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Abstract

We introduce VidLPRO, a novel video-language (VL) pre-training framework
designed specifically for robotic and laparoscopic surgery. While existing surgical
VL models primarily rely on contrastive learning, we propose a more compre-
hensive approach to capture the intricate temporal dynamics and align video with
language. VidLPRO integrates video-text contrastive learning, video-text matching,
and masked language modeling objectives to learn rich VL representations. To
support this framework, we present GenSurg+, a carefully curated dataset derived
from GenSurgery, comprising 17k surgical video clips paired with captions gen-
erated by GPT-4 using transcripts extracted by the Whisper model. This dataset
addresses the need for large-scale, high-quality VL data in the surgical domain.
Extensive experiments on benchmark datasets, including Cholec80 and AutoLa-
paro, demonstrate the efficacy of our approach. VidLPRO achieves state-of-the-art
performance in zero-shot surgical phase recognition, significantly outperforming
existing surgical VL models such as SurgVLP and HecVL. Our model demon-
strates improvements of up to 21.5% in accuracy and 15.7% in F1 score, setting
a new benchmark in the field. Notably, VidLPRO exhibits robust performance
even with single-frame inference, while effectively scaling with increased temporal
context. Ablation studies reveal the impact of frame sampling strategies on model
performance and computational efficiency. These results underscore VidLPRO’s
potential as a foundation model for surgical video understanding.

1 Introduction

The field of surgical computer vision has seen significant advancements in recent years, driven by
the growing demand for artificial intelligence (AI) applications in healthcare. A notable increase
in research has led to the development of deep learning models that enable surgical workflow
recognition [1, 2, 3], enhance surgical scene understanding [4, 5, 6] and reconstruction [7, 8, 9]. As
surgical procedures grow more complex and technology-driven, the demand for intelligent systems
that support surgeons throughout the entire surgical journey - from preoperative planning to intra-
operative guidance and post-operative analysis [10] - becomes increasingly crucial for enhancing
patient outcomes, streamlining workflows, and enhance overall surgical efficiency [11, 12].

Despite these promising applications, the development and implementation of these systems in
surgical domain face several challenges. One of the primary challenges is the complexity and
variability inherent in surgical procedures. Unlike many standardized video datasets, surgical videos
capture highly dynamic environments where the visual content can vary significantly based on the
specific procedure, patient anatomy, surgeon technique, and unexpected complications [13, 14]. This
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variability makes it difficult to develop robust models that can generalize across different surgical
scenarios. Another significant challenge is the scarcity of large-scale annotated surgical datasets.
Unlike in other domains where data can be more readily collected and labeled, surgical data is
subject to strict privacy regulations and requires expert annotation, which is both time-consuming
and expensive [11, 15]. This limitation hinders the development of data-hungry deep learning models
and necessitates innovative approaches to leverage limited labeled data effectively. The long duration
of surgical procedures also poses a unique challenge. Surgical videos often span several hours,
requiring models to capture and process long-range temporal dependencies [10]. This is in stark
contrast to many general video understanding tasks that typically deal with short clips lasting only
a few seconds or minutes. Furthermore, interpreting surgical videos requires specialized medical
knowledge, making it challenging to apply general-purpose video understanding models directly to
surgical tasks [12].Lastly, the fine-grained nature of surgical actions and the subtle visual cues that
distinguish different phases or steps of a procedure add another layer of complexity. Models must
be capable of detecting and interpreting small but crucial details in the surgical field, often in the
presence of occlusions, reflections, and rapid camera movements [16, 17].

Recently, Multimodal learning, which integrates multiple modalities such visual data, text data, audio,
depth maps etc., has emerged as a viable strategy in computer vision domain. Specifically, Vision-
Language Pre-training (VLP) which leverages large-scale datasets of paired visual and free-from
textual data, can reduce the reliance on annotated datasets, enabling more efficient and effective
learning. It enables models to learn rich and generalizable representations that can be adapted to
various downstream tasks with minimal fine-tuning such as image-text retrieval [18, 19, 20], visual
question answering [21, 22, 23, 24, 25], video understanding [26, 27, 28, 29, 30] and zero-shot
classification [31, 32]. The potential of VLP to capture complex relationships between visual content
and natural language descriptions makes it particularly appealing for the surgical domain, where
procedures are often accompanied by detailed textual reports or narrations.

Recent efforts have begun to explore the application of VLP techniques to surgical video analy-
sis. Notable approaches include SurgVLP [33], which leverages surgical video lectures and their
transcripts to learn multi-modal representations, and HecVL [34], which proposes a hierarchical
pre-training framework for zero-shot surgical phase recognition. While these methods have shown
promising results, they still face several limitations. A significant challenge has been the lack of
large-scale, diverse datasets for surgical VLP. The introduction of the GenSurgery dataset [35] was
a step forward, providing a substantial collection of surgical videos. However, this dataset had
limitations, including a lack of paired textual data, inconsistent audio quality, and the presence of
non-informative content. Our GenSurg+ dataset addresses these issues by rigorously filtering the
original data, adding high-quality captions, and ensuring rich linguistic context. Despite this progress,
existing approaches still struggle with insufficient temporal modeling, failing to capture long-range
dependencies in surgical videos effectively. Many current methods show reduced performance
when applied to new surgical procedures or tasks not seen during pre-training, indicating limited
generalization capabilities. Additionally, most approaches rely solely on video-text contrastive (VTC)
learning as shown in Figure 1, missing out on the benefits of other pretraining objectives that could
enhance the model’s understanding of surgical content and context. Addressing these limitations is
crucial for advancing the field of surgical VLP and developing more robust and versatile models for
surgical video understanding.

