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ABSTRACT

Physics-Informed Neural Networks (PINNs) embed physical laws into deep learn-
ing models. However, conventional PINNs often suffer from failure modes leading
to inaccurate solutions. We trace these failure modes to two structural pathologies:
gradient shattering, where gradients degrade with depth and provide little training
signal, and flow mismatch, where training pushes predictions along trajectories
that diverge from the PDE solution path. We introduce ResPINNs, which refor-
mulate PINNs as residual flows, networks that iteratively refine their own predic-
tions through explicit corrective steps, in the spirit of classical iterative solvers.
Our analysis shows that this design mitigates both pathologies by keeping updates
aligned with descent and by preserving informative gradients across depth. Ex-
tensive experiments on PDE benchmarks confirm that ResPINNs achieve higher
accuracy with substantially fewer parameters than conventional architectures.

1 REVISITING FAILURE MODES IN PINNS

Partial differential equations (PDEs) govern a wide range of physical, engineering, and scientific
systems. Because closed-form solutions are rarely available, numerical solvers such as finite dif-
ference, finite element, or spectral methods are the standard tools, but these approaches are compu-
tationally costly and restricted to discretized meshes. Physics-Informed Neural Networks (PINNs)
(Raissi et al., 2019) have emerged as a promising alternative, embedding PDE, initial, and boundary
conditions into the loss of a neural network. By leveraging automatic differentiation, PINNs can in
principle approximate PDE solutions continuously in space and time.

Despite recent advances, PINNs remain vulnerable to intrinsic failure modes. Krishnapriyan et al.
(2021) document several types of PDEs that are especially challenging, often due to parameters
that induce high-frequency or complex solution behaviors. In such cases, PINNs may fail to prop-
agate initial conditions accurately. A typical manifestation is the emergence of overly smooth so-
lutions which can minimize empirical loss while ignoring temporal dynamics. To address these
shortcomings, various strategies have been proposed, including optimization techniques (Wu et al.,
2024; Wang et al., 2021; Liu et al., 2025; Wong et al., 2022; Bu & Karpatne, 2021), adaptive sam-
pling (Daw et al., 2023), architectural modifications (Zhao et al., 2024; Xu et al., 2025; Wang et al.,
2021). However, these methods do not explicitly address the instability caused by noisy gradients,
often referred to as gradient shattering, which can mislead training and limit robustness.

Orthogonal to these advances, we revisit the failure modes of PINNs from two complementary an-
gles: optimization dynamics and representation flow. We identify two structural problems. First,
gradient shattering: As depth increases, the input–output Jacobians of PINNs decorrelate expo-
nentially, while their norms either vanish or explode. Since PDE residuals require repeated differ-
entiation of the network outputs, this effect is amplified in PINNs, making optimization unstable
even when the residual loss is small. Second, flow mismatch: training updates in latent space need
not align with true descent directions, so the network can satisfy residual constraints locally while
drifting globally, failing to propagate initial conditions. To address these issues, we introduce the
notion of residual flows: networks designed as iterative refinement schemes, where its components
perform a small correction around the identity. This stepwise view connects directly to three es-
tablished perspectives: (i) residual networks, where skip connections stabilize gradients; (ii) neural
ODEs, where depth corresponds to integrating a continuous-time flow; and (iii) classical iterative
solvers, where predictor–corrector updates progressively reduce error. In the PINN setting, these
formulations coincide: residual flows stabilize Jacobians, keep updates aligned with loss descent,
and preserve initial and boundary conditions across depth.
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Table 1: Ablation study on Convection, Reaction and Wave PDEs. The relative MAE values are
reported. Removing attention and replacing it with linear mappings preserves or even improves
performance, despite the drastic reduction in complexity.

Model Convection
(rMAE)

Reaction
(rMAE)

Wave (rMAE)

PINNsFormer (Original) 0.510 0.015 0.270
Encoder Only 0.043 0.017 0.058
-Attention + Linear 0.012 0.022 0.022
-Attention + MLP 0.009 0.016 0.142
PINNMamba (Original) 0.019 0.010 0.020
-SSM 0.012 0.013 0.029
-SSM+MLP 0.063 0.014 0.015

Our paper makes the following contributions:

1. Diagnosis. We analyze why standard PINNs fail, tracing condition-propagation errors to
gradient shattering and flow mismatch.

2. Reformulation. We propose Residual Flows, which view solution learning as stepwise
refinement via small residual corrections around the identity, aligning PINNs with classical
predictor–corrector methods.

3. Evidence. Through theory and parameter-matched ablations, we show that residual path-
ways—not explicit sequence modules—are the stabilizing mechanism behind recent gains.
Empirical results on convection, reaction, and wave PDEs confirm improved condition
preservation and solution fidelity.

2 DISSECTING EXISTING APPROACHES TO FAILURE MODES

A central challenge in PINNs for time-dependent PDEs is the propagation of initial conditions across
time. Several recent works have sought to address this by introducing explicit sequence modeling.
For example, Krishnapriyan et al. (2021) proposed recursive sequence-to-sequence training, rolling
solutions forward in time with separate networks. While effective for short horizons, this strategy
is memory- and compute-intensive, and does not generalize reliably outside the training window.
More recent approaches have adapted modern sequence architectures: Zhao et al. (2024) introduced
a transformer-based framework (PINNsFormer), while Xu et al. (2025) proposed state-space models
(PINNMamba). Both report improved accuracy and robustness, attributing their gains to the ability
of attention or structured recurrence to capture long-range temporal dependencies.

At first glance, these results seem to suggest that sophisticated sequence modules are essential for
overcoming failure modes in time-dependent PINNs. Yet this conclusion is not entirely satisfying:
improvements could equally stem from side effects such as increased parameterization, altered op-
timization dynamics, or more flexible local mappings. In other words, what appears as a benefit of
“long-range temporal modeling” may instead be an artifact of broader architectural changes. This
motivates a sharper question: are sequence modules truly the driving factor behind the reported
improvements, or are we attributing gains to the wrong mechanism? To probe this, we designed
a controlled ablation study. Training setup, initialization, and sampling were kept fixed, and only
the internal sequence modules were varied. Specifically, self-attention and state-space operators
were replaced with deliberately simple local mappings (a linear projection or a shallow MLP), with
parameter counts carefully matched within ±10%. This isolates the effect of explicit sequence mod-
eling from confounding factors such as model capacity or optimization differences.

