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Accurate Cold-start Bundle Recommendation via
Popularity-based Coalescence and Curriculum Heating
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ABSTRACT

How can we accurately recommend cold-start bundles to users?
The cold-start problem in bundle recommendation is crucial in
practical scenarios since new bundles are continuously created on
theWeb for various marketing purposes. Despite its importance, ex-
isting methods for cold-start item recommendation are not readily
applicable to bundles. They depend overly on historical informa-
tion, even for less popular bundles, failing to address the primary
challenge of the highly skewed distribution of bundle interactions.
In this work, we propose CoHeat (Popularity-based Coalescence
and Curriculum Heating), an accurate approach for cold-start bun-
dle recommendation. CoHeat first represents users and bundles
through graph-based views, capturing collaborative information
effectively. It then tackles the highly skewed distribution of bun-
dle interactions by incorporating both historical and affiliation
information based on the bundle’s popularity when estimating the
user-bundle relationship. Furthermore, it effectively learns latent
representations by exploiting curriculum learning and contrastive
learning. CoHeat demonstrates superior performance in cold-start
bundle recommendation, achieving up to 193% higher nDCG@20
compared to the best competitor.
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1 INTRODUCTION

How can we accurately recommend cold-start bundles to users?
Bundle recommendation has garnered significant attention in both
academia and industry since it enables providers to offer items to
users with one-stop convenience [22]. In particular, recommend-
ing new bundles to users (i.e. cold-start bundle recommendation)
has become crucial with the Web’s evolution as new bundles are
constantly created on the Web for various marketing purposes [10].
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User-bundle interactions
are extremely skewed

(a) Extremely skewed distribution of

bundle interactions.

Insufficient 
information

Users

Bundles

(b) Insufficient information

from user-bundle view.

Items

BundlesSufficient
information

Users

(c) Sufficient information from

user-item view.

Figure 1: (a) Extremely skewed distribution of bundle inter-

actions in real-world datasets (data statistics are summarized

in Table 1). (b-c) For an unpopular bundle, user-bundle view

provides insufficient information while user-item view pro-

vides sufficient information.

In recent years, bundle recommendation has seen advancements
throughmatrix factorization-based approaches [4, 10, 25] and graph
learning-based approaches [6, 14, 22]. However, they have been
developed for a warm-start setting, where all bundles already pos-
sess historical interactions with users. Consequently, their efficacy
diminishes in cold-start scenarios, where certain bundles are de-
void of historical interactions. This is because warm-start methods
rely highly on historical information of user-bundle interactions to
discern collaborative signals between users and bundles.

On the other hand, the cold-start problem [28] in item recom-
mendation has been extensively studied, with a focus on align-
ing behavior representations with content representations. For
instance, generative methods have aimed to model the generation
of item behavior representations using mean squared error [31, 36],
metric learning [47], or adversarial loss [9]. Dropout-based meth-
ods [34, 51] have aimed to bolster robustness to behavior informa-
tion by randomly dropping the behavior embedding in the training
phase. More recently, contrastive learning-based methods [39, 50]
have shown superior performance by reducing the discrepancy
between the distributions of behavior and content information of
items. However, the existing methods for cold-start item recommen-
dation fail to achieve high performance in bundle recommendation
because they lack the ability to effectively leverage the user-item
historical interactions when representing bundles. Furthermore,
none of the existing works have explicitly considered the skewed
distribution of user-bundle interactions which is a pivotal aspect
in bundle recommendation as shown in Figure 1a. For unpopular
bundles, aligning behavior representations from insufficient histor-
ical information with content representations amplifies inherent
biases and makes it difficult to learn meaningful representations;
this results in sacrificing the performance on a warm-start setting
to improve the performance on a cold-start setting (see Figure 2).
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Best

+43.2%

+33.6%
Competitors fail to
achieve high accuracy
on both settings

(a) Youshu

+108.1%

+40.4% Best

(b) NetEase

+163.3%

+161.5%

Best

(c) iFashion

Figure 2: Performance comparison of CoHeat with competitors on three real-world datasets: Youshu, NetEase, and iFashion.

The performance is evaluated through Recall@20 for all experiments. We mark cold-start methods as orange, and warm-start

methods as red. The cold-start methods typically sacrifice warm setting performance to excel in cold settings. The warm-start

methods show poor performance in cold settings. CoHeat demonstrates superior performance over existing methods in both

cold and warm settings, with a notable advantage in outperforming competitors.

In this paper, we proposeCoHeat (Popularity-based Coalescence
and Curriculum Heating), an accurate method for cold-start bundle
recommendation. CoHeat constructs representations of users and
bundles using two distinct graph-based views: user-bundle view
and user-item view. The user-bundle view is grounded in historical
interactions between users and bundles, whereas the user-item view
is rooted in bundle affiliations and historical interactions between
users and items. To handle the extremely skewed distribution as
shown in Figure 1a, CoHeat strategically leverages both views in
its predictions, emphasizing user-item view for less popular bundles
since they provide richer information than the sparse user-bundle
view, as shown in Figures 1b and 1c. In addition, to effectively learn
the user-item view representations which are fully used for cold-
start bundles, CoHeat exploits a curriculum learning approach that
gradually shifts the training focus from the user-bundle view to
the user-item view. CoHeat further exploits a contrastive learning
approach to align the representations of the two views effectively.

Our contributions are summarized as follows:

• Problem. To our knowledge, this is the first work that
tackles the cold-start problem in bundle recommendation,
a challenging problem of significant impact in real-world
scenarios.

• Method.We proposeCoHeat, an accurate method for cold-
start bundle recommendation. CoHeat effectively learns
user and bundle representations by considering the ex-
tremely skewed interactions to accurately recommend cold-
start bundles based on their affiliations.

• Experiments. We experimentally show that CoHeat pro-
vides the state-of-the-art performance achieving up to 193%
higher nDCG@20 compared to the best competitor in cold-
start bundle recommendation while maintaining competi-
tive performance in warm-start scenarios. (see Figure 2 and
Table 2).