Figure 1: Current approaches (left) rely on video-text
contrastive loss only, while our method (right), besides
contrastive loss, employ video-text matching loss and
masked language modeling to enhance cross-modal fu-
sion and surgical language.

To address the limitations of existing surgi-
cal VLP approaches, we present VidLPRO
and GenSurg+, a novel framework and dataset
for robotic and laparoscopic surgical video-
language foundation models. VidLPRO builds
upon recent advancements in video-language
pre-training, incorporating a Vision Transformer
(ViT) as the video encoder, BERT as the text
encoder, and a multimodal fusion module. Our
model employs a combination of Video-Text
Contrastive Learning (VTC), Video-Text Match-
ing (VTM), and Masked Language Modeling
(MLM) objectives to learn nuanced, context-
aware representations of surgical procedures as shown in Figure 1. We also introduce GenSurg+,
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an enhanced version of the GenSurgery dataset [35], containing 17k 45-second clips of endoscopic
robotic surgery with high quality captions generated using raw narration and GPT-4. In zero-shot
surgical phase recognition, VidLPRO significantly outperforms the current state-of-the-art on both
Cholec80 [14] and AutoLaparo [36]. More specifically, on Cholec80, it achieves 57.1% accuracy
and 32.1% F1 score, surpassing HecVL by 15.4% and 5.8% respectively. Our ablation studies
demonstrate VidLPRO’s robustness across different frame sampling rates, with performance scaling
effectively as frame count increases. These results highlight the effectiveness of our pre-training
approach, the quality of GenSurg+, and VidLPRO’s potential to generalize across different surgical
procedures and tasks, crucial for developing adaptive AI systems for diverse surgical environments.

2 Related Work

2.1 Vision-Language models

Most of the vision-language approaches can be categorized into two groups. The first group focuses
on training multi-modal encoders [37, 38, 39, 40, 41] while second group focuses on training uni-
modal vision and text encoders [31, 32, 42, 43]. In context of surgical domain, Surgical-VQA [44],
SurgicalGPT [45] propose vision-language model for visual question answering. Surgical-LVLM [46]
adapts large vision-language model by introducing specialized Visual Perception LoRA blocks for
grounded visual question answering in robotic surgery.

2.2 Surgical Video-Language Pretraining

The application of video-language pre-training (VLP) techniques to the surgical domain is a re-
cent development that shows great promise for advancing surgical video analysis. Two notable
approaches in this emerging field are SurgVLP [33] and HecVL [34], which have made significant
strides in adapting VLP methods to the unique challenges of surgical data. SurgVLP [33] uses
contrastive learning objective to learn multi-modal representations from surgical video lectures. This
method leverages a large dataset of surgical videos paired with transcribed audio, using multiple
complementary automatic speech recognition (ASR) systems to generate text annotations. Building
upon this foundation, HecVL [34] proposes a hierarchical video-language pre-training framework
specifically designed for zero-shot surgical phase recognition. This approach addresses the challenge
of capturing both fine-grained actions and high-level surgical concepts by incorporating hierarchical
textual supervision. VidLPRO, on the other-hand, introduces multiple pre-training objective beyond
mere contrastive learning to capture more rich multi-modal representations.

2.3 Surgical Phase Recognition

Surgical phase recognition aims to automatically identify and segment different stages of a surgical
procedure. Traditional approaches to surgical phase recognition often relied on hand-crafted features
and classical machine learning techniques [47, 2]. However, with the advent of deep learning, there
has been a shift towards more sophisticated models that can automatically learn relevant features
from raw video data [13, 48]. Following these, many one-stage approaches [49, 50, 51] have been
proposed to learn spatio-temporal features. However, one-stage approaches fail to capture the long-
term spatial-temporal dependency. To address this limitation, two-stage solutions [52, 53, 54, 55]
are proposed which first extract the spatial or spatio-temporal features using the feature extractor
and then employ a temporal model on the top of these features to learn long-term dependency. The
temporal models are typically categorized into three types: Recurrent Neural Networks (RNNs) [56],
Temporal Convolution Networks (TCNs) [52, 57], and Transformers [58].

3 Method

3.1 GenSurg+

To enable effective video-language pre-training for robotic and laparoscopic surgery, we introduce
GenSurg+, a large-scale dataset of surgical videos paired with descriptive captions. GenSurg+ builds
upon the GenSurgery dataset [35], which was originally introduced as the largest publicly available
dataset of general surgery videos.
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Figure 2: Overview of the GenSurg+ dataset creation pipeline.

3.2 Dataset Creation Pipeline

We began with the original GenSurgery dataset, which contains 3,100 videos spanning 28 different
surgical procedures and totaling 680 hours of content. Our dataset creation pipeline involved several
key steps to refine and augment this initial corpus:

Audio Filtering. We first filtered out 1,300 videos that lacked audio content, as audio is crucial for
generating meaningful textual descriptions.

Transcript Extraction. For the remaining 1,800 videos with audio, we employed the Whisper
model [59] to extract speech transcripts. This step was necessary as many of the videos, due to their
age, lacked reliable YouTube automatic captions.

Video Segmentation and Filtering. We segmented the videos into 45-second clips, resulting in
approximately 18,000 individual segments. To ensure the quality and relevance of our dataset, we
further filtered these clips based on linguistic criteria. Specifically, we removed about 1,000 clips that
contained either too few unique words or highly repetitive content. This step helped eliminate silent
segments and portions with non-informative audio (e.g., background music or noise).

Caption Generation. For the remaining 17,000 high-quality video clips, we generated descriptive
captions using the GPT-4 language model [60]. We crafted a specialized prompt to ensure the captions
were concise, informative, and tailored to the surgical domain. Please see appendix for the prompt.
The complete pipeline for creating GenSurg+ is illustrated in Figure 2.

