accuracy was reached upon convergence, speculatively a consequence
of the VAE never having been trained on clean-to-clean example mapping;

• Persistent vulnerability to same norm-bound FGSM perturbations was noticed;

• Persistent vulnerability to smaller norm-bound FGSM and PGD perturbations was noticed.

In order to mitigate such issues, the composition of adversarial examples used for training the purifier
was adapted to specifically counter each of the pitfalls identified. Adoption of any smaller subset w.r.t.
that described in subsection 4.4 resulted in unsatisfactory accuracy w.r.t. at least one of the (sub)cases
listed above.

At that point, another problem emerged: if the adapted adversarial training protocol had been carried
out by producing homogeneous batches from the same type/strength of attack (or clean), the resulting
test accuracy across the remaining cases varied significantly as a function of previous batch ordering.

Such observation lead to the final formulation of the training protocol – with detailedly balanced
batches (see subsection 4.4) – which mitigates successfully all the issues described so far.

D ARCHITECTURAL DETAILS AND HYPERPARAMETERS

In the appendix that follows, we provide exact details about the architectures (subsection D.1) and
hyperparameters (subsection D.2) used in the experimental phase of our work.

D.1 ARCHITECTURES

Here, we describe the specific architectural choices for the individual parts of the purifier.

The input pre-encoder is always composed of one biased convolutional layer with kernel size=
4, stride= 1 and padding= 0. The number of output channels is the least – compatible
with given kernel size, stride, and padding – s.t. the number of scalars necessary to represent the
pre-encoded input is greater or equal to that of input itself. Implementation-wise, such number is
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computed programmatically and never set explicitly. This choice never results in an actual input
compression.

Architectures used for the representation pre-encoder and encoder are shown in Table 4. The subsets
of layers used, on a case-by-case basis, instead of the whole internal representation of the classifier,
are reported in subsection D.2, additional hyperparameters left unspecified are provided in Table 7.

Table 4: Architectures for representation pre-encoder and encoder of the purifier. Symbols fi and fo denote
respectively the number of input features in, and output features of, the given (pre-)encoder. Specific values for
different scenarios, datasets, and architectures are reported in Table 7.

Repr. pre-encoder Encoder

Linear(features_in=fi, features_out=2× fo) Linear(features_in=fi, features_out=fi + fo/2)
Batch Normalisation Batch Normalisation
LeakyReLU(slope=0.01) LeakyReLU(slope=0.01)
Linear(features_in=2× fo, features_out=fo) Linear(features_in=fi + fo/2, features_out=fo)
Batch Normalisation Batch Normalisation
LeakyReLU(slope=0.01) LeakyReLU(slope=0.01)
Sigmoid Tanh

The sampler used for the generation of latent variables z during training is a reparameterised (Kingma
& Welling, 2014) Normal sampler z ∼ N (µe, σe) whose characteristic parameters µe and σe are the
output of two independent Linear layers receiving as input the output of the encoder. The output size
of the sampler is provided in Table 7. During inference, z is sampled (again by reparameterisation)
from the i.i.d Standard Normal z ∼ N (0, 1) (i.e. from its prior).

Decoder architectures are shown in Table 5, according to the specific data to be generated. The
number of output channels co is the same as in the original data (i.e. 3 for the data considered). The
number of input channels ci is the Sample Size provided in Table 7.

Table 5: Architecture for the decoder of the purifier. The name TrConv denotes transposed convolutions. In
the description of deconvolutional layers, the following shorthand notation is used: ch_in: number of input
channels, ch_out: number of output channels, k: square kernel size, s: isotropic stride, p: isotropic padding.
Deconvolutional layers are bias-free. Symbols ci and co denote respectively the number of input channels in,
and output channels of, the decoder.

TrConv2D(ch_in=ci, ch_out=ci/2, k=4, s=1, p=0)
Batch Normalisation
LeakyReLU(slope=0.01)
TrConv2D(ch_in=ci/2, ch_out=ci/4, k=4, s=2, p=1)
Batch Normalisation
LeakyReLU(slope=0.01)
TrConv2D(ch_in=ci/4, ch_out=ci/8, k=4, s=2, p=1)
Batch Normalisation
LeakyReLU(slope=0.01)
TrConv2D(ch_in=ci/8, ch_out=co, k=4, s=2, p=1)
Batch Normalisation
Sigmoid

17



Under review as a conference paper at ICLR 2024

D.2 HYPERPARAMETERS

Here, we report the hyperparameters used for adversarial example generation and optimisation during
the training of the purifier, and those related to purifier model architectures.

Attacks Hyperparameters for the specific adversarial attacks employed are shown in Table 6. The
value of ϵ∞ is chosen according to the specific scenario and use of the attack. With the only exception
of ϵ∞, AUTOATTACK is to be considered hyperparameter-free.

