PHYSICS-INFORMED RESIDUAL FLOWS

003 Anonymous authors

Paper under double-blind review

ABSTRACT

Physics-Informed Neural Networks (PINNs) embed physical laws into deep learning models. However, conventional PINNs often suffer from failure modes leading to inaccurate solutions. We trace these failure modes to two structural pathologies: gradient shattering, where gradients degrade with depth and provide little training signal, and flow mismatch, where training pushes predictions along trajectories that diverge from the PDE solution path. We introduce ResPINNs, which reformulate PINNs as residual flows, networks that iteratively refine their own predictions through explicit corrective steps, in the spirit of classical iterative solvers. Our analysis shows that this design mitigates both pathologies by keeping updates aligned with descent and by preserving informative gradients across depth. Extensive experiments on PDE benchmarks confirm that ResPINNs achieve higher accuracy with substantially fewer parameters than conventional architectures.

1 REVISITING FAILURE MODES IN PINNS

Partial differential equations (PDEs) govern a wide range of physical, engineering, and scientific systems. Because closed-form solutions are rarely available, numerical solvers such as finite difference, finite element, or spectral methods are the standard tools, but these approaches are computationally costly and restricted to discretized meshes. Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) have emerged as a promising alternative, embedding PDE, initial, and boundary conditions into the loss of a neural network. By leveraging automatic differentiation, PINNs can in principle approximate PDE solutions continuously in space and time.

Despite recent advances, PINNs remain vulnerable to intrinsic failure modes. Krishnapriyan et al. (2021) document several types of PDEs that are especially challenging, often due to parameters that induce high-frequency or complex solution behaviors. In such cases, PINNs may fail to propagate initial conditions accurately. A typical manifestation is the emergence of overly smooth solutions which can minimize empirical loss while ignoring temporal dynamics. To address these shortcomings, various strategies have been proposed, including optimization techniques (Wu et al., 2024; Wang et al., 2021; Liu et al., 2025; Wong et al., 2022; Bu & Karpatne, 2021), adaptive sampling (Daw et al., 2023), architectural modifications (Zhao et al., 2024; Xu et al., 2025; Wang et al., 2021). However, these methods do not explicitly address the instability caused by noisy gradients, often referred to as gradient shattering, which can mislead training and limit robustness.

Orthogonal to these advances, we revisit the failure modes of PINNs from two complementary angles: optimization dynamics and representation flow. We identify two structural problems. First, gradient shattering: As depth increases, the input–output Jacobians of PINNs decorrelate exponentially, while their norms either vanish or explode. Since PDE residuals require repeated differentiation of the network outputs, this effect is amplified in PINNs, making optimization unstable even when the residual loss is small. Second, flow mismatch: training updates in latent space need not align with true descent directions, so the network can satisfy residual constraints locally while drifting globally, failing to propagate initial conditions. To address these issues, we introduce the notion of residual flows: networks designed as iterative refinement schemes, where its components perform a small correction around the identity. This stepwise view connects directly to three established perspectives: (i) residual networks, where skip connections stabilize gradients; (ii) neural ODEs, where depth corresponds to integrating a continuous-time flow; and (iii) classical iterative solvers, where predictor–corrector updates progressively reduce error. In the PINN setting, these formulations coincide: residual flows stabilize Jacobians, keep updates aligned with loss descent, and preserve initial and boundary conditions across depth.

Table 1: Ablation study on Convection, Reaction and Wave PDEs. The relative MAE values are reported. Removing attention and replacing it with linear mappings preserves or even improves performance, despite the drastic reduction in complexity.

Model	Convection (rMAE)	Reaction (rMAE)	Wave (rMAE)
PINNsFormer (Original)	0.510	0.015	0.270
Encoder Only	0.043	0.017	0.058
-Attention + Linear	0.012	0.022	0.022
-Attention + MLP	0.009	0.016	0.142
PINNMamba (Original)	0.019	0.010	0.020
-SSM	0.012	0.013	0.029
-SSM+MLP	0.063	0.014	0.015

Our paper makes the following contributions:

- 1. **Diagnosis.** We analyze why standard PINNs fail, tracing condition-propagation errors to *gradient shattering* and *flow mismatch*.
- Reformulation. We propose Residual Flows, which view solution learning as stepwise
 refinement via small residual corrections around the identity, aligning PINNs with classical
 predictor—corrector methods.
- 3. **Evidence.** Through theory and parameter-matched ablations, we show that residual pathways—not explicit sequence modules—are the stabilizing mechanism behind recent gains. Empirical results on convection, reaction, and wave PDEs confirm improved condition preservation and solution fidelity.

2 DISSECTING EXISTING APPROACHES TO FAILURE MODES

A central challenge in PINNs for time-dependent PDEs is the propagation of initial conditions across time. Several recent works have sought to address this by introducing explicit sequence modeling. For example, Krishnapriyan et al. (2021) proposed recursive sequence-to-sequence training, rolling solutions forward in time with separate networks. While effective for short horizons, this strategy is memory- and compute-intensive, and does not generalize reliably outside the training window. More recent approaches have adapted modern sequence architectures: Zhao et al. (2024) introduced a transformer-based framework (PINNsFormer), while Xu et al. (2025) proposed state-space models (PINNMamba). Both report improved accuracy and robustness, attributing their gains to the ability of attention or structured recurrence to capture long-range temporal dependencies.

At first glance, these results seem to suggest that sophisticated sequence modules are essential for overcoming failure modes in time-dependent PINNs. Yet this conclusion is not entirely satisfying: improvements could equally stem from side effects such as increased parameterization, altered optimization dynamics, or more flexible local mappings. In other words, what appears as a benefit of "long-range temporal modeling" may instead be an artifact of broader architectural changes. This motivates a sharper question: are sequence modules truly the driving factor behind the reported improvements, or are we attributing gains to the wrong mechanism? To probe this, we designed a controlled ablation study. Training setup, initialization, and sampling were kept fixed, and only the internal sequence modules were varied. Specifically, self-attention and state-space operators were replaced with deliberately simple local mappings (a linear projection or a shallow MLP), with parameter counts carefully matched within $\pm 10\%$. This isolates the effect of explicit sequence modeling from confounding factors such as model capacity or optimization differences.

The evidence in Table 1 challenges the conventional explanation. The table compares both transformer-based (PINNsFormer) and state-space—based (PINNMamba) architectures against ablated versions where their sequence modules are removed or replaced with simpler alternatives. For PINNsFormer, the encoder is retained while attention is stripped out and substituted either with a linear projection or a shallow MLP. For PINNMamba, the state-space operator is removed outright

or replaced by an MLP with matched parameter count. Across all three PDE benchmarks, these simplified variants perform comparably to the original models, indicating that explicit attention or structured recurrence is not essential for maintaining accuracy. This suggests that the improvements attributed to sophisticated sequence modules may instead arise from a different architectural mechanism.

Across both transformer- and state-space—based PINNs, one component remains consistent: the use of *residual pathways* that carry predictions forward through incremental corrections. Unlike attention or structured recurrence, these pathways are present in every variant tested, including the simplified ablations. This observation points to residual connections—not sequence modules—as the common mechanism underlying stability and accuracy.

Why might residual pathways play such a critical role? At a high level, they enforce an update rule that keeps each layer close to the identity, nudging predictions forward through small, controlled steps rather than drastic transformations. This structure has several consequences that help explain the observed robustness:

- (H1) Because updates are incremental, optimization becomes more stable: each layer only needs to make small corrections, reducing the risk of divergence.
- (H2) The skip connections implicit in residual design bias the layer Jacobians toward the identity, which mitigates gradient shattering and helps preserve information across depth.
- (H3) The repeated corrections accumulate like iterations of a solver, progressively refining the solution in the manner of predictor–corrector schemes.

Taken together, these hypotheses recast the source of robustness in time-dependent PINNs: not the sophistication of sequence modules, but the refinement dynamics induced by residual flows. In the remainder of this paper, we put these hypotheses to the test.

3 MITIGATING FAILURE MODES WITH RESIDUAL ALIGNMENT

PINNs can achieve low training loss yet still produce drifting solutions. We trace this to two mechanisms: *gradient shattering*, where Jacobians lose coherence and their norms vanish or explode with depth, degrading the derivative signal that PINNs rely on; and *flow mismatch*, where training pushes predictions along trajectories that diverge from the PDE solution. To address these issues, we view training not as a single mapping but as an *evolving flow in latent space*, advanced step by step through small residual updates. This perspective makes explicit two stabilizing principles: (i) alignment of updates with descent directions, and (ii) near-identity Jacobians that preserve gradient propagation. We begin by analyzing gradient shattering and then show how residual formulations encourage alignment.