Table 1: Comparison between GenSurg+ and SVL-Pretrain datasets.
GenSurg+ SVL-Pretrain [33]

Publicly Available ✓ ×
# Videos 1.3k 1.3k
# Clip-Caption Pairs 17k -
Total Duration 213 hours -

3.3 Dataset Statistics and Characteristics

The resulting GenSurg+ dataset comprises 17,000 45-second video clips, totaling 213 hours of
high-quality surgical content paired with descriptive captions. As shown in Table 1, this makes
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GenSurg+ the largest publicly available dataset specifically designed for surgical video-language
pre-training, offering a significant resource for research in this area.

GenSurg+ represents a significant step forward in enabling large-scale video-language pre-training
for robotic and laparoscopic surgery. By bridging the gap between visual content and descriptive
text in the surgical domain, this dataset lays the foundation for more advanced and generalizable AI
models in surgical assistance and analysis.

Figure 3: Overview of the VidLPRO model architecture and configuration. The model employs a
Vision Transformer (ViT) as the video encoder and BERT as the text encoder. The multimodal fusion
module integrates visual and textual representations, while pre-training objectives such as Video-Text
Contrastive Learning (VTC), Video-Text Matching (VTM), and Masked Language Modeling (MLM)
ensure comprehensive learning of multimodal representations.

3.4 VidLPRO

The VidLPRO framework is based on the best practices outlined in a comprehensive framework for
video-language pre-training, adapted to the specific needs of surgical video analysis.

3.4.1 Model Architecture

Our VidLPRO model consists of three main components: a Video Encoder (VE), a Text Encoder
(TE), and a Multimodal Fusion Module (MFM). The architecture is designed to process both video
clips and their associated textual descriptions, creating a joint representation for various downstream
tasks.

Video Encoder (VE). We employ a standard Vision Transformer, specifically ViT-B/16 [61], as our
video encoder. The ViT model is enhanced with a divided space-time temporal attention mechanism
inspired by TimeSformer [62] to effectively capture the temporal dynamics of surgical videos. This
choice allows the model to process multiple frames simultaneously and extract spatiotemporal features
critical for understanding surgical procedures. Given a video clip C = {f1, f2, ..., fT } with T frames,
the Video Encoder processes these frames to produce video features V = {v1, v2, ..., vT }:

ut = P (ft) (1)
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V = VE({ut + pvt }Tt=1) (2)

Here, P (·) is a linear projection, and pvt are learnable positional embeddings that encode both spatial
and temporal information. The ViT encoder is initialized using BEiT [63] weights.

Text Encoder (TE). For the text encoder, we utilize BERT [64], a robust and widely-used trans-
former model for natural language processing. BERT is responsible for encoding the textual de-
scriptions accompanying the surgical videos, such as transcripts and captions. For a given text
description D = {w1, w2, ..., wL} with L tokens, the Text Encoder produces word embeddings
W = {e1, e2, ..., eL}:

W = TE(D) (3)

The BERT encoder is initialized with BERTbase [64] weights.

Multimodal Fusion Module (MFM). The Multimodal Fusion Module integrates the visual and
textual representations. We adopt the video-to-text (V2T) multimodal fusion scheme, which uses
cross-attention to inject video cues into the textual features. The MFM takes the video features V
and word embeddings W as input and performs cross-modal fusion to produce joint video-language
representations H:

H = MFM([V + pv, [CLS],W + pw]) (4)

where pv and pw are positional embeddings for video and text respectively, and [CLS] is a special
token for classification tasks. The output H can be divided into H = [Hv, hc, Hw], corresponding
to video, global, and text representations. Following previous works [65, 66, 67], we reuse the text
encoder and integrate a cross-attention operation into each of the last few layers of the text encoder,
positioning it between the Self-Attention and MLP.

3.4.2 Pretraining Objectives

We employ three pretraining objectives to learn robust multimodal representations:

Video-Text Contrastive Learning (VTC). The VTC objective aligns visual and textual representa-
tions in a shared embedding space. For a batch of N video-text pairs, we compute:

LVTC = (Lv2t + Lt2v)/2 (5)

where

Lv2t = − 1

N

N∑
i=1

log
exp(sim(gvi , g

w
i )/τ)∑N

j=1 exp(sim(gvi , g
w
j )/τ)

(6)

Lt2v = − 1

N

N∑
i=1

log
exp(sim(gwi , g

v
i )/τ)∑N

j=1 exp(sim(gwi , g
v
j )/τ)

(7)

Here, gv and gw are global video and text features obtained by applying a projection layer to the
[CLS] token representation, sim(·, ·) is cosine similarity, and τ is a temperature parameter.

Video-Text Matching (VTM). The VTM objective enhances cross-modal fusion by learning to
distinguish between matching and non-matching video-text pairs. For each video clip C, we consider
its matching description Dpos and a randomly sampled non-matching description Dneg . We compute:

spos = Q(hc
pos), sneg = Q(hc

neg) (8)
LVTM = −E[log(σ(spos)) + log(1− σ(sneg))] (9)

where Q(·) is a linear layer, hc is the [CLS] token representation, and σ(·) is the sigmoid function.
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Masked Language Modeling (MLM). The MLM objective enhances the model’s understanding
of surgical terminology. We randomly mask 50% of the input tokens in D, creating a masked version
D̃. The model then predicts the original tokens:

w′
i = R(hw

w̃i
) (10)

LMLM = −E

[
1

|M|
∑
i∈M

logP (wi|w′
i)

]
(11)

where R(·) is a linear layer, M is the set of masked token indices, and P (wi|w′
i) is the probability of

the correct token given the model’s prediction.