The rest of this paper is organized as follows. In section 2, we
introduce the problem definition and preliminaries of CoHeat. We
then propose CoHeat in Section 3, and present the experimental
results in Section 4. We explain the related works in Section 5,
and conclude in Section 6. The code and datasets are available at
https://github.com/ColdBundle/CoHeat.

2 PRELIMINARIES

2.1 Problem Definition

The problem of cold-start bundle recommendation is defined as
follows. Let U, B, and I be the sets of users, bundles, and items,
respectively. Among the bundles, B𝑤 ⊂ B refers to the warm-start
bundles that have at least one historical interaction with users,
while B𝑐 = B \ B𝑤 represents the cold-start bundles that lack
any historical interaction with users. The observed user-bundle
interactions, user-item interactions, and bundle-item affiliations
are defined respectively as X = {(𝑢,𝑏) |𝑢 ∈ U, 𝑏 ∈ B𝑤}, Y =

{(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I}, and Z = {(𝑏, 𝑖) |𝑏 ∈ B, 𝑖 ∈ I}. Given
{X,Y,Z}, our goal is to recommend 𝑘 bundles from B to each
user 𝑢 ∈ U. Note that the given interactions are observed only for
warm bundles but the objective includes recommending also cold
bundles to users.

The central challenge in cold-start bundle recommendation, com-
pared to traditional bundle recommendation, lies in accurately pre-
dicting the relationship between a user 𝑢 ∈ U and a cold-start
bundle 𝑏 ∈ B𝑐 in the absence of any historical interactions of 𝑏.
Hence, the crux of addressing the problem is to effectively esti-
mate the representations of cold-start bundles using their affiliation
information.

Bundles are compositions of multiple items, each having distinct
interactions with users. This contrasts sharply with traditional cold-
start item recommendations where contents are often represented
as independent entities like texts or images. Moreover, user-bundle
interactions exhibit a pronounced skewness, far more than typical
user-item interactions. These make the cold-start bundle recom-
mendation uniquely challenging compared to the cold-start item
recommendation.
2.2 Curriculum Learning

Curriculum learning, inspired by human learning, structures
training from simpler to more complex tasks, unlike standard ap-
proaches that randomize task order [2, 38]. Its effectiveness has
been proven in various domains, including computer vision [44, 46],
natural language processing [18, 45], robotics [21, 23], and recom-
mender systems [8, 13].

In this work, we harness curriculum learning to enhance the
learning process of user-bundle relationships. We initiate with a
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Figure 3: Overview of CoHeat (see Section 3 for details).

focus on the more straightforward user-bundle view embeddings
and then progressively shift attention to the intricate user-item
view embeddings. This strategy stems from the ease of learning
user-bundle view embeddings, which directly capture collaborative
signals from historical interactions. In contrast, user-item view
embeddings are more complicated due to their dependence on the
representations of affiliated items.

2.3 Contrastive Learning

Contrastive learning aims to derive meaningful embeddings by
distinguishing between similar and dissimilar data samples. This ap-
proach has consistently demonstrated superior performance across
a range of research fields, including computer vision [11, 27, 37],
natural language processing [16, 42], and recommender systems [3,
35]. In bundle recommendation, CrossCBR [22] has utilized In-
foNCE [32] as a contrastive learning function to regularize embed-
dings of users and bundles between the user-bundle and user-item
views. However, its approach of aligning the two views without
differentiation in prediction can be limiting, especially in cold-start
scenarios where the user-bundle view is sparse.

In this work, we enhance the application of contrastive learn-
ing in bundle recommendation. Instead of treating the two views
equally, we dynamically adjust their weights based on bundle pop-
ularity. This facilitates the transfer of information from a more
informative view to the counterpart, enabling effective recommen-
dations for both cold and warm bundles. Furthermore, we leverage
the alignment and uniformity loss [37], which has been demon-
strated to outperform InfoNCE in various applications [35, 37, 41].
This loss function directly optimizes the foundational principles of
contrastive learning, ensuring more robust and meaningful embed-
dings.

3 PROPOSED METHOD

3.1 Overview

We address the following challenges to achieve high performance
in cold-start bundle recommendation.

C1. Handling highly skewed interactions. Previous works
depend overly on user-bundle view representations, which
are unreliable if bundles have sparse interactions. How can
we effectively learn the representations from highly skewed
interactions?

C2. Effectively learning user-item view representations.

Despite the ample information provided by the user-item
view, multiple items in a bundle complicate the learning
of these representations. How can we effectively learn the
user-item view representations?

C3. Bridging the gap between two view representations.

Aligning user-bundle and user-item views is crucial, as we
estimate future interactions of cold bundles using only their
affiliations. How canwe effectively reconcile these two view
representations?

To address these challenges, we propose CoHeat (Popularity-based
Coalescence and Curriculum Heating) with the following main
ideas.

I1. Popularity-based coalescence. For the score between
users and bundles, we propose the coalescence of two view
scores, with less popular bundles relying more on user-item
view scores and less on user-bundle view scores.

I2. Curriculum heating. We propose a curriculum learning
approach that focuses initially on training representations
using the user-bundle view, gradually shifting the focus to
the user-item view.

I3. Representation alignment and uniformity. We exploit
a representation alignment and uniformity approach to
effectively reconcile the user-bundle view and user-item
view representations.

Figure 3 depicts the schematic illustration of CoHeat. Given
user-bundle interactions, user-item interactions, and bundle-item
affiliations, CoHeat forms two graph-based views. Then, it predicts
user-bundle scores by coalescing scores from both views based on
bundle popularity. During training, CoHeat prioritizes user-bundle
view initially, transitioning progressively to user-item view via

3
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curriculum heating.CoHeat also exploits alignment and uniformity
loss to regularize both views.