3.1 PRELIMINARIES

We consider PDEs on a spatio-temporal domain $\Omega \times [0,T]$ with solution $u:\Omega \times [0,T] \to \mathbb{R}^m$ subject to interior, initial, and boundary operators $\mathcal{F}, \mathcal{I}, \mathcal{B}$:

$$\mathcal{F}(u)(x,t) = 0, \quad \mathcal{I}(u)(x,0) = 0, \quad \mathcal{B}(u)(x,t) = 0,$$
 (1)

PINNs (Raissi et al., 2019) approximate u by a neural network u_{θ} and train by minimizing residuals at collocation points: interior $\chi \subset \Omega \times \{0, T]$, initial $\chi_0 \subset \Omega \times \{0\}$, and boundary $\chi_{\partial} \subset \partial \Omega \times [0, T]$. The objective is a weighted mean–squared residual,

$$L(u_{\theta}) = \frac{\lambda_{\mathcal{F}}}{|\chi|} \sum_{(x,t) \in \chi} \|\mathcal{F}(u_{\theta})(x,t)\|^2 + \frac{\lambda_{\mathcal{I}}}{|\chi_{0}|} \sum_{(x,0) \in \chi_{0}} \|\mathcal{I}(u_{\theta})(x,0)\|^2 + \frac{\lambda_{\mathcal{B}}}{|\chi_{\theta}|} \sum_{(x,t) \in \chi_{\theta}} \|\mathcal{B}(u_{\theta})(x,t)\|^2,$$

where $\lambda_{\mathcal{F}}, \lambda_{\mathcal{I}}, \lambda_{\mathcal{B}} \geq 0$ balance the constraints.¹

¹We use $\langle A, B \rangle_F = \operatorname{tr}(A^\top B)$, $||A||_F$ for Frobenius norms, $||\cdot||$ for Euclidean norms, and $||\cdot||_2$ for spectral norm

3.2 Gradient Misalignment in PINNs

A well-documented pathology in deep networks is *gradient shattering*: correlations between input–output sensitivities at nearby inputs decay exponentially with depth, while their norms either vanish or explode depending on initialization scaling (Balduzzi et al., 2017; Poole et al., 2016; Pennington et al., 2018; Yang & Schoenholz, 2017). Since PINNs embed PDE residuals into the training objective only at sparse collocation points, they are especially vulnerable to this effect: low residuals can coexist with large solution drift between points. To formalize this, let $J_{\theta}(x,t) = \nabla_{(x,t)} u_{\theta}(x,t) \in \mathbb{R}^{m \times (d+1)}$ denote the input–output Jacobian of the network. We summarize the mean-field behavior below.

Theorem 3.1 (Informal; mean-field gradient shattering). Let u_{θ} be a depth-L, width-n fully connected PINN with i.i.d. Gaussian initialization and a 1-Lipschitz activation. Denote its Jacobian $J_{\theta}(z) = \nabla_z u_{\theta}(z)$ at input z = (x, t). For nearby z' with $||z' - z|| \le r_0$, define the Frobenius cosine $\cos(J_1, J_2) = \langle J_1, J_2 \rangle_F / (||J_1||_F ||J_2||_F)$. In the mean-field limit $n \to \infty$:

- (A) (Exponential decorrelation) $\mathbb{E}[\cos(J_{\theta}(z), J_{\theta}(z'))] = \mathcal{O}(\rho^L)$ for some $\rho \in (0, 1)$.
- (B) (Norm growth/decay) $\mathbb{E}||J_{\theta}(z)||_F^2 = \Theta(\gamma^L)$ for some $\gamma > 0$, with $\gamma = 1$ only at critical variance.

Thus, unless tuned to the edge of chaos, Jacobians decorrelate exponentially and their norms vanish or explode with depth.

A detailed statement and proof, adapted from classical mean-field analyses of deep random networks, is provided in Appendix C.

Implications for PINNs. Sparse collocation makes PINNs particularly vulnerable to gradient shattering: while residuals may vanish at training points, exponential loss of Jacobian correlation and unstable norms (Theorem 3.1) allow the learned solution to drift in between. This motivates enforcing near-identity Jacobians and residual alignment mechanisms to stabilize training. Yet gradient shattering alone only explains how depth degrades the derivative signal; it does not address how individual network updates contribute to optimization. To examine this, we turn to *flow mismatch*, focusing on whether layerwise transformations align with descent directions.

3.3 FLOW MISMATCH CAN HURT PINNS

To understand the gradient misalignment associated with PINNs, we interpret training as a *latent-space flow problem* indexed by an auxiliary *solver time k*:

$$\frac{dz(k)}{dk} = T(z(k), k; x, t), \quad k \in [0, K], \qquad z(0) = E(x, t),$$
 (2)

where $z(k) \in \mathbb{R}^{d_h}$ is a latent state obtained from the encoding E(x,t), and $T: \mathbb{R}^{d_h} \to \mathbb{R}^{d_h}$ denotes the residual transformation that advances z(k) toward the PDE solution. This operator may be fixed (as in classical solvers) or learned (as in neural architectures introduced later). In discrete form,

$$z_{k+1} = z_k + T_k(z_k; \alpha), \qquad k = 0, \dots, K - 1,$$

with step parameter $\alpha>0$ implicit in T_k . When $\|T_k\|$ is small, each update is a residual correction around the identity. This lens makes two optimization effects explicit: (i) *iterative refinement*, where many small, well-aligned corrections reduce the loss predictably; and (ii) *Jacobian neutrality*, where near-identity Jacobians stabilize gradient propagation across depth. Consider a composition of K such transformations and a loss function $\mathcal{L}(z_k)$ on the k^{th} transformation.

Lemma 3.2 (Local update descent with depth-aware smoothness). Let $z_{k+1} = z_k + T_k(z_k)$ with Jacobian $J_k := \partial z_{k+1}/\partial z_k = I + A_k$. If \mathcal{L} has β -Lipschitz continous gradient in a neighborhood of z_k , then there exist

$$\beta_k \leq \beta \left(\prod_{\ell=k}^{K-1} \|J_\ell\|_2 \right)^2$$

such that $\mathcal{L}(z_{k+1}) \leq \mathcal{L}(z_k) + \langle \nabla_{z_k} \mathcal{L}(z_k)^\top, T_k \rangle + \frac{\beta_k}{2} ||T_k||^2$.

This follows from a first-order Taylor expansion of the $\mathcal{L}(z_{k+1}) := \mathcal{L}(z_k + T(z_k))$. The formal statement and proofs are deferred to the Appendix B. Notice that a first order term is a good approximation when the magnitude of T_k is small enough. Rolling out Lemma 3.2 over $k = 0, \dots, K-1$ updates recursively gives

$$\mathcal{L}(z_K) \leq \mathcal{L}(z_0) + \sum_{k=0}^{K-1} \left[\langle \nabla_{z_k} \mathcal{L}(z_k)^\top, T_k \rangle + \frac{\beta_k}{2} \|T_k\|^2 \right].$$

In particular, Lemma 3.2 implies that the first-order change in the loss at step k is driven by the dot product between the local loss gradient and T_k ,

$$\mathcal{L}(z_{k+1}) - \mathcal{L}(z_k) \approx \langle \nabla_{z_k} \mathcal{L}(z_K), T_k(z_k) \rangle.$$

We can characterize this via *gradient alignment*: the cosine between the step and the negative gradient,

$$GA_k := \frac{\left\langle T_k(z_k), -\nabla_{z_k} \mathcal{L}(z_k) \right\rangle}{\|T_k(z_k)\| \|\nabla_{z_k} \mathcal{L}(z_k)\|},$$

so that

$$\langle \nabla_{z_k} \mathcal{L}(z_k), T_k(z_k) \rangle = -\|T_k(z_k)\| \|\nabla_{z_k} \mathcal{L}(z_k)\| \operatorname{GA}_k.$$

Thus, each local update constitutes a gradient-based step whose contribution is exactly proportional to its alignment with $-\nabla_{z_k}\mathcal{L}(z_k)$: $\mathrm{GA}_k>0$ moves z_k into the descent half-space (first-order decrease), $\mathrm{GA}_k=0$ is neutral, and $\mathrm{GA}_k<0$ moves uphill. Stable descent therefore requires residual updates to remain small and aligned with the loss gradient. Flow mismatch denotes the opposite regime, where updates are too large or alignment is negative, causing predictions to drift despite decreasing loss.