The full pre-training objective of VidLPRO is:

L = λ1LVTC + λ2LVTM + λ3LMLM (12)

4 Experiments

To evaluate the effectiveness of our VidLPRO framework, we conducted extensive experiments on
zero-shot surgical phase recognition tasks. We chose this task as it represents a challenging and
clinically relevant application of video-language models in the surgical domain. Our experiments
were designed to assess the generalizability and robustness of the representations learned by VidLPRO
across different datasets and surgical procedures.

4.1 Pretraining Setup

We pre-trained VidLPRO on the GenSurg+ datasetFor each 45-second clip, we sampled 4 frames
to capture temporal information while maintaining computational efficiency. Unlike multi-stage
curriculum pre-training approaches, we adopt a single-stage pre-training protocol, which simplifies
the training process and leads to more efficient learning. The video and text encoders were initialized
with BEiT [63] and BERTbase [64] weights, respectively. The pretraining was conducted using 4
NVIDIA A100 GPUs, and the best training checkpoint was selected based on evaluation on a subset
of the Cholec80 dataset. More implementation details can be found in Table 2.

Table 2: Pre-training settings.

Configuration Value

Optimizer AdamW
Optimizer betas {0.9, 0.95}
Base learning rate 1e-4
Weight decay 0.02
Learning rate schedule Cosine schedule
Warm-up epochs 1
Batch Size 256
Temperature τ 0.07
Loss weights λ1 = λ2 = λ3 = 1

4.2 Zero-Shot Surgical Phase Recognition

To evaluate the zero-shot capabilities of VidLPRO, we focused on two widely used datasets for surgical
phase recognition: Cholec80 [14] and AutoLaparo [36]. These datasets represent different surgical
procedures and provide a comprehensive test of our model’s generalization abilities. Cholec80 [14]
consists of 80 videos of cholecystectomy procedures annotated with 7 surgical phases. AutoLaparo
[36] contains 21 videos of laparoscopic hysterectomy procedures, divided into 7 phases.

To ensure a fair comparison with previous work, we adapted the class prompts used in SurgVLP
[33] and HecVL [34] to better align with our caption-based pretraining approach. We used GPT-4 to
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Table 3: Zero-shot Surgical Phase Recognition Performance On Cholec80 and AutoLaparo Datasets.

Model Cholec80 [14] AutoLaparo [36]
Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

MIL-NCE [68] 7.8 7.3 9.9 7.9
CLIP [31] 30.8 13.1 17.4 9.1

SurgVLP [33] 34.7 24.4 21.3 16.6
HecVL [34] 41.7 26.3 23.3 18.9
VidLPRO 57.1 (+15.4) 32.1 (+5.8) 42.5 (+19.2) 31.4 (+12.5)

transform the transcript-like class prompts into caption-like prompts, using the same prompt template
employed for generating our pretraining captions. This process ensures that the evaluation prompts
match the style and content of our pretraining data while maintaining the essential information about
each surgical phase. The caption-like class prompts used for Cholec80 and AutoLapro datasets can
be found in the appendix.

We split the videos from both datasets into 45-second clips, ensuring that each clip contains a single
surgical phase. We then sampled 4 frames per clip, mirroring our pretraining setup. For zero-shot
classification, we used the pretrained text encoder to extract representations of the class prompts
and the video encoder to obtain representations of the video clips. The classification was performed
by measuring the cosine similarity between the class prompt representations and the video clip
representations, assigning each clip to the class with the highest similarity score.

4.3 Results and Comparison

We compared the performance of VidLPRO against several baselines, including SurgVLP [33],
HecVL [34], and general-domain models like CLIP [31] and MIL-NCE [68] reported in HecVL [34].
Table 3 summarizes the results on both Cholec80 and AutoLaparo datasets.

The results demonstrate that VidLPRO achieves state-of-the-art zero-shot performance on both
datasets, significantly outperforming previous surgical VLP methods. Notably, the general-domain
models CLIP and MIL-NCE, which were pretrained on conventional computer vision datasets,
perform poorly on these surgical tasks. The strong zero-shot performance of VidLPRO across
two different datasets and different surgical procedures such as cholecystectomy and hysterectomy
demonstrates the generalizability of the video-language representations learned by our model. These
underscores the importance of domain-specific surgical pretraining and highlights the potential of
VidLPRO as a foundation model for surgical video understanding.

Table 4: Ablation study results on the effect of the number of frames sampled per clip for zero-shot
surgical phase recognition on Cholec80 and AutoLaparo datasets.

Frames Sampled Per Clip Cholec80 [14] AutoLaparo [36]
Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

1 50.9 28.8 41.2 30.7
4 57.1 32.1 42.5 31.4
8 57.9 32.2 43.8 33.0

16 59.1 33.7 43.3 32.4
32 60.1 33.8 44.0 33.4
45 61.0 (+19.3) 33.8 (+7.5) 44.8 (+21.5) 34.6 (+15.7)

HecVL [34] 41.7 26.3 23.3 18.9

4.4 Ablation Study on Number of Frames

To further understand the impact of design choices in VidLPRO, we conducted ablation studies
focusing on the number of frames per clip used during inference. These experiments aim to identify
the optimal configuration for balancing performance and computational efficiency during the zero-
shot surgical phase recognition task. We evaluated VidLPRO’s performance using 1, 4, 8, 16, 32, and
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45 frames per clip during inference. This range allows us to understand how the model’s performance
scales with increased temporal information. Table 4 presents the results of these experiments on both
Cholec80 and AutoLaparo datasets.

