
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PHYSICS-INFORMED RESIDUAL FLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-Informed Neural Networks (PINNs) embed physical laws into deep learn-
ing models. However, conventional PINNs often suffer from failure modes leading
to inaccurate solutions. We trace these failure modes to two structural pathologies:
gradient shattering, where gradients degrade with depth and provide little training
signal, and flow mismatch, where training pushes predictions along trajectories
that diverge from the PDE solution path. We introduce ResPINNs, which refor-
mulate PINNs as residual flows, networks that iteratively refine their own predic-
tions through explicit corrective steps, in the spirit of classical iterative solvers.
Our analysis shows that this design mitigates both pathologies by keeping updates
aligned with descent and by preserving informative gradients across depth. Ex-
tensive experiments on PDE benchmarks confirm that ResPINNs achieve higher
accuracy with substantially fewer parameters than conventional architectures.

1 REVISITING FAILURE MODES IN PINNS

Partial differential equations (PDEs) govern a wide range of physical, engineering, and scientific
systems. Because closed-form solutions are rarely available, numerical solvers such as finite dif-
ference, finite element, or spectral methods are the standard tools, but these approaches are compu-
tationally costly and restricted to discretized meshes. Physics-Informed Neural Networks (PINNs)
(Raissi et al., 2019) have emerged as a promising alternative, embedding PDE, initial, and boundary
conditions into the loss of a neural network. By leveraging automatic differentiation, PINNs can in
principle approximate PDE solutions continuously in space and time.

Despite recent advances, PINNs remain vulnerable to intrinsic failure modes. Krishnapriyan et al.
(2021) document several types of PDEs that are especially challenging, often due to parameters
that induce high-frequency or complex solution behaviors. In such cases, PINNs may fail to prop-
agate initial conditions accurately. A typical manifestation is the emergence of overly smooth so-
lutions which can minimize empirical loss while ignoring temporal dynamics. To address these
shortcomings, various strategies have been proposed, including optimization techniques (Wu et al.,
2024; Wang et al., 2021; Liu et al., 2025; Wong et al., 2022; Bu & Karpatne, 2021), adaptive sam-
pling (Daw et al., 2023), architectural modifications (Zhao et al., 2024; Xu et al., 2025; Wang et al.,
2021). However, these methods do not explicitly address the instability caused by noisy gradients,
often referred to as gradient shattering, which can mislead training and limit robustness.

Orthogonal to these advances, we revisit the failure modes of PINNs from two complementary an-
gles: optimization dynamics and representation flow. We identify two structural problems. First,
gradient shattering: As depth increases, the input–output Jacobians of PINNs decorrelate expo-
nentially, while their norms either vanish or explode. Since PDE residuals require repeated differ-
entiation of the network outputs, this effect is amplified in PINNs, making optimization unstable
even when the residual loss is small. Second, flow mismatch: training updates in latent space need
not align with true descent directions, so the network can satisfy residual constraints locally while
drifting globally, failing to propagate initial conditions. To address these issues, we introduce the
notion of residual flows: networks designed as iterative refinement schemes, where its components
perform a small correction around the identity. This stepwise view connects directly to three es-
tablished perspectives: (i) residual networks, where skip connections stabilize gradients; (ii) neural
ODEs, where depth corresponds to integrating a continuous-time flow; and (iii) classical iterative
solvers, where predictor–corrector updates progressively reduce error. In the PINN setting, these
formulations coincide: residual flows stabilize Jacobians, keep updates aligned with loss descent,
and preserve initial and boundary conditions across depth.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Ablation study on Convection, Reaction and Wave PDEs. The relative MAE values are
reported. Removing attention and replacing it with linear mappings preserves or even improves
performance, despite the drastic reduction in complexity.

Model Convection
(rMAE)

Reaction
(rMAE)

Wave (rMAE)

PINNsFormer (Original) 0.510 0.015 0.270
Encoder Only 0.043 0.017 0.058
-Attention + Linear 0.012 0.022 0.022
-Attention + MLP 0.009 0.016 0.142
PINNMamba (Original) 0.019 0.010 0.020
-SSM 0.012 0.013 0.029
-SSM+MLP 0.063 0.014 0.015

Our paper makes the following contributions:

1. Diagnosis. We analyze why standard PINNs fail, tracing condition-propagation errors to
gradient shattering and flow mismatch.

2. Reformulation. We propose Residual Flows, which view solution learning as stepwise
refinement via small residual corrections around the identity, aligning PINNs with classical
predictor–corrector methods.

3. Evidence. Through theory and parameter-matched ablations, we show that residual path-
ways—not explicit sequence modules—are the stabilizing mechanism behind recent gains.
Empirical results on convection, reaction, and wave PDEs confirm improved condition
preservation and solution fidelity.

2 DISSECTING EXISTING APPROACHES TO FAILURE MODES

A central challenge in PINNs for time-dependent PDEs is the propagation of initial conditions across
time. Several recent works have sought to address this by introducing explicit sequence modeling.
For example, Krishnapriyan et al. (2021) proposed recursive sequence-to-sequence training, rolling
solutions forward in time with separate networks. While effective for short horizons, this strategy
is memory- and compute-intensive, and does not generalize reliably outside the training window.
More recent approaches have adapted modern sequence architectures: Zhao et al. (2024) introduced
a transformer-based framework (PINNsFormer), while Xu et al. (2025) proposed state-space models
(PINNMamba). Both report improved accuracy and robustness, attributing their gains to the ability
of attention or structured recurrence to capture long-range temporal dependencies.

