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Abstract

The performance of machine learning models on new data is critical for their1

success in real-world applications. However, the model’s performance may deterio-2

rate if the new data is sampled from a different distribution than the training data.3

Current methods to detect shifts in the input or output data distributions have limi-4

tations in identifying model behavior changes. In this paper, we define explanation5

shift as the statistical comparison between how predictions from training data are6

explained and how predictions on new data are explained. We propose explanation7

shift as a key indicator to investigate the interaction between distribution shifts and8

learned models. We introduce an Explanation Shift Detector that operates on the9

explanation distributions, providing more sensitive and explainable changes in in-10

teractions between distribution shifts and learned models. We compare explanation11

shifts with other methods based on distribution shifts, showing that monitoring12

for explanation shifts results in more sensitive indicators for varying model be-13

havior. We provide theoretical and experimental evidence and demonstrate the14

effectiveness of our approach on synthetic and real data. Additionally, we release15

an open-source Python package, skshift, which implements our method and16

provides usage tutorials for further reproducibility.17

1 Introduction18

ML theory provides means to forecast the quality of ML models on unseen data, provided that this19

data is sampled from the same distribution as the data used to train and evaluate the model. If unseen20

data is sampled from a different distribution than the training data, model quality may deteriorate,21

making monitoring how the model’s behavior changes crucial.22

Recent research has highlighted the impossibility of reliably estimating the performance of machine23

learning models on unseen data sampled from a different distribution in the absence of further24

assumptions about the nature of the shift [1, 2, 3]. State-of-the-art techniques attempt to model25

statistical distances between the distributions of the training and unseen data [4, 5] or the distributions26

of the model predictions [3, 6, 7]. However, these measures of distribution shifts only partially relate27

to changes of interaction between new data and trained models or they rely on the availability of a28

causal graph or types of shift assumptions, which limits their applicability. Thus, it is often necessary29

to go beyond detecting such changes and understand how the feature attribution changes [8, 9, 10, 4].30

The field of explainable AI has emerged as a way to understand model decisions [11, 12] and31

interpret the inner workings of ML models [13]. The core idea of this paper is to go beyond the32

modeling of distribution shifts and monitor for explanation shifts to signal a change of interactions33

between learned models and dataset features in tabular data. We newly define explanation shift as the34

statistical comparison between how predictions from training data are explained and how predictions35

on new data are explained. In summary, our contributions are:36
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• We propose measures of explanation shifts as a key indicator for investigating the interaction37

between distribution shifts and learned models.38

• We define an Explanation Shift Detector that operates on the explanation distributions39

allowing for more sensitive and explainable changes of interactions between distribution40

shifts and learned models.41

• We compare our monitoring method that is based on explanation shifts with methods that42

are based on other kinds of distribution shifts. We find that monitoring for explanation shifts43

results in more sensitive indicators for varying model behavior.44

• We release an open-source Python package skshift, which implements our “Explanation45

Shift Detector”, along usage tutorials for reproducibility.46

2 Foundations and Related Work47

2.1 Basic Notions48

Supervised machine learning induces a function fθ : dom(X) → dom(Y ), from training data49

Dtr = {(xtr0 , ytr0 ) . . . , (xtrn , y
tr
n )}. Thereby, fθ is from a family of functions fθ ∈ F and Dtr is50

sampled from the joint distribution P(X,Y ) with predictor variables X and target variable Y . fθ is51

expected to generalize well on new, previously unseen data Dnew
X = {xnew0 , . . . , xnewk } ⊆ dom(X).52

We write Dtr
X to refer to {xtr0 , . . . , xtrn } and Dtr

Y to refer to Dtr
Y = {ytr0 . . . , ytrn }. For the purpose53

of formalizations and to define evaluation metrics, it is often convenient to assume that an oracle54

provides values Dnew
Y = {ynew0 , . . . , ynewk } such that Dnew = {(xnew0 , ynew0 ), . . . , (xnewk , ynewk )} ⊆55

dom(X)× dom(Y ).56

The core machine learning assumption is that training data Dtr and novel data Dnew are sampled from57

the same underlying distribution P(X,Y ). The twin problems of model monitoring and recognizing58

that new data is out-of-distribution can now be described as predicting an absolute or relative59

performance drop between perf(Dtr) and perf(Dnew), where perf(D) =
∑

(x,y)∈D ℓeval(fθ(x), y),60

ℓeval is a metric like 0-1-loss (accuracy), but Dnew
Y is unknown and cannot be used for such judgment.61

Therefore related work analyses distribution shifts between training and newly occurring data. Let62

two datasets D,D′ define two empirical distributions P(D),P(D′), then we write P(D)≁P(D′)63

to express that P(D) is sampled from a different underlying distribution than P(D′) with high64

probability p > 1− ϵ allowing us to formalize various types of distribution shifts.65

Definition 2.1 (Data Shift). We say that data shift occurs from Dtr to Dnew
X , if P(Dtr

X )≁P(Dnew
X ).66

Specific kinds of data shift are:67

Definition 2.2 (Univariate data shift). There is a univariate data shift between P(Dtr
X ) =68

P(Dtr
X1
, . . . ,Dtr

Xp
) and P(Dnew

X ) = P(Dnew
X1

, . . . ,Dnew
Xp

), if∃i ∈ {1 . . . p} : P(Dtr
Xi

)≁P(Dnew
Xi

).69

Definition 2.3 (Covariate data shift). There is a covariate data shift between P (Dtr
X ) =70

P(Dtr
X1
, . . . ,Dtr

Xp
) and P(Dnew

X ) = P(Dnew
X1

, . . . ,Dnew
Xp

) if P(Dtr
X )≁P(Dnew

X ), which cannot only71

be caused by univariate shift.72

The next two types of shift involve the interaction of data with the model fθ, which approximates the73

conditional P (Dtr)
P (Dtr

X )
. Abusing notation, we write fθ(D) to refer to the multiset {fθ(x)|x ∈ D}.74

Definition 2.4 (Predictions Shift). There is a predictions shift between distributions P(Dtr
X ) and75

P(Dnew
X ) related to model fθ if P(fθ(Dtr

X ))≁P(fθ(Dnew
X )).76

Definition 2.5 (Concept Shift). There is a concept shift between P(Dtr) = P (Dtr
X ,Dtr

Y ) and77

P(Dnew) = P (Dnew
X ,Dnew

Y ) if conditional distributions change, i.e. P(Dtr)
P(Dtr

X )
≁ P(Dnew)

P(Dnew
X ) .78

In practice, multiple types of shifts co-occur together and their disentangling may constitute a79

significant challenge that we do not address here [14, 15].80

2.2 Related Work on Tabular Data81

We briefly review the related works below. See Appendix A for a more detailed related work.82
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Classifier two-sample test: Evaluating how two distributions differ has been a widely studied83

topic in the statistics and statistical learning literature [16, 15, 17] and has advanced in recent years84

[18, 19, 20]. The use of supervised learning classifiers to measure statistical tests has been explored85

by Lopez-Paz et al. [21] proposing a classifier-based approach that returns test statistics to interpret86

differences between two distributions. We adopt their power test analysis and interpretability approach87

but apply it to the explanation distributions.88

Detecting distribution shift and its impact on model behaviour: A lot of related work has aimed89

at detecting that data is from out-of-distribution. To this end, they have created several benchmarks90

that measure whether data comes from in-distribution or not [22, 23, 24, 25, 26]. In contrast, our91

main aim is to evaluate the impact of the distribution shift on the model.92

A typical example is two-sample testing on the latent space such as described by Rabanser et al. [27].93