Experiments show that increasing the number of frames during inference generally leads to improved
performance. This is expected, as more frames provide a richer representation of the surgical
procedure, allowing for more accurate phase recognition. As we increase the number of sampled
frames, the performance continues to improve. The margin of improvement becomes even larger
when sampling 45 frames, showing that VidLPRO can effectively leverage additional temporal context
when available. However, it’s important to note that the performance gains come with increased
computational cost.

Given these trade-offs, we recommend using 4 frames for inference as a balanced configuration for
most applications. With 4 frames, VidLPRO still significantly outperforms previous state-of-the-art
methods while maintaining reasonable computational requirements. Notably, VidLPRO achieves
state-of-the-art performance even when using only a single frame during inference, highlighting the
robustness of the pre-trained representations.

5 Conclusion

This paper proposes VidLPRO, a novel video-language pre-training framework for surgical videos
which first align the unimodal video and language representations before fusing them using multi-
modal module. Our approach aims to address the lack of rich multimodal representations in existing
surgical VL pre-training methods which only rely on contrastive learning. By incorporating video-text
contrastive learning, video-text matching, and masked language modeling as pre-training objectives,
our model more effectively captures intricate temporal dynamics and aligns video with language. Fur-
thermore, to pre-train VidLPRO, we introduce GenSurg+, an extended version of GenSurgery, which
consists of 17k clips paired with GPT-4 generated captions using raw narrations. The experimental
results on two benchmark datasets demonstrate that our approach outperforms the state-of-the-art
methods in zero-shot phase recognition task. Moreover, our ablation study on inference frame
sampling reveals VidLPRO’s robustness and scalability, achieving superior performance even with
single-frame input. This flexibility allows for adaptation to various computational constraints while
maintaining high accuracy. Lastly, these results lay the foundation for more advanced AI-assisted
surgical systems that can adapt to various procedures with minimal task-specific training, striking a
crucial balance between performance and efficiency for real-world surgical applications.

6 Limitations and Broader Impacts

Limitations. Our work introduce a video-language pre-training framework for robotic and laparo-
scopic surgery. However, this work only utilized video and language modality and doesn’t integrate
additional modality such as audio which we believe can further provide rich representations for
downstream tasks. Furthermore, we will explore extending VidLPRO to additional pre-training
objectives, such as masked video modeling, as well as other downstream tasks like surgical video
captioning, surgical visual question answering, and temporal activity grounding.

Broader Impacts. Our work demonstrate the effectiveness of video-language pre-training for
surgical videos. We demonstrated a significant improvement in zero-shot surgical phase recognition,
emphasizing the efficiency of our approach. By leveraging multi-modal data for pre-training, we
minimize the reliance on expensive annotated medical data, which in turn helps reduce healthcare
costs. Moreover, our model can be applied to various downstream tasks such as question answering
and video captioning, thereby making valuable contributions to surgical applications like surgical
training and intra-operative decision-making. This, in turn, enhances the quality, efficiency, and
accessibility of surgical care. Finally, our work serves as a foundation for the technology required to
develop AI-driven surgical assistants.

References
[1] Tobias Blum, Nicolas Padoy, Hubertus Feußner, and Nassir Navab. Modeling and online recognition

of surgical phases using hidden markov models. In Medical Image Computing and Computer-Assisted

9



Intervention – MICCAI 2008, 2008. 1

[2] Tobias Blum, Hubertus Feußner, and Nassir Navab. Modeling and segmentation of surgical workflow from
laparoscopic video. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010,
2010. 1, 3

[3] Olga Dergachyova, David Bouget, Arnaud Huaulmé, Xavier Morandi, and Pierre Jannin. Automatic
data-driven real-time segmentation and recognition of surgical workflow. International journal of computer
assisted radiology and surgery, 2016. 1

[4] Chinedu Innocent Nwoye, Tong Yu, Cristians Gonzalez, Barbara Seeliger, Pietro Mascagni, Didier Mutter,
Jacques Marescaux, and Nicolas Padoy. Rendezvous: Attention mechanisms for the recognition of surgical
action triplets in endoscopic videos. CoRR, 2021. 1

[5] Deepak Alapatt, Pietro Mascagni, Armine Vardazaryan, Alain Garcia, Nariaki Okamoto, Didier Mutter,
Jacques Marescaux, Guido Costamagna, Bernard Dallemagne, and Nicolas Padoy. Temporally constrained
neural networks (tcnn): A framework for semi-supervised video semantic segmentation, 2021. 1

[6] Max Allan, Alex Shvets, Thomas Kurmann, Zichen Zhang, Rahul Duggal, Yun-Hsuan Su, Nicola Rieke,
Iro Laina, Niveditha Kalavakonda, Sebastian Bodenstedt, Luis Herrera, Wenqi Li, Vladimir Iglovikov,
Huoling Luo, Jian Yang, Danail Stoyanov, Lena Maier-Hein, Stefanie Speidel, and Mahdi Azizian. 2017
robotic instrument segmentation challenge, 2019. 1

[7] Dominik Rivoir, Micha Pfeiffer, Reuben Docea, Fiona Kolbinger, Carina Riediger, Jürgen Weitz, and
Stefanie Speidel. Long-term temporally consistent unpaired video translation from simulated surgical 3d
data, 2021. 1

[8] Yuehao Wang, Yonghao Long, Siu Hin Fan, and Qi Dou. Neural rendering for stereo 3d reconstruction of
deformable tissues in robotic surgery, 2022. 1

[9] Micha Pfeiffer, Isabel Funke, Maria R. Robu, Sebastian Bodenstedt, Leon Strenger, Sandy Engelhardt,
Tobias Roß, Matthew J. Clarkson, Kurinchi Gurusamy, Brian R. Davidson, Lena Maier-Hein, Carina
Riediger, Thilo Welsch, Jürgen Weitz, and Stefanie Speidel. Generating large labeled data sets for
laparoscopic image processing tasks using unpaired image-to-image translation. 2019. 1