At first glance, these results seem to suggest that sophisticated sequence modules are essential for
overcoming failure modes in time-dependent PINNs. Yet this conclusion is not entirely satisfying:
improvements could equally stem from side effects such as increased parameterization, altered op-
timization dynamics, or more flexible local mappings. In other words, what appears as a benefit of
“long-range temporal modeling” may instead be an artifact of broader architectural changes. This
motivates a sharper question: are sequence modules truly the driving factor behind the reported
improvements, or are we attributing gains to the wrong mechanism? To probe this, we designed
a controlled ablation study. Training setup, initialization, and sampling were kept fixed, and only
the internal sequence modules were varied. Specifically, self-attention and state-space operators
were replaced with deliberately simple local mappings (a linear projection or a shallow MLP), with
parameter counts carefully matched within ±10%. This isolates the effect of explicit sequence mod-
eling from confounding factors such as model capacity or optimization differences.

The evidence in Table 1 challenges the conventional explanation. The table compares both
transformer-based (PINNsFormer) and state-space–based (PINNMamba) architectures against ab-
lated versions where their sequence modules are removed or replaced with simpler alternatives. For
PINNsFormer, the encoder is retained while attention is stripped out and substituted either with a
linear projection or a shallow MLP. For PINNMamba, the state-space operator is removed outright

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

or replaced by an MLP with matched parameter count. Across all three PDE benchmarks, these
simplified variants perform comparably to the original models, indicating that explicit attention or
structured recurrence is not essential for maintaining accuracy. This suggests that the improvements
attributed to sophisticated sequence modules may instead arise from a different architectural mech-
anism.

Across both transformer- and state-space–based PINNs, one component remains consistent: the
use of residual pathways that carry predictions forward through incremental corrections. Unlike
attention or structured recurrence, these pathways are present in every variant tested, including the
simplified ablations. This observation points to residual connections—not sequence modules—as
the common mechanism underlying stability and accuracy.

Why might residual pathways play such a critical role? At a high level, they enforce an update rule
that keeps each layer close to the identity, nudging predictions forward through small, controlled
steps rather than drastic transformations. This structure has several consequences that help explain
the observed robustness:

(H1) Because updates are incremental, optimization becomes more stable: each layer only needs
to make small corrections, reducing the risk of divergence.

(H2) The skip connections implicit in residual design bias the layer Jacobians toward the identity,
which mitigates gradient shattering and helps preserve information across depth.

(H3) The repeated corrections accumulate like iterations of a solver, progressively refining the
solution in the manner of predictor–corrector schemes.

Taken together, these hypotheses recast the source of robustness in time-dependent PINNs: not the
sophistication of sequence modules, but the refinement dynamics induced by residual flows. In the
remainder of this paper, we put these hypotheses to the test.

3 MITIGATING FAILURE MODES WITH RESIDUAL ALIGNMENT

PINNs can achieve low training loss yet still produce drifting solutions. We trace this to two mech-
anisms: gradient shattering, where Jacobians lose coherence and their norms vanish or explode
with depth, degrading the derivative signal that PINNs rely on; and flow mismatch, where training
pushes predictions along trajectories that diverge from the PDE solution. To address these issues,
we view training not as a single mapping but as an evolving flow in latent space, advanced step by
step through small residual updates. This perspective makes explicit two stabilizing principles: (i)
alignment of updates with descent directions, and (ii) near-identity Jacobians that preserve gradient
propagation. We begin by analyzing gradient shattering and then show how residual formulations
encourage alignment.

3.1 PRELIMINARIES

We consider PDEs on a spatio–temporal domain Ω × [0, T] with solution u : Ω × [0, T] → Rm

subject to interior, initial, and boundary operators F , I,B:

F(u)(x, t) = 0, I(u)(x, 0) = 0, B(u)(x, t) = 0, (1)

PINNs (Raissi et al., 2019) approximate u by a neural network uθ and train by minimizing residuals
at collocation points: interior χ ⊂ Ω×(0, T], initial χ0 ⊂ Ω×{0}, and boundary χ∂ ⊂ ∂Ω× [0, T].
The objective is a weighted mean–squared residual,

L(uθ) =
λF
|χ|

∑
(x,t)∈χ

∥F(uθ)(x, t)∥2 + λI
|χ0|

∑
(x,0)∈χ0

∥I(uθ)(x, 0)∥2 + λB
|χ∂ |

∑
(x,t)∈χ∂

∥B(uθ)(x, t)∥2,

where λF , λI , λB ≥ 0 balance the constraints.1

1We use ⟨A,B⟩F = tr(A⊤B), ∥A∥F for Frobenius norms, ∥·∥ for Euclidean norms, and ∥·∥2 for spectral
norm

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 GRADIENT MISALIGNMENT IN PINNS

A well-documented pathology in deep networks is gradient shattering: correlations between in-
put–output sensitivities at nearby inputs decay exponentially with depth, while their norms either
vanish or explode depending on initialization scaling (Balduzzi et al., 2017; Poole et al., 2016;
Pennington et al., 2018; Yang & Schoenholz, 2017). Since PINNs embed PDE residuals into
the training objective only at sparse collocation points, they are especially vulnerable to this ef-
fect: low residuals can coexist with large solution drift between points. To formalize this, let
Jθ(x, t) = ∇(x,t)uθ(x, t) ∈ Rm×(d+1) denote the input–output Jacobian of the network. We sum-
marize the mean-field behavior below.
Theorem 3.1 (Informal; mean-field gradient shattering). Let uθ be a depth-L, width-n fully con-
nected PINN with i.i.d. Gaussian initialization and a 1-Lipschitz activation. Denote its Jacobian
Jθ(z) = ∇zuθ(z) at input z = (x, t). For nearby z′ with ∥z′−z∥ ≤ r0, define the Frobenius cosine
cos(J1, J2) = ⟨J1, J2⟩F /(∥J1∥F ∥J2∥F). In the mean-field limit n → ∞:

(A) (Exponential decorrelation) E[cos(Jθ(z), Jθ(z′))] = O(ρL) for some ρ ∈ (0, 1).