However, many of the methods developed for detecting out-of-distribution data are specific to neural94

networks processing image and text data and can not be applied to traditional machine learning95

techniques. These methods often assume that the relationships between predictor and response96

variables remain unchanged, i.e., no concept shift occurs. Our work is applied to tabular data where97

techniques such as gradient boosting decision trees achieve state-of-the-art model performance [28,98

29, 30].99

Impossibility of model monitoring: Recent research findings have formalized the limitations of100

monitoring machine learning models in the absence of labelled data. Specifically [3, 31] prove the101

impossibility of predicting model degradation or detecting out-of-distribution data with certainty [32,102

33, 34]. Although our approach does not overcome these limitations, it provides valuable insights for103

machine learning engineers to understand better changes in interactions resulting from shifting data104

distributions and learned models.105

Model monitoring and distribution shift under specific assumptions: Under specific types of106

assumptions, model monitoring and distribution shift become feasible tasks. One type of assumption107

often found in the literature is to leverage causal knowledge to identify the drivers of distribution108

changes [35, 36, 37]. For example, Budhathoki et al. [35] use graphical causal models and feature109

attributions based on Shapley values to detect changes in the distribution. Similarly, other works aim110

to detect specific distribution shifts, such as covariate or concept shifts. Our approach does not rely111

on additional information, such as a causal graph, labelled test data, or specific types of distribution112

shift. Still, by the nature of pure concept shifts, the model behaviour remains unaffected and new113

data need to come with labelled responses to be detected.114

Explainability and distribution shift: Lundberg et al. [38] applied Shapley values to identify115

possible bugs in the pipeline by visualizing univariate SHAP contributions. In our work we go116

beyond debugging and formalize the multivariate explanation distributions where we perform a117

two-sample classifier test to detect distribution shift impacts on the model. Furthermore, we provide118

a mathematical analysis of how the SHAP values contribute to detecting distribution shift.119

2.3 Explainable AI: Local Feature Attributions120

Attribution by Shapley values explains machine learning models by determining the relevance of121

features used by the model [38, 39]. The Shapley value is a concept from coalition game theory that122

aims to allocate the surplus generated by the grand coalition in a game to each of its players [40]. The123

Shapley value Sj for the j’th player is defined via a value function val : 2N → R of players in T :124

Sj(val) =
∑

T⊆N\{j}

|T |!(p− |T | − 1)!

p!
(val(T ∪ {j})− val(T )) (1)

125
In machine learning, N = {1, . . . , p} is the set of features occurring in the training data. Given that x126

is the feature vector of the instance to be explained, and the term valf,x(T ) represents the prediction127

for the feature values in T that are marginalized over features that are not included in T :128

valf,x(T ) = EX|XT=xT
[f(X)]− EX [f(X)] (2)

129
The Shapley value framework satisfies several theoretical properties [12, 40, 41, 42]. Our approach is130

based on the efficiency and uninformative properties:131
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Efficiency Property. Feature contributions add up to the difference of prediction from x⋆ and the132

expected value:133 ∑
j∈N

Sj(f, x⋆) = f(x⋆)− E[f(X)]) (3)

134
Uninformativeness Property. A feature j that does not change the predicted value has a Shapley135

value of zero.136

∀x, xj , x′j : f({xN\{j}, xj}) = f({xN\{j}, x
′
j}) ⇒ ∀x : Sj(f, x) = 0. (4)

Our approach works with explanation techniques that fulfill efficiency and uninformative properties,137

and we use Shapley values as an example. It is essential to distinguish between the theoretical Shapley138

values and the different implementations that approximate them. We use TreeSHAP as an efficient139

implementation for tree-based models of Shapley values [38, 12, 43], mainly we use the observational140

(or path-dependent) estimation [44, 45, 46], and for linear models, we use the correlation dependent141

implementation that takes into account feature dependencies [47].142

LIME is another explanation method candidate for out approach [48, 49]. LIME computes local143

feature attributions and also satisfies efficiency and uninformative properties, at least in theoretical144

aspects. However, the definition of neighborhoods in LIME and corresponding computational145

expenses impact its applicability. In Appendix F, we analyze LIME’s relationship with Shapley146

values for the purpose of describing explanation shifts.147

3 A Model for Explanation Shift Detection148

Our model for explanation shift detection is sketched in Fig. 1. We define it step-by-step as follows:149

Definition 3.1 (Explanation distribution). An explanation function S : F × dom(X) → Rp maps a150

model fθ and data x ∈ Rp to a vector of attributions S(fθ, x) ∈ Rp. We call S(fθ, x) an explanation.151

We write S(fθ,D) to refer to the empirical explanation distribution generated by {S(fθ, x)|x ∈ D}.152

We use local feature attribution methods SHAP and LIME as explanation functions S.153

Definition 3.2 (Explanation shift). Given a model fθ learned from Dtr, explanation shift with respect154

to the model fθ occurs if S(fθ,Dnew
X )≁ S(fθ,Dtr

X ).155

Definition 3.3 (Explanation shift metrics). Given a measure of statistical distances d, explanation shift156

is measured as the distance between two explanations of the model fθ by d(S(fθ,Dtr
X ),S(fθ,Dnew

X )).157

We follow Lopez et al. [21] to define an explanation shift metrics based on a two-sample test158

classifier. We proceed as depicted in Figure 1. To counter overfitting, given the model fθ159

trained on Dtr, we compute explanations {S(fθ, x)|x ∈ Dval
X } on an in-distribution validation160

data set Dval
X . Given a dataset Dnew

X , for which the status of in- or out-of-distribution is unknown,161

we compute its explanations {S(fθ, x)|x ∈ Dnew
X }. Then, we construct a two-samples dataset162

E = {(S(fθ, x), ax)|x ∈ Dval
X , ax = 0} ∪ {(S(fθ, x), ax)|x ∈ Dnew

X , ax = 1} and we train a163

discrimination model gψ : Rp → {0, 1} on E, to predict if an explanation should be classified as164

in-distribution (ID) or out-of-distribution (OOD):165

ψ = argmin
ψ̃

∑
x∈Dval

X∪Dnew
X

ℓ(gψ̃(S(fθ, x)), ax), (5)

where ℓ is a classification loss function (e.g. cross-entropy). gψ is our two-sample test classifier,166

based on which AUC yields a test statistic that measures the distance between the Dtr
X explanations167

and the explanations of new data Dnew
X .168

Explanation shift detection allows us to detect that a novel datasetDnew changes the model’s behavior.169

Beyond recognizing explanation shift, using feature attributions for the model gψ, we can interpret170

how the features of the novel dataset Dnew
X interact differently with model fθ than the features of the171

validation dataset Dval
X . These features are to be considered for model monitoring and for classifying172

new data as out-of-distribution.173
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Explanations 

Train Classifier for
Two-Sample Test

No Explanation ShiftExplanation Shift

Explain
Explanation Shift Detector

Not
Reject

Reject

Explanations 

Train Classifier 

Figure 1: Our model for explanation shift detection. The model fθ is trained on Dtr implying explanations for
distributions Dval

X ,Dnew
X . The AUC of the two-sample test classifier gψ decides for or against explanation shift.

If an explanation shift occurred, it could be explained which features of the Dnew
X deviated in fθ compared to

Dval
X .