The evidence in Table 1 challenges the conventional explanation. The table compares both
transformer-based (PINNsFormer) and state-space–based (PINNMamba) architectures against ab-
lated versions where their sequence modules are removed or replaced with simpler alternatives. For
PINNsFormer, the encoder is retained while attention is stripped out and substituted either with a
linear projection or a shallow MLP. For PINNMamba, the state-space operator is removed outright
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or replaced by an MLP with matched parameter count. Across all three PDE benchmarks, these
simplified variants perform comparably to the original models, indicating that explicit attention or
structured recurrence is not essential for maintaining accuracy. This suggests that the improvements
attributed to sophisticated sequence modules may instead arise from a different architectural mech-
anism.

Across both transformer- and state-space–based PINNs, one component remains consistent: the
use of residual pathways that carry predictions forward through incremental corrections. Unlike
attention or structured recurrence, these pathways are present in every variant tested, including the
simplified ablations. This observation points to residual connections—not sequence modules—as
the common mechanism underlying stability and accuracy.

Why might residual pathways play such a critical role? At a high level, they enforce an update rule
that keeps each layer close to the identity, nudging predictions forward through small, controlled
steps rather than drastic transformations. This structure has several consequences that help explain
the observed robustness:

(H1) Because updates are incremental, optimization becomes more stable: each layer only needs
to make small corrections, reducing the risk of divergence.

(H2) The skip connections implicit in residual design bias the layer Jacobians toward the identity,
which mitigates gradient shattering and helps preserve information across depth.

(H3) The repeated corrections accumulate like iterations of a solver, progressively refining the
solution in the manner of predictor–corrector schemes.

Taken together, these hypotheses recast the source of robustness in time-dependent PINNs: not the
sophistication of sequence modules, but the refinement dynamics induced by residual flows. In the
remainder of this paper, we put these hypotheses to the test.

3 MITIGATING FAILURE MODES WITH RESIDUAL ALIGNMENT

PINNs can achieve low training loss yet still produce drifting solutions. We trace this to two mech-
anisms: gradient shattering, where Jacobians lose coherence and their norms vanish or explode
with depth, degrading the derivative signal that PINNs rely on; and flow mismatch, where training
pushes predictions along trajectories that diverge from the PDE solution. To address these issues,
we view training not as a single mapping but as an evolving flow in latent space, advanced step by
step through small residual updates. This perspective makes explicit two stabilizing principles: (i)
alignment of updates with descent directions, and (ii) near-identity Jacobians that preserve gradient
propagation. We begin by analyzing gradient shattering and then show how residual formulations
encourage alignment.

3.1 PRELIMINARIES

We consider PDEs on a spatio–temporal domain Ω × [0, T ] with solution u : Ω × [0, T ] → Rm

subject to interior, initial, and boundary operators F , I,B:

F(u)(x, t) = 0, I(u)(x, 0) = 0, B(u)(x, t) = 0, (1)

PINNs (Raissi et al., 2019) approximate u by a neural network uθ and train by minimizing residuals
at collocation points: interior χ ⊂ Ω×(0, T ], initial χ0 ⊂ Ω×{0}, and boundary χ∂ ⊂ ∂Ω× [0, T ].
The objective is a weighted mean–squared residual,

L(uθ) =
λF
|χ|

∑
(x,t)∈χ

∥F(uθ)(x, t)∥2 + λI
|χ0|

∑
(x,0)∈χ0

∥I(uθ)(x, 0)∥2 + λB
|χ∂ |

∑
(x,t)∈χ∂

∥B(uθ)(x, t)∥2,

where λF , λI , λB ≥ 0 balance the constraints.1

1We use ⟨A,B⟩F = tr(A⊤B), ∥A∥F for Frobenius norms, ∥·∥ for Euclidean norms, and ∥·∥2 for spectral
norm
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3.2 GRADIENT MISALIGNMENT IN PINNS

A well-documented pathology in deep networks is gradient shattering: correlations between in-
put–output sensitivities at nearby inputs decay exponentially with depth, while their norms either
vanish or explode depending on initialization scaling (Balduzzi et al., 2017; Poole et al., 2016;
Pennington et al., 2018; Yang & Schoenholz, 2017). Since PINNs embed PDE residuals into
the training objective only at sparse collocation points, they are especially vulnerable to this ef-
fect: low residuals can coexist with large solution drift between points. To formalize this, let
Jθ(x, t) = ∇(x,t)uθ(x, t) ∈ Rm×(d+1) denote the input–output Jacobian of the network. We sum-
marize the mean-field behavior below.
Theorem 3.1 (Informal; mean-field gradient shattering). Let uθ be a depth-L, width-n fully con-
nected PINN with i.i.d. Gaussian initialization and a 1-Lipschitz activation. Denote its Jacobian
Jθ(z) = ∇zuθ(z) at input z = (x, t). For nearby z′ with ∥z′−z∥ ≤ r0, define the Frobenius cosine
cos(J1, J2) = ⟨J1, J2⟩F /(∥J1∥F ∥J2∥F ). In the mean-field limit n → ∞:

(A) (Exponential decorrelation) E[cos(Jθ(z), Jθ(z′))] = O(ρL) for some ρ ∈ (0, 1).

(B) (Norm growth/decay) E∥Jθ(z)∥2F = Θ(γL) for some γ > 0, with γ = 1 only at critical
variance.

Thus, unless tuned to the edge of chaos, Jacobians decorrelate exponentially and their norms vanish
or explode with depth.

A detailed statement and proof, adapted from classical mean-field analyses of deep random net-
works, is provided in Appendix C.

Implications for PINNs. Sparse collocation makes PINNs particularly vulnerable to gradient
shattering: while residuals may vanish at training points, exponential loss of Jacobian correlation
and unstable norms (Theorem 3.1) allow the learned solution to drift in between. This motivates
enforcing near-identity Jacobians and residual alignment mechanisms to stabilize training. Yet gra-
dient shattering alone only explains how depth degrades the derivative signal; it does not address
how individual network updates contribute to optimization. To examine this, we turn to flow mis-
match, focusing on whether layerwise transformations align with descent directions.

3.3 FLOW MISMATCH CAN HURT PINNS

To understand the gradient misalignment associated with PINNs, we intrepret training as a latent-
space flow problem indexed by an auxiliary solver time k:

dz(k)

dk
= T

(
z(k), k; x, t

)
, k ∈ [0,K], z(0) = E(x, t), (2)

where z(k) ∈ Rdh is a latent state obtained from the encoding E(x, t), and T : Rdh →Rdh denotes
the residual transformation that advances z(k) toward the PDE solution. This operator may be fixed
(as in classical solvers) or learned (as in neural architectures introduced later). In discrete form,

zk+1 = zk + Tk

(
zk; α

)
, k = 0, . . . ,K − 1,

with step parameter α > 0 implicit in Tk. When ∥Tk∥ is small, each update is a residual correction
around the identity. This lens makes two optimization effects explicit: (i) iterative refinement, where
many small, well-aligned corrections reduce the loss predictably; and (ii) Jacobian neutrality, where
near-identity Jacobians stabilize gradient propagation across depth. Consider a composition of K
such transformations and a loss function L(zk) on the kth transformation .
Lemma 3.2 (Local update descent with depth-aware smoothness). Let zk+1 = zk + Tk(zk) with
Jacobian Jk := ∂zk+1/∂zk = I + Ak. If L has β-Lipschitz continous gradient in a neighborhood
of zk, then there exist

βk ≤ β
(K−1∏

ℓ=k

∥Jℓ∥2
)2

such that L(zk+1) ≤ L(zk) + ⟨∇zkL(zk)⊤, Tk ⟩+ βk

2 ∥Tk∥2.