However, alignment alone is not sufficient: even well-aligned updates can suffer from vanishing or exploding gradients if Jacobian spectra are uncontrolled. As a complementary effect, residual formulations also encourage near-identity Jacobians, as shown next.

Theorem 3.3 (Local Jacobian Neutrality). If $J_k = I + A_k$ with $||A_k||_2 \le \alpha_k < 1$, then

$$1 - \alpha_k \le \sigma_{\min}(J_k) \le \sigma_{\max}(J_k) \le 1 + \alpha_k, \qquad \kappa(J_k) \le \frac{1 + \alpha_k}{1 - \alpha_k},$$

and for all v, $(1 - \alpha_k)||v|| \le ||J_k^\top v|| \le (1 + \alpha_k)||v||$. α_k denotes an upper bound on the spectral norm of the deviation from identity at step k.

Proof sketch. Weyl's inequality gives $|\sigma_i(J_k) - 1| \le ||A_k||_2$; the bounds follow immediately.

Thus, if residual updates are small (small α_k), per-step Jacobians remain near identity, stabilizing gradient propagation across depth. Residual flow formulations exhibit the three predicted properties: they maintain positive gradient alignment, have near-identity Jacobians, and operate in the small-step regime. Figure 1 (and Appendix 6) illustrates this empirically. This aligns with earlier observations that residual connections implement iterative inference (Greff et al., 2017; Jastrzebski et al., 2018).

Appendix roadmap. Appendix B: proofs of Lemma 3.2 and Theorem 3.3, plus guarantees for residual flows. Appendix C: note on gradient shattering.

4 RELATED WORK

Neural Operators. Neural operators such as DeepONet (Lu et al., 2021a) and FNOs (Li et al., 2023) are data driven *surrogate models* that approaximate the PDE solution operator from labeled data, whereas PINNs rely on enforcing PDE residuals and boundary/initial conditions. Since our work focuses on PINNs, we benchmark mainly against PINN variants and restrict our analysis to failure modes specific to this class of methods.

Flows in Machine Learning. The idea of flows is well-established in Machine Learning. Normalizing flows learn invertible maps that transform a base density into a data density by composing simple bijections and tracking Jacobian determinants for exact likelihoods (Rezende & Mohamed, 2015; Dinh et al., 2017; Kingma & Dhariwal, 2018; Chen et al., 2018). This probabilistic goal is orthogonal to ours: we do not model densities or require invertibility. Our flow perspective instead concerns optimization dynamics of PINNs exhibiting failure modes.

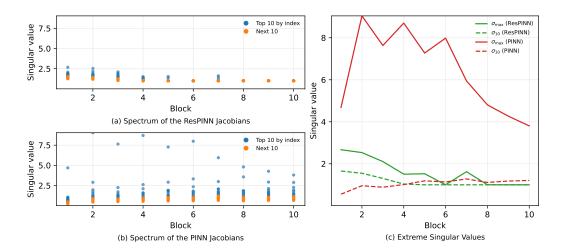


Figure 1: Spectral analysis of Jacobians across network depth for the 1D convection problem. (a) ResPINN (with residual connections): singular values remain clustered near unity, indicating near-isometric mappings and stable gradients. (b) Standard PINN: singular values remain spread with depth, reflecting anisotropy and poor conditioning. (c) Extreme singular values ($\sigma_{\rm max}$ and σ_{10}) highlight the contrast: PINNs amplify dominant directions, whereas ResPINNs suppress spectral growth. Both architectures use the same number of parameters; the only difference is the residual connection inserted after every two layers.

Residual networks and connections. Residual connections stabilize training by composing near-identity transformations (He et al., 2016; Greff et al., 2017; Jastrzebski et al., 2018; Haber & Ruthotto, 2017; Lu et al., 2018; Chen et al., 2018). In PINNs, they appear in several proposals, often alongside other architectural changes, so their specific contribution is unclear (Wang et al., 2020; Zhao et al., 2024; Xu et al., 2025). PINNsFormer (Zhao et al., 2024) and PINNMamba (Xu et al., 2025) both employ residual connections but attribute gains to sequence modeling, while PirateNets (Wang et al., 2024) explore adaptive residual scaling and physics-informed initialization without connecting them to failure modes.

Continuous-depth limits and Neural ODEs. Taking residual networks to the continuous-depth limit yields Neural ODEs, parameterized by vector fields and solved numerically (Chen et al., 2018). Connections to solver stability and residual architectures have been emphasized (Lu et al., 2018; Haber et al., 2019), and continuous-depth models have been adapted to scientific machine learning (Yin et al., 2023; Verma et al., 2024).

Positioning. Our contribution differs from likelihood-based flows and prior PINN adaptations. We explicitly characterize two structural failure modes in PINNs, gradient shattering and flow mismatch, and propose a residual flow formulation that enforces gradient alignment and Jacobian neutrality. The mechanism is architecture-agnostic: it can be instantiated as a residual stack, as a continuous-depth Neural ODE with explicit solvers, or as a purely iterative refinement scheme without ODE machinery. This unifies discrete residual nets, continuous flows, and solver-style iterations under a single stabilization principle tailored to PINNs.

5 EMPIRICAL EVALUATION

Architectures. Our proposal is to view PINNs through the lens of *residual flows*: neural networks that refine predictions iteratively, analogous to numerical solvers advancing a state over time. To investigate this perspective, we consider three architectural variants that will serve as the basis of our analysis (described below):

• **Residual Networks (ResPINN).** Discrete residual flows, where each block applies a correction around the identity $h_{k+1} = h_k + \alpha f(h_k; \theta_k)$.

Table 2: Quantitative results on four PDE benchmarks. ResPINN consistently outperforms baselines.

Model	Wave		Reaction		Convection		Heat	
	rMAE	rRMSE	rMAE	rRMSE	rMAE	rRMSE	rMAE	rRMSE
PINNs	0.4101	0.4141	0.9803	0.9785	0.8514	0.8989	0.8956	0.9404
QRes	0.5349	0.5265	0.9826	0.9830	0.9035	0.9245	0.8381	0.8800
FLS	0.1020	0.1190	0.0220	0.0390	0.1730	0.1970	0.7491	0.7866
PINNsFormer	0.3559	0.3632	0.0146	0.0296	0.4527	0.5217	0.2129	0.2236
RoPINNs	0.1650	0.1720	0.0070	0.0170	0.6350	0.7200	0.1545	0.1622
KAN	0.1433	0.1458	0.0166	0.0343	0.6049	0.6587	0.0901	0.1042
PINNMamba	0.0197	0.0199	0.0094	0.0217	0.0188	0.0201	0.0535	0.0583
ResPINN (ours)	0.0130	0.0154	0.0047	0.0075	0.0028	0.0046	0.0035	0.0048

- Neural ODEs (O-PINN). Continuous residual flows obtained in the infinitesimal-step limit, integrating $\dot{h} = f_{\theta}(h, t)$ with a numerical ODE solver (Chen et al., 2018). This provides the continuous-depth analogue of the residual formulation.
- Progressive Residual Flows. A curriculum-style variant of residual networks that increases depth gradually during training by appending new residual blocks while freezing earlier ones. This mirrors multistage solvers where successive corrections extend accuracy.

Benchmarks. We evaluate on four established benchmarks. First, three canonical time-dependent PDEs—Wave, Reaction, and Convection—are widely used to probe optimization behavior in PINNs (Raissi et al., 2019; Krishnapriyan et al., 2021; Zhao et al., 2024; Wu et al., 2024). Prior work has shown that Reaction–Diffusion and Convection in particular expose common failure modes of PINNs (Krishnapriyan et al., 2021). Moreover, we include the *PINNacle* suite (Zhongkai et al., 2024), a collection of 16 diverse PDE tasks spanning Burgers, Poisson, Heat, Navier–Stokes, Wave, and Gray–Scott equations in dimensions 1D–5D and on complex geometries. Detailed formulations, discretizations, and training domains are given in Appendix E.

Baselines. We compare against a broad suite of PINN architectures, spanning classical approaches (MLP-based PINNs (Raissi et al., 2019), FLS (Wong et al., 2022), QRes (Bu & Karpatne, 2021)), recent improvements (KANs (Liu et al., 2025), and state-of-the-art sequential models (PINNsFormer (Zhao et al., 2024), PINNMamba (Xu et al., 2025)). This collection includes both pointwise networks and methods explicitly designed to address failure modes in dynamical systems using sequence modeling approaches.