4 Relationships between Common Distribution Shifts and Explanation Shifts174

This section analyses and compares data shifts, prediction shifts, with explanation shifts. Appendix B175

extends this analysis, and Appendix C draws from these analyses to derive experiments with synthetic176

data.177

4.1 Explanation Shift vs Data Shift178

One type of distribution shift that is challenging to detect comprises cases where the univariate179

distributions for each feature j are equal between the source Dtr
X and the unseen dataset Dnew

X , but180

where interdependencies among different features change. Multi-covariance statistical testing is a181

hard taks with high sensitivity that can lead to false positives. The following example demonstrates182

that Shapley values account for co-variate interaction changes while a univariate statistical test will183

provide false negatives.184

185

Example 4.1. (Covariate Shift) Let Dtr ∼ N
([

µ1
µ2

]
,
[
σ2
X1

0

0 σ2
X2

])
× Y . We fit a linear model186

fθ(x1, x2) = γ + a · x1 + b · x2. If Dnew
X ∼ N

([
µ1
µ2

]
,
[

σ2
X1

ρσX1
σX2

ρσX1
σX2

σ2
X2

])
, then P(Dtr

X1
) and187

P(Dtr
X2

) are identically distributed with P(Dnew
X1

) and P(Dnew
X2

), respectively, while this does not188

hold for the corresponding Sj(fθ,Dtr
X ) and Sj(fθ,Dnew

X ).189

The detailed analysis of example 4.1 is given in Appendix B.2.190

False positives frequently occur in out-of-distribution data detection when a statistical test recognizes191

differences between a source distribution and a new distribution, thought the differences do not affect192

the model behavior [28, 14]. Shapley values satisfy the Uninformativeness property, where a feature193

j that does not change the predicted value has a Shapley value of 0 (equation 4).194

Example 4.2. Shifts on Uninformative Features. Let the random variables X1, X2 be normally195

distributed with N(0; 1). Let dataset Dtr ∼ X1 × X2 × Y tr, with Y tr = X1. Thus Y tr⊥X2.196

Let Dnew
X ∼ X1 × Xnew

2 and Xnew
2 be normally distributed with N(µ;σ2) and µ, σ ∈ R. When197

fθ is trained optimally on Dtr then fθ(x) = x1. P(DX2
) can be different from P(Dnew

X2
) but198

S2(fθ,Dtr
X ) = 0 = S2(fθ,Dnew

X ).199

4.2 Explanation Shift vs Prediction Shift200

Analyses of the explanations detect distribution shifts that interact with the model. In particular, if a201

prediction shift occurs, the explanations produced are also shifted.202

Proposition 1. Given a model fθ : DX → DY . If fθ(x′) ̸= fθ(x), then S(fθ, x′) ̸= S(fθ, x).203
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By efficiency property of the Shapley values [47] (equation ((3))), if the prediction between two204

instances is different, then they differ in at least one component of their explanation vectors.205

The opposite direction does not always hold:206

Example 4.3. (Explanation shift not affecting prediction distribution) Given Dtr is generated207

from (X1 ×X2 × Y ), X1 ∼ U(0, 1), X2 ∼ U(1, 2), Y = X1 +X2 + ϵ and thus the optimal model208

is f(x) = x1 + x2. If Dnew is generated from Xnew
1 ∼ U(1, 2), Xnew

2 ∼ U(0, 1), Y new =209

Xnew
1 + Xnew

2 + ϵ, the prediction distributions are identical fθ(Dtr
X ), fθ(Dnew

X ) ∼ U(1, 3), but210

explanation distributions are different S(fθ,Dtr
X )≁S(fθ,Dnew

X ), because Si(fθ, x) = αi · xi.211

Thus, an explanation shift does not always imply a prediction shift.212

4.3 Explanation Shift vs Concept Shift213

Concept shift comprises cases where the covariates retain a given distribution, but their relationship214

with the target variable changes (cf. Section 2.1). This example shows the negative result that concept215

shift cannot be indicated by the detection of explanation shift.216

Example 4.4. Concept Shift Let Dtr ∼ X1 × X2 × Y , and create a synthetic target ytri =217

a0 + a1 · xi,1 + a2 · xi,2 + ϵ. As new data we have Dnew
X ∼ Xnew

1 × Xnew
2 × Y , with ynewi =218

b0 + b1 · xi,1 + b2 · xi,2 + ϵ whose coefficients are unknown at prediction stage. With coefficients219

a0 ̸= b0, a1 ̸= b1, a2 ̸= b2. We train a linear regression fθ : Dtr
X → Dtr

Y . Then explanations have the220

same distribution, P(S(fθ,Dtr
X )) = P(S(fθ,Dnew

X )), input data distribution P(Dtr
X ) = P(Dnew

X )221

and predictions P(fθ(Dtr
X )) = P(fθ(Dnew

X )). But there is no guarantee on the performance of fθ222

on Dnew
X [3]223

In general, concept shift cannot be detected because Dnew
Y is unknown [3]. Some research studies224

have made specific assumptions about the conditional P (Dnew)
P (Dnew

X ) in order to monitor models and detect225

distribution shift [7, 50].226

In Appendix B.2.2, we analyze a situation in which an oracle — hypothetically — provides Dnew
Y .227

5 Empirical Evaluation228

We perform core evaluations of explanation shift detection methods by systematically varying models229

f , model parametrizations θ, and input data distributions DX . We complement core experiments230

described in this section by adding further experimental results in the appendix that (i) add details231

on experiments with synthetic data (Appendix C), (ii) add experiments on further natural datasets232

(Appendix D), (iii) exhibit a larger range of modeling choices (Appendix E), and (iv) include LIME as233

an explanation method (Appendix F). Core observations made in this section will only be confirmed234

and refined, but not countered in the appendix.235

5.1 Baseline Methods and Datasets236

Baseline Methods. We compare our method of explanation shift detection (Section 3) with several237

methods that aim to detect that input data is out-of-distribution: (i) statistical Kolmogorov Smirnov test238

on input data [27], (ii) classifier drift [51], (iii) prediction shift detection by Wasserstein distance [7],239

(iv) prediction shift detection by Kolmogorov-Smirnov test[4], and (v) model agnostic uncertainty240

estimation [10, 52]. Distribution Shift Metrics are scaled between 0 and 1. We also compare against241

Classifier Two-Sample Test [21] on different distributions as discussed in Section 4, viz. (vi) classifier242

two-sample test on input distributions (gϕ) and (vii) classifier two-sample test on the predictions243

distributions (gΥ):244

ϕ = argmin
ϕ̃

∑
x∈Dval

X ∪Dnew
X

ℓ(gϕ̃(x)), ax) Υ = argmin
Υ̃

∑
x∈Dval

X ∪Dnew
X

ℓ(gΥ̃(fθ(x)), ax) (6)

245

Datasets. In the main body of the paper we base our comparisons on the UCI Adult Income246

dataset [53] and on synthetic data. In the Appendix, we extend experiments to several other247

datasets, which confirm our findings: ACS Travel Time [54], ACS Employment [54], Stackoverflow248

dataset [55].249

6



5.2 Experiments on Synthetic Data250

Our first experiment on synthetic data showcases the two main contributions of our method: (i)251

being more sensitive than prediction shift and input shift to changes in the model and (ii) accounting252

for its drivers. We first generate a synthetic dataset with a shift similar to the multivariate shift253

one (cf. Section 4.2). However, we add an extra variable X3 = N(0, 1) and generate our target254

Y = X1 ·X2 +X3, and parametrize the multivariate shift between ρ = r(X1, X2). We train the255

fθ on Dtr using a gradient boosting decision tree, while for gψ : S(fθ,Dval
X ) → {0, 1}, we use a256

logistic regression for both experiments. In Appendix E we benchmark other estimators and detectors.257
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Figure 2: In the left figure, we apply the Classifier Two-Sample Test on (i) explanation distribution, (ii) input
distribution, (iii) prediction distribution. Explanation distribution shows highest sensitivity. Comparison of the
sensitivity of the Explanation Shift Detector. The right figure, related work comparison of distribution shift
methods, good indicators should follow a progressive steady positive slope, following the correlation coefficient
ρ.