3.2 Two Graph-based Views

The objective of bundle recommendation is to estimate the rela-
tionship between users and bundles by learning their latent repre-
sentations. We utilize graph-based representations of users and bun-
dles to fully exploit the given user-bundle interactions, user-item
interactions, and bundle-item affiliations. We construct user-bundle
view and user-item view graphs and use LightGCN [20] to obtain
embeddings of users and bundles [22].

User-bundle view representation and score. In user-bundle
view, we aim to capture the behavior signal between users and
bundles. Specifically, we construct a bipartite graph using user-
bundle interactions, and propagate the historical information using
a LightGCN. The 𝑘-th layer of the LightGCN is computed as follows:

h(𝑘 )
𝑢 =

∑︁
𝑏∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑏 |

h(𝑘−1)
𝑏

, h(𝑘 )
𝑏

=
∑︁

𝑢∈N𝑏

1√︁
|N𝑏 |

√︁
|N𝑢 |

h(𝑘−1)
𝑢 ,

(1)

where h(𝑘 )𝑢 , h(𝑘 )
𝑏

∈ R𝑑 are the embeddings of user𝑢 and bundle 𝑏 at
𝑘-th layer, respectively;N𝑢 andN𝑏 are the sets of user𝑢’s neighbors
and bundle 𝑏’s neighbors in the user-bundle graph, respectively.
h(0)𝑢 , h(0)

𝑏
∈ R𝑑 are randomly initialized before the training of the

model. We obtain the user-bundle view representations of user 𝑢
and bundle 𝑏 by aggregating the embeddings from all layers with
a weighting approach that places greater emphasis on the lower
layers as follows:

h𝑢 =

𝐾∑︁
𝑘=0

1
𝑘 + 1h

(𝑘 )
𝑢 , h𝑏 =

𝐾∑︁
𝑘=0

1
𝑘 + 1h

(𝑘 )
𝑏
, (2)

where h𝑢 , h𝑏 ∈ R𝑑 are the user-bundle view embeddings of user
𝑢 and bundle 𝑏, respectively; 𝐾 denotes the last layer. Finally, the
user-bundle view score between user 𝑢 and bundle 𝑏 is defined as
ℎ𝑢𝑏 = h⊤𝑢 h𝑏 .

User-item view representation and score. In user-item view,
we aim to learn the relationship between users and bundles from the
perspective of item affiliations. Specifically, we construct a bipartite
graph using user-item interactions, and propagate the historical
information using another LightGCN. Then, we obtain bundle rep-
resentations by aggregating the affiliated items’ representations.
The 𝑘-th layer of the LightGCN is computed as follows:

a(𝑘 )𝑢 =
∑︁
𝑖∈N′

𝑢

1√︁
|N′

𝑢 |
√︁
|N𝑖 |

a(𝑘−1)
𝑖

, a(𝑘 )
𝑖

=
∑︁
𝑢∈N𝑖

1√︁
|N𝑖 |

√︁
|N′

𝑢 |
a(𝑘−1)𝑢 , (3)

where a(𝑘 )𝑢 , a(𝑘 )
𝑖

∈ R𝑑 are the embeddings of user 𝑢 and item 𝑖 at
𝑘-th layer, respectively; N ′

𝑢 and N𝑖 are the sets of user 𝑢’s neigh-
bors and item 𝑖’s neighbors in the user-item graph, respectively.
a(0)𝑢 , a(0)

𝑖
∈ R𝑑 are randomly initialized before the training. We

obtain the user-item view representations of user 𝑢 and item 𝑖

by aggregating the embeddings from all layers with a weighting
approach as follows:

a𝑢 =

𝐾∑︁
𝑘=0

1
𝑘 + 1a

(𝑘 )
𝑢 , a𝑖 =

𝐾∑︁
𝑘=0

1
𝑘 + 1a

(𝑘 )
𝑖
, (4)

where a𝑢 , a𝑖 ∈ R𝑑 are the user-item view embeddings of user 𝑢 and
item 𝑖 , respectively; 𝐾 indicates the last layer. We then obtain the
user-item view representations of bundle 𝑏 by an average pooling
as a𝑏 = 1

|N′
𝑏
|
∑
𝑖∈N′

𝑏
a𝑖 , where N ′

𝑏
is the set of bundle 𝑏’s affiliated

items. Finally, the user-item view score between user 𝑢 and bundle
𝑏 is defined as 𝑎𝑢𝑏 = a⊤𝑢 a𝑏 .
3.3 Popularity-based Coalescence

For recommending bundles to users, our objective is to esti-
mate the final score 𝑦𝑢𝑏 ∈ R between user 𝑢 and bundle 𝑏 using
scores ℎ𝑢𝑏 and 𝑎𝑢𝑏 , derived from the two distinct views. How-
ever, real-world datasets present an inherent challenge of handling
the extremely skewed distribution of interactions between users
and bundles, as illustrated in Figure 1a. While both views are in-
formative, many unpopular bundles are underrepresented in the
user-bundle view due to the insufficient interactions as illustrated
in Figure 1b. In contrast, they are often sufficiently represented in
the user-item view, as depicted in Figure 1c. A uniform weighting
strategy for both views, as in CrossCBR, risks amplifying biases
inherent to the user-bundle view, especially for the unpopular bun-
dles. This predicament is further exacerbated for cold-start bundles
devoid of interactions in user-bundle view.