Implementation. We instantiate the latent *residual flow* architectures as block-structured networks. Unless otherwise noted, all models are trained on 101×101 space–time grids using the L–BFGS optimizer and the wavelet activation of Zhao et al. (2024). For the baselines, we follow the original configurations: *PINNMamba* uses subsequences of length 7 with step size 10^{-2} , and *PINNsformer* uses subsequences of length 5 with step size 10^{-4} . All other models operate without subsequencing. For the *PINNAcle* benchmark, dataset sizes and sampling details are provided in Appendix E. Residual flow blocks use a hidden dimension of 64, with three fully connected layers per block followed by a skip connection. The stagewise variant begins with three blocks and adds two new blocks at each stage, freezing the earlier ones. Neural ODE variants integrate a single residual block parameterization with a 4th-Order Runge-Kutta(RK4) solver (See Appendix F).

5.1 Do Residual flows mitigate Failure Modes?

We first benchmark *ResPINN* against recent PINN variants. Table 2 reports relative mean absolute error (rMAE) and relative root mean squared error (rRMSE) (See Appendix D for more details about the metrics). Classical PINNs perform poorly on Reaction and Convection, consistent with known failure modes. Both *PINNsFormer* and *PINNMamba* incorporate residual connections, but only at the level of one or two residual blocks. In contrast, *ResPINN* stacks residual updates throughout the network, directly instantiating the residual flow formulation. Across all four PDEs,

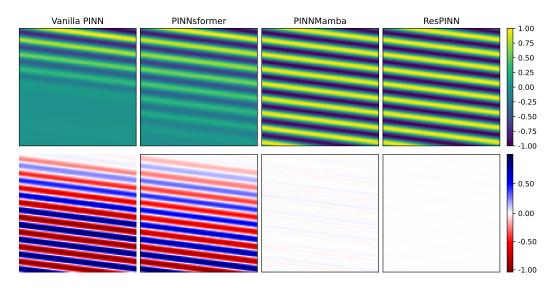


Figure 2: Qualitative comparison on Convection PDE. Top: predicted solutions. Bottom: pointwise errors.

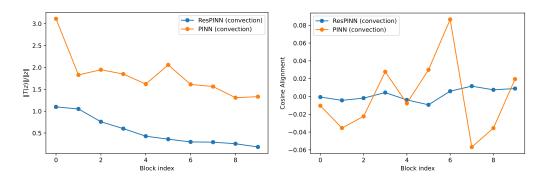


Figure 3: Left: relative update size $||T_i(z_i)||/||z_i||$ across depth. ResPINNs produce progressively smaller corrections, consistent with refinement. Right: Gradient Alignment. ResPINNs exhibit an almost neutral alignment with the local gradient descent.

ResPINN achieves the lowest errors, often by an order of magnitude, showing that residual flows provide consistent improvements beyond the shallow residual structures of prior models. Qualitative comparisons in Figure 2 confirm this pattern: Models with residual pathways achieve constructive reconstructions whereas vanilla PINNs suffer a larger deviation.

5.2 ITERATIVE REFINEMENT AND GRADIENT ALIGNMENT

We next ask whether residual flows in PINNs act primarily as feature learners or as iterative refiners of predictions. We investigate this from two complementary perspectives.

For each block T_i , we measure the relative update size $\frac{\|T_i(z_i)\|}{\|z_i\|}$ averaged across sample points. Large values indicate substantial representation change (feature learning), while small values indicate incremental corrections (refinement). Figure 3 shows that in standard PINNs the ratio remains large across depth, whereas in ResPINNs it decreases steadily, consistent with refinement dynamics. For details on other PDEs, see Appendix G.

To probe whether the individual blocks can contribute to failure modes, we adopt the progressiveflow setting. At each training stage, after adding new residual blocks and freezing earlier ones, we train only a linear projection head to read out predictions from intermediate stages. Figure 9 in Appendix G illustrates that early stages incur high error similar to failure modes, but later stages

	Wave		Rea	ction	Convection	
Model	rMAE rRMSE		rMAE	rRMSE	rMAE	rRMSE
O-PINN + tanh O-PINN + wavelet ResPINN + tanh ResPINN + wavelet	0.038 0.053 0.030 0.070	0.039 0.059 0.030 0.074	0.018 0.003 0.008 0.008	0.035 0.005 0.017 0.009	0.014 0.003 0.015 0.006	0.016 0.003 0.016 0.006

Table 3: Ablation on activation functions for continuous (O-PINN) and discrete (ResPINN) residual flow models. Results are reported on Wave, Reaction, and Convection PDEs using relative rMAE and rRMSE.

systematically reduce error while leaving earlier predictions unchanged. This confirms that new blocks act as refiners rather than relearners, mirroring multistage correction in classical solvers.

5.3 ABLATION STUDY

To disentangle the effect of discretization from architectural or activation choices, we compare the continuous-depth formulation (*O-PINN*, integrated with a fixed-RK4 ODE solver) against its discrete counterpart (*ResPINN*), each trained with either tanh or wavelet activations. This ablation allows us to test whether the improvements stem from the residual flow discretization itself or from particular activation functions. The results in Table 3 show that O-PINN and ResPINN exhibit complementary strengths: the continuous formulation benefits some PDE families (especially with wavelet activations), while discrete residual stacks remain competitive elsewhere.

5.4 EXPERIMENTS ON COMPLEX PROBLEMS

To assess generalization, we evaluate on *PINNacle* (Zhongkai et al., 2024). On challenging multiscale tasks, baselines such as PINNsFormer (Zhao et al., 2024) and PINNMamba (Xu et al., 2025) either fail to converge or run into out-of-memory errors, whereas *ResPINN* trains successfully while maintaining comparable accuracy on the remaining tasks. Details of the PINNacle experiments are shown in Appendix E.

6 CONCLUSION

We reframed PINNs as *residual flows*: networks that solve PDEs by iteratively refining predictions through small residual updates. This view makes two optimization effects explicit—*gradient alignment* (updates aligned with descent) and *Jacobian neutrality* (near-identity per-step Jacobians)—and led to simple instantiations (ResPINN, O-PINN, progressive residual flows).

Across canonical PDEs and the PINNacle suite, ResPINN achieved consistently lower errors. Mechanistic diagnostics support our hypotheses: residual blocks operate in the small-step regime (H1), maintain near-identity Jacobians across depth (H2), and exhibit iterative refinement (H3) as shown by decreasing update ratios in ResPINNs and stagewise error telescoping in curriculum training. These gains persist across activations, and the continuous formulation (O-PINN) can be advantageous on some PDE families, suggesting that continuous-time parameterizations merit exploration for very deep regimes.

Future work may explore how different numerical solvers induce distinct refinement behaviors, and whether ODE parameterizations applied directly in solution space for time-dependent PDEs can further mitigate failure modes. Bridging local theoretical insights with global behaviors observed in practice offers a promising avenue for deepening our understanding of residual flows.

7 Reproducibility Statement.

All PDE setups (governing equations, domains, analytic solutions, and meshes) are detailed in Appendix D. Theoretical results and proofs appear in Appendix B, with the mean-field shattering adap-

tation in Appendix C. Architectural and solver specifications for ResPINN, O-PINN, and Progressive Flow are given in Appendix F, and additional alignment/refinement diagnostics are in Appendix G. PINNacle task definitions and results are reported in Appendix E. An anonymous code respository containing implementations of residual flows and scripts reproducing the experiments is available at https://anonymous.4open.science/r/resflows-0FD5

REFERENCES

- David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams. The shattered gradients problem: If resnets are the answer, then what is the question? In *International conference on machine learning*, pp. 342–350. PMLR, 2017.
- Jie Bu and Anuj Karpatne. Quadratic residual networks: A new class of neural networks for solving forward and inverse problems in physics involving pdes. In *Proceedings of the 2021 SIAM International Conference on Data Mining (SDM)*, pp. 675–683. SIAM, 2021.
- Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential equations. *Advances in neural information processing systems*, 31, 2018.
- Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures in physics-informed neural networks using retain-resample-release (R3) sampling. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning Research*, pp. 7264–7302. PMLR, 2023. URL https://proceedings.mlr.press/v202/daw23a.html.
- Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=HkpbnH91x.
- Klaus Greff, Rupesh K. Srivastava, and Jürgen Schmidhuber. Highway and residual networks learn unrolled iterative estimation. In *International Conference on Learning Representations*, 2017. URL https://openreview.net/forum?id=Skn9Shcxe.
- Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. *Inverse problems*, 34(1):014004, 2017.
- Eldad Haber, Keegan Lensink, Eran Treister, and Lars Ruthotto. IMEXnet a forward stable deep neural network. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 2525–2534. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/haber19a.html.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.
- Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio. Residual connections encourage iterative inference. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=SJa9iHgAZ.
- Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. *Advances in neural information processing systems*, 31, 2018.
- Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Characterizing possible failure modes in physics-informed neural networks. *Advances in Neural Information Processing Systems*, 34:26548–26560, 2021.
- Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with learned deformations for pdes on general geometries. *Journal of Machine Learning Research*, 24(388):1–26, 2023.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov-arnold networks. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=Ozo7qJ5vZi.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. *Nature machine intelligence*, 3(3):218–229, 2021a.

- Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning library for solving differential equations. *SIAM Review*, 63(1):208–228, 2021b. doi: 10.1137/19M1274067.
- Yiping Lu, Bin Zhong, Jian Li, and Bin Dong. Beyond finite layer neural networks: Deep networks as dynamical systems. In *ICLR*, 2018.
- Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of spectral universality in deep networks. In *International Conference on Artificial Intelligence and Statistics*, pp. 1924–1932. PMLR, 2018.
- Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential expressivity in deep neural networks through transient chaos. *Advances in neural information processing systems*, 29, 2016.
- Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational physics*, 378:686–707, 2019.
- Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *International conference on machine learning*, pp. 1530–1538. PMLR, 2015.
- Yogesh Verma, Markus Heinonen, and Vikas Garg. ClimODE: Climate forecasting with physics-informed neural ODEs. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=xuY33XhEGR.
- Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies in physics-informed neural networks. *CoRR*, abs/2001.04536, 2020. URL https://arxiv.org/abs/2001.04536.
- Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. *SIAM Journal on Scientific Computing*, 43(5):A3055–A3081, 2021.
- Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learning with residual adaptive networks. *Journal of Machine Learning Research*, 25(402):1–51, 2024.
- Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in sinusoidal spaces with physics-informed neural networks. *IEEE Transactions on Artificial Intelligence*, 5 (3):985–1000, 2022.
- Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, and Mingsheng Long. Ropinn: Region optimized physics-informed neural networks. In *Advances in Neural Information Processing Systems*, 2024.
- Chenhui Xu, Dancheng Liu, Yuting Hu, Jiajie Li, Ruiyang Qin, Qingxiao Zheng, and Jinjun Xiong. Sub-sequential physics-informed learning with state space model. In *Forty-second International Conference on Machine Learning*, 2025. URL https://openreview.net/forum?id=V7VnjJxBlg.
- Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. *Advances in neural information processing systems*, 30, 2017.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and patrick gallinari. Continuous PDE dynamics forecasting with implicit neural representations. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=B73niNjbPs.

Zhiyuan Zhao, Xueying Ding, and B. Aditya Prakash. PINNsformer: A transformer-based framework for physics-informed neural networks. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=DO2WFXU1Be.

Hao Zhongkai, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang, Songming Liu, Lu Lu, et al. Pinnacle: A comprehensive benchmark of physics-informed neural networks for solving pdes. *Advances in Neural Information Processing Systems*, 37:76721–76774, 2024.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models solely for surface-level editing: spelling and grammar correction, and minor wording improvements. LLMs were *not* used for idea generation, experiment design, data analysis, coding, mathematical derivations, or substantive content creation.

B PROOFS

 We study feature evolution through a latent flow induced by residual transformations in continuous network time:

$$\frac{dz(k)}{dk} = T(z(k), k; x, t), \qquad k \in [0, K], \qquad z(0) = z_0 := E(x, t) \in \mathbb{R}^{d_h}. \tag{3}$$

Remark B.1 (Analytical surrogate). Equation equation 3 is not intended as the literal dynamics of fully connected PINNs, but as an analytical surrogate that lets us study feature evolution and gradient misalignment using the language of residual flows.

Lemma B.2 (Integral form). If $T(\cdot, \cdot)$ is continuous, then z is a solution of equation 3 on [0, K] if and only if

$$z(k) = z_0 + \int_0^k T(z(\tau), \tau; x, t) d\tau, \qquad 0 \le k \le K.$$
 (4)

Proof. (\Rightarrow) Integrate equation 3 from 0 to k to obtain equation 4.

(\Leftarrow) If equation 4 holds and $T(z(\tau), \tau)$ is continuous in τ , then by the fundamental theorem of calculus the map $k \mapsto z(k)$ is differentiable with $\frac{dz}{dk} = T(z(k), k)$ and $z(0) = z_0$, i.e., z solves equation 3

Theorem B.3 (Banach contraction mapping). Let $(X, \|\cdot\|_X)$ be a Banach space and let $F: X \to X$ satisfy

$$||F(z) - F(z')||_X \le c ||z - z'||_X, \quad \forall z, z' \in X,$$

for some 0 < c < 1. Then F admits a unique fixed point $z^* \in X$, and the iterates $z^{(n+1)} = F(z^{(n)})$ converge to z^* for any initial $z^{(0)} \in X$.

Theorem B.4 (Existence and uniqueness of a solution of a residual flow). Let $T : \mathbb{R}^{d_h} \times [0, K] \to \mathbb{R}^{d_h}$ be continuous and assume there exists L > 0 such that

$$||T(z_1,k) - T(z_2,k)|| \le L ||z_1 - z_2||, \qquad ||T(z,k)|| \le L(1+||z||),$$
 (5)

for all $z, z_1, z_2 \in \mathbb{R}^{d_h}$ and $k \in [0, K]$. Then the IVP 3 admits a unique solution $z \in C([0, K], \mathbb{R}^{d_h})$.

Proof. Fix $\delta>0$ and consider the Banach space $X=C([0,\delta],\mathbb{R}^{d_h})$ with norm $\|z\|_X=\sup_{0\leq s\leq \delta}\|z(s)\|$. Define the flow operator

$$(\mathcal{F}z)(k) := z_0 + \int_0^k T(z(\tau), \tau) d\tau.$$

If $\mathcal{F}z = z$, then by Lemma B.2, z solves the IVP on $[0, \delta]$.

For $z, z' \in X$ and $k \in [0, \delta]$,

$$\|(\mathcal{F}z)(k) - (\mathcal{F}z')(k)\| \le \int_0^k \|T(z(\tau), \tau) - T(z'(\tau), \tau)\| d\tau \le L\delta \|z - z'\|_X.$$

Thus $\|\mathcal{F}z - \mathcal{F}z'\|_X \leq L\delta\|z - z'\|_X$, so \mathcal{F} is a contraction whenever $L\delta < 1$. By Theorem B.3, \mathcal{F} has a unique fixed point in X, which is the unique solution on $[0, \delta]$. Repeating the argument on successive intervals of length δ extends the solution uniquely to all of [0, K].

Definition B.5 (Discrete Residual Step). Let $\Delta k>0$ and $k_n:=n\,\Delta k$ for $n=0,\ldots,N$ with $N\Delta k=K$. The explicit Euler discretization of the residual flow $\frac{dz(k)}{dk}=T(z(k),k;\,x,t)$ with $z(0)=z_0:=E(x,t)$ is

$$z_{n+1} = z_n + \Delta k T(z_n, k_n; x, t), \qquad z_0 = E(x, t).$$

Equivalently, this is a residual update with $T_n(z_n) := \Delta k T(z_n, k_n; x, t)$.

Definition B.6 (Convergence/order). Let $z(\cdot)$ denote the (unique) solution of the IVP on [0, K]. A time-stepping scheme producing $\{z_n\}_{n=0}^N$ is said to *converge with order* p on [0, K] if there exists a constant C, independent of Δk , such that

$$\max_{0 \le n \le N} \|z(k_n) - z_n\| \le C (\Delta k)^p.$$

Theorem B.7 (First-order convergence of the residual flows). Assume the hypotheses of existence/uniqueness hold (global Lipschitz and linear growth in z for T), and that the solution z is twice continuously differentiable on [0, K]. Let $\{z_n\}$ be defined by B.5. Then the discrete formulation of the residual flows converges with order 1:

$$\max_{0 \le n \le N} \| z(k_n) - z_n \| \le C_K \Delta k,$$

where C_K depends on K, the Lipschitz constant L of T in z, and $\max_{k \in [0,K]} \|\ddot{z}(k)\|$, but is independent of Δk . Sketch. Taylor expand $z(k_{n+1}) = z(k_n) + \Delta k \, \dot{z}(k_n) + R_n$ with $\|R_n\| \le C \, (\Delta k)^2$. Using $\dot{z}(k_n) = T(z(k_n), k_n)$ and subtracting the Euler step gives the error recurrence $e_{n+1} \le (1 + L\Delta k) \, e_n + C \, (\Delta k)^2$, where $e_n := \|z(k_n) - z_n\|$. Apply the discrete Grönwall lemma to obtain $e_n \le C \, \frac{e^{Lk_n} - 1}{L} \, \Delta k \le C \, \frac{e^{Lk} - 1}{L} \, \Delta k$.