Table 1 and Figure 2 show the results of our approach when learning on different distributions. In258

our sensitivity experiment, we observed that using the explanation shift led to higher sensitivity259

towards detecting distribution shift. This is due to the efficiency property of the Shapley values,260

which decompose fθ(DX) into S(fθ,DX). Moreover, we can identify the features that are causing261

the drift by extracting the coefficients of gψ , providing global and local explainability.262

The right image in Figure 2 compares our approach against Classifier Two Sample Testing for detect-263

ing multi-covariate shifts on different distributions. We can see how the explanations distributions264

have more sensitivity to the others. On the left image, the same experiment against other out-of-265

distribution detection methods such statistical differences on the input data (Input KS, Classifier266

Drift)[51, 4], which are model-independent; uncertainty estimation methods[52, 10, 56], whose effec-267

tiveness under specific types of shift is unclear; and statistical changes on the prediction distribution268

(K-S and Wasserstein Distance) [57, 58, 7], which can detect changes in model but lack sensitivity269

and accountability of the explanation shift. All metrics produce output scaled between 0 and 1.270

Table 1: Conceptual comparison table over different detection methods over the examples discussed above.
Learning a Classifier Two-Sample test g over the explanation distributions is the only method that achieves
the desired results and is accountable. We evaluate accountability by checking if the feature attributions of the
detection method correspond with the synthetic shift generated in both scenarios

Detection Method Covariate Uninformative Accountability
Explanation distribution (gψ) ✓ ✓ ✓

Input distribution(gϕ) ✓ ✗ ✗
Prediction distribution(gΥ) ✓ ✓ ✗

Input KS ✗ ✗ ✗
Classifier Drift ✓ ✗ ✗

Output KS ✓ ✓ ✗
Output Wasserstein ✓ ✓ ✗

Uncertainty ∼ ✓ ✓
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5.3 Experiments on Natural Data: Inspecting Explanation Shifts271

In the following experiments, we will provide use cases of our approach in two scenarios with natural272

data: (i) novel group distribution shift and (ii) geopolitical and temporal shift.273

5.3.1 Novel Covariate Group274

The distribution shift in this experimental set-up relies on the appearance of a new unseen group at275

the prediction stage (the group feature is not present in the covariates). We vary the ratio of presence276

of this unseen group in Dnew
X data. As estimators, we use a gradient-boosting decision tree and a277

logistic regression(just when indicated); we use a logistic regression for the detector. We compare278

different estimators and detectors’ performance in AppendixE.1 for a benchmark and Appendix E.2279

for experiments varying hyperparameters.280

0.2 0.4 0.6 0.8 1.0
Fraction of data from previously unseen group

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
U

C
 o

f E
xp

la
na

tio
n 

S
hi

ft 
D

et
ec

to
r

Black
Am-Indian
Asian
Other
Mixed

0.2 0.4 0.6 0.8 1.0
Fraction of data from previously unseen group

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
U

C

g  = Explanations, f  = XGB
g  = Explanations, f  = Log
g  = Predictions, f  = XGB
g  = Predictions, f  = Log
g  = Input, f  = XGB
g  = Input, f  = Log

Figure 3: Novel group shift experiment on the UCI Adult Income dataset. Sensitivity (AUC) increases with the
growing fraction of previously unseen social groups. Left figure: The explanation shift indicates that different
social groups exhibit varying deviations from the distribution on which the model was trained. Right figure: We
vary the model fθ to be trained by XGBoost (solid lines) and Logistic Regression (dots), and the model g to be
trained on different distributions.

5.3.2 Geopolitical and Temporal Shift281
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0.81 1.1 0.72 0.68 0.11 0.08 0.014

0.072 0.26 0.29 0.33 0.18 0.16 0.015

0.31 0.15 0.27 0.11 0.026 0.092 0.015

0.18 0.2 0.15 0.12 0.19 0.017 0.058

0.11 0.16 0.28 0.14 0.091 0.016 0.099

0.3 0.16 0.19 0.028 0.11 0.057 0.01

0.24 0.15 0.085 0.038 0.087 0.17 0.051

0.096 0.056 0.22 0.068 0.018 0.051 0.018

0.18 0.049 0.019 0.045 0.022 0.13 0.056

0.086 0.03 0.0039 0.018 0.035 0.012 0.015

Feature importance of the Explanation Shift detector (Wasserstein)
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Figure 4: In the left figure, comparison of the performance of Explanation Shift Detector, in different states.
In the right figure, strength analysis of features driving the change in the model, in the y-axis the features and
on the x-axis the different states. Explanation shifts allow us to identify how the distribition shift of different
features impacted the model.

In this section, we tackle a geopolitical and temporal distribution shift, for this, we train the model fθ282

in California in 2014 and evaluate it in the rest of the states in 2018. The model gθ is trained each283

time on each state using only the Dnew
X in the absence of the label, and a 50/50 random train-test split284

evaluates its performance. As models, we use a gradient boosting decision tree[59, 60] as estimator285

fθ, and using logistic regression for the Explanation Shift Detector.286

We hypothesize that the AUC of the “Explanation Shift Detector” on new data will be distinct from287

on ID data due to the OOD model explanations. Figure 4 illustrates the performance of our method288

on different data distributions, where the baseline is a hold-out set of ID − CA14. The AUC for289
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CA18, where there is only a temporal shift, is the closest to the baseline, and the OOD detection290

performance is better in the rest of the states. The most disparate state is Puerto Rico (PR18).291

Our next objective is to identify the features where the explanations differ between Dtr
X and Dnew

X292

data. To achieve this, we compare the distribution of linear coefficients of the detector between ID293

and New data. We use the Wasserstein distance as a distance measure, where we generate 1000294

in-distribution bootstraps using a 63.2% sampling fraction from California-14 and 1000 bootstraps295

from other states in 2018. In the right image of Figure 4, we observe that for PR18, the most crucial296

feature is the citizenship status1.297

Furthermore, we conduct an across-task evaluation by comparing the performance of the “Explanation298

Shift Detector” on another prediction task in the Appendix D. Although some features are present in299

both prediction tasks, the weights and importance order assigned by the "Explanation Shift Detector"300

differ. One of this method’s advantages is that it identifies differences in distributions and how they301

relate to the model.302

6 Discussion303

In this study, we conducted a comprehensive evaluation of explanation shift by systematically304

varying models (f ), model parametrizations (θ), feature attribution explanations (S), and input data305

distributions (DX ). Our objective was to investigate the impact of distribution shift on the model by306

explanation shift and gain insights into its characteristics and implications.307

Our approach cannot detect concept shifts, as concept shift requires understanding the interaction308

between prediction and response variables. By the nature of pure concept shifts, such changes309

do not affect the model. To be understood, new data need to come with labelled responses. We310

work under the assumption that such labels are not available for new data, nor do we make other311

assumptions; therefore, our method is not able to predict the degradation of prediction performance312

under distribution shifts. All papers such as [3, 10, 61, 31, 32, 62, 7] that address the monitoring313

of prediction performance have the same limitation. Only under specific assumptions, e.g., no314

occurrence of concept shift or causal graph availability, can performance degradation be predicted315

with reasonable reliability.316

The potential utility of explanation shifts as distribution shift indicators that affect the model in317

computer vision or natural language processing tasks remains an open question. We have used318