To deal with this challenge, we propose two desired properties
for the user-bundle relationship score 𝑦𝑢𝑏 .
Property 1 (User-bundle view influence mitigation): The influence
of user-bundle view score should be mitigated as a bundle’s inter-
action number decreases, i.e. 𝜕�̂�𝑢𝑏

𝜕ℎ𝑢𝑏
<
𝜕�̂�𝑢𝑏′
𝜕ℎ𝑢𝑏′

if 𝑛𝑏 < 𝑛𝑏′ where 𝑛𝑏 is
the number of user interactions of bundle 𝑏.
Property 2 (User-item view influence amplification): The influence
of user-item view score should be amplified as a bundle’s interaction
number decreases, i.e. 𝜕�̂�𝑢𝑏𝜕𝑎𝑢𝑏

>
𝜕�̂�𝑢𝑏′
𝜕𝑎𝑢𝑏′

if 𝑛𝑏 < 𝑛𝑏′ where 𝑛𝑏 is the
number of user interactions of bundle 𝑏.
Properties 1 and 2 are crucial in achieving a balanced interplay
between the user-bundle view and user-item view scores based on
bundle popularities. Specifically, they ensure a heightened emphasis
on the user-item view over the user-bundle view for less popular
bundles.

We propose the user-bundle relationship score 𝑦𝑢𝑏 that satisfies
the two desired properties by weighting the two scores ℎ𝑢𝑏 and
𝑎𝑢𝑏 based on bundle popularities as follows:

𝑦𝑢𝑏 = 𝛾𝑏ℎ𝑢𝑏 + (1 − 𝛾𝑏 )𝑎𝑢𝑏 , (5)
where 𝛾𝑏 ∈ [0, 1], which is defined in the next subsection, denotes
a weighting coefficient such that 𝛾𝑏 > 𝛾𝑏′ if 𝑛𝑏 > 𝑛𝑏′ . A smaller
value of 𝛾𝑏 (i.e. a smaller value of 𝑛𝑏 ) ensures that the score 𝑦𝑢𝑏
is predominantly influenced by the user-item view score 𝑎𝑢𝑏 . We
show in Lemmas 3.1 and 3.2 that Equation (5) satisfies all the desired
properties.

Lemma 3.1. Equation (5) satisfies Property 1.

Proof. 𝜕�̂�𝑢𝑏
𝜕ℎ𝑢𝑏

= 𝛾𝑏 . Thus,
𝜕�̂�𝑢𝑏
𝜕ℎ𝑢𝑏

<
𝜕�̂�𝑢𝑏′
𝜕ℎ𝑢𝑏′

if 𝑛𝑏 < 𝑛𝑏′ because
𝛾𝑏 < 𝛾𝑏′ . □

Lemma 3.2. Equation (5) satisfies Property 2.

Proof. 𝜕�̂�𝑢𝑏
𝜕𝑎𝑢𝑏

= 1 − 𝛾𝑏 . Thus,
𝜕�̂�𝑢𝑏
𝜕𝑎𝑢𝑏

>
𝜕�̂�𝑢𝑏′
𝜕𝑎𝑢𝑏′

if 𝑛𝑏 < 𝑛𝑏′ because
1 − 𝛾𝑏 > 1 − 𝛾𝑏′ . □
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3.4 Curriculum Heating

Despite the ample information provided by the user-item view,
multiple items in a bundle complicate the learning of user-item
representations. This difficulty arises because accurate representa-
tion of a bundle necessitates well-represented embeddings of its all
affiliated items, and each item further requires well-represented em-
beddings of the connected users. On the other side, the user-bundle
view representation is relatively straightforward to learn. This
simplicity arises because we encapsulate each bundle’s historical
characteristics into a single embedding rather than understanding
the intricate composition of the bundle.

Hence, we propose to focus initially on learning easier view
representations and gradually shift the focus to learning harder
view representations. Thus, we modify Equation (5) by exploiting
a curriculum learning approach that focuses initially on training
user-bundle view representations, and gradually shifts the focus to
the user-item view representations as follows:

𝑦
(𝑡 )
𝑢𝑏

= 𝛾
(𝑡 )
𝑏
ℎ𝑢𝑏 + (1 − 𝛾 (𝑡 )

𝑏
)𝑎𝑢𝑏 , (6)

where 𝑦 (𝑡 )
𝑢𝑏

∈ R is the estimated relationship score between user 𝑢
and bundle 𝑏 at epoch 𝑡 . 𝛾 (𝑡 )

𝑏
∈ R is defined as 𝛾 (𝑡 )

𝑏
= tanh

(
𝑛𝑏
𝜓 (𝑡 )

)
,

where 𝑛𝑏 is the number of interactions of bundle 𝑏, and𝜓 (𝑡 ) > 0
is the temperature at epoch 𝑡 . Note that 𝛾 (𝑡 )

𝑏
lies within the in-

terval [0, 1] because 𝑛𝑏
𝜓 (𝑡 ) ≥ 0. Then, we incrementally raise the

temperature𝜓 (𝑡 ) up to the maximum temperature as follows:

𝜓 (𝑡 ) = 𝜖𝑡/𝑇 , 𝑡 : 0 → 𝑇, (7)
where 𝑡,𝑇 ∈ R are the current and the maximum epochs of the
training process, and 𝜖 > 1 is the hyperparameter of the maximum
temperature. In the initial epochs of training, 𝛾 (𝑡 )

𝑏
is large since

𝑡 is small. As a result, the score 𝑦 (𝑡 )
𝑢𝑏

relies more heavily on ℎ𝑢𝑏
than 𝑎𝑢𝑏 . However, as the training progresses and 𝑡 increases, 𝛾 (𝑡 )

𝑏
diminishes, shifting the emphasis from ℎ𝑢𝑏 to 𝑎𝑢𝑏 . This heating
mechanism is applied to all bundles regardless of their popularity.
Furthermore, we show in Lemmas 3.3 and 3.4 that Equation (6) still
satisfies the two desired properties.

Lemma 3.3. Equation (6) satisfies Property 1.

Proof. 𝜕�̂�
(𝑡 )
𝑢𝑏

𝜕ℎ𝑢𝑏
= tanh

(
𝑛𝑏
𝜓 (𝑡 )

)
. Thus, 𝜕�̂�

(𝑡 )
𝑢𝑏

𝜕ℎ𝑢𝑏
<

𝜕�̂�
(𝑡 )
𝑢𝑏′

𝜕ℎ𝑢𝑏′
if 𝑛𝑏 < 𝑛𝑏′

because 𝜓 (𝑡 ) is the same for all bundles at epoch 𝑡 and 𝑡𝑎𝑛ℎ(·) is
an increasing function. □

Lemma 3.4. Equation (6) satisfies Property 2.