(B) (Norm growth/decay) E∥Jθ(z)∥2F = Θ(γL) for some γ > 0, with γ = 1 only at critical
variance.

Thus, unless tuned to the edge of chaos, Jacobians decorrelate exponentially and their norms vanish
or explode with depth.

A detailed statement and proof, adapted from classical mean-field analyses of deep random net-
works, is provided in Appendix C.

Implications for PINNs. Sparse collocation makes PINNs particularly vulnerable to gradient
shattering: while residuals may vanish at training points, exponential loss of Jacobian correlation
and unstable norms (Theorem 3.1) allow the learned solution to drift in between. This motivates
enforcing near-identity Jacobians and residual alignment mechanisms to stabilize training. Yet gra-
dient shattering alone only explains how depth degrades the derivative signal; it does not address
how individual network updates contribute to optimization. To examine this, we turn to flow mis-
match, focusing on whether layerwise transformations align with descent directions.

3.3 FLOW MISMATCH CAN HURT PINNS

To understand the gradient misalignment associated with PINNs, we intrepret training as a latent-
space flow problem indexed by an auxiliary solver time k:

dz(k)

dk
= T

(
z(k), k; x, t

)
, k ∈ [0,K], z(0) = E(x, t), (2)

where z(k) ∈ Rdh is a latent state obtained from the encoding E(x, t), and T : Rdh →Rdh denotes
the residual transformation that advances z(k) toward the PDE solution. This operator may be fixed
(as in classical solvers) or learned (as in neural architectures introduced later). In discrete form,

zk+1 = zk + Tk

(
zk; α

)
, k = 0, . . . ,K − 1,

with step parameter α > 0 implicit in Tk. When ∥Tk∥ is small, each update is a residual correction
around the identity. This lens makes two optimization effects explicit: (i) iterative refinement, where
many small, well-aligned corrections reduce the loss predictably; and (ii) Jacobian neutrality, where
near-identity Jacobians stabilize gradient propagation across depth. Consider a composition of K
such transformations and a loss function L(zk) on the kth transformation .
Lemma 3.2 (Local update descent with depth-aware smoothness). Let zk+1 = zk + Tk(zk) with
Jacobian Jk := ∂zk+1/∂zk = I + Ak. If L has β-Lipschitz continous gradient in a neighborhood
of zk, then there exist

βk ≤ β
(K−1∏

ℓ=k

∥Jℓ∥2
)2

such that L(zk+1) ≤ L(zk) + ⟨∇zkL(zk)⊤, Tk ⟩+ βk

2 ∥Tk∥2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This follows from a first-order Taylor expansion of the L(zk+1) := L(zk + T (zk)). The formal
statement and proofs are deferred to the Appendix B. Notice that a first order term is a good approx-
imation when the magnitude of Tk is small enough. Rolling out Lemma 3.2 over k = 0, . . . ,K−1
updates recursively gives

L(zK) ≤ L(z0) +

K−1∑
k=0

[
⟨∇zkL(zk)⊤, Tk ⟩+ βk

2 ∥Tk∥2
]
.

In particular, Lemma 3.2 implies that the first-order change in the loss at step k is driven by the dot
product between the local loss gradient and Tk,

L(zk+1)− L(zk) ≈
〈
∇zkL(zK), Tk(zk)

〉
.

We can characterize this via gradient alignment: the cosine between the step and the negative gra-
dient,

GAk :=

〈
Tk(zk), −∇zkL(zk)

〉
∥Tk(zk)∥ ∥∇zkL(zk)∥

,

so that 〈
∇zkL(zk), Tk(zk)

〉
= −∥Tk(zk)∥ ∥∇zkL(zk)∥GAk.

Thus, each local update constitutes a gradient-based step whose contribution is exactly proportional
to its alignment with −∇zkL(zk): GAk > 0 moves zk into the descent half-space (first-order
decrease), GAk = 0 is neutral, and GAk < 0 moves uphill. Stable descent therefore requires
residual updates to remain small and aligned with the loss gradient. Flow mismatch denotes the
opposite regime, where updates are too large or alignment is negative, causing predictions to drift
despite decreasing loss.

However, alignment alone is not sufficient: even well-aligned updates can suffer from vanishing
or exploding gradients if Jacobian spectra are uncontrolled. As a complementary effect, residual
formulations also encourage near-identity Jacobians, as shown next.
Theorem 3.3 (Local Jacobian Neutrality). If Jk = I +Ak with ∥Ak∥2 ≤ αk < 1, then

1− αk ≤ σmin(Jk) ≤ σmax(Jk) ≤ 1 + αk, κ(Jk) ≤
1 + αk

1− αk
,

and for all v, (1 − αk)∥v∥ ≤ ∥J⊤
k v∥ ≤ (1 + αk)∥v∥. αk denotes an upper bound on the spectral

norm of the deviation from identity at step k.

Proof sketch. Weyl’s inequality gives |σi(Jk)− 1| ≤ ∥Ak∥2; the bounds follow immediately.