Shapley values to derive indications of explanation shifts, but other AI explanation techniques may319

be applicable and come with their advantages.320

7 Conclusions321

Commonly, the problem of detecting the impact of the distribution shift on the model has relied on322

measurements for detecting shifts in the input or output data distributions or relied on assumptions323

either on the type of distribution shift or causal graphs availability. In this paper, we have provided evi-324

dence that explanation shifts can be a more suitable indicator for detecting and identifying distribution325

shifts’ impact in machine learning models. We provide software, mathematical analysis examples,326

synthetic data, and real-data experimental evaluation. We found that measures of explanation shift327

can provide more insights than input distribution and prediction shift measures when monitoring328

machine learning models.329

Reproducibility Statement330

To ensure reproducibility, we make the data, code repositories, and experiments publicly available331
2. Also, an open-source Python package skshift3 is attached with methods routines and tutorials.332

For our experiments, we used default scikit-learn parameters [63]. We describe the system333

requirements and software dependencies of our experiments. Experiments were run on a 4 vCPU334

server with 32 GB RAM.335

1The ACS PUMS data dictionary contains a comprehensive list of available variables https://www.census.
gov/programs-surveys/acs/microdata/documentation.html

2https://anonymous.4open.science/r/ExplanationShift-C0C0/README.md
3https://anonymous.4open.science/r/skshift-65A5/README.md
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A Extended Related Work658

This section provides an in-depth review of the related theoretical works that inform our research.659

A.1 Out-Of-Distribution Detection660

Evaluating how two distributions differ has been a widely studied topic in the statistics and statistical661

learning literature [16, 15, 17], that have advanced recently in last years [18, 19, 20]. [27] provides a662

comprehensive empirical investigation, examining how dimensionality reduction and two-sample663

testing might be combined to produce a practical pipeline for detecting distribution shifts in real-life664

machine learning systems. Other methods to detect if new data is OOD have relied on neural networks665

based on the prediction distributions [57, 58]. They use the maximum softmax probabilities/likelihood666

as a confidence score [64], temperature or energy-based scores [65, 66, 67], they extract information667

from the gradient space [68], they fit a Gaussian distribution to the embedding, or they use the668

Mahalanobis distance for out-of-distribution detection [19, 69].669

Many of these methods are explicitly developed for neural networks that operate on image and text670

data, and often they can not be directly applied to traditional ML techniques. For image and text671

data, one may build on the assumption that the relationships between relevant predictor variables (X)672

and response variables (Y ) remain unchanged, i.e., that no concept shift occurs. For instance, the673

essence of how a dog looks remains unchanged over different data sets, even if contexts may change.674

Thus, one can define invariances on the latent spaces of deep neural models, which are not applicable675

to tabular data in a likewise manner. For example, predicting buying behavior before, during, and676

after the COVID-19 pandemic constitutes a conceptual shift that is not amenable to such methods.677

We focus on such tabular data where techniques such as gradient boosting decision trees achieve678

state-of-the-art model performance [28, 29, 30].679

A.2 Explainability and Distribution Shift680

Another approach using Shapley values by Balestra et al. [70] allows for tracking distributional shifts681

and their impact among for categorical time series using slidSHAP, a novel method for unlabelled682

data streams. In our work, we define the explanation distributions and exploit its theoretical properties683

under distribution shift where we perform a two-sample classifier test to detect684

Haut et al. [71] track changes in the distribution of model parameter values that are directly related685

to the input features to identify concept drift early on in data streams. In a more recent paper,Haug686

et al. [9] also exploits the idea that local changes to feature attributions and distribution shifts are687

strongly intertwined and uses this idea to update the local feature attributions efficiently. Their work688

focuses on model retraining and concept shift, in our work the original estimator fθ remains unaltered,689

and since we are in an unsupervised monitoring scenario we can’t detect concept shift see discussion690

in Section 6691
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B Extended Analytical Examples692

This appendix provides more details about the analytical examples presented in Section 4.1.693

B.1 Explanation Shift vs Prediction Shift694

Proposition 2. Given a model fθ : DX → DY . If fθ(x′) ̸= fθ(x), then S(fθ, x′) ̸= S(fθ, x).695

Given fθ(x) ̸= fθ(x
′) (7)

p∑
j=1

Sj(fθ, x) = fθ(x)− EX [fθ(DX)] (8)

then S(f, x) ̸= S(f, x′) (9)

Example B.1. Explanation shift that does not affect the prediction distribution Given Dtr is696

generated from (X1, X2, Y ), X1 ∼ U(0, 1), X2 ∼ U(1, 2), Y = X1 +X2 + ϵ and thus the model697

is f(x) = x1 + x2. If Dnew is generated from Xnew
1 ∼ U(1, 2), Xnew

2 ∼ U(0, 1), the pre-698

diction distributions are identical fθ(Dtr
X ), fθ(Dnew

X ), but explanation distributions are different699

S(fθ,Dtr
X ) ̸= S(fθ,Dnew

X )700

∀i ∈ {1, 2} Si(fθ, x) = αi · xi (10)
∀i ∈ {1, 2} ⇒ Si(fθ,DX)) ̸= Si(fθ,Dnew

X ) (11)
⇒ fθ(DX) = fθ(Dnew

X ) (12)

B.2 Explanation Shifts vs Input Data Distribution Shifts701

B.2.1 Multivariate Shift702

Example B.2. Multivariate Shift Let Dtr
X = (Dnew

X1
,Dnew

X2
) ∼ N

([
µ1
µ2

]
,
[
σ2
x1

0

0 σ2
x2

])
,Dnew
X =703

(Dnew
X1

,Dnew
X2

) ∼ N
([

µ1
µ2

]
,
[

σ2
x1

ρσx1
σx2

ρσx1σx2 σ2
x2

])
. We fit a linear model fθ(X1, X2) = γ + a ·X1 +704

b ·X2. DX1
and DX2

are identically distributed with Dnew
X1

and Dnew
X2

, respectively, while this705

does not hold for the corresponding SHAP values Sj(fθ,Dtr
X ) and Sj(fθ,Dval

X ).706

S1(fθ, x) = a(x1 − µ1) (13)
S1(fθ, x

new) = (14)

=
1

2
[val({1, 2})− val({2})] + 1

2
[val({1})− val(∅)] (15)

val({1, 2}) = E[fθ|X1 = x1, X2 = x2] = ax1 + bx2 (16)
val(∅) = E[fθ] = aµ1 + bµ2 (17)

val({1}) = E[fθ(x)|X1 = x1] + bµ2 (18)

val({1}) = µ1 + ρ
ρx1

σx2

(x1 − σ1) + bµ2 (19)

val({2}) = µ2 + ρ
σx2

σx1

(x2 − µ2) + aµ1 (20)

⇒ S1(fθ, x
new) ̸= a(x1 − µ1) (21)

B.2.2 Concept Shift707

One of the most challenging types of distribution shift to detect are cases where distributions are708

equal between source and unseen data-set P(Dtr
X ) = P(Dnew

X ) and the target variable P(Dtr
Y ) =709

P(Dnew
Y ) and what changes are the relationships that features have with the target P(Dtr

Y |Dtr
X ) ̸=710

P(Dnew
Y |Dnew

X ), this kind of distribution shift is also known as concept drift or posterior shift [14]711

and is especially difficult to notice, as it requires labeled data to detect. The following example712
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compares how the explanations change for two models fed with the same input data and different713

target relations.714

Example B.3. Concept shift Let DX = (X1, X2) ∼ N(µ, I), and Dnew
X = (Xnew

1 , Xnew
2 ) ∼715

N(µ, I), where I is an identity matrix of order two and µ = (µ1, µ2). We now create two synthetic716

targets Y = a+α ·X1+β ·X2+ϵ and Y new = a+β ·X1+α ·X2+ϵ. Let fθ be a linear regression717

model trained on fθ : DX → DY ) and hϕ another linear model trained on hϕ : Dnew
X → Dnew