Proof. 𝜕�̂�
(𝑡 )
𝑢𝑏

𝜕𝑎𝑢𝑏
= 1− tanh

(
𝑛𝑏
𝜓 (𝑡 )

)
. Thus, 𝜕�̂�

(𝑡 )
𝑢𝑏

𝜕𝑎𝑢𝑏
>
𝜕�̂�

(𝑡 )
𝑢𝑏′

𝜕𝑎𝑢𝑏′
if 𝑛𝑏 < 𝑛𝑏′

because𝜓 (𝑡 ) is the same for all bundles at epoch 𝑡 and 1 − 𝑡𝑎𝑛ℎ(·)
is a decreasing function. □

3.5 Representation Alignment and Uniformity

While the user-bundle view and user-item view are crafted to
capture distinct representations, aligning the two views is essential,
especially when predicting future interactions of cold bundles solely

based on user-item view representations. Moreover, aligning two
views facilitates knowledge transfer between the two views. This
is essential because we gradually change the learning focus of
views by curriculum heating, and the alignment helps the success
of curriculum heating by effectively transferring knowledge from a
view with richer knowledge to the opposite view. To achieve this,
we exploit a contrastive learning-based approach that reconciles
the two views. Specifically, we use the alignment and uniformity
loss [37] as a regularization for the representations of the two views.
We firstly 𝑙2-normalize the embeddings of the two views as follows:

h̃𝑢 =
h𝑢

∥h𝑢 ∥2
, ã𝑢 =

a𝑢
∥a𝑢 ∥2

, h̃𝑏 =
h𝑏

∥h𝑏 ∥2
, ã𝑏 =

a𝑏
∥a𝑏 ∥2

, (8)

where h𝑢 , h𝑏 ∈ R𝑑 are user-bundle view representations of user 𝑢
and bundle 𝑏, respectively; a𝑢 , a𝑏 ∈ R𝑑 are user-item view repre-
sentations of user 𝑢 and bundle 𝑏, respectively. Then, we define an
alignment loss as follows:

𝑙𝑎𝑙𝑖𝑔𝑛 = E
𝑢∼𝑝𝑢𝑠𝑒𝑟

∥h̃𝑢 − ã𝑢 ∥22 + E
𝑏∼𝑝𝑏𝑢𝑛𝑑𝑙𝑒

∥h̃𝑏 − ã𝑏 ∥22, (9)

where 𝑝𝑢𝑠𝑒𝑟 and 𝑝𝑏𝑢𝑛𝑑𝑙𝑒 are the distributions of users and bundles,
respectively. The alignment loss makes the embeddings of the two
views close to each other for each user and bundle. We also define
a uniformity loss as follows:

𝑙𝑢𝑛𝑖𝑓 𝑜𝑟𝑚 = log E
𝑢,𝑢′∼𝑝𝑢𝑠𝑒𝑟

𝑒−2∥h̃𝑢−h̃𝑢′ ∥22 + log E
𝑢,𝑢′∼𝑝𝑢𝑠𝑒𝑟

𝑒−2∥ã𝑢−ã𝑢′ ∥22

+ log E
𝑏,𝑏′∼𝑝𝑏𝑢𝑛𝑑𝑙𝑒

𝑒−2∥h̃𝑏−h̃𝑏′ ∥
2
2 + log E

𝑏,𝑏′∼𝑝𝑏𝑢𝑛𝑑𝑙𝑒
𝑒−2∥ã𝑏−ã𝑏′ ∥

2
2 ,

(10)

where 𝑢′ and 𝑏′ denote a user and a bundle distinct from 𝑢 and 𝑏,
respectively. The uniformity loss ensures distinct representations
for different users (or bundles) by scattering them across the space.
Finally, we define the contrastive loss for the two views as follows:

L𝐴𝑈 = 𝑙𝑎𝑙𝑖𝑔𝑛 + 𝑙𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 . (11)

3.6 Objective Function and Training

To effectively learn the user-bundle relationship, we utilize Bayesian
Personalize Ranking (BPR) loss [26], which is the most widely used
loss owing to its powerfulness, as follows:

L (𝑡 )
𝐵𝑃𝑅

= E
(𝑢,𝑏+,𝑏− )∼𝑝𝑑𝑎𝑡𝑎

− ln𝜎 (𝑦 (𝑡 )
𝑢𝑏+

− 𝑦 (𝑡 )
𝑢𝑏−

), (12)

where 𝑝𝑑𝑎𝑡𝑎 is the data distribution of user-bundle interactions,
with 𝑢 denoting a user, 𝑏+ indicating a positive bundle, and 𝑏− rep-
resenting a negative bundle. We define the final objective function
as follows:

L (𝑡 ) = L (𝑡 )
𝐵𝑃𝑅

+ 𝜆1L𝐴𝑈 + 𝜆2∥Θ∥2, (13)
where 𝜆1, 𝜆2 ∈ R are balancing hyperparameters for the terms, and
Θ denotes trainable parameters of CoHeat. For the distributions
𝑝𝑢𝑠𝑒𝑟 and 𝑝𝑏𝑢𝑛𝑑𝑙𝑒 , we use in-batch sampling which selects samples
from the training batch of 𝑝𝑑𝑎𝑡𝑎 rather than the entire dataset. This
approach has empirically demonstrated to mitigate the training
bias in prior studies [35, 49]. All the parameters are optimized in
an end-to-end manner through the optimization. We also adopt an
edge dropout [22, 40] while training to enhance the performance
robustness.
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Table 1: Summary of three real-world datasets where “dens." denotes the density of a matrix.