Table 6: Hyperparameters for the attacks used for training the purifier adversarially. The entry CCE denotes the
Categorical CrossEntropy loss function. The ℓ∞ threat model is assumed, and all inputs are linearly rescaled
within [0.0, 1.0] before the attack.

FGSM PGD

Input clipping [0.0, 1.0] [0.0, 1.0]
# of steps 1 40
Step size ϵ∞ 0.01
Loss function CCE CCE
Optimiser SGD

Architectures Table 8 shows the subset of layers used as a surrogate of the entire internal rep-
resentation of the classifier (see subsection 4.5). Names of the layers refer to those used in the
corresponding classifier implementation.

Table 7: Architectural hyperparameters for the representation pre-encoder and actual encoder used within
CARSO. Output size for the z sampler is also reported. Implementation-wise, input sizes for the encoder are
never set explicitly, but computed from the concatenation of pre-encoded representation and pre-encoded input.

Repr. pre-enc. fi Repr. pre-enc. fo Enc. fi Enc. fo Sample size

RESNET-18 (Wong et al., 2020) 2.04810× 105 512 (computed) 192 128
PREACTRESNET-18 (Rebuffi et al., 2021) 2.04810× 105 512 (computed) 192 128
WRN-28-10 (Cui et al., 2023) (CIFAR-10) 5.73450× 105 512 (computed) 192 128

WRN-28-10 (Cui et al., 2023) (CIFAR-100) 2.86820× 105 2816 (computed) 192 128

Table 8: Classifier layer names used as a subset of the internal representation fed to the representation
pre-encoder of the purifier. The names in scenarios (a) and (b), though different, encode the same layers along
(essentially) the same architecture.

Scen. (a) Scen. (b) Scen. (c) Scen. (d)

model.layer1.1.conv2 layer_0.1.conv_2d_2 layer.0.block.1.conv_1 layer.1.block.0.conv_0
model.layer2.0.conv2 layer_1.0.conv_2d_2 layer.1.block.0.shortcut layer.1.block.1.conv_1
model.layer2.0.shortcut.0 layer_1.0.shortcut layer.1.block.1.conv_1 layer.2.block.0.conv_1
model.layer3.0.conv2 layer_2.0.conv_2d_2 layer.1.block.2.conv_1 layer.2.block.1.conv_1
model.layer3.0.shortcut.0 layer_2.0.shortcut layer.2.block.0.shortcut layer.2.block.2.conv_1
model.layer3.1.conv2 layer_2.1.conv_2d_2 layer.2.block.1.conv_1 logits
model.layer4.0.conv2 layer_3.0.conv_2d_2 layer.2.block.2.conv_1
model.layer4.0.shortcut.0 layer_3.0.shortcut layer.2.block.3.conv_1
model.layer4.1.conv2 layer_3.1.conv_2d_2 logits
model.linear logits

Training Table 9 collects hyperparameters governing the training of the purifier in the different
scenarios considered.
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Table 9: Hyperparameters for the training of purifiers, grouped by scenario. The entry CCE denotes the
Categorical CrossEntropy loss function. The epochwise specification of the LR scheduler refers to the fact it is
applied after each epoch (as opposed to batchwise, as more common in practice).

All scenarios Sc. (a) Sc. (b) Sc. (c) Sc. (d)

Optimiser RADAM+LOOKAHEAD
RADAM β1 0.9
RADAM ϵ 10−8

RADAM Weight Decay None
LOOKAHEAD averaging decay 0.8
Loss function CCE
LR Scheduling linear, 1-cycle, epochwise

RADAM β2 0.999 0.999 0.999 0.99
LOOKAHEAD steps 5 5 6 6
Epochs 150 150 150 200
Increasing LR epochs 50 50 37 50
Decreasing LR epochs 100 100 113 150
Minimum LR 5× 10−8 5× 10−8 5× 10−9 5× 10−9

Maximum LR 0.05376 0.05376 0.08 0.065
Batch size 1536 1536 800 128
Adversarial batch fraction 0.4 0.4 0.4 0.12
Sampled reconstructions per input 4 4 8 8

E ON THE CHOICE OF REPRESENTATION SUBSETS

In selecting the subsets of internal representations described in subsection 4.5, we limit ourselves to
groups of entire layers – though other options are technically possible.

To balance model size, informativeness, and robustness, layers are picked with approximately-even
spacing along model depth – avoiding in such way excessive mutual correlation. Given the decreasing
single-layer size from input to output across the architecture, layers from the first RESNET blocks are
preferentially avoided. However, especially in scenarios (c) and (d) – where the overall increased
layer width requires a more careful choice to keep subset size controlled – the importance of including
at least one layer from such blocks becomes more evident.

The subsets finally chosen, and shown in subsection D.2, are the result of those heuristically-motivated
guidelines – complemented with some experimentation.
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