[10] Nicolas Padoy. Machine and deep learning for workflow recognition during surgery. Minimally Invasive
Therapy & Allied Technologies, 2019. 1, 2

[11] Lena Maier-Hein, Swaroop S Vedula, Stefanie Speidel, Nassir Navab, Ron Kikinis, Adrian Park, Matthias
Eisenmann, Hubertus Feussner, Germain Forestier, Stamatia Giannarou, et al. Surgical data science for
next-generation interventions. Nature Biomedical Engineering, 1(9):691–696, 2017. 1, 2

[12] Tom Vercauteren, Mathias Unberath, Nicolas Padoy, and Nassir Navab. Cai4cai: the rise of contextual
artificial intelligence in computer-assisted interventions. Proceedings of the IEEE, 2019. 1, 2

[13] Yueming Jin, Qi Dou, Hao Chen, Lequan Yu, Jing Qin, Chi-Wing Fu, and Pheng-Ann Heng. Sv-rcnet:
workflow recognition from surgical videos using recurrent convolutional network. IEEE transactions on
medical imaging, 2017. 1, 3

[14] Andru P Twinanda, Sherif Shehata, Didier Mutter, Jacques Marescaux, Michel De Mathelin, and Nicolas
Padoy. Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE transactions on
medical imaging, 2016. 1, 3, 7, 8

[15] Sebastian Bodenstedt, Max Allan, Anthony Agustinos, Xiaofei Du, Luis Garcia-Peraza-Herrera, Hannes
Kenngott, Thomas Kurmann, Beat Müller-Stich, Sebastien Ourselin, Daniil Pakhomov, et al. Comparative
evaluation of instrument segmentation and tracking methods in minimally invasive surgery. arXiv preprint
arXiv:1805.02475, 2018. 2

[16] Yixin Gao, S Swaroop Vedula, Carol E Reiley, Narges Ahmidi, Balakrishnan Varadarajan, Henry C Lin,
Lingling Tao, Luca Zappella, Benjamın Béjar, David D Yuh, et al. Jhu-isi gesture and skill assessment
working set (jigsaws): A surgical activity dataset for human motion modeling. In MICCAI workshop:
M2cai, 2014. 2

[17] Aneeq Zia, Kiran Bhattacharyya, Xi Liu, Ziheng Wang, Satoshi Kondo, Emanuele Colleoni, Beatrice van
Amsterdam, Razeen Hussain, Raabid Hussain, Lena Maier-Hein, et al. Surgical visual domain adaptation:
Results from the miccai 2020 surgvisdom challenge. arXiv preprint arXiv:2102.13644, 2021. 2

[18] Xindi Wu, Byron Zhang, Zhiwei Deng, and Olga Russakovsky. Multimodal dataset distillation for
image-text retrieval. arXiv preprint arXiv:2308.07545, 2023. 2

10



[19] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. In Proceedings of the 40th International
Conference on Machine Learning, 2023. 2

[20] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image
pre-training. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2023. 2

[21] Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian. Deep modular co-attention networks for
visual question answering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019. 2

[22] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and
Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019. 2

[23] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple and
performant baseline for vision and language, 2019. 2

[24] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. In Advances in Neural Information Processing Systems,
2019. 2

[25] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing
Liu. Uniter: Universal image-text representation learning, 2020. 2

[26] Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan
Chen, Yaohui Wang, et al. Internvid: A large-scale video-text dataset for multimodal understanding and
generation. In The Twelfth International Conference on Learning Representations, 2023. 2

[27] Long Zhao, Nitesh B. Gundavarapu, Liangzhe Yuan, Hao Zhou, Shen Yan, Jennifer J. Sun, Luke Friedman,
Rui Qian, Tobias Weyand, Yue Zhao, Rachel Hornung, Florian Schroff, Ming-Hsuan Yang, David A.
Ross, Huisheng Wang, Hartwig Adam, Mikhail Sirotenko, Ting Liu, and Boqing Gong. Videoprism: A
foundational visual encoder for video understanding, 2024. 2

[28] Linjie Li, Zhe Gan, Kevin Lin, Chung-Ching Lin, Ce Liu, Zicheng Liu, and Lijuan Wang. Lavender:
Unifying video-language understanding as masked language modeling. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2023. 2

[29] Tsu-Jui Fu, Linjie Li, Zhe Gan, Kevin Lin, William Yang Wang, Lijuan Wang, and Zicheng Liu. VIOLET:
End-to-End Video-Language Transformers with Masked Visual-token Modeling. In arXiv:2111.1268,
2021. 2

[30] Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin
Choi. Merlot: Multimodal neural script knowledge models. In Advances in Neural Information Processing
Systems 34, 2021. 2

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, 2021. 2, 3, 8

[32] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. CoRR, 2021. 2, 3

[33] Kun Yuan, Vinkle Srivastav, Tong Yu, Joel Lavanchy, Pietro Mascagni, Nassir Navab, and Nicolas Padoy.
Learning multi-modal representations by watching hundreds of surgical video lectures. 2023. 2, 3, 4, 7, 8

[34] Kun Yuan, Vinkle Srivastav, Nassir Navab, and Nicolas Padoy. Hecvl: Hierarchical video-language
pretraining for zero-shot surgical phase recognition. arXiv preprint arXiv:2405.10075, 2024. 2, 3, 7, 8