Thus, if residual updates are small (small αk), per-step Jacobians remain near identity, stabilizing
gradient propagation across depth. Residual flow formulations exhibit the three predicted properties:
they maintain positive gradient alignment, have near-identity Jacobians, and operate in the small-step
regime. Figure 1 (and Appendix 6) illustrates this empirically. This aligns with earlier observations
that residual connections implement iterative inference (Greff et al., 2017; Jastrzebski et al., 2018).

Appendix roadmap. Appendix B: proofs of Lemma 3.2 and Theorem 3.3, plus guarantees for resid-
ual flows. Appendix C: note on gradient shattering.

4 RELATED WORK

Neural Operators. Neural operators such as DeepONet (Lu et al., 2021a) and FNOs (Li et al.,
2023) are data driven surrogate models that approaximate the PDE solution operator from labeled
data, whereas PINNs rely on enforcing PDE residuals and boundary/initial conditions. Since our
work focuses on PINNs, we benchmark mainly against PINN variants and restrict our analysis to
failure modes specific to this class of methods.

Flows in Machine Learning. The idea of flows is well-established in Machine Learning. Nor-
malizing flows learn invertible maps that transform a base density into a data density by composing
simple bijections and tracking Jacobian determinants for exact likelihoods (Rezende & Mohamed,
2015; Dinh et al., 2017; Kingma & Dhariwal, 2018; Chen et al., 2018). This probabilistic goal is
orthogonal to ours: we do not model densities or require invertibility. Our flow perspective instead
concerns optimization dynamics of PINNs exhibiting failure modes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2 4 6 8 10
Block

2.5

5.0

7.5

Si
ng

ul
ar

 v
al

ue

(a) Spectrum of the ResPINN Jacobians

Top 10 by index
Next 10

2 4 6 8 10
Block

2.5

5.0

7.5

Si
ng

ul
ar

 v
al

ue

(b) Spectrum of the PINN Jacobians

Top 10 by index
Next 10

2 4 6 8 10
Block

2

4

6

8

Si
ng

ul
ar

 v
al

ue

(c) Extreme Singular Values

max (ResPINN)
10 (ResPINN)
max (PINN)
10 (PINN)

Figure 1: Spectral analysis of Jacobians across network depth for the 1D convection problem. (a)
ResPINN (with residual connections): singular values remain clustered near unity, indicating near-
isometric mappings and stable gradients. (b) Standard PINN: singular values remain spread with
depth, reflecting anisotropy and poor conditioning. (c) Extreme singular values (σmax and σ10)
highlight the contrast: PINNs amplify dominant directions, whereas ResPINNs suppress spectral
growth. Both architectures use the same number of parameters; the only difference is the residual
connection inserted after every two layers.

Residual networks and connections. Residual connections stabilize training by composing near-
identity transformations (He et al., 2016; Greff et al., 2017; Jastrzebski et al., 2018; Haber &
Ruthotto, 2017; Lu et al., 2018; Chen et al., 2018). In PINNs, they appear in several proposals,
often alongside other architectural changes, so their specific contribution is unclear (Wang et al.,
2020; Zhao et al., 2024; Xu et al., 2025). PINNsFormer (Zhao et al., 2024) and PINNMamba (Xu
et al., 2025) both employ residual connections but attribute gains to sequence modeling, while Pi-
rateNets (Wang et al., 2024) explore adaptive residual scaling and physics-informed initialization
without connecting them to failure modes.

Continuous-depth limits and Neural ODEs. Taking residual networks to the continuous-depth
limit yields Neural ODEs, parameterized by vector fields and solved numerically (Chen et al., 2018).
Connections to solver stability and residual architectures have been emphasized (Lu et al., 2018;
Haber et al., 2019), and continuous-depth models have been adapted to scientific machine learning
(Yin et al., 2023; Verma et al., 2024).

Positioning. Our contribution differs from likelihood-based flows and prior PINN adaptations. We
explicitly characterize two structural failure modes in PINNs, gradient shattering and flow mismatch,
and propose a residual flow formulation that enforces gradient alignment and Jacobian neutrality.
The mechanism is architecture-agnostic: it can be instantiated as a residual stack, as a continuous-
depth Neural ODE with explicit solvers, or as a purely iterative refinement scheme without ODE
machinery. This unifies discrete residual nets, continuous flows, and solver-style iterations under a
single stabilization principle tailored to PINNs.

5 EMPIRICAL EVALUATION

Architectures. Our proposal is to view PINNs through the lens of residual flows: neural networks
that refine predictions iteratively, analogous to numerical solvers advancing a state over time. To
investigate this perspective, we consider three architectural variants that will serve as the basis of
our analysis (described below):

• Residual Networks (ResPINN). Discrete residual flows, where each block applies a cor-
rection around the identity hk+1 = hk + αf(hk; θk).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Quantitative results on four PDE benchmarks. ResPINN consistently outperforms base-
lines.

Model Wave Reaction Convection Heat

rMAE rRMSE rMAE rRMSE rMAE rRMSE rMAE rRMSE

PINNs 0.4101 0.4141 0.9803 0.9785 0.8514 0.8989 0.8956 0.9404
QRes 0.5349 0.5265 0.9826 0.9830 0.9035 0.9245 0.8381 0.8800
FLS 0.1020 0.1190 0.0220 0.0390 0.1730 0.1970 0.7491 0.7866
PINNsFormer 0.3559 0.3632 0.0146 0.0296 0.4527 0.5217 0.2129 0.2236
RoPINNs 0.1650 0.1720 0.0070 0.0170 0.6350 0.7200 0.1545 0.1622
KAN 0.1433 0.1458 0.0166 0.0343 0.6049 0.6587 0.0901 0.1042
PINNMamba 0.0197 0.0199 0.0094 0.0217 0.0188 0.0201 0.0535 0.0583
ResPINN (ours) 0.0130 0.0154 0.0047 0.0075 0.0028 0.0046 0.0035 0.0048

• Neural ODEs (O-PINN). Continuous residual flows obtained in the infinitesimal-step
limit, integrating ḣ = fθ(h, t) with a numerical ODE solver (Chen et al., 2018). This
provides the continuous-depth analogue of the residual formulation.