Dataset Users Bundles Items User-bundle (dens.) User-item (dens.) Bundle-item (dens.) Avg. size of bundle

Youshu1 8,039 4,771 32,770 51,377 (0.13%) 138,515 (0.05%) 176,667 (0.11%) 37.03
NetEase1 18,528 22,864 123,628 302,303 (0.07%) 1,128,065 (0.05%) 1,778,838 (0.06%) 77.80
iFashion1 53,897 27,694 42,563 1,679,708 (0.11%) 2,290,645 (0.10%) 106,916 (0.01%) 3.86
1 https://github.com/mysbupt/CrossCBR

Knowledge
transfer

(a) Large (b) Small 

High
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Low
Influence

Knowledge
transfer
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High
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Figure 4: Learning mechanism of CoHeat (see Section 3.7

for details).

3.7 Discussion of CoHeat

The core of CoHeat lies in its ability to dynamically adjust
the weights of two distinct views, setting it apart from previous
methods such as CrossCBR [22]. This dynamic adjustment is piv-
otal for achieving superior performance in the cold-start bundle
recommendation.

Through the popularity-based coalescence, CoHeat dynamically
adjusts the weight 𝛾 (𝑡 )

𝑏
in Equation (6) to effectively harness the

more informative view. For instance, when a bundle𝑏 is popular, the
influence of user-bundle view is bolstered with a large 𝛾 (𝑡 )

𝑏
because

the bundle is rich of knowledge in this view. The knowledge then
gets transferred to the user-item view by the alignment and unifor-
mity loss, as depicted in Figure 4 (a). Conversely, for a less popular
bundle, the influence of user-item view is amplified with a small
𝛾
(𝑡 )
𝑏

, transferring the learned knowledge to the user-bundle view,
as shown in Figure 4 (b). This strategy contrasts with CrossCBR,
which may inadvertently amplify the underrepresented knowledge
of unpopular bundles due to its uniform weighting strategy.

Additionally, the curriculum heating of CoHeat further adjusts
the weight 𝛾 (𝑡 )

𝑏
throughout the learning process. As the epochs

progress,𝛾 (𝑡 )
𝑏

diminishes (transitioning from Figure 4 (a) to Figure 4
(b)), ensuring both views are thoroughly utilized during training.
This dynamic exchange of knowledge between two views results
in CoHeat’s superior performance in both cold and warm settings,
owing to the wealth of knowledge each view offers. This strategy is
distinct from CrossCBR since the uniform weights for both views
may lead to suboptimal results, especially in cold-start scenarios
where the user-bundle view is sparse. Moreover, the curriculum
heating strategically focuses on the easier view first, gradually
shifting its attention to the more challenging view as the learning
progresses. This helps a smoother and more effective knowledge
transfer between the views.

4 EXPERIMENTS

In this section, we perform experiments to answer the following
questions.

Q1. Comparison with cold-start methods. Does CoHeat
show superior performance in comparison to other cold-
start methods in bundle recommendation?

Q2. Comparison with warm-start methods. Does CoHeat
show similar performance in warm-start bundle recom-
mendation compared with baselines, although CoHeat is
a cold-start bundle recommendation method?

Q3. Comparison by cold bundle ratio.Does the performance
difference between CoHeat and baseline increase as the
cold bundle ratio increases?

Q4. Ablation study. How do the main ideas of CoHeat affect
the performance?

Q5. Effect of the maximum temperature. How does the
maximum temperature 𝜖 , the critical hyperparameter, affect
the performance of CoHeat?

4.1 Experimental Setup

Datasets. We use three real-world bundle recommendation
datasets as summarized in Table 1. Youshu [10] comprises bun-
dles of books sourced from a book review site; NetEase [4] features
bundles of music tracks from a cloud music service; iFashion [12]
consists of bundles of fashion items from an outfit sales platform.

Baseline cold-start methods.We compare CoHeat with exist-
ing cold-start item recommendation methods because they can be
easily adapted for bundle recommendation by considering bundle-
item affiliations as content information. DropoutNet [34] is a robustness-
based method with a dropout operation. CB2CF [1] and Heater [51]
are constraint-basedmethods that regularize the alignment. GAR [9]
is a generative method with two variants GAR-CF and GAR-GNN.
CVAR [48] is another generative method with a conditional decoder.
CLCRec [39] and CCFCRec [50] are contrastive learning-based
methods. We omit other competitors such as DUIF [17], MTPR [15],
and NFM [19] because CLCRec and CCFCRec outperform them by
a large margin on their extensive experiments. We also omit other
generative competitors such as DeepMusic [31] and MetaEmb [24]
because GAR [9] greatly outperforms them on its experiments. We
use bundle-item multi-hot vectors as their content information.

Baseline warm-start methods. We also compare CoHeat
with previous warm-start recommendation methods. MFBPR [26]
and LightGCN [20] are item recommendation methods with the
modelings of matrix factorization and graph learning, respectively.
SGL [40], SimGCL [43], and LightGCL [3] are the improved meth-
ods of item recommendation with contrastive learning approaches.
DAM [10] is a bundle recommendation method with the modeling
of matrix factorization. BundleNet [14], BGCN [6, 7], and Cross-
CBR [22] are other bundle recommendation methods with the mod-
eling of graph learning.

Evaluation metrics.We use Recall@𝑘 and nDCG@𝑘 metrics
as in previous works [22, 39]. Recall@𝑘 measures the proportion
of relevant items in the top-𝑘 list, while nDCG@𝑘 weighs items
by their rank. We set 𝑘 to 20. In tables, bold and underlined values
indicate the best and second-best results, respectively.
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Table 2: Performance comparison of CoHeat and baseline cold-start methods on three real-world datasets.