Proposition B.8 (Gradient alignment in residual flows). Let $\mathcal{L}: \mathbb{R}^{d_h} \to \mathbb{R}$ be continuously differentiable, and let $z: [0, K] \to \mathbb{R}^{d_h}$ be a continuously differentiable solution of the residual flow IVP equation 3. Then, for all $k \in [0, K]$,

$$\frac{d}{dk} \mathcal{L}(z(k)) = \langle \nabla \mathcal{L}(z(k)), T(z(k), k; x, t) \rangle.$$
 (6)

1. If

$$\langle \nabla \mathcal{L}(z(k)), T(z(k), k) \rangle \leq 0 \quad \text{for all } k \in [0, K],$$
 (7)

then $\mathcal{L}(z(k))$ is nonincreasing on [0, K].

2. If there exists a constant $c \in (0,1]$ such that

$$\frac{\left\langle T(z(k),k), -\nabla \mathcal{L}(z(k)) \right\rangle}{\|T(z(k),k)\| \|\nabla \mathcal{L}(z(k))\|} \ge c \quad and \quad \|T(z(k),k)\| > 0 \quad for all \ k \in I \subset [0,K],$$
(8)

then $\mathcal{L}(z(k))$ is strictly decreasing on I.

Proof. The chain rule gives equation 6. Under equation 7, $\frac{d}{dk}\mathcal{L}(z(k)) \leq 0$ for all k, so $\mathcal{L}(z(k))$ is nonincreasing.

For equation 8, write

$$\frac{d}{dk}\mathcal{L}(z(k)) = - \|\nabla \mathcal{L}(z(k))\| \|T(z(k), k)\| \frac{\langle T(z(k), k), -\nabla \mathcal{L}(z(k))\rangle}{\|T(z(k), k)\| \|\nabla \mathcal{L}(z(k))\|}$$
(9)

$$< -c \|\nabla \mathcal{L}(z(k))\| \|T(z(k), k)\|.$$
 (10)

On any interval I where c > 0 and ||T(z(k), k)|| > 0, the right-hand side is strictly negative, hence $\mathcal{L}(z(k))$ is strictly decreasing on I.

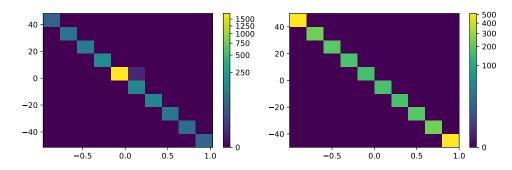


Figure 4: A 2D histogram of input-output Jacobian for convection PDE evaluated on a 50x50 equispaced grid. (left) A trained PINN. Few gradients follow the linearity of the solution while the most mass is concentrated around 0 which is a sign of vanishing gradients. (right) The Jacobian of the analytical solution.

Proof of Lemma 3.2. Since \mathcal{L} has β -Lipschitz continuous gradient, we have for any u, v in a neighborhood of z_k :

$$\mathcal{L}(v) \le \mathcal{L}(u) + \langle \nabla \mathcal{L}(u), v - u \rangle + \frac{\beta}{2} ||v - u||^2.$$

Apply this inequality with $u = z_k$ and $v = z_{k+1} = z_k + T_k(z_k)$:

$$\mathcal{L}(z_{k+1}) \leq \mathcal{L}(z_k) + \langle \nabla_{z_k} \mathcal{L}(z_k), T_k(z_k) \rangle + \frac{\beta}{2} ||T_k(z_k)||^2.$$

To capture the effect of depth, note that subsequent updates depend on how T_j is transformed through the Jacobians $J_\ell = \partial z_{\ell+1}/\partial z_\ell$. The gradient at z_k is related to the gradient at z_{k+1} by the chain rule:

$$\nabla_{z_k} \mathcal{L}(z_{k+1}) = J_k^{\top} \nabla_{z_{k+1}} \mathcal{L}(z_{k+1}).$$

Rolling this back from step K to step k shows that each local Lipschitz constant is scaled by the squared operator norms of the Jacobians:

$$\|\nabla^2 \mathcal{L}(z_k)\|_2 \le \beta \Big(\prod_{\ell=k}^{K-1} \|J_\ell\|_2\Big)^2.$$

Therefore there exists a local smoothness constant $\beta_k \leq \beta \left(\prod_{\ell=k}^{K-1} \|J_\ell\|_2\right)^2$ such that

$$\mathcal{L}(z_{k+1}) \leq \mathcal{L}(z_k) + \langle \nabla_{z_k} \mathcal{L}(z_k), T_k(z_k) \rangle + \frac{\beta_k}{2} \|T_k(z_k)\|^2.$$

This completes the proof.

C MEAN-FIELD GRADIENT SHATTERING FOR PINN JACOBIANS

Our analysis of gradient shattering follows directly from the mean-field studies of deep random networks by Poole et al. (2016), Balduzzi et al. (2017), Pennington et al. (2018), and Yang & Schoenholz (2017). We adapt their derivations to the input—output Jacobians relevant for PINNs.

Theorem C.1 (Adapted from prior work on shattered gradients). *Consider a depth-L, width-n fully-connected network with random Gaussian initialization as in Poole et al.* (2016); Balduzzi et al. (2017). Let $J_{\theta}(z) = \nabla_z u_{\theta}(z)$ denote the input–output Jacobian at input z. In the mean-field limit $n \to \infty$ the following hold:

(A) **Exponential decorrelation.** For nearby inputs z, z', correlations between Jacobians decay exponentially with depth:

$$\mathbb{E}\big[\cos(J_{\theta}(z),J_{\theta}(z'))\big] = \mathcal{O}(\rho^L), \quad \rho \in (0,1).$$

(B) Norm growth/decay. Jacobian norms scale exponentially with depth:

$$\mathbb{E}||J_{\theta}(z)||_F^2 = \Theta(\gamma^L),$$

with $\gamma=1$ only on the edge-of-chaos manifold; generically $\gamma\neq 1$, yielding vanishing or exploding norms.

Proof sketch. The argument mirrors Poole et al. (2016); Pennington et al. (2018). Pre-activations converge to Gaussian processes in the mean-field limit, and input sensitivities evolve via multiplicative recursions depending on $\mathbb{E}[\phi'(u)^2]$. Cross-input correlations shrink by a factor $\rho < 1$ per layer, while sensitivity norms scale by γ . Full details can be found in the cited works; here we simply specialize the analysis to the input–output Jacobians of PINNs.

Empirical illustration. The mean-field analysis predicts vanishing or exploding Jacobian norms and exponential loss of correlation across nearby inputs. Figure 4 provides an empirical counterpart: for the convection PDE, we plot the distribution of input—output Jacobian entries on a 50×50 evaluation grid. For a trained PINN, most Jacobian values concentrate near zero, indicating collapsed sensitivities, with only a few gradients reflecting the true structure of the solution. By contrast, the analytical Jacobian remains well spread, showing the expected variation across space—time. This behavior has been also observed on other PDES where PINNs exhibit failure modes.

D PDE SETUPS AND METRICS

D.1 METRICS

In our experiments, we report three metrics: the training loss (defined in Eq. (2)), the relative mean absolute error (rMAE), and the relative root mean squared error (rMSE). For a set of evaluation points S, model prediction u_{θ} , and ground-truth solution u^* , we define

$$rMAE = \frac{\sum_{x \in \mathcal{S}} |u_{\theta}(x) - u^{*}(x)|}{\sum_{x \in \mathcal{S}} |u^{*}(x)|}, \quad rMSE = \sqrt{\frac{\sum_{x \in \mathcal{S}} (u_{\theta}(x) - u^{*}(x))^{2}}{\sum_{x \in \mathcal{S}} (u^{*}(x))^{2}}}.$$
 (11)

Note that both $u_{\theta}(x)$ and $u^*(x)$ can take positive or negative values; consequently, rMAE and rMSE may exceed 1.

D.2 BENCHMARKS

To comprehensively test our algorithm, we include four benchmarks. The first three correspond to canonical PDEs widely used in the PINN literature (see Figure 7), while the last one is the large-scale *PINNacle* benchmark Zhongkai et al. (2024).