• Progressive Residual Flows. A curriculum-style variant of residual networks that in-
creases depth gradually during training by appending new residual blocks while freezing
earlier ones. This mirrors multistage solvers where successive corrections extend accuracy.

Benchmarks. We evaluate on four established benchmarks. First, three canonical time-dependent
PDEs—Wave, Reaction, and Convection—are widely used to probe optimization behavior in PINNs
(Raissi et al., 2019; Krishnapriyan et al., 2021; Zhao et al., 2024; Wu et al., 2024). Prior work
has shown that Reaction–Diffusion and Convection in particular expose common failure modes of
PINNs (Krishnapriyan et al., 2021). Moreover, we include the PINNacle suite (Zhongkai et al.,
2024), a collection of 16 diverse PDE tasks spanning Burgers, Poisson, Heat, Navier–Stokes, Wave,
and Gray–Scott equations in dimensions 1D–5D and on complex geometries. Detailed formulations,
discretizations, and training domains are given in Appendix E.

Baselines. We compare against a broad suite of PINN architectures, spanning classical approaches
(MLP-based PINNs (Raissi et al., 2019), FLS (Wong et al., 2022), QRes (Bu & Karpatne, 2021)), re-
cent improvements (KANs (Liu et al., 2025), and state-of-the-art sequential models (PINNsFormer
(Zhao et al., 2024), PINNMamba (Xu et al., 2025)). This collection includes both pointwise net-
works and methods explicitly designed to address failure modes in dynamical systems using se-
quence modeling approaches.

Implementation. We instantiate the latent residual flow architectures as block-structured net-
works. Unless otherwise noted, all models are trained on 101×101 space–time grids using the
L–BFGS optimizer and the wavelet activation of Zhao et al. (2024). For the baselines, we follow
the original configurations: PINNMamba uses subsequences of length 7 with step size 10−2, and
PINNsformer uses subsequences of length 5 with step size 10−4. All other models operate without
subsequencing. For the PINNAcle benchmark, dataset sizes and sampling details are provided in
Appendix E. Residual flow blocks use a hidden dimension of 64, with three fully connected layers
per block followed by a skip connection. The stagewise variant begins with three blocks and adds
two new blocks at each stage, freezing the earlier ones. Neural ODE variants integrate a single
residual block parameterization with a 4th-Order Runge-Kutta(RK4) solver (See Appendix F).

5.1 DO RESIDUAL FLOWS MITIGATE FAILURE MODES?

We first benchmark ResPINN against recent PINN variants. Table 2 reports relative mean abso-
lute error (rMAE) and relative root mean squared error (rRMSE) (See Appendix D for more de-
tails about the metrics). Classical PINNs perform poorly on Reaction and Convection, consistent
with known failure modes. Both PINNsFormer and PINNMamba incorporate residual connections,
but only at the level of one or two residual blocks. In contrast, ResPINN stacks residual updates
throughout the network, directly instantiating the residual flow formulation. Across all four PDEs,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Vanilla PINN PINNsformer PINNMamba ResPINN

-1.00

-0.50

0.00

0.50

-1.00
-0.75
-0.50
-0.25
0.00
0.25
0.50
0.75
1.00

Figure 2: Qualitative comparison on Convection PDE. Top: predicted solutions. Bottom: pointwise
errors.

0 2 4 6 8
Block index

0.5

1.0

1.5

2.0

2.5

3.0

T(
z)

/z

ResPINN (convection)
PINN (convection)

0 2 4 6 8
Block index

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Co
sin

e
Al

ig
nm

en
t

ResPINN (convection)
PINN (convection)

Figure 3: Left: relative update size ∥Ti(zi)∥/∥zi∥ across depth. ResPINNs produce progressively
smaller corrections, consistent with refinement. Right: Gradient Alignment. ResPINNs exhibit an
almost neutral alignment with the local gradient descent.

ResPINN achieves the lowest errors, often by an order of magnitude, showing that residual flows
provide consistent improvements beyond the shallow residual structures of prior models. Qualitative
comparisons in Figure 2 confirm this pattern: Models with residual pathways achieve constructive
reconstructions whereas vanilla PINNs suffer a larger deviation.

5.2 ITERATIVE REFINEMENT AND GRADIENT ALIGNMENT

We next ask whether residual flows in PINNs act primarily as feature learners or as iterative refiners
of predictions. We investigate this from two complementary perspectives.

For each block Ti, we measure the relative update size ∥Ti(zi)∥
∥zi∥ averaged across sample points. Large

values indicate substantial representation change (feature learning), while small values indicate in-
cremental corrections (refinement). Figure 3 shows that in standard PINNs the ratio remains large
across depth, whereas in ResPINNs it decreases steadily, consistent with refinement dynamics. For
details on other PDEs, see Appendix G.