Model

Youshu NetEase iFashion

Recall@20 nDCG@20 Recall@20 nDCG@20 Recall@20 nDCG@20
Cold Warm All Cold Warm All Cold Warm All Cold Warm All Cold Warm All Cold Warm All

DropoutNet [34] .0022 .0336 .0148 .0007 .0153 .0055 .0028 .0154 .0046 .0015 .0078 .0024 .0009 .0060 .0039 .0008 .0045 .0027
CB2CF [1] .0012 .0258 .0028 .0007 .0208 .0021 .0016 .0049 .0027 .0006 .0027 .0014 .0009 .0057 .0066 .0006 .0043 .0048
Heater [51] .0016 .1753 .0541 .0007 .0826 .0286 .0021 .0125 .0102 .0010 .0064 .0054 .0015 .0217 .0123 .0010 .0151 .0083
GAR-CF [9] .0015 .1688 .0529 .0011 .0726 .0317 .0010 .0063 .0014 .0005 .0035 .0008 .0013 .0203 .0090 .0013 .0143 .0055
GAR-GNN [9] .0013 .0835 .0358 .0006 .0569 .0178 .0009 .0056 .0027 .0003 .0030 .0012 .0065 .0172 .0126 .0030 .0107 .0087
CVAR [48] .0008 .1958 .0829 .0002 .1112 .0533 .0002 .0308 .0156 .0001 .0154 .0084 .0007 .0220 .0125 .0004 .0152 .0084
CLCRec [39] .0137 .0626 .0367 .0087 .0317 .0194 .0136 .0407 .0259 .0075 .0215 .0138 .0053 .0203 .0126 .0043 .0135 .0085
CCFCRec [50] .0044 .1554 .0702 .0022 .0798 .0425 .0007 .0265 .0130 .0004 .0128 .0068 .0005 .0439 .0252 .0003 .0304 .0172

CoHeat (ours) .0183 .2804 .1247 .0105 .1646 .0833 .0191 .0847 .0453 .0093 .0455 .0264 .0170 .1156 .0658 .0096 .0876 .0504

Table 3: Performance comparison of CoHeat and baseline

warm-start methods on three real-world datasets.

Model

Youshu NetEase iFashion

Recall nDCG Recall nDCG Recall nDCG
@20 @20 @20 @20 @20 @20

MFBPR [26] .1959 .1117 .0355 .0181 .0752 .0542
LightGCN [20] .2286 .1344 .0496 .0254 .0837 .0612
SGL [40] .2568 .1527 .0687 .0368 .0933 .0690
SimGCL [43] .2691 .1593 .0710 .0377 .0919 .0677
LightGCL [3] .2712 .1607 .0722 .0388 .0943 .0686

DAM [10] .2082 .1198 .0411 .0210 .0629 .0450
BundleNet [14] .1895 .1125 .0391 .0201 .0626 .0447
BGCN [6, 7] .2347 .1345 .0491 .0258 .0733 .0531
CrossCBR [22] .2776 .1641 .0791 .0433 .1133 .0875

CoHeat (ours) .2804 .1646 .0847 .0455 .1156 .0876

Experimental process.We conduct experiments in warm-start,
cold-start, and all-bundle scenarios as in previous works [39]. For
the warm-start scenario, interactions are split into 7:1:2 subsets for
training, validation, and testing. In the cold-start scenario, bundles
are split in 7:1:2 ratio. In the all-bundle scenario, interactions are
split in 7:1:2 ratio with a half for warm-start and the other half for
cold-start bundles. We report the best Recall@20 and nDCG@20
within 100 epochs, averaged over three runs.

Hyperparameters.We utilize the baselines with their official
implementations and use their reported best hyperparameters. We
implement CoHeat with PyTorch. We set the dimensionality 𝑑
of node embeddings as 64. The other hyperparameters are grid-
searched: the learning rate in {0.001, 0.0001, 0.00001}, 𝜆1 in {0.1, 0.2,
0.5, 1.0}, 𝜆2 in {0.00004, 0.0001, 0.0004, 0.001}, 𝐾 in {1, 2}, and the
maximum temperature 𝜖 in {101, 102, 103, 104, 105, 106}.

4.2 Comparison with Cold-start Methods (Q1)

In Table 2, we compare CoHeat with baseline cold-start meth-
ods. The results show that CoHeat consistently surpasses the
baselines across all datasets and settings, verifying its superior-
ity. Notably, CoHeat achieves 193% higher nDCG@20 compared
to CCFCRec, the best competitor, on the iFashion dataset in the all-
bundle scenario. The superiority of CoHeat over other cold-start
methods stems from the following two key aspects. First, CoHeat
adeptly harnesses collaborative information of each affiliated item
in a bundle through the user-item view. This approach diverges

Performance gaps
get bigger

+124%

(a) NetEase

+88.4%

(b) iFashion

Figure 5: Performance comparison by cold bundle ratio.

from existing cold-start methods, which fall short in utilizing user-
item interactions for bundle affiliations. Second, CoHeat explicitly
addresses the pronounced skewness in user-bundle interactions
through the proposed popularity-based coalescence. The results re-
veal the importance of tackling the inherent biases in distributions
with extreme skewness, such as user-bundle interactions.

4.3 Comparison with Warm-start Methods (Q2)

Table 3 compares CoHeat with baseline warm-start methods
in the warm-start scenario. Even though CoHeat is primarily de-
signed for cold-start bundle recommendation, it surpasses all the
baselines in the warm-start scenario as well. This indicates CoHeat
effectively learns representations from both user-bundle and user-
item views by dynamically adjusting the weights of two views in
training. For the baselines, the performance improves when con-
trastive learning is used as exemplified in SGL, SimGCL, LightGCL,
and CrossCBR. Additionally, graph-basedmodels such as LightGCN,
SGL, SimGCL, LightGCL, BGCN, and CrossCBR typically excel over
other non-graph-based models. In light of these observations, Co-
Heat strategically exploits a graph-based modeling approach and
harnesses the power of contrastive learning. This makes CoHeat
robustly achieve the highest performance across diverse scenarios.