4
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This follows from a first-order Taylor expansion of the L(zk+1) := L(zk + T (zk)). The formal
statement and proofs are deferred to the Appendix B. Notice that a first order term is a good approx-
imation when the magnitude of Tk is small enough. Rolling out Lemma 3.2 over k = 0, . . . ,K−1
updates recursively gives

L(zK) ≤ L(z0) +

K−1∑
k=0

[
⟨∇zkL(zk)⊤, Tk ⟩+ βk

2 ∥Tk∥2
]
.

In particular, Lemma 3.2 implies that the first-order change in the loss at step k is driven by the dot
product between the local loss gradient and Tk,

L(zk+1)− L(zk) ≈
〈
∇zkL(zK), Tk(zk)

〉
.

We can characterize this via gradient alignment: the cosine between the step and the negative gra-
dient,

GAk :=

〈
Tk(zk), −∇zkL(zk)

〉
∥Tk(zk)∥ ∥∇zkL(zk)∥

,

so that 〈
∇zkL(zk), Tk(zk)

〉
= −∥Tk(zk)∥ ∥∇zkL(zk)∥GAk.

Thus, each local update constitutes a gradient-based step whose contribution is exactly proportional
to its alignment with −∇zkL(zk): GAk > 0 moves zk into the descent half-space (first-order
decrease), GAk = 0 is neutral, and GAk < 0 moves uphill. Stable descent therefore requires
residual updates to remain small and aligned with the loss gradient. Flow mismatch denotes the
opposite regime, where updates are too large or alignment is negative, causing predictions to drift
despite decreasing loss.

However, alignment alone is not sufficient: even well-aligned updates can suffer from vanishing
or exploding gradients if Jacobian spectra are uncontrolled. As a complementary effect, residual
formulations also encourage near-identity Jacobians, as shown next.
Theorem 3.3 (Local Jacobian Neutrality). If Jk = I +Ak with ∥Ak∥2 ≤ αk < 1, then

1− αk ≤ σmin(Jk) ≤ σmax(Jk) ≤ 1 + αk, κ(Jk) ≤
1 + αk

1− αk
,

and for all v, (1 − αk)∥v∥ ≤ ∥J⊤
k v∥ ≤ (1 + αk)∥v∥. αk denotes an upper bound on the spectral

norm of the deviation from identity at step k.

Proof sketch. Weyl’s inequality gives |σi(Jk)− 1| ≤ ∥Ak∥2; the bounds follow immediately.

Thus, if residual updates are small (small αk), per-step Jacobians remain near identity, stabilizing
gradient propagation across depth. Residual flow formulations exhibit the three predicted properties:
they maintain positive gradient alignment, have near-identity Jacobians, and operate in the small-step
regime. Figure 1 (and Appendix 6) illustrates this empirically. This aligns with earlier observations
that residual connections implement iterative inference (Greff et al., 2017; Jastrzebski et al., 2018).

Appendix roadmap. Appendix B: proofs of Lemma 3.2 and Theorem 3.3, plus guarantees for resid-
ual flows. Appendix C: note on gradient shattering.

4 RELATED WORK

Neural Operators. Neural operators such as DeepONet (Lu et al., 2021a) and FNOs (Li et al.,
2023) are data driven surrogate models that approaximate the PDE solution operator from labeled
data, whereas PINNs rely on enforcing PDE residuals and boundary/initial conditions. Since our
work focuses on PINNs, we benchmark mainly against PINN variants and restrict our analysis to
failure modes specific to this class of methods.

Flows in Machine Learning. The idea of flows is well-established in Machine Learning. Nor-
malizing flows learn invertible maps that transform a base density into a data density by composing
simple bijections and tracking Jacobian determinants for exact likelihoods (Rezende & Mohamed,
2015; Dinh et al., 2017; Kingma & Dhariwal, 2018; Chen et al., 2018). This probabilistic goal is
orthogonal to ours: we do not model densities or require invertibility. Our flow perspective instead
concerns optimization dynamics of PINNs exhibiting failure modes.

5
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(a) Spectrum of the ResPINN Jacobians

Top 10 by index
Next 10

2 4 6 8 10
Block

2.5

5.0

7.5

Si
ng

ul
ar

 v
al

ue

(b) Spectrum of the PINN Jacobians
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Figure 1: Spectral analysis of Jacobians across network depth for the 1D convection problem. (a)
ResPINN (with residual connections): singular values remain clustered near unity, indicating near-
isometric mappings and stable gradients. (b) Standard PINN: singular values remain spread with
depth, reflecting anisotropy and poor conditioning. (c) Extreme singular values (σmax and σ10)
highlight the contrast: PINNs amplify dominant directions, whereas ResPINNs suppress spectral
growth. Both architectures use the same number of parameters; the only difference is the residual
connection inserted after every two layers.

Residual networks and connections. Residual connections stabilize training by composing near-
identity transformations (He et al., 2016; Greff et al., 2017; Jastrzebski et al., 2018; Haber &
Ruthotto, 2017; Lu et al., 2018; Chen et al., 2018). In PINNs, they appear in several proposals,
often alongside other architectural changes, so their specific contribution is unclear (Wang et al.,
2020; Zhao et al., 2024; Xu et al., 2025). PINNsFormer (Zhao et al., 2024) and PINNMamba (Xu
et al., 2025) both employ residual connections but attribute gains to sequence modeling, while Pi-
rateNets (Wang et al., 2024) explore adaptive residual scaling and physics-informed initialization
without connecting them to failure modes.

Continuous-depth limits and Neural ODEs. Taking residual networks to the continuous-depth
limit yields Neural ODEs, parameterized by vector fields and solved numerically (Chen et al., 2018).
Connections to solver stability and residual architectures have been emphasized (Lu et al., 2018;
Haber et al., 2019), and continuous-depth models have been adapted to scientific machine learning
(Yin et al., 2023; Verma et al., 2024).