To probe whether the individual blocks can contribute to failure modes, we adopt the progressive-
flow setting. At each training stage, after adding new residual blocks and freezing earlier ones, we
train only a linear projection head to read out predictions from intermediate stages. Figure 9 in
Appendix G illustrates that early stages incur high error similar to failure modes, but later stages

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Wave Reaction Convection

Model rMAE rRMSE rMAE rRMSE rMAE rRMSE

O-PINN + tanh 0.038 0.039 0.018 0.035 0.014 0.016
O-PINN + wavelet 0.053 0.059 0.003 0.005 0.003 0.003
ResPINN + tanh 0.030 0.030 0.008 0.017 0.015 0.016
ResPINN + wavelet 0.070 0.074 0.008 0.009 0.006 0.006

Table 3: Ablation on activation functions for continuous (O-PINN) and discrete (ResPINN) residual
flow models. Results are reported on Wave, Reaction, and Convection PDEs using relative rMAE
and rRMSE.

systematically reduce error while leaving earlier predictions unchanged. This confirms that new
blocks act as refiners rather than relearners, mirroring multistage correction in classical solvers.

5.3 ABLATION STUDY

To disentangle the effect of discretization from architectural or activation choices, we compare the
continuous-depth formulation (O-PINN, integrated with a fixed-RK4 ODE solver) against its dis-
crete counterpart (ResPINN), each trained with either tanh or wavelet activations. This ablation
allows us to test whether the improvements stem from the residual flow discretization itself or from
particular activation functions. The results in Table 3 show that O-PINN and ResPINN exhibit
complementary strengths: the continuous formulation benefits some PDE families (especially with
wavelet activations), while discrete residual stacks remain competitive elsewhere.

5.4 EXPERIMENTS ON COMPLEX PROBLEMS

To assess generalization, we evaluate on PINNacle (Zhongkai et al., 2024). On challenging multi-
scale tasks, baselines such as PINNsFormer (Zhao et al., 2024) and PINNMamba (Xu et al., 2025)
either fail to converge or run into out-of-memory errors, whereas ResPINN trains successfully while
maintaining comparable accuracy on the remaining tasks. Details of the PINNacle experiments are
shown in Appendix E.

6 CONCLUSION

We reframed PINNs as residual flows: networks that solve PDEs by iteratively refining predictions
through small residual updates. This view makes two optimzation effects explicit—gradient align-
ment (updates aligned with descent) and Jacobian neutrality (near-identity per-step Jacobians)—and
led to simple instantiations (ResPINN, O-PINN, progressive residual flows).

Across canonical PDEs and the PINNacle suite, ResPINN achieved consistently lower errors. Mech-
anistic diagnostics support our hypotheses: residual blocks operate in the small-step regime (H1),
maintain near-identity Jacobians across depth (H2), and exhibit iterative refinement (H3) as shown
by decreasing update ratios in ResPINNs and stagewise error telescoping in curriculum training.
These gains persist across activations, and the continuous formulation (O-PINN) can be advanta-
geous on some PDE families, suggesting that continuous-time parameterizations merit exploration
for very deep regimes.

Future work may explore how different numerical solvers induce distinct refinement behaviors, and
whether ODE parameterizations applied directly in solution space for time-dependent PDEs can
further mitigate failure modes. Bridging local theoretical insights with global behaviors observed in
practice offers a promising avenue for deepening our understanding of residual flows.

7 REPRODUCIBILITY STATEMENT.

All PDE setups (governing equations, domains, analytic solutions, and meshes) are detailed in Ap-
pendix D. Theoretical results and proofs appear in Appendix B, with the mean-field shattering adap-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

tation in Appendix C. Architectural and solver specifications for ResPINN, O-PINN, and Progressive
Flow are given in Appendix F, and additional alignment/refinement diagnostics are in Appendix G.
PINNacle task definitions and results are reported in Appendix E. An anonymous code respository
containing implementations of residual flows and scripts reproducing the experiments is available at
https://anonymous.4open.science/r/resflows-0FD5

REFERENCES

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? In Interna-
tional conference on machine learning, pp. 342–350. PMLR, 2017.

Jie Bu and Anuj Karpatne. Quadratic residual networks: A new class of neural networks for solv-
ing forward and inverse problems in physics involving pdes. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), pp. 675–683. SIAM, 2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation fail-
ures in physics-informed neural networks using retain-resample-release (R3) sampling. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pp. 7264–
7302. PMLR, 2023. URL https://proceedings.mlr.press/v202/daw23a.html.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=HkpbnH9lx.

Klaus Greff, Rupesh K. Srivastava, and Jürgen Schmidhuber. Highway and residual networks learn
unrolled iterative estimation. In International Conference on Learning Representations, 2017.
URL https://openreview.net/forum?id=Skn9Shcxe.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse problems,
34(1):014004, 2017.

Eldad Haber, Keegan Lensink, Eran Treister, and Lars Ruthotto. IMEXnet a forward stable deep
neural network. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2525–2534. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/haber19a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=SJa9iHgAZ.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural In-
formation Processing Systems, 34:26548–26560, 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural oper-
ator with learned deformations for pdes on general geometries. Journal of Machine Learning
Research, 24(388):1–26, 2023.

10

https://anonymous.4open.science/r/resflows-0FD5
https://proceedings.mlr.press/v202/daw23a.html
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=Skn9Shcxe
https://proceedings.mlr.press/v97/haber19a.html
https://proceedings.mlr.press/v97/haber19a.html
https://openreview.net/forum?id=SJa9iHgAZ

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–arnold networks. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Ozo7qJ5vZi.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learn-
ing library for solving differential equations. SIAM Review, 63(1):208–228, 2021b. doi:
10.1137/19M1274067.