1D–Reaction. This one-dimensional nonlinear ODE models chemical reactions:

$$\frac{\partial u}{\partial t} - \rho u(1 - u) = 0, \quad x \in (0, 2\pi), \ t \in (0, 1),$$

with initial and boundary conditions

$$u(x,0) = \exp\left(-\frac{(x-\pi)^2}{2(\pi/4)^2}\right), \quad u(0,t) = u(2\pi,t).$$

The analytic solution is

$$u(x,t) = \frac{h(x)e^{\rho t}}{h(x)e^{\rho t} + 1 - h(x)}, \quad h(x) = \exp\left(-\frac{(x-\pi)^2}{2(\pi/4)^2}\right),$$

with $\rho=5$. Prior work Raissi et al. (2019); Krishnapriyan et al. (2021) identified this case as a "PINN failure mode" due to the nonlinear term, and its sharp interior boundary adds further difficulty. Following PINNsFormer Xu et al. (2025), we sample 101 points on the initial/boundary sets and a 101×101 grid on the residual domain. Evaluation uses the same mesh.

1D-Wave. A standard hyperbolic PDE from acoustics and fluid dynamics:

$$\frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in (0, 1), \ t \in (0, 1),$$

Table 4: PDE benchmarks from PINNacle Zhongkai et al. (2024). We list input dimensionality, training/testing sizes, and representative simplified equations. All PDEs here are second-order. Full formalizations, coefficient meanings, and boundary/initial conditions appear in Zhongkai et al. (2024).

PDE	Dimension	$N_{ m train}$	$N_{ m test}$	Key Equation
Durgara	1D+Time (1d-C)	16384	12288	$\frac{\partial u}{\partial t} + u \cdot \nabla u - \nu \Delta u = 0$
Burgers	2D+Time (2d-C)	98308	82690	same form in 2D
	2D (2d-C)	12288	10240	$-\Delta u = 0$
Poisson	2D (2d-CG)	12288	10240	$-\Delta u + k^2 u = f(x, y)$
r 0188011	3D (3d-CG)	49152	40960	$-\mu_i \Delta u + k_i^2 u = f(x, y, z), \ i = 1, 2$
	2D (2d-MS)	12288	10329	$-\nabla(a(x)\nabla u) = f(x,y)$
	2D+Time (2d-VC)	65536	49189	$\frac{\partial u}{\partial t} - \nabla(a(x)\nabla u) = f(x,t)$
Heat	2D+Time (2d-MS)	65536	49189	$\frac{\partial u}{\partial t} - \frac{1}{(500\pi)^2} u_{xx} - \frac{1}{\pi^2} u_{yy} = 0$
	2D+Time (2d-CG)	65536	49152	$\frac{\partial u}{\partial t} - \Delta u = 0$
Navier–Stokes	2D (2d-C)	14337	12378	$u \cdot \nabla u + \nabla p - \frac{1}{Re} \Delta u = 0, \ \nabla \cdot u = 0$
ravici-Stokes	2D (2d-CG)	14055	12007	same form
Wave	1D+Time (1d-C)	12288	10329	$u_{tt} - 4u_{xx} = 0$
wave	2D+Time (2d-CG)	49170	42194	$\left[\nabla^2 - \frac{1}{c(x)} \frac{\partial^2}{\partial t^2}\right] u(x, t) = 0$
Chaotic (GS)	2D+Time	65536	61780	$\begin{cases} u_t = \varepsilon_1 \Delta u + b(1 - u) - uv^2, \\ v_t = \varepsilon_2 \Delta v - dv + uv^2 \end{cases}$
High-dim	5D (P-Nd)	49152	67241	$-\Delta u = \frac{\pi^2}{4} \sum_{i=1}^n \sin(\frac{\pi}{2}x_i)$
mgn-um	5D+Time (H-Nd)	65537	49152	$\frac{\partial u}{\partial t} = k\Delta u + f(x, t)$

with initial and boundary conditions

$$u(x,0) = \sin(\pi x) + \frac{1}{2}\sin(\beta \pi x), \quad \frac{\partial u(x,0)}{\partial t} = 0, \quad u(0,t) = u(1,t) = 0.$$

The analytic solution is

$$u(x,t) = \sin(\pi x)\cos(2\pi t) + \frac{1}{2}\sin(\beta\pi x)\cos(2\beta\pi t),$$

with $\beta = 3$. Compared to Reaction and Convection, the solution is smoother, making it easier for deep models. Training/evaluation meshes are sampled as in Reaction.

1D-Convection. A hyperbolic PDE relevant in fluids, atmosphere, and heat transfer:

$$\frac{\partial u}{\partial t} + \beta \frac{\partial u}{\partial x} = 0, \quad x \in (0, 2\pi), \ t \in (0, 1),$$

with

$$u(x,0) = \sin(x), \quad u(0,t) = u(2\pi, t).$$

The analytic solution is $u(x,t) = \sin(x-\beta t)$, where we set $\beta = 50$. Despite its simple closed form, this problem is challenging for PINNs due to the high-frequency oscillations and sharp loss landscape Krishnapriyan et al. (2021). Training/evaluation meshes follow the same setup as above.

PINNacle. The fourth benchmark is *PINNacle* Zhongkai et al. (2024), built on DeepXDE Lu et al. (2021b). It comprises 20 PDE tasks covering fluid dynamics, heat conduction, nonlinear and multiscale phenomena, and high-dimensional settings. We found that several subtasks are unsolved by existing methods (e.g., Heat–2d-LT, NS–2d-LT, Wave–2d-MS, Kuramoto–Sivashinsky). These

Table 5: Results on PINNacle. Baseline results are from Wu et al. (2024); Xu et al. (2025). OOM means Out-of-Memory.

	PINN		PINNsFormer		PINNMamba		ResPINN	
Equation	rMAE	rRMSE	rMAE	rRMSE	rMAE	rRMSE	rMAE	rRMSE
Burgers 1d-C	1.1e-2	3.3e-2	9.3e-3	1.4e-2	3.7e-3	1.1e-3	4.6e-3	1.4e-3
Burgers 2d-C	4.5e-1	5.2e-1	OOM	OOM	OOM	OOM	OOM	OOM
Poisson 2d-C	7.5e-1	6.8e-1	7.2e-1	6.6e-1	6.2e-1	5.7e-1	7.8e-1	7.1e-1
Poisson 2d-CG	5.4e-1	6.6e-1	5.4e-1	6.3e-1	1.2e-1	1.4e-1	4.4e-3	8.6e-3
Poisson 3d-CG	4.2e-1	5.0e-1	OOM	OOM	OOM	OOM	OOM	OOM
Poisson 2d-MS	7.8e-1	6.4e-1	1.3e+0	1.1e+0	7.2e-1	6.0e-1	9.0e-1	7.5e-1
Heat 2d-VC	1.2e+0	9.8e-1	OOM	OOM	OOM	OOM	OOM	OOM
Heat 2d-MS	4.7e-2	6.9e-2	OOM	OOM	OOM	OOM	6.5e-3	4.5e-3
Heat 2d-CG	2.7e-2	2.3e-2	OOM	OOM	OOM	OOM	OOM	OOM
NS 2d-C	6.1e-2	5.1e-2	OOM	OOM	OOM	OOM	OOM	OOM
NS 2d-CG	1.8e-1	1.1e-1	1.0e-1	7.0e-2	1.1e-2	7.8e-3	1.4e-2	9.8e-3
Wave 1d-C	5.5e-1	5.5e-1	5.0e-1	5.1e-1	1.0e-1	1.0e-1	3.4-2	3.7e-2
Wave 2d-CG	2.3e+0	1.6e + 0	OOM	OOM	OOM	OOM	OOM	OOM
Chaotic GS	2.1e-2	9.4e-2	OOM	OOM	OOM	OOM	OOM	OOM
High-dim PNd	1.2e-3	1.1e-3	OOM	OOM	OOM	OOM	OOM	OOM
High-dim HNd	1.2e-2	5.3e-3	OOM	OOM	OOM	OOM	OOM	OOM

involve long-time dynamics or high-order derivatives, which present challenges beyond those noted in the original paper. To focus on training paradigms rather than backbone design, we omit these four hardest cases and evaluate on the remaining 16 tasks. Dataset details are summarized in Table 4.

E PINNACLE PDE BENCHMARK

F ODE SOLVERS AND RESIDUAL FLOWS

For completeness, we recall the connection between residual updates and classical numerical ODE solvers. Consider an ODE

$$\frac{dh(t)}{dt} = f(h(t), t), \qquad h(0) = h_0.$$

F.1 RESIDUAL FLOW SOLVERS

Forward Euler. The simplest explicit solver advances in steps of size $\alpha > 0$ via

$$h_{k+1} = h_k + \alpha f(h_k, t_k).$$

This is precisely the form of a residual block: each step applies a correction around the identity.