Positioning. Our contribution differs from likelihood-based flows and prior PINN adaptations. We
explicitly characterize two structural failure modes in PINNs, gradient shattering and flow mismatch,
and propose a residual flow formulation that enforces gradient alignment and Jacobian neutrality.
The mechanism is architecture-agnostic: it can be instantiated as a residual stack, as a continuous-
depth Neural ODE with explicit solvers, or as a purely iterative refinement scheme without ODE
machinery. This unifies discrete residual nets, continuous flows, and solver-style iterations under a
single stabilization principle tailored to PINNs.

5 EMPIRICAL EVALUATION

Architectures. Our proposal is to view PINNs through the lens of residual flows: neural networks
that refine predictions iteratively, analogous to numerical solvers advancing a state over time. To
investigate this perspective, we consider three architectural variants that will serve as the basis of
our analysis (described below):

• Residual Networks (ResPINN). Discrete residual flows, where each block applies a cor-
rection around the identity hk+1 = hk + αf(hk; θk).

6
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Table 2: Quantitative results on four PDE benchmarks. ResPINN consistently outperforms base-
lines.

Model Wave Reaction Convection Heat

rMAE rRMSE rMAE rRMSE rMAE rRMSE rMAE rRMSE

PINNs 0.4101 0.4141 0.9803 0.9785 0.8514 0.8989 0.8956 0.9404
QRes 0.5349 0.5265 0.9826 0.9830 0.9035 0.9245 0.8381 0.8800
FLS 0.1020 0.1190 0.0220 0.0390 0.1730 0.1970 0.7491 0.7866
PINNsFormer 0.3559 0.3632 0.0146 0.0296 0.4527 0.5217 0.2129 0.2236
RoPINNs 0.1650 0.1720 0.0070 0.0170 0.6350 0.7200 0.1545 0.1622
KAN 0.1433 0.1458 0.0166 0.0343 0.6049 0.6587 0.0901 0.1042
PINNMamba 0.0197 0.0199 0.0094 0.0217 0.0188 0.0201 0.0535 0.0583
ResPINN (ours) 0.0130 0.0154 0.0047 0.0075 0.0028 0.0046 0.0035 0.0048

• Neural ODEs (O-PINN). Continuous residual flows obtained in the infinitesimal-step
limit, integrating ḣ = fθ(h, t) with a numerical ODE solver (Chen et al., 2018). This
provides the continuous-depth analogue of the residual formulation.

• Progressive Residual Flows. A curriculum-style variant of residual networks that in-
creases depth gradually during training by appending new residual blocks while freezing
earlier ones. This mirrors multistage solvers where successive corrections extend accuracy.

Benchmarks. We evaluate on four established benchmarks. First, three canonical time-dependent
PDEs—Wave, Reaction, and Convection—are widely used to probe optimization behavior in PINNs
(Raissi et al., 2019; Krishnapriyan et al., 2021; Zhao et al., 2024; Wu et al., 2024). Prior work
has shown that Reaction–Diffusion and Convection in particular expose common failure modes of
PINNs (Krishnapriyan et al., 2021). Moreover, we include the PINNacle suite (Zhongkai et al.,
2024), a collection of 16 diverse PDE tasks spanning Burgers, Poisson, Heat, Navier–Stokes, Wave,
and Gray–Scott equations in dimensions 1D–5D and on complex geometries. Detailed formulations,
discretizations, and training domains are given in Appendix E.

Baselines. We compare against a broad suite of PINN architectures, spanning classical approaches
(MLP-based PINNs (Raissi et al., 2019), FLS (Wong et al., 2022), QRes (Bu & Karpatne, 2021)), re-
cent improvements (KANs (Liu et al., 2025), and state-of-the-art sequential models (PINNsFormer
(Zhao et al., 2024), PINNMamba (Xu et al., 2025)). This collection includes both pointwise net-
works and methods explicitly designed to address failure modes in dynamical systems using se-
quence modeling approaches.

Implementation. We instantiate the latent residual flow architectures as block-structured net-
works. Unless otherwise noted, all models are trained on 101×101 space–time grids using the
L–BFGS optimizer and the wavelet activation of Zhao et al. (2024). For the baselines, we follow
the original configurations: PINNMamba uses subsequences of length 7 with step size 10−2, and
PINNsformer uses subsequences of length 5 with step size 10−4. All other models operate without
subsequencing. For the PINNAcle benchmark, dataset sizes and sampling details are provided in
Appendix E. Residual flow blocks use a hidden dimension of 64, with three fully connected layers
per block followed by a skip connection. The stagewise variant begins with three blocks and adds
two new blocks at each stage, freezing the earlier ones. Neural ODE variants integrate a single
residual block parameterization with a 4th-Order Runge-Kutta(RK4) solver (See Appendix F).

5.1 DO RESIDUAL FLOWS MITIGATE FAILURE MODES?

We first benchmark ResPINN against recent PINN variants. Table 2 reports relative mean abso-
lute error (rMAE) and relative root mean squared error (rRMSE) (See Appendix D for more de-
tails about the metrics). Classical PINNs perform poorly on Reaction and Convection, consistent
with known failure modes. Both PINNsFormer and PINNMamba incorporate residual connections,
but only at the level of one or two residual blocks. In contrast, ResPINN stacks residual updates
throughout the network, directly instantiating the residual flow formulation. Across all four PDEs,

7
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Figure 2: Qualitative comparison on Convection PDE. Top: predicted solutions. Bottom: pointwise
errors.
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Figure 3: Left: relative update size ∥Ti(zi)∥/∥zi∥ across depth. ResPINNs produce progressively
smaller corrections, consistent with refinement. Right: Gradient Alignment. ResPINNs exhibit an
almost neutral alignment with the local gradient descent.

ResPINN achieves the lowest errors, often by an order of magnitude, showing that residual flows
provide consistent improvements beyond the shallow residual structures of prior models. Qualitative
comparisons in Figure 2 confirm this pattern: Models with residual pathways achieve constructive
reconstructions whereas vanilla PINNs suffer a larger deviation.

5.2 ITERATIVE REFINEMENT AND GRADIENT ALIGNMENT

We next ask whether residual flows in PINNs act primarily as feature learners or as iterative refiners
of predictions. We investigate this from two complementary perspectives.

For each block Ti, we measure the relative update size ∥Ti(zi)∥
∥zi∥ averaged across sample points. Large

values indicate substantial representation change (feature learning), while small values indicate in-
cremental corrections (refinement). Figure 3 shows that in standard PINNs the ratio remains large
across depth, whereas in ResPINNs it decreases steadily, consistent with refinement dynamics. For
details on other PDEs, see Appendix G.