Yiping Lu, Bin Zhong, Jian Li, and Bin Dong. Beyond finite layer neural networks: Deep networks
as dynamical systems. In ICLR, 2018.

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of spectral universality
in deep networks. In International Conference on Artificial Intelligence and Statistics, pp. 1924–
1932. PMLR, 2018.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Yogesh Verma, Markus Heinonen, and Vikas Garg. ClimODE: Climate forecasting with physics-
informed neural ODEs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=xuY33XhEGR.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies
in physics-informed neural networks. CoRR, abs/2001.04536, 2020. URL https://arxiv.
org/abs/2001.04536.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learn-
ing with residual adaptive networks. Journal of Machine Learning Research, 25(402):1–51, 2024.

Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in sinusoidal
spaces with physics-informed neural networks. IEEE Transactions on Artificial Intelligence, 5
(3):985–1000, 2022.

Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, and Mingsheng Long. Ropinn: Region
optimized physics-informed neural networks. In Advances in Neural Information Processing
Systems, 2024.

Chenhui Xu, Dancheng Liu, Yuting Hu, Jiajie Li, Ruiyang Qin, Qingxiao Zheng, and Jinjun Xiong.
Sub-sequential physics-informed learning with state space model. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
V7VnjJxBlg.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. Advances
in neural information processing systems, 30, 2017.

11

https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=xuY33XhEGR
https://arxiv.org/abs/2001.04536
https://arxiv.org/abs/2001.04536
https://openreview.net/forum?id=V7VnjJxBlg
https://openreview.net/forum?id=V7VnjJxBlg

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and patrick galli-
nari. Continuous PDE dynamics forecasting with implicit neural representations. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=B73niNjbPs.

Zhiyuan Zhao, Xueying Ding, and B. Aditya Prakash. PINNsformer: A transformer-based frame-
work for physics-informed neural networks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=DO2WFXU1Be.

Hao Zhongkai, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang,
Songming Liu, Lu Lu, et al. Pinnacle: A comprehensive benchmark of physics-informed neu-
ral networks for solving pdes. Advances in Neural Information Processing Systems, 37:76721–
76774, 2024.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models solely for surface-level editing: spelling and grammar correction,
and minor wording improvements. LLMs were not used for idea generation, experiment design,
data analysis, coding, mathematical derivations, or substantive content creation.

B PROOFS

We study feature evolution through a latent flow induced by residual transformations in continuous
network time:

dz(k)

dk
= T

(
z(k), k; x, t

)
, k ∈ [0,K], z(0) = z0 := E(x, t) ∈ Rdh . (3)

Remark B.1 (Analytical surrogate). Equation equation 3 is not intended as the literal dynamics of
fully connected PINNs, but as an analytical surrogate that lets us study feature evolution and gradient
misalignment using the language of residual flows.
Lemma B.2 (Integral form). If T (·, ·) is continuous, then z is a solution of equation 3 on [0,K] if
and only if

z(k) = z0 +

∫ k

0

T
(
z(τ), τ ; x, t

)
dτ, 0 ≤ k ≤ K. (4)

Proof. (⇒) Integrate equation 3 from 0 to k to obtain equation 4.
(⇐) If equation 4 holds and T (z(τ), τ) is continuous in τ , then by the fundamental theorem of
calculus the map k 7→ z(k) is differentiable with dz

dk = T (z(k), k) and z(0) = z0, i.e., z solves
equation 3.
Theorem B.3 (Banach contraction mapping). Let (X, ∥·∥X) be a Banach space and let F : X → X
satisfy

∥F (z)− F (z′)∥X ≤ c ∥z − z′∥X , ∀z, z′ ∈ X,

for some 0 < c < 1. Then F admits a unique fixed point z∗ ∈ X , and the iterates z(n+1) = F (z(n))
converge to z∗ for any initial z(0) ∈ X .
Theorem B.4 (Existence and uniqueness of a solution of a residual flow). Let T : Rdh × [0,K] →
Rdh be continuous and assume there exists L > 0 such that

∥T (z1, k)− T (z2, k)∥ ≤ L ∥z1 − z2∥, ∥T (z, k)∥ ≤ L(1 + ∥z∥), (5)

for all z, z1, z2 ∈ Rdh and k ∈ [0,K]. Then the IVP 3 admits a unique solution z ∈ C([0,K],Rdh).

Proof. Fix δ > 0 and consider the Banach space X = C([0, δ],Rdh) with norm ∥z∥X =
sup0≤s≤δ ∥z(s)∥. Define the flow operator

(Fz)(k) := z0 +

∫ k

0

T (z(τ), τ) dτ.

If Fz = z, then by Lemma B.2, z solves the IVP on [0, δ].

12

https://openreview.net/forum?id=B73niNjbPs
https://openreview.net/forum?id=B73niNjbPs
https://openreview.net/forum?id=DO2WFXU1Be

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

For z, z′ ∈ X and k ∈ [0, δ],

∥(Fz)(k)− (Fz′)(k)∥ ≤
∫ k

0

∥T (z(τ), τ)− T (z′(τ), τ)∥ dτ ≤ Lδ∥z − z′∥X .

Thus ∥Fz − Fz′∥X ≤ Lδ∥z − z′∥X , so F is a contraction whenever Lδ < 1. By Theorem B.3,
F has a unique fixed point in X , which is the unique solution on [0, δ]. Repeating the argument on
successive intervals of length δ extends the solution uniquely to all of [0,K].