Y ).718

Then P(fθ(X)) = P(hϕ(X
new)), P (X) = P(Xnew) but S(fθ, X) ̸= S(hϕ, X).719

X ∼ N(µ, σ2 · I), Xnew ∼ N(µ, σ2 · I) (22)
→ P (DX) = P (Dnew

X ) (23)

Y ∼ a+ αN(µ, σ2) + βN(µ, σ2) +N(0, σ
′2) (24)

Y new ∼ a+ βN(µ, σ2) + αN(µ, σ2) +N(0, σ
′2) (25)

→ P (DY ) = P (Dnew
Y ) (26)

S(fθ,DX) =

(
α(X1 − µ1)
β(X2 − µ2)

)
∼

(
N(µ1, α

2σ2)
N(µ2, β

2σ2)

)
(27)

S(hϕ,DX) =

(
β(X1 − µ1)
α(X2 − µ2)

)
∼

(
N(µ1, β

2σ2)
N(µ2, α

2σ2)

)
(28)

If α ̸= β → S(fθ,DX) ̸= S(hϕ,DX) (29)

C Further Experiments on Synthetic Data720

This experimental section explores the detection of distribution shift on the previous synthetic721

examples.722

C.1 Detecting multivariate shift723

Given two bivariate normal distributions DX = (X1, X2) ∼ N

(
0,

[
1 0
0 1

])
and Dnew

X =724

(Xnew
1 , Xnew

2 ) ∼ N

(
0,

[
1 0.2
0.2 1

])
, then, for each feature j the underlying distribution is equally725

distributed between DX and Dnew
X , ∀j ∈ {1, 2} : P (DXj ) = P (Dnew

Xj
), and what is different are the726

interaction terms between them. We now create a synthetic target Y = X1 ·X2+ϵ with ϵ ∼ N(0, 0.1)727

and fit a gradient boosting decision tree fθ(DX). Then we compute the SHAP explanation values for728

S(fθ,DX) and S(fθ,Dnew
X )729

Table 2: Displayed results are the one-tailed p-values of the Kolmogorov-Smirnov test comparison between
two underlying distributions. Small p-values indicate that compared distributions would be very unlikely to
be equally distributed. SHAP values correctly indicate the interaction changes that individual distribution
comparisons cannot detect

Comparison p-value Conclusions
P(DX1

), P(Dnew
X1

) 0.33 Not Distinct
P(DX2

), P(Dnew
X2

) 0.60 Not Distinct
S1(fθ,DX), S1(fθ,Dnew

X ) 3.9e−153 Distinct
S2(fθ,DX), S2(fθ,Dnew

X ) 2.9e−148 Distinct

Having drawn 50, 000 samples from both DX and Dnew
X , in Table 2, we evaluate whether changes in730

the input data distribution or on the explanations are able to detect changes in covariate distribution.731

For this, we compare the one-tailed p-values of the Kolmogorov-Smirnov test between the input data732

distribution and the explanations distribution. Explanation shift correctly detects the multivariate733

distribution change that univariate statistical testing can not detect.734
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C.2 Detecting concept shift735

As mentioned before, concept shift cannot be detected if new data comes without target labels. If new736

data is labelled, the explanation shift can still be a useful technique for detecting concept shifts.737

Given a bivariate normal distribution DX = (X1, X2) ∼ N(1, I) where I is an identity matrix of738

order two. We now create two synthetic targets Y = X2
1 ·X2 + ϵ and Y new = X1 ·X2

2 + ϵ and739

fit two machine learning models fθ : DX → DY ) and hΥ : DX → Dnew
Y ). Now we compute the740

SHAP values for S(fθ,DX) and S(hΥ,DX)

Table 3: Distribution comparison for synthetic concept shift. Displayed results are the one-tailed p-values of the
Kolmogorov-Smirnov test comparison between two underlying distributions

Comparison Conclusions
P(DX), P(Dnew

X ) Not Distinct
P(DY ), P(Dnew

Y ) Not Distinct
P(fθ(DX)), P(hΥ(Dnew

X )) Not Distinct
P(S(fθ,DX)), P(S(hΥ,DX)) Distinct

741

In Table 3, we see how the distribution shifts are not able to capture the change in the model behavior742

while the SHAP values are different. The “Distinct/Not distinct” conclusion is based on the one-tailed743

p-value of the Kolmogorov-Smirnov test with a 0.05 threshold drawn out of 50, 000 samples for both744

distributions. As in the synthetic example, in table 3 SHAP values can detect a relational change745

between DX and DY , even if both distributions remain equivalent.746

C.3 Uninformative features on synthetic data747

To have an applied use case of the synthetic example from the methodology section, we create a748

three-variate normal distribution DX = (X1, X2, X3) ∼ N(0, I3), where I3 is an identity matrix of749

order three. The target variable is generated Y = X1 ·X2 + ϵ being independent of X3. For both,750

training and test data, 50, 000 samples are drawn. Then out-of-distribution data is created by shifting751

X3, which is independent of the target, on test data Dnew
X3

= Dte
X3

+ 1.752

Table 4: Distribution comparison when modifying a random noise variable on test data. The input data shifts
while explanations and predictions do not.

Comparison Conclusions
P(Dte

X3
), P(Dnew

X3
) Distinct

fθ(Dte
X), fθ(Dnew

X ) Not Distinct
S(fθ,Dte

X), S(fθ,Dnew
X ) Not Distinct

In Table 4, we see how an unused feature has changed the input distribution, but the explanation753

distributions and performance evaluation metrics remain the same. The “Distinct/Not Distinct”754

conclusion is based on the one-tailed p-value of the Kolmogorov-Smirnov test drawn out of 50, 000755

samples for both distributions.756

C.4 Explanation shift that does not affect the prediction757

In this case we provide a situation when we have changes in the input data distributions that affect the758

model explanations but do not affect the model predictions due to positive and negative associations759

between the model predictions and the distributions cancel out producing a vanishing correlation in760

the mixture of the distribution (Yule’s effect 4.2).761

We create a train and test data by drawing 50, 000 samples from a bi-uniform distribution X1 ∼762

U(0, 1), X2 ∼ U(1, 2) the target variable is generated by Y = X1+X2 where we train our model763

fθ. Then if out-of-distribution data is sampled from Xnew
1 ∼ U(1, 2), Xnew

2 ∼ U(0, 1)764

In Table 5, we see how an unused feature has changed the input distribution, but the explanation765

distributions and performance evaluation metrics remain the same. The “Distinct/Not Distinct”766

conclusion is based on the one-tailed p-value of the Kolmogorov-Smirnov test drawn out of 50, 000767

samples for both distributions.768
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Table 5: Distribution comparison over how the change on the contributions of each feature can cancel out to
produce an equal prediction (cf. Section 4.2), while explanation shift will detect this behaviour changes on the
predictions will not.