To probe whether the individual blocks can contribute to failure modes, we adopt the progressive-
flow setting. At each training stage, after adding new residual blocks and freezing earlier ones, we
train only a linear projection head to read out predictions from intermediate stages. Figure 9 in
Appendix G illustrates that early stages incur high error similar to failure modes, but later stages
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Wave Reaction Convection

Model rMAE rRMSE rMAE rRMSE rMAE rRMSE

O-PINN + tanh 0.038 0.039 0.018 0.035 0.014 0.016
O-PINN + wavelet 0.053 0.059 0.003 0.005 0.003 0.003
ResPINN + tanh 0.030 0.030 0.008 0.017 0.015 0.016
ResPINN + wavelet 0.070 0.074 0.008 0.009 0.006 0.006

Table 3: Ablation on activation functions for continuous (O-PINN) and discrete (ResPINN) residual
flow models. Results are reported on Wave, Reaction, and Convection PDEs using relative rMAE
and rRMSE.

systematically reduce error while leaving earlier predictions unchanged. This confirms that new
blocks act as refiners rather than relearners, mirroring multistage correction in classical solvers.

5.3 ABLATION STUDY

To disentangle the effect of discretization from architectural or activation choices, we compare the
continuous-depth formulation (O-PINN, integrated with a fixed-RK4 ODE solver) against its dis-
crete counterpart (ResPINN), each trained with either tanh or wavelet activations. This ablation
allows us to test whether the improvements stem from the residual flow discretization itself or from
particular activation functions. The results in Table 3 show that O-PINN and ResPINN exhibit
complementary strengths: the continuous formulation benefits some PDE families (especially with
wavelet activations), while discrete residual stacks remain competitive elsewhere.

5.4 EXPERIMENTS ON COMPLEX PROBLEMS

To assess generalization, we evaluate on PINNacle (Zhongkai et al., 2024). On challenging multi-
scale tasks, baselines such as PINNsFormer (Zhao et al., 2024) and PINNMamba (Xu et al., 2025)
either fail to converge or run into out-of-memory errors, whereas ResPINN trains successfully while
maintaining comparable accuracy on the remaining tasks. Details of the PINNacle experiments are
shown in Appendix E.

6 CONCLUSION

We reframed PINNs as residual flows: networks that solve PDEs by iteratively refining predictions
through small residual updates. This view makes two optimzation effects explicit—gradient align-
ment (updates aligned with descent) and Jacobian neutrality (near-identity per-step Jacobians)—and
led to simple instantiations (ResPINN, O-PINN, progressive residual flows).

Across canonical PDEs and the PINNacle suite, ResPINN achieved consistently lower errors. Mech-
anistic diagnostics support our hypotheses: residual blocks operate in the small-step regime (H1),
maintain near-identity Jacobians across depth (H2), and exhibit iterative refinement (H3) as shown
by decreasing update ratios in ResPINNs and stagewise error telescoping in curriculum training.
These gains persist across activations, and the continuous formulation (O-PINN) can be advanta-
geous on some PDE families, suggesting that continuous-time parameterizations merit exploration
for very deep regimes.

Future work may explore how different numerical solvers induce distinct refinement behaviors, and
whether ODE parameterizations applied directly in solution space for time-dependent PDEs can
further mitigate failure modes. Bridging local theoretical insights with global behaviors observed in
practice offers a promising avenue for deepening our understanding of residual flows.

7 REPRODUCIBILITY STATEMENT.

All PDE setups (governing equations, domains, analytic solutions, and meshes) are detailed in Ap-
pendix D. Theoretical results and proofs appear in Appendix B, with the mean-field shattering adap-
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tation in Appendix C. Architectural and solver specifications for ResPINN, O-PINN, and Progressive
Flow are given in Appendix F, and additional alignment/refinement diagnostics are in Appendix G.
PINNacle task definitions and results are reported in Appendix E. An anonymous code respository
containing implementations of residual flows and scripts reproducing the experiments is available at
https://anonymous.4open.science/r/resflows-0FD5
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models solely for surface-level editing: spelling and grammar correction,
and minor wording improvements. LLMs were not used for idea generation, experiment design,
data analysis, coding, mathematical derivations, or substantive content creation.

B PROOFS

We study feature evolution through a latent flow induced by residual transformations in continuous
network time:

dz(k)

dk
= T

(
z(k), k; x, t

)
, k ∈ [0,K], z(0) = z0 := E(x, t) ∈ Rdh . (3)

Remark B.1 (Analytical surrogate). Equation equation 3 is not intended as the literal dynamics of
fully connected PINNs, but as an analytical surrogate that lets us study feature evolution and gradient
misalignment using the language of residual flows.
Lemma B.2 (Integral form). If T (·, ·) is continuous, then z is a solution of equation 3 on [0,K] if
and only if

z(k) = z0 +

∫ k

0

T
(
z(τ), τ ; x, t

)
dτ, 0 ≤ k ≤ K. (4)

Proof. (⇒) Integrate equation 3 from 0 to k to obtain equation 4.
(⇐) If equation 4 holds and T (z(τ), τ) is continuous in τ , then by the fundamental theorem of
calculus the map k 7→ z(k) is differentiable with dz

dk = T (z(k), k) and z(0) = z0, i.e., z solves
equation 3.
Theorem B.3 (Banach contraction mapping). Let (X, ∥·∥X) be a Banach space and let F : X → X
satisfy

∥F (z)− F (z′)∥X ≤ c ∥z − z′∥X , ∀z, z′ ∈ X,

for some 0 < c < 1. Then F admits a unique fixed point z∗ ∈ X , and the iterates z(n+1) = F (z(n))
converge to z∗ for any initial z(0) ∈ X .
Theorem B.4 (Existence and uniqueness of a solution of a residual flow). Let T : Rdh × [0,K] →
Rdh be continuous and assume there exists L > 0 such that

∥T (z1, k)− T (z2, k)∥ ≤ L ∥z1 − z2∥, ∥T (z, k)∥ ≤ L(1 + ∥z∥), (5)

for all z, z1, z2 ∈ Rdh and k ∈ [0,K]. Then the IVP 3 admits a unique solution z ∈ C([0,K],Rdh).

Proof. Fix δ > 0 and consider the Banach space X = C([0, δ],Rdh) with norm ∥z∥X =
sup0≤s≤δ ∥z(s)∥. Define the flow operator

(Fz)(k) := z0 +

∫ k

0

T (z(τ), τ) dτ.

If Fz = z, then by Lemma B.2, z solves the IVP on [0, δ].
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For z, z′ ∈ X and k ∈ [0, δ],

∥(Fz)(k)− (Fz′)(k)∥ ≤
∫ k

0

∥T (z(τ), τ)− T (z′(τ), τ)∥ dτ ≤ Lδ∥z − z′∥X .