4.4 Comparison by Cold Bundle Ratio (Q3)

In Figure 5, we compare the performance between CoHeat and
CrossCBR on NetEase and iFashion datasets under varying cold
bundle ratios in test datasets. We focus on investigating the perfor-
mance disparity as conditions become increasingly colder, despite
their analogous performance in warm settings, as shown in Table 3.
The figure reveals a pronounced performance disparity between
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Table 4: Ablation study of CoHeat in cold-start scenario

which is our main target.

Model

Youshu NetEase iFashion

Recall nDCG Recall nDCG Recall nDCG
@20 @20 @20 @20 @20 @20

CoHeat-PC .0000 .0000 .0000 .0000 .0000 .0000
CoHeat-CH -Ant .0177 .0087 .0176 .0087 .0164 .0093
CoHeat-CH -Fix .0180 .0092 .0182 .0090 .0164 .0092
CoHeat-AU .0069 .0031 .0029 .0013 .0013 .0005

CoHeat (ours) .0183 .0105 .0191 .0093 .0170 .0096

CoHeat and CrossCBR, intensifying as the cold bundle ratios in-
crease. Remarkably, CrossCBR’s performance plummets to zero in
entirely cold conditions while CoHeat maintains a more stable
trajectory. This divergence is particularly accentuated in NetEase
due to its sparser interactions and larger bundle size. The superior-
ity of CoHeat over CrossCBR is rooted in strategically reducing
biases inherent in sparse interactions by adopting the popularity-
based coalescence. Furthermore, CoHeat enhances the learning of
user-item view by exploiting curriculum heating, thereby utilizing
bundle affiliation information more effectively. Thus, this approach
is more beneficial for larger bundle sizes.

4.5 Ablation Study (Q4)

Table 4 provides an ablation study that compares CoHeat with
its four variants CoHeat-PC, CoHeat-CH -Ant, CoHeat-CH -Fix,
and CoHeat-AU. This study is conducted in the cold-start scenario,
which is the primary focus of our work. In CoHeat-PC, we remove
the influence of popularity-based coalescence by setting the value
of 𝛾 (𝑡 )

𝑏
in Equation (6) to a constant 0.5. For CoHeat-CH -Ant, we

exploit an anti-curriculum learning strategy. The temperature in
Equation (7) is defined as 𝑡 : 𝑇 → 0, initiating the learning process
with the user-item view and gradually shifting the focus to the
user-bundle view. For CoHeat-CH -Fix, we remove the effect of
curriculum learning by setting the value of the𝜓 (𝑡 ) in Equation (7)
to the fixed maximum temperature 𝜖 regardless of epochs. For Co-
Heat-AU, we omit L𝐴𝑈 from Equation (13), thereby excluding
the contrastive learning between the two views. As shown in the
table, CoHeat consistently outperforms all the variants, which
verifies all the main ideas help improve the performance. In partic-
ular, CoHeat-PC shows a severe performance drop, justifying the
importance of satisfying Properties 1 and 2 when addressing the
extreme skewness inherent in cold-start bundle recommendation.

4.6 Effect of the Maximum Temperature (Q5)

The maximum temperature 𝜖 in Equation (7) is the most influ-
ential hyperparameter of CoHeat since it directly affects both
popularity-based coalescence and curriculum heating. Accordingly,
we analyze the influence of 𝜖 in cold-start scenario on real-world
datasets, as depicted in Figure 6. As shown in the figure, CoHeat
shows low performance for the extreme low temperature because
the representations of user-item view are not sufficiently learned.
For the extreme high temperature, the performance degrades be-
cause the speed of the curriculum is too fast to fully learn the
representation of the two views. As a result, we set 𝜖 to 104 for all
datasets since it shows the best performance.

Performance
deteriorates in
extreme cases

(a) 𝜖 vs. Recall@20 (b) 𝜖 vs. nDCG@20
Figure 6: Effect of the maximum temperature 𝜖.

5 RELATEDWORKS

Bundle recommendation. Our work focuses on the cold-start
problem in bundle recommendation. Previous works can be catego-
rized based on their modeling structures: matrix factorization-based
models [4, 10, 25] and graph learning-based models [6, 7, 14, 22].
Such methods operate under the assumption that all bundles have
historical interactions, which makes them ill-suited for tackling the
cold-start problem. However, in real-world scenarios, new bundles
are introduced daily, leading to an inherent cold-start challenge. Our
work addresses this significant yet overlooked issue, recognizing
its potential impact on the field.

Cold-start recommendation. The cold-start problem, a long-
standing challenge in recommender systems, focuses on recom-
mending cold-start items with which users have not yet inter-
acted. Existing works are primarily categorized into content-based
methods [36, 47], generative methods [5, 9, 30, 31, 48], dropout-
based methods [15, 29, 34], meta-learning methods [24, 33], and
constraint-based methods [1, 39, 50, 51]. However, these methods
are designed for item recommendation where contents are often
represented as independent entities such as bag-of-words vectors,
texts, or images. Moreover, such prior works have not explicitly
addressed the highly skewed distribution of interactions, a criti-
cal aspect in bundle recommendation. Thus, our work excels over
these methods in cold-start bundle recommendation by effectively
harnessing intricate bundle affiliations from the user-item view and
addressing the skewed distribution during training.

6 CONCLUSION

We propose CoHeat, an accurate method for cold-start bundle
recommendation. CoHeat strategically leverages user-bundle and
user-item views to handle the extremely skewed distribution of bun-
dle interactions. By emphasizing the user-item view for less popular
bundles, CoHeat effectively captures richer information than the
often sparse user-bundle view. The incorporation of curriculum
learning further enhances the learning process, starting with the
simpler user-bundle view embeddings and gradually transitioning
to the more intricate user-item view embeddings. In addition, the
contrastive learning of CoHeat bolsters the learning of representa-
tions from the two views facilitating effective knowledge transfer
from the richer to the sparser view. Extensive experiments show
that CoHeat provides the state-of-the-art performance in cold-start
bundle recommendation, achieving up to 193% higher nDCG@20
compared to the best competitor.
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