Runge–Kutta (RK4). Higher-order solvers reduce truncation error by evaluating f at intermediate points. The classical fourth-order Runge–Kutta scheme computes

$$\begin{aligned} k_1 &= f(h_k, t_k), \\ k_2 &= f(h_k + \frac{\alpha}{2}k_1, t_k + \frac{\alpha}{2}), \\ k_3 &= f(h_k + \frac{\alpha}{2}k_2, t_k + \frac{\alpha}{2}), \\ k_4 &= f(h_k + \alpha k_3, t_k + \alpha), \\ h_{k+1} &= h_k + \frac{\alpha}{6}(k_1 + 2k_2 + 2k_3 + k_4). \end{aligned}$$

ResPINNs correspond to Euler-like discrete updates, while *O-PINNs* instantiate the continuous limit using RK4 integration with weight sharing. Implementation details follow.

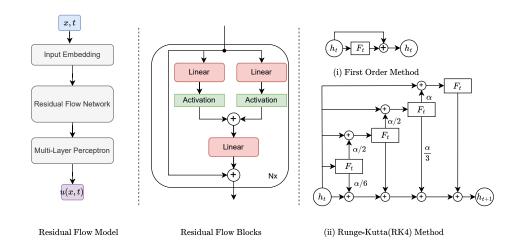


Figure 5: ResPINN overview. Inputs (x,t) are encoded to a latent state h(0), which is iteratively refined by a residual flow in pseudo-time s. The flow is realized either as a stacked residual (Euler) network or as a higher-order explicit solver RK4. The terminal state h(S) is decoded to the PDE solution u(x,t).

F.2 IMPLEMENTATION OF RESIDUAL FLOWS

ResPINN (discrete residual stack). A fixed-depth network composed of K=10 residual blocks, each block containing three fully connected layers of width 64 with a skip connection. A linear encoder maps inputs to latent space, and a single fully connected output head maps back to the PDE solution.

O-PINN (continuous residual flow). Uses the same residual block as the vector field f_{θ} , but instead of stacking layers explicitly, the dynamics are integrated with RK4. This yields a continuous-depth model whose trajectory corresponds to an effectively deeper residual flow.

Progressive Flow. Starts with three residual blocks and adds two new blocks at each training stage while freezing earlier ones. Both encoder and decoder are linear projections, ensuring that representational capacity resides in the blocks. At each stage, the final projection layer is re-initialized and trained as a predictor of the PDE solution, providing a direct probe of iterative refinement.

An overview of ResPINN and O-PINN archirectures is shown in Figure 5.

G ADDITIONAL ALIGNMENT PLOTS

H More Plots on Iterative refinement of PDE solutions

I MORE ON ERROR AND SOLUTION MAPS

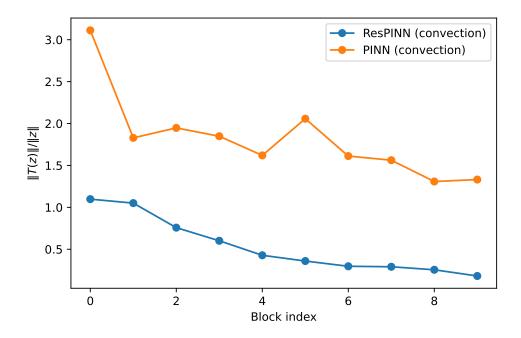


Figure 6: Relative transformation magnitude $||T(z_k)||/||z_k||$ per block for the convection problem. ResPINNs keep ratios near unity, suppressing spectral growth and stabilizing gradient flow. In contrast, PINNs amplify inputs more strongly, reflecting anisotropy and poor conditioning.

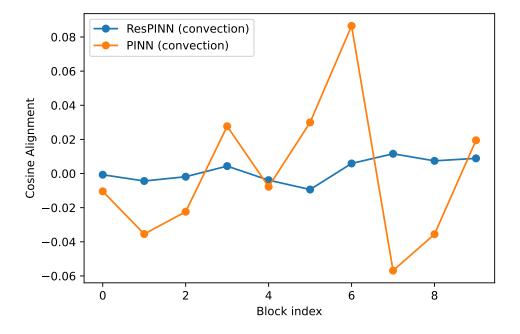


Figure 7: Cosine alignment between block updates and local loss gradients for the convection problem. ResPINNs remain close to zero, indicating residual updates act primarily as stabilizers rather than directly following descent directions. PINNs oscillate between positive and negative values, reflecting inconsistent alignment and unstable propagation.

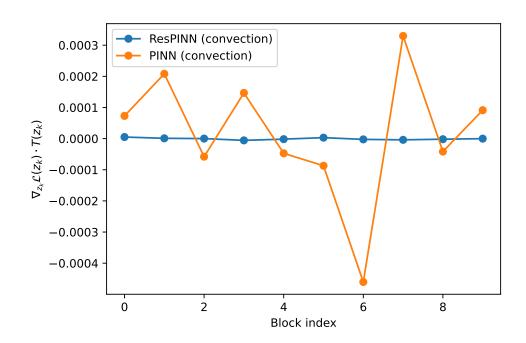


Figure 8: Inner product between block update $T(z_k)$ and the local loss gradient across block depth for the 1D convection problem. ResPINNs maintain values close to zero, consistent with near-isometric transformations. Standard PINNs exhibit larger fluctuations, indicating unstable amplification of activation directions.

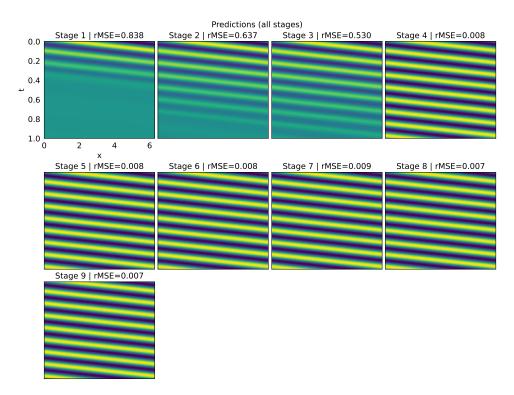


Figure 9: Predicted solutions across blocks. Earlier blocks run into failure modes where they fail to capture temporal dynamics of the convection PDE on $\beta=50$. With more residual steps, the model captures increasingly fine temporal dynamics.

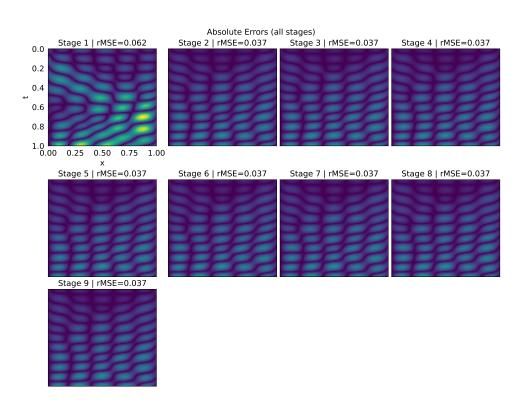


Figure 10: Absolute Errors across blocks on wave PDE.

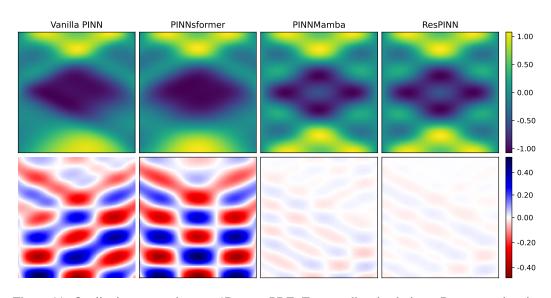


Figure 11: Qualitative comparison on 1D wave PDE. Top: predicted solutions. Bottom: pointwise errors.

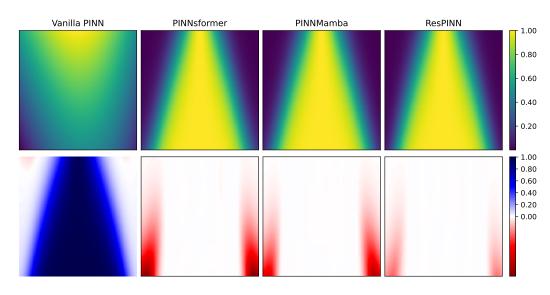


Figure 12: Qualitative comparison on 1D Reaction PDE. Top: predicted solutions. Bottom: pointwise errors.