Thus ∥Fz − Fz′∥X ≤ Lδ∥z − z′∥X , so F is a contraction whenever Lδ < 1. By Theorem B.3,
F has a unique fixed point in X , which is the unique solution on [0, δ]. Repeating the argument on
successive intervals of length δ extends the solution uniquely to all of [0,K].

Definition B.5 (Discrete Residual Step). Let ∆k > 0 and kn := n∆k for n = 0, . . . , N with
N∆k = K. The explicit Euler discretization of the residual flow dz(k)

dk = T (z(k), k; x, t) with
z(0) = z0 := E(x, t) is

zn+1 = zn +∆k T (zn, kn; x, t), z0 = E(x, t).

Equivalently, this is a residual update with Tn(zn) := ∆k T (zn, kn; x, t).
Definition B.6 (Convergence/order). Let z(·) denote the (unique) solution of the IVP on [0,K]. A
time-stepping scheme producing {zn}Nn=0 is said to converge with order p on [0,K] if there exists a
constant C, independent of ∆k, such that

max
0≤n≤N

∥∥z(kn)− zn
∥∥ ≤ C (∆k)p.

Theorem B.7 (First-order convergence of the residual flows). Assume the hypotheses of exis-
tence/uniqueness hold (global Lipschitz and linear growth in z for T ), and that the solution z is
twice continuously differentiable on [0,K]. Let {zn} be defined by B.5. Then the discrete formula-
tion of the residual flows converges with order 1:

max
0≤n≤N

∥∥z(kn)− zn
∥∥ ≤ CK ∆k,

where CK depends on K, the Lipschitz constant L of T in z, and maxk∈[0,K] ∥z̈(k)∥, but is inde-
pendent of ∆k. Sketch. Taylor expand z(kn+1) = z(kn) +∆k ż(kn) +Rn with ∥Rn∥ ≤ C (∆k)2.
Using ż(kn) = T (z(kn), kn) and subtracting the Euler step gives the error recurrence en+1 ≤
(1+L∆k) en+C (∆k)2, where en := ∥z(kn)−zn∥. Apply the discrete Grönwall lemma to obtain
en ≤ C eLkn−1

L ∆k ≤ C eLK−1
L ∆k.

Proposition B.8 (Gradient alignment in residual flows). Let L : Rdh → R be continuously differ-
entiable, and let z : [0,K] → Rdh be a continuously differentiable solution of the residual flow IVP
equation 3. Then, for all k ∈ [0,K],

d

dk
L
(
z(k)

)
=

〈
∇L

(
z(k)

)
, T

(
z(k), k; x, t

)〉
. (6)

1. If 〈
∇L(z(k)), T (z(k), k)

〉
≤ 0 for all k ∈ [0,K], (7)

then L(z(k)) is nonincreasing on [0,K].

2. If there exists a constant c ∈ (0, 1] such that〈
T (z(k), k), −∇L(z(k))

〉
∥T (z(k), k)∥ ∥∇L(z(k))∥

≥ c and ∥T (z(k), k)∥ > 0 for all k ∈ I ⊂ [0,K],

(8)
then L(z(k)) is strictly decreasing on I .

Proof. The chain rule gives equation 6. Under equation 7, d
dkL(z(k)) ≤ 0 for all k, so L(z(k)) is

nonincreasing.

For equation 8, write

d

dk
L(z(k)) =− ∥∇L(z(k))∥ ∥T (z(k), k)∥ ⟨T (z(k), k),−∇L(z(k))⟩

∥T (z(k), k)∥ ∥∇L(z(k))∥
(9)

≤ − c ∥∇L(z(k))∥ ∥T (z(k), k)∥. (10)

On any interval I where c > 0 and ∥T (z(k), k)∥ > 0, the right-hand side is strictly negative, hence
L(z(k)) is strictly decreasing on I .
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Figure 4: A 2D histogram of input-output Jacobian for convection PDE evaluated on a 50x50 equi-
spaced grid. (left) A trained PINN. Few gradients follow the linearity of the solution while the most
mass is concentrated around 0 which is a sign of vanishing gradients. (right) The Jacobian of the
analytical solution.

Proof of Lemma 3.2. Since L has β-Lipschitz continuous gradient, we have for any u, v in a neigh-
borhood of zk:

L(v) ≤ L(u) + ⟨∇L(u), v − u⟩+ β
2 ∥v − u∥2.

Apply this inequality with u = zk and v = zk+1 = zk + Tk(zk):

L(zk+1) ≤ L(zk) + ⟨∇zkL(zk), Tk(zk)⟩+ β
2 ∥Tk(zk)∥2.

To capture the effect of depth, note that subsequent updates depend on how Tj is transformed through
the Jacobians Jℓ = ∂zℓ+1/∂zℓ. The gradient at zk is related to the gradient at zk+1 by the chain
rule:

∇zkL(zk+1) = J⊤
k ∇zk+1

L(zk+1).

Rolling this back from step K to step k shows that each local Lipschitz constant is scaled by the
squared operator norms of the Jacobians:

∥∇2L(zk)∥2 ≤ β
(K−1∏

ℓ=k

∥Jℓ∥2
)2

.

Therefore there exists a local smoothness constant βk ≤ β
(∏K−1

ℓ=k ∥Jℓ∥2
)2

such that

L(zk+1) ≤ L(zk) + ⟨∇zkL(zk), Tk(zk)⟩+ βk

2 ∥Tk(zk)∥2.
This completes the proof.

C MEAN-FIELD GRADIENT SHATTERING FOR PINN JACOBIANS

Our analysis of gradient shattering follows directly from the mean-field studies of deep random net-
works by Poole et al. (2016), Balduzzi et al. (2017), Pennington et al. (2018), and Yang & Schoen-
holz (2017). We adapt their derivations to the input–output Jacobians relevant for PINNs.
Theorem C.1 (Adapted from prior work on shattered gradients). Consider a depth-L, width-n fully-
connected network with random Gaussian initialization as in Poole et al. (2016); Balduzzi et al.
(2017). Let Jθ(z) = ∇zuθ(z) denote the input–output Jacobian at input z. In the mean-field limit
n → ∞ the following hold:

(A) Exponential decorrelation. For nearby inputs z, z′, correlations between Jacobians decay
exponentially with depth:

E
[
cos(Jθ(z), Jθ(z

′))
]
= O(ρL), ρ ∈ (0, 1).