[35] Samuel Schmidgall, Ji Woong Kim, Jeffery Jopling, and Axel Krieger. General surgery vision transformer:
A video pre-trained foundation model for general surgery. arXiv preprint arXiv:2403.05949, 2024. 2, 3

[36] Ziyi Wang, Bo Lu, Yonghao Long, Fangxun Zhong, Tak-Hong Cheung, Qi Dou, and Yunhui Liu. Au-
tolaparo: A new dataset of integrated multi-tasks for image-guided surgical automation in laparoscopic
hysterectomy. In International Conference on Medical Image Computing and Computer-Assisted Interven-
tion, pages 486–496. Springer, 2022. 3, 7, 8

11



[37] Zhicheng Huang, Zhaoyang Zeng, Yupan Huang, Bei Liu, Dongmei Fu, and Jianlong Fu. Seeing out of the
box: End-to-end pre-training for vision-language representation learning. CoRR, abs/2104.03135, 2021. 3

[38] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jianfeng
Gao. Vinvl: Making visual representations matter in vision-language models. CoRR, abs/2101.00529,
2021. 3

[39] Gen Li, Nan Duan, Yuejian Fang, Daxin Jiang, and Ming Zhou. Unicoder-vl: A universal encoder for
vision and language by cross-modal pre-training. CoRR, abs/1908.06066, 2019. 3

[40] Di Qi, Lin Su, Jia Song, Edward Cui, Taroon Bharti, and Arun Sacheti. Imagebert: Cross-modal pre-training
with large-scale weak-supervised image-text data. CoRR, abs/2001.07966, 2020. 3

[41] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. VL-BERT: pre-training of
generic visual-linguistic representations. CoRR, abs/1908.08530, 2019. 3

[42] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 15638–15650,
June 2022. 3

[43] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong
Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu, Yumao Lu, Yu Shi, Lijuan Wang,
Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei Zhou, and Pengchuan Zhang.
Florence: A new foundation model for computer vision. CoRR, abs/2111.11432, 2021. 3

[44] Lalithkumar Seenivasan, Mobarakol Islam, Adithya K Krishna, and Hongliang Ren. Surgical-vqa: Visual
question answering in surgical scenes using transformer, 2022. 3

[45] Lalithkumar Seenivasan, Mobarakol Islam, Gokul Kannan, and Hongliang Ren. Surgicalgpt: End-to-end
language-vision gpt for visual question answering in surgery, 2023. 3

[46] Guankun Wang, Long Bai, Wan Jun Nah, Jie Wang, Zhaoxi Zhang, Zhen Chen, Jinlin Wu, Mobarakol
Islam, Hongbin Liu, and Hongliang Ren. Surgical-lvlm: Learning to adapt large vision-language model
for grounded visual question answering in robotic surgery, 2024. 3

[47] Nicolas Padoy, Tobias Blum, Seyed-Ahmad Ahmadi, Hubertus Feussner, Marie-Odile Berger, and Nassir
Navab. Statistical modeling and recognition of surgical workflow. Medical image analysis, 16(3):632–641,
2012. 3

[48] Olga Dergachyova, David Bouget, Arnaud Huaulmé, Xavier Morandi, and Pierre Jannin. Automatic data-
driven real-time segmentation and recognition of surgical workflow. International Journal of Computer
Assisted Radiology and Surgery, 11, 2016. 3

[49] Yueming Jin, Qi Dou, Hao Chen, Lequan Yu, Jing Qin, Chi-Wing Fu, and Pheng-Ann Heng. Sv-rcnet:
Workflow recognition from surgical videos using recurrent convolutional network. IEEE Transactions on
Medical Imaging, 2018. 3

[50] Yueming Jin, Huaxia Li, Qi Dou, Hao Chen, Jing Qin, Chi-Wing Fu, and Pheng-Ann Heng. Multi-task
recurrent convolutional network with correlation loss for surgical video analysis, 2019. 3

[51] Yueming Jin, Yonghao Long, Cheng Chen, Zixu Zhao, Qi Dou, and Pheng-Ann Heng. Temporal memory
relation network for workflow recognition from surgical video, 2021. 3

[52] Tobias Czempiel, Magdalini Paschali, Matthias Keicher, Walter Simson, Hubertus Feussner, Seong Tae
Kim, and Nassir Navab. Tecno: Surgical phase recognition with multi-stage temporal convolutional
networks. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd
International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23, pages 343–352.
Springer, 2020. 3

[53] Xiaojie Gao, Yueming Jin, Yonghao Long, Qi Dou, and Pheng-Ann Heng. Trans-svnet: Accurate phase
recognition from surgical videos via hybrid embedding aggregation transformer, 2021. 3

[54] Yang Liu, Maxence Boels, Luis C. Garcia-Peraza-Herrera, Tom Vercauteren, Prokar Dasgupta, Alejandro
Granados, and Sebastien Ourselin. Lovit: Long video transformer for surgical phase recognition, 2023. 3

[55] Yang Liu, Jiayu Huo, Jingjing Peng, Rachel Sparks, Prokar Dasgupta, Alejandro Granados, and Sebastien
Ourselin. Skit: a fast key information video transformer for online surgical phase recognition. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023. 3

12



[56] Yueming Jin, Huaxia Li, Qi Dou, Hao Chen, Jing Qin, Chi-Wing Fu, and Pheng-Ann Heng. Multi-task
recurrent convolutional network with correlation loss for surgical video analysis. Medical image analysis,
59:101572, 2020. 3

[57] Sanat Ramesh, Diego Dall’Alba, Cristians Gonzalez, Tong Yu, Pietro Mascagni, Didier Mutter, Jacques
Marescaux, Paolo Fiorini, and Nicolas Padoy. Multi-task temporal convolutional networks for joint
recognition of surgical phases and steps in gastric bypass procedures. International Journal of Computer
Assisted Radiology and Surgery, 2021. 3