Comparison Conclusions
f(Dte

X), f(Dnew
X ) Not Distinct

S(fθ,Dte
X2

), S(fθ,Dnew
X2

) Distinct
S(fθ,Dte

X1
), S(fθ,Dnew

X1
) Distinct

D Further Experiments on Real Data769

In this section, we extend the prediction task of the main body of the paper. The methodology770

used follows the same structure. We start by creating a distribution shift by training the model fθ771

in California in 2014 and evaluating it in the rest of the states in 2018, creating a geopolitical and772

temporal shift. The model gθ is trained each time on each state using only the XNew in the absence773

of the label, and its performance is evaluated by a 50/50 random train-test split. As models, we774

use a gradient boosting decision tree[59, 60] as estimator fθ, approximating the Shapley values by775

TreeExplainer [38], and using logistic regression for the Explanation Shift Detector.776

D.1 ACS Employment777

The objective of this task is to determine whether an individual aged between 16 and 90 years is778

employed or not. The model’s performance was evaluated using the AUC metric in different states,779

except PR18, where the model showed an explanation shift. The explanation shift was observed to be780

influenced by features such as Citizenship and Military Service. The performance of the model was781

found to be consistent across most of the states, with an AUC below 0.60. The impact of features782

such as difficulties in hearing or seeing was negligible in the distribution shift impact on the model.783

The left figure in Figure 5 compares the performance of the Explanation Shift Detector in different784

states for the ACS Employment dataset.785
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0.19 0.08 0.24 0.011 0.014 0.068 0.0047
0.42 0.041 0.023 0.058 0.0069 0.022 0.0077

0.067 0.1 0.13 0.024 0.064 0.023 0.018
0.2 0.02 0.012 0.037 0.02 0.06 0.027

0.14 0.023 0.064 0.087 0.0092 0.018 0.012
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Figure 5: The left figure shows a comparison of the performance of the Explanation Shift Detector in different
states for the ACS Employment dataset. The right figure shows the feature importance analysis for the same
dataset.

Additionally, the feature importance analysis for the same dataset is presented in the right figure in786

Figure 5.787

D.2 ACS Travel Time788

The goal of this task is to predict whether an individual has a commute to work that is longer than789

+20 minutes. For this prediction task, the results are different from the previous two cases; the state790

with the highest OOD score is KS18, with the “Explanation Shift Detector” highlighting features as791

Place of Birth, Race or Working Hours Per Week. The closest state to ID is CA18, where there is792

only a temporal shift without any geospatial distribution shift.793

21



0.50 0.55 0.60 0.65 0.70 0.75 0.80
AUC

0

25

50

75

100

125

150

175

200

A
U

C
 K

er
ne

l D
en

si
ty

 D
is

tri
bu

tio
n

AUC performance of the Explanation Shift Detector

In-Distribution (CA14)
NY18
TX18
HI18
KS18
MN18
PR18
CA18

PR18 HI18 MN18 KS18 NY18 TX18 CA18

Race

Citizenship

PovertyIncome

WorkTravel

Age

Occupation

Relationship

Employment

MobilityStat

Sex

Education

Disability

Marital

0.14 0.48 0.45 0.38 0.11 0.15 0.031

0.89 0.15 0.26 0.23 0.039 0.13 0.0086

0.42 0.13 0.069 0.023 0.074 0.027 0.04

0.11 0.011 0.039 0.016 0.28 0.038 0.034

0.098 0.05 0.027 0.073 0.035 0.033 0.045

0.067 0.11 0.0039 0.02 0.054 0.034 0.0097

0.067 0.084 0.052 0.025 0.023 0.012 0.011

0.031 0.016 0.094 0.044 0.031 0.037 0.015

0.072 0.024 0.031 0.012 0.021 0.0093 0.011

0.022 0.023 0.036 0.033 0.02 0.006 0.0061

0.033 0.056 0.017 0.0033 0.0089 0.0068 0.016

0.04 0.0092 0.015 0.032 0.018 0.014 0.0086

0.033 0.0041 0.026 0.0061 0.012 0.011 0.0098

Feature importance of the Explanation Shift detector (Wasserstein)

10
2

10
1

Figure 6: In the left figure, comparison of the performance of Explanation Shift Detector, in different states for
the ACS TravelTime prediction task. In the left figure, we can see how the state with the highest OOD AUC
detection is KS18 and not PR18 as in other prediction tasks; this difference with respect to the other prediction
task can be attributed to “Place of Birth”, whose feature attributions the model finds to be more different than in
CA14.

D.3 ACS Mobility794

The objective of this task is to predict whether an individual between the ages of 18 and 35 had the795

same residential address as a year ago. This filtering is intended to increase the difficulty of the796

prediction task, as the base rate for staying at the same address is above 90% for the population [54].797

The experiment shows a similar pattern to the ACS Income prediction task (cf. Section 4), where the798

inland US states have an AUC range of 0.55− 0.70, while the state of PR18 achieves a higher AUC.799

For PR18, the model has shifted due to features such as Citizenship, while for the other states, it is800

Ancestry (Census record of your ancestors’ lives with details like where they lived, who they lived801

with, and what they did for a living) that drives the change in the model.802

As depicted in Figure 7, all states, except for PR18, fall below an AUC of explanation shift detection803

of 0.70. Protected social attributes, such as Race or Marital status, play an essential role for these804

states, whereas for PR18, Citizenship is a key feature driving the impact of distribution shift in model.805
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Figure 7: Left figure shows a comparison of the Explanation Shift Detector’s performance in different states for
the ACS Mobility dataset. Except for PR18, all other states fall below an AUC of explanation shift detection
of 0.70. The features driving this difference are Citizenship and Ancestry relationships. For the other states,
protected social attributes, such as Race or Marital status, play an important role.

D.4 StackOverflow Survey Data: Novel Covariate Group806

This experimental section evaluates the proposed Explanation Shift Detector approach on real-world807

data under novel group distribution shifts. In this scenario, a new unseen group appears at the808

prediction stage, and the ratio of the presence of this unseen group in the new data is varied. The809

estimator used is a gradient-boosting decision tree or logistic regression, and a logistic regression810

is used for the detector. The results show that the AUC of the Explanation Shift Detector varies811

depending on the quantification of OOD explanations, and it show more sensitivity w.r.t. to model812

variations than other state-of-the-art techniques.813
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The dataset used is the StackOverflow annual developer survey has over 70,000 responses from over814

180 countries examining aspects of the developer experience [55]. The data has high dimensionality,815

leaving it with +100 features after data cleansing and feature engineering. The goal of this task is to816

predict the total annual compensation.817
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Figure 8: Both images represent the AUC of the Explanation Shift Detector for different countries on the
StackOverflow survey dataset under novel group shift. In the left image, the detector is a logistic regression,
and in the right image, a gradient-boosting decision tree classifier. By changing the model, we can see that
low-complexity models are unaffected by the distribution shift, while when increasing the model complexity, the
out-of-distribution model behaviour starts to be tangible

E Experiments with Modeling Methods and Hyperparameters818

In the next sections, we are going to show the sensitivity or our method to variations of the estimator819

f , the detector g, and the parameters of the estimator fθ.820

As an experimental setup, In the main body of the paper, we have focused on the UCI Adult Income821

dataset. The experimental setup has been using Gradient Boosting Decision Tree as the original822

estimator fθ and then as “Explanation Shift Detector” gψ a logistic regression. In this section, we823

extend the experimental setup by providing experiments by varying the types of algorithms for a824

given experimental set-up: the UCI Adult Income dataset using the Novel Covariate Group Shift for825

the “Asian” group with a fraction ratio of 0.5 (cf. Section 5).826

E.1 Varying Estimator and Explanation Shift Detector827

OOD data detection methods based on input data distributions only depend on the type of detector828

used, being independent of the estimator. OOD Explanation methods rely on both the model and the829

data. Using explanations shifts as indicators for measuring distribution shifts impact on the model830

enables us to account for the influencing factors of the explanation shift. Therefore, in this section,831

we compare the performance of different types of algorithms for explanation shift detection using the832

same experimental setup. The results of our experiments show that using Explanation Shift enables833

us to see differences in the choice of the original estimator fθ and the Explanation Shift Detector gϕ834