(B) Norm growth/decay. Jacobian norms scale exponentially with depth:
E∥Jθ(z)∥2F = Θ(γL),

with γ = 1 only on the edge-of-chaos manifold; generically γ ̸= 1, yielding vanishing or
exploding norms.
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Proof sketch. The argument mirrors Poole et al. (2016); Pennington et al. (2018). Pre-activations
converge to Gaussian processes in the mean-field limit, and input sensitivities evolve via multiplica-
tive recursions depending on E[ϕ′(u)2]. Cross-input correlations shrink by a factor ρ < 1 per layer,
while sensitivity norms scale by γ. Full details can be found in the cited works; here we simply
specialize the analysis to the input–output Jacobians of PINNs.

Empirical illustration. The mean-field analysis predicts vanishing or exploding Jacobian norms
and exponential loss of correlation across nearby inputs. Figure 4 provides an empirical counterpart:
for the convection PDE, we plot the distribution of input–output Jacobian entries on a 50×50 eval-
uation grid. For a trained PINN, most Jacobian values concentrate near zero, indicating collapsed
sensitivities, with only a few gradients reflecting the true structure of the solution. By contrast, the
analytical Jacobian remains well spread, showing the expected variation across space–time. This
behavior has been also observed on other PDES where PINNs exhibit failure modes.

D PDE SETUPS AND METRICS

D.1 METRICS

In our experiments, we report three metrics: the training loss (defined in Eq. (2)), the relative mean
absolute error (rMAE), and the relative root mean squared error (rMSE). For a set of evaluation
points S, model prediction uθ, and ground-truth solution u∗, we define

rMAE =

∑
x∈S

∣∣uθ(x)− u∗(x)
∣∣

∑
x∈S

∣∣u∗(x)
∣∣ , rMSE =

√√√√√√√
∑
x∈S

(
uθ(x)− u∗(x)

)2
∑
x∈S

(
u∗(x)

)2 . (11)

Note that both uθ(x) and u∗(x) can take positive or negative values; consequently, rMAE and rMSE
may exceed 1.

D.2 BENCHMARKS

To comprehensively test our algorithm, we include four benchmarks. The first three correspond to
canonical PDEs widely used in the PINN literature (see Figure 7), while the last one is the large-scale
PINNacle benchmark Zhongkai et al. (2024).

1D–Reaction. This one-dimensional nonlinear ODE models chemical reactions:

∂u

∂t
− ρu(1− u) = 0, x ∈ (0, 2π), t ∈ (0, 1),

with initial and boundary conditions

u(x, 0) = exp

(
− (x− π)2

2(π/4)2

)
, u(0, t) = u(2π, t).

The analytic solution is

u(x, t) =
h(x)eρt

h(x)eρt + 1− h(x)
, h(x) = exp

(
− (x− π)2

2(π/4)2

)
,

with ρ = 5. Prior work Raissi et al. (2019); Krishnapriyan et al. (2021) identified this case as a
“PINN failure mode” due to the nonlinear term, and its sharp interior boundary adds further diffi-
culty. Following PINNsFormer Xu et al. (2025), we sample 101 points on the initial/boundary sets
and a 101× 101 grid on the residual domain. Evaluation uses the same mesh.

1D–Wave. A standard hyperbolic PDE from acoustics and fluid dynamics:

∂2u

∂t2
− 4

∂2u

∂x2
= 0, x ∈ (0, 1), t ∈ (0, 1),
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Table 4: PDE benchmarks from PINNacle Zhongkai et al. (2024). We list input dimensionality,
training/testing sizes, and representative simplified equations. All PDEs here are second-order.
Full formalizations, coefficient meanings, and boundary/initial conditions appear in Zhongkai et al.
(2024).

PDE Dimension Ntrain Ntest Key Equation

Burgers
1D+Time (1d-C) 16384 12288 ∂u

∂t + u · ∇u− ν∆u = 0

2D+Time (2d-C) 98308 82690 same form in 2D

Poisson

2D (2d-C) 12288 10240 −∆u = 0

2D (2d-CG) 12288 10240 −∆u+ k2u = f(x, y)

3D (3d-CG) 49152 40960 −µi∆u+ k2i u = f(x, y, z), i = 1, 2

2D (2d-MS) 12288 10329 −∇(a(x)∇u) = f(x, y)

Heat
2D+Time (2d-VC) 65536 49189 ∂u

∂t −∇(a(x)∇u) = f(x, t)

2D+Time (2d-MS) 65536 49189 ∂u
∂t − 1

(500π)2uxx − 1
π2uyy = 0

2D+Time (2d-CG) 65536 49152 ∂u
∂t −∆u = 0

Navier–Stokes
2D (2d-C) 14337 12378 u · ∇u+∇p− 1

Re∆u = 0, ∇ · u = 0

2D (2d-CG) 14055 12007 same form

Wave
1D+Time (1d-C) 12288 10329 utt − 4uxx = 0

2D+Time (2d-CG) 49170 42194
[
∇2 − 1

c(x)
∂2

∂t2

]
u(x, t) = 0

Chaotic (GS) 2D+Time 65536 61780
{
ut = ε1∆u+ b(1− u)− uv2,

vt = ε2∆v − dv + uv2

High-dim
5D (P-Nd) 49152 67241 −∆u = π2

4

∑n
i=1 sin

(
π
2xi

)
5D+Time (H-Nd) 65537 49152 ∂u

∂t = k∆u+ f(x, t)

with initial and boundary conditions

u(x, 0) = sin(πx) + 1
2 sin(βπx),

∂u(x, 0)

∂t
= 0, u(0, t) = u(1, t) = 0.

The analytic solution is

u(x, t) = sin(πx) cos(2πt) + 1
2 sin(βπx) cos(2βπt),

with β = 3. Compared to Reaction and Convection, the solution is smoother, making it easier for
deep models. Training/evaluation meshes are sampled as in Reaction.

1D–Convection. A hyperbolic PDE relevant in fluids, atmosphere, and heat transfer:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ (0, 2π), t ∈ (0, 1),

with
u(x, 0) = sin(x), u(0, t) = u(2π, t).

The analytic solution is u(x, t) = sin(x − βt), where we set β = 50. Despite its simple closed
form, this problem is challenging for PINNs due to the high-frequency oscillations and sharp loss
landscape Krishnapriyan et al. (2021). Training/evaluation meshes follow the same setup as above.

PINNacle. The fourth benchmark is PINNacle Zhongkai et al. (2024), built on DeepXDE Lu
et al. (2021b). It comprises 20 PDE tasks covering fluid dynamics, heat conduction, nonlinear and
multiscale phenomena, and high-dimensional settings. We found that several subtasks are unsolved
by existing methods (e.g., Heat–2d-LT, NS–2d-LT, Wave–2d-MS, Kuramoto–Sivashinsky). These
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Table 5: Results on PINNacle. Baseline results are from Wu et al. (2024); Xu et al. (2025). OOM
means Out-of-Memory.