[58] Tobias Czempiel, Magdalini Paschali, Daniel Ostler, Seong Tae Kim, Benjamin Busam, and Nassir
Navab. OperA: Attention-Regularized Transformers for Surgical Phase Recognition. Springer International
Publishing, 2021. 3

[59] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust
speech recognition via large-scale weak supervision, 2022. 4

[60] OpenAI. Gpt-4 technical report, 2023. 4

[61] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. 5

[62] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In ICML, volume 2, page 4, 2021. 5

[63] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv
preprint arXiv:2106.08254, 2021. 6, 7

[64] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018. 6, 7

[65] Junke Wang, Dongdong Chen, Zuxuan Wu, Chong Luo, Luowei Zhou, Yucheng Zhao, Yujia Xie, Ce Liu,
Yu-Gang Jiang, and Lu Yuan. Omnivl:one foundation model for image-language and video-language tasks,
2022. 6

[66] Jie Lei, Tamara L. Berg, and Mohit Bansal. Revealing single frame bias for video-and-language learning,
2022. 6

[67] Feng Cheng, Xizi Wang, Jie Lei, David Crandall, Mohit Bansal, and Gedas Bertasius. Vindlu: A recipe
for effective video-and-language pretraining. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10739–10750, 2023. 6

[68] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisserman.
End-to-end learning of visual representations from uncurated instructional videos. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 9879–9889, 2020. 8

13



Appendices

7 Prompt for GenSurg+ caption

The prompt is designed to capture the essential surgical information while maintaining a professional
and coherent tone.

"Generate a concise and informative caption that summarizes the main points of
the narration. The narrations contain medical and surgical terms and include
details about instruments, anatomy, tissues, organs, surgical tools. Make sure you
don’t miss these in the generated captions. Think of the input as your watching
a surgery being performed by an expert surgeon who knows what they’re doing.
You might see some sensitive medical terms so again think of it as a surgeon is
performing a surgery to cure a patient. Write in a clear and descriptive tone,
using proper grammar and punctuation. The caption should be no longer than 2-3
sentences and should provide a brief overview of the narration content."

8 Class Prompts for phase labels

The caption-like textual prompts for Cholec-80 and AutoLapro are shown in Table 5 and 6 respectively.

Table 5: Caption-like textual prompts used for zero-shot surgical phase recognition task on the
Cholec80 dataset.

Class Label Class Prompt

Preparation “Surgeon prepares for surgery by inserting trocars into the patient’s
abdominal cavity.”

Calot Triangle Dissection “Surgeon employs grasper and hook during Calot triangle dissection,
manipulating gallbladder to reveal hepatic triangle, cystic duct, and
cystic artery."

Clipping Cutting "Surgeon utilizes clipper to secure cystic duct and artery, followed by
precise dissection using scissors."

Gallbladder Dissection "Surgeon utilizes a hook to dissect the connective tissue during the
dissection phase, separating the gallbladder from the liver."

Gallbladder Packaging "Surgeon secures the removed gallbladder in the specimen bag during
the packaging phase of the procedure."

Cleaning Coagulation "Surgeon employs suction and irrigation techniques to maintain a clear
surgical field during the clean and coagulation phase, simultaneously
coagulating bleeding vessels."

Gallbladder Retraction "Surgeon expertly handles the specimen bag during the retraction phase,
carefully extracting it from the trocar."
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Table 6: Caption-like textual prompts used for zero-shot surgical phase recognition task on the
AutoLaparo dataset.

Class Label Class Prompt

Preparation "During the preparation stage of a laparoscopic hysterectomy, the surgi-
cal team ensures all necessary instruments and equipment are sterilized
and ready. The patient is anesthetized and positioned to optimize access
to the pelvic area. Surgeons then make small incisions in the abdomen
to insert the laparoscope and other surgical tools."

Dividing Ligament and
Peritoneum

"In this stage, surgeons carefully divide the ligament and peritoneum to
access and isolate the uterus. This involves using specialized surgical
instruments to delicately separate these tissues while preventing damage
to surrounding organs. The division is done to create a clear surgical
field and to facilitate the safe removal of the uterus."

Dividing Uterine Vessels
and Ligament

"At this stage, surgeons focus on meticulously severing the uterine vessels
and ligaments. This is critical to control blood flow and prepare the
uterus for removal. Specialized surgical tools are employed to ensure
precision and minimize the risk of bleeding, ensuring a clear view and
safe access to the target structures."

Transecting the Vagina "During this critical stage, the vagina is carefully transected at its
connection to the cervix, using precise surgical techniques to ensure
clean and controlled cuts. This step is essential for the complete removal
of the uterus and cervix. Surgeons take extra precautions to maintain the
integrity of the vaginal wall and surrounding tissues."

Specimen Removal "In the specimen removal stage, the excised uterus and any associated
tissues are carefully extracted through one of the abdominal incisions.
Surgeons may use a specialized bag to contain the specimen and min-
imize the risk of contamination. This step marks the completion of the
critical surgical removal process, transitioning to closure and recovery
procedures."

Suturing "In the suturing stage, the surgical sites, including the vagina and ab-
dominal incisions, are meticulously closed using sutures. This is done
to promote proper healing and prevent infection. Surgeons use various
suturing techniques to ensure that the closures are secure and that the
tissue alignment promotes optimal healing."

Washing "During the washing stage, the surgical area is thoroughly irrigated
with sterile solutions to cleanse any debris and reduce the risk of post-
operative infection. This step ensures that all remaining tissues are
flushed and clear, providing a clean environment for the healing process
to begin."
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