E.2 Hyperparameters Sensitivity Evaluation835

This section presents an extension to our experimental setup where we vary the model complexity by836

varying the model hyperparameters S(fθ, X). Specifically, we use the UCI Adult Income dataset837

with the Novel Covariate Group Shift for the “Asian” group with a fraction ratio of 0.5 as described838

in Section 5.839

In this experiment, we changed the hyperparameters of the original model: for the decision tree, we840

varied the depth of the tree, while for the gradient-boosting decision, we changed the number of841

estimators, and for the random forest, both hyperparameters. We calculated the Shapley values using842
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Estimator fθ
Detector gϕ XGB Log.Reg Lasso Ridge Rand.Forest Dec.Tree MLP

XGB 0.583 0.619 0.596 0.586 0.558 0.522 0.597
LogisticReg. 0.605 0.609 0.583 0.625 0.578 0.551 0.605

Lasso 0.599 0.572 0.551 0.595 0.557 0.541 0.596
Ridge 0.606 0.61 0.588 0.624 0.564 0.549 0.616

RandomForest 0.586 0.607 0.574 0.612 0.566 0.537 0.611
DecisionTree 0.546 0.56 0.559 0.569 0.543 0.52 0.569

Table 6: Comparison of explanation shift detection performance, measured by AUC, for different combinations
of explanation shift detectors and estimators on the UCI Adult Income dataset using the Novel Covariate Group
Shift for the “Asian” group with a fraction ratio of 0.5 (cf. Section 5). The table shows that the choice of detector
and estimator can impact the OOD explanation performance. We can see how, for the same detector, different
estimators flag different OOD explanations performance. On the other side, for the same estimators, different
detectors achieve different results.

TreeExplainer [38]. For the Detector choice of model, we compare Logistic Regression and XGBoost843

models.844
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Figure 9: Both images represent the AUC of the Explanation Shift Detector, in different states for the ACS
Income dataset under novel group shift. In the left image, the detector is a logistic regression, and in the right
image, a gradient-boosting decision tree classifier. By changing the model, we can see that vanilla models
(decision tree with depth 1 or 2) are unaffected by the distribution shift, while when increasing the model
complexity, the out-of-distribution impact of the data in the model starts to be tangible

The results presented in Figure 9 show the AUC of the Explanation Shift Detector for the ACS Income845

dataset under novel group shift. We observe that the distribution shift does not affect very simplistic846

models, such as decision trees with depths 1 or 2. However, as we increase the model complexity,847

the out-of-distribution data impact on the model becomes more pronounced. Furthermore, when we848

compare the performance of the Explanation Shift Detector across different models, such as Logistic849

Regression and Gradient Boosting Decision Tree, we observe distinct differences(note that the y-axis850

takes different values).851

In conclusion, the explanation distributions serve as a projection of the data and model sensitive to852

what the model has learned. The results demonstrate the importance of considering model complexity853

under distribution shifts.854

F LIME as an Alternative Explanation Method855

Another feature attribution technique that satisfies the aforementioned properties (efficiency and856

uninformative features Section 2) and can be used to create the explanation distributions is LIME857

(Local Interpretable Model-Agnostic Explanations). The intuition behind LIME is to create a local858

interpretable model that approximates the behavior of the original model in a small neighbourhood of859

the desired data to explain [48, 49] whose mathematical intuition is very similar to the Taylor series.860
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In this work, we have proposed explanation shifts as a key indicator for investigating the impact of861

distribution shifts on ML models. In this section, we compare the explanation distributions composed862

by SHAP and LIME methods. LIME can potentially suffers several drawbacks:863

• Computationally Expensive: Its currently implementation is more computationally expen-864

sive than current SHAP implementations such as TreeSHAP [38], Data SHAP [72, 73] or865

Local and Connected SHAP [74], the problem increases when we produce explanations of866

distributions. Even though implementations might be improved, LIME requires sampling867

data and fitting a linear model which is a computationally more expensive approach than the868

aforementioned model-specific approaches to SHAP.869

• Local Neighborhood: The definition of a local “neighborhood”, which can lead to instability870

of the explanations. Slight variations of this explanation hyperparameter lead to different871

local explanations. In [75] the authors showed that the explanations of two very close points872

can vary greatly.873

• Dimensionality: LIME requires as a hyperparameter the number of features to use for the874

local linear approximation. This creates a dimensionality problem as for our method to875

work, the explanation distributions have to be from the exact same dimensions as the input876

data. Reducing the number of features to be explained might improve the computational877

burden.878
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Figure 10: Comparison of the explanation distribution generated by LIME and SHAP. The left plot shows the
sensitivity of the predicted probabilities to multicovariate changes using the synthetic data experimental setup of
2 on the main body of the paper. The right plot shows the distribution of explanation shifts for a New Covariate
Category shift (Asian) in the ASC Income dataset.

Figure 10 compares the explanation distributions generated by LIME and SHAP. The left plot879

shows the sensitivity of the predicted probabilities to multicovariate changes using the synthetic data880

experimental setup from Figure 2 in the main body of the paper. The right plot shows the distribution881

of explanation shifts for a New Covariate Category shift (Asian) in the ASC Income dataset. The882

performance of OOD explanations detection is similar between the two methods, but LIME suffers883

from two drawbacks: its theoretical properties rely on the definition of a local neighborhood, which884

can lead to unstable explanations (false positives or false negatives on explanation shift detection),885

and its computational runtime required is much higher than that of SHAP (see experiments below).886

F.1 Runtime887

We conducted an analysis of the runtimes of generating the explanation distributions using the two888

proposed methods. The experiments were run on a server with 4 vCPUs and 32 GB of RAM. We889

used shap version 0.41.0 and lime version 0.2.0.1 as software packages. In order to define the local890

neighborhood for both methods in this example we use all the data provided as background data. As891

an estimator, we use an xgboost and compare the results of TreeShap against LIME. When varying892

the number of samples we use 5 features and while varying the number of features we use 1000893

samples.894

Figure 11, shows the wall time required for generating explanation distributions using SHAP and895

LIME with varying numbers of samples and columns. The runtime required of generating an896

explanation distributions using LIME is much higher than using SHAP, especially when producing897
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Figure 11: Wall time for generating explanation distributions using SHAP and LIME with different numbers of
samples (left) and different numbers of columns (right). Note that the y-scale is logarithmic. The experiments
were run on a server with 4 vCPUs and 32 GB of RAM. The runtime required to create an explanation
distributions with LIME is far greater than SHAP for a gradient-boosting decision tree

explanations for distributions. This is due to the fact that LIME requires training a local model for898

each instance of the input data to be explained, which can be computationally expensive. In contrast,899

SHAP relies on heuristic approximations to estimate the feature attribution with no need to train a900

model for each instance. The results illustrate that this difference in computational runtime becomes901

more pronounced as the number of samples and columns increases.902

We note that the computational burden of generating the explanation distributions can be further903

reduced by limiting the number of features to be explained, as this reduces the dimensionality of the904

explanation distributions, but this will inhibit the quality of the explanation shift detection as it won’t905

be able to detect changes on the distribution shift that impact model on those features.906

Given the current state-of-the-art of software packages we have used SHAP values due to lower907

runtime required and that theoretical guarantees hold with the implementations. In the experiments908

performed in this paper, we are dealing with a medium-scaled dataset with around ∼ 1, 000, 000909

samples and 20− 25 features. Further work can be envisioned on developing novel mathematical910

analysis and software that study under which conditions which method is more suitable.911
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