PINN PINNsFormer PINNMamba ResPINN

Equation rMAE rRMSE rMAE rRMSE rMAE rRMSE rMAE rRMSE

Burgers 1d-C 1.1e-2 3.3e-2 9.3e-3 1.4e-2 3.7e-3 1.1e-3 4.6e-3 1.4e-3
Burgers 2d-C 4.5e-1 5.2e-1 OOM OOM OOM OOM OOM OOM
Poisson 2d-C 7.5e-1 6.8e-1 7.2e-1 6.6e-1 6.2e-1 5.7e-1 7.8e-1 7.1e-1
Poisson 2d-CG 5.4e-1 6.6e-1 5.4e-1 6.3e-1 1.2e-1 1.4e-1 4.4e-3 8.6e-3
Poisson 3d-CG 4.2e-1 5.0e-1 OOM OOM OOM OOM OOM OOM
Poisson 2d-MS 7.8e-1 6.4e-1 1.3e+0 1.1e+0 7.2e-1 6.0e-1 9.0e-1 7.5e-1
Heat 2d-VC 1.2e+0 9.8e-1 OOM OOM OOM OOM OOM OOM
Heat 2d-MS 4.7e-2 6.9e-2 OOM OOM OOM OOM 6.5e-3 4.5e-3
Heat 2d-CG 2.7e-2 2.3e-2 OOM OOM OOM OOM OOM OOM
NS 2d-C 6.1e-2 5.1e-2 OOM OOM OOM OOM OOM OOM
NS 2d-CG 1.8e-1 1.1e-1 1.0e-1 7.0e-2 1.1e-2 7.8e-3 1.4e-2 9.8e-3
Wave 1d-C 5.5e-1 5.5e-1 5.0e-1 5.1e-1 1.0e-1 1.0e-1 3.4-2 3.7e-2
Wave 2d-CG 2.3e+0 1.6e+0 OOM OOM OOM OOM OOM OOM
Chaotic GS 2.1e-2 9.4e-2 OOM OOM OOM OOM OOM OOM
High-dim PNd 1.2e-3 1.1e-3 OOM OOM OOM OOM OOM OOM
High-dim HNd 1.2e-2 5.3e-3 OOM OOM OOM OOM OOM OOM

involve long-time dynamics or high-order derivatives, which present challenges beyond those noted
in the original paper. To focus on training paradigms rather than backbone design, we omit these
four hardest cases and evaluate on the remaining 16 tasks. Dataset details are summarized in Table 4.

E PINNACLE PDE BENCHMARK

F ODE SOLVERS AND RESIDUAL FLOWS

For completeness, we recall the connection between residual updates and classical numerical ODE
solvers. Consider an ODE

dh(t)

dt
= f(h(t), t), h(0) = h0.

F.1 RESIDUAL FLOW SOLVERS

Forward Euler. The simplest explicit solver advances in steps of size α > 0 via

hk+1 = hk + α f(hk, tk).

This is precisely the form of a residual block: each step applies a correction around the identity.

Runge–Kutta (RK4). Higher-order solvers reduce truncation error by evaluating f at intermediate
points. The classical fourth-order Runge–Kutta scheme computes

k1 = f(hk, tk),

k2 = f(hk + α
2 k1, tk + α

2 ),

k3 = f(hk + α
2 k2, tk + α

2 ),

k4 = f(hk + αk3, tk + α),

hk+1 = hk + α
6 (k1 + 2k2 + 2k3 + k4).

ResPINNs correspond to Euler-like discrete updates , while O-PINNs instantiate the continuous limit
using RK4 integration with weight sharing. Implementattion details follow.
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Input Embedding

Residual Flow Network

Multi-Layer Perceptron
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+
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+ Nx

Figure 5: ResPINN overview. Inputs (x, t) are encoded to a latent state h(0), which is iteratively
refined by a residual flow in pseudo-time s. The flow is realized either as a stacked residual (Euler)
network or as a higher-order explicit solver RK4. The terminal state h(S) is decoded to the PDE
solution u(x, t).

F.2 IMPLEMENTATION OF RESIDUAL FLOWS

ResPINN (discrete residual stack). A fixed-depth network composed of K = 10 residual blocks,
each block containing three fully connected layers of width 64 with a skip connection. A linear
encoder maps inputs to latent space, and a single fully connected output head maps back to the PDE
solution.

O-PINN (continuous residual flow). Uses the same residual block as the vector field fθ, but
instead of stacking layers explicitly, the dynamics are integrated with RK4. This yields a continuous-
depth model whose trajectory corresponds to an effectively deeper residual flow.

Progressive Flow. Starts with three residual blocks and adds two new blocks at each training stage
while freezing earlier ones. Both encoder and decoder are linear projections, ensuring that represen-
tational capacity resides in the blocks. At each stage, the final projection layer is re-initialized and
trained as a predictor of the PDE solution, providing a direct probe of iterative refinement.

An overview of ResPINN and O-PINN archirectures is shown in Figure 5.

G ADDITIONAL ALIGNMENT PLOTS

H MORE PLOTS ON ITERATIVE REFINEMENT OF PDE SOLUTIONS

I MORE ON ERROR AND SOLUTION MAPS
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Figure 6: Relative transformation magnitude ∥T (zk)∥/∥zk∥ per block for the convection problem.
ResPINNs keep ratios near unity, suppressing spectral growth and stabilizing gradient flow. In
contrast, PINNs amplify inputs more strongly, reflecting anisotropy and poor conditioning.
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Figure 7: Cosine alignment between block updates and local loss gradients for the convection prob-
lem. ResPINNs remain close to zero, indicating residual updates act primarily as stabilizers rather
than directly following descent directions. PINNs oscillate between positive and negative values,
reflecting inconsistent alignment and unstable propagation.
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Figure 8: Inner product between block update T (zk) and the local loss gradient across block depth
for the 1D convection problem. ResPINNs maintain values close to zero, consistent with near-
isometric transformations. Standard PINNs exhibit larger fluctuations, indicating unstable amplifi-
cation of activation directions.
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Figure 9: Predicted solutions across blocks. Earlier blocks run into failure modes where they fail to
capture temporal dynamics of the convection PDE on β = 50. With more residual steps, the model
captures increasingly fine temporal dynamics.
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Figure 10: Absolute Errors across blocks on wave PDE.
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Figure 11: Qualitative comparison on 1D wave PDE. Top: predicted solutions. Bottom: pointwise
errors.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Vanilla PINN PINNsformer PINNMamba ResPINN

0.00
0.20
0.40
0.60
0.80
1.00

0.20

0.40

0.60

0.80

1.00

Figure 12: Qualitative comparison on 1D Reaction PDE. Top: predicted solutions. Bottom: point-
wise errors.
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