Definition B.5 (Discrete Residual Step). Let ∆k > 0 and kn := n∆k for n = 0, . . . , N with
N∆k = K. The explicit Euler discretization of the residual flow dz(k)

dk = T (z(k), k; x, t) with
z(0) = z0 := E(x, t) is

zn+1 = zn +∆k T (zn, kn; x, t), z0 = E(x, t).

Equivalently, this is a residual update with Tn(zn) := ∆k T (zn, kn; x, t).
Definition B.6 (Convergence/order). Let z(·) denote the (unique) solution of the IVP on [0,K]. A
time-stepping scheme producing {zn}Nn=0 is said to converge with order p on [0,K] if there exists a
constant C, independent of ∆k, such that

max
0≤n≤N

∥∥z(kn)− zn
∥∥ ≤ C (∆k)p.

Theorem B.7 (First-order convergence of the residual flows). Assume the hypotheses of exis-
tence/uniqueness hold (global Lipschitz and linear growth in z for T), and that the solution z is
twice continuously differentiable on [0,K]. Let {zn} be defined by B.5. Then the discrete formula-
tion of the residual flows converges with order 1:

max
0≤n≤N

∥∥z(kn)− zn
∥∥ ≤ CK ∆k,

where CK depends on K, the Lipschitz constant L of T in z, and maxk∈[0,K] ∥z̈(k)∥, but is inde-
pendent of ∆k. Sketch. Taylor expand z(kn+1) = z(kn) +∆k ż(kn) +Rn with ∥Rn∥ ≤ C (∆k)2.
Using ż(kn) = T (z(kn), kn) and subtracting the Euler step gives the error recurrence en+1 ≤
(1+L∆k) en+C (∆k)2, where en := ∥z(kn)−zn∥. Apply the discrete Grönwall lemma to obtain
en ≤ C eLkn−1

L ∆k ≤ C eLK−1
L ∆k.

Proposition B.8 (Gradient alignment in residual flows). Let L : Rdh → R be continuously differ-
entiable, and let z : [0,K] → Rdh be a continuously differentiable solution of the residual flow IVP
equation 3. Then, for all k ∈ [0,K],

d

dk
L
(
z(k)

)
=

〈
∇L

(
z(k)

)
, T

(
z(k), k; x, t

)〉
. (6)

1. If 〈
∇L(z(k)), T (z(k), k)

〉
≤ 0 for all k ∈ [0,K], (7)

then L(z(k)) is nonincreasing on [0,K].

2. If there exists a constant c ∈ (0, 1] such that〈
T (z(k), k), −∇L(z(k))

〉
∥T (z(k), k)∥ ∥∇L(z(k))∥

≥ c and ∥T (z(k), k)∥ > 0 for all k ∈ I ⊂ [0,K],

(8)
then L(z(k)) is strictly decreasing on I .

Proof. The chain rule gives equation 6. Under equation 7, d
dkL(z(k)) ≤ 0 for all k, so L(z(k)) is

nonincreasing.

For equation 8, write

d

dk
L(z(k)) =− ∥∇L(z(k))∥ ∥T (z(k), k)∥ ⟨T (z(k), k),−∇L(z(k))⟩

∥T (z(k), k)∥ ∥∇L(z(k))∥
(9)

≤ − c ∥∇L(z(k))∥ ∥T (z(k), k)∥. (10)

On any interval I where c > 0 and ∥T (z(k), k)∥ > 0, the right-hand side is strictly negative, hence
L(z(k)) is strictly decreasing on I .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0.5 0.0 0.5 1.0

40

20

0

20

40

0.5 0.0 0.5 1.0

40

20

0

20

40

0

250

500
750
1000
1250
1500

0

100

200
300
400
500

Figure 4: A 2D histogram of input-output Jacobian for convection PDE evaluated on a 50x50 equi-
spaced grid. (left) A trained PINN. Few gradients follow the linearity of the solution while the most
mass is concentrated around 0 which is a sign of vanishing gradients. (right) The Jacobian of the
analytical solution.

Proof of Lemma 3.2. Since L has β-Lipschitz continuous gradient, we have for any u, v in a neigh-
borhood of zk:

L(v) ≤ L(u) + ⟨∇L(u), v − u⟩+ β
2 ∥v − u∥2.

Apply this inequality with u = zk and v = zk+1 = zk + Tk(zk):

L(zk+1) ≤ L(zk) + ⟨∇zkL(zk), Tk(zk)⟩+ β
2 ∥Tk(zk)∥2.

To capture the effect of depth, note that subsequent updates depend on how Tj is transformed through
the Jacobians Jℓ = ∂zℓ+1/∂zℓ. The gradient at zk is related to the gradient at zk+1 by the chain
rule:

∇zkL(zk+1) = J⊤
k ∇zk+1

L(zk+1).

Rolling this back from step K to step k shows that each local Lipschitz constant is scaled by the
squared operator norms of the Jacobians:

∥∇2L(zk)∥2 ≤ β
(K−1∏

ℓ=k

∥Jℓ∥2
)2

.

Therefore there exists a local smoothness constant βk ≤ β
(∏K−1

ℓ=k ∥Jℓ∥2
)2

such that

L(zk+1) ≤ L(zk) + ⟨∇zkL(zk), Tk(zk)⟩+ βk

2 ∥Tk(zk)∥2.
This completes the proof.

C MEAN-FIELD GRADIENT SHATTERING FOR PINN JACOBIANS

Our analysis of gradient shattering follows directly from the mean-field studies of deep random net-
works by Poole et al. (2016), Balduzzi et al. (2017), Pennington et al. (2018), and Yang & Schoen-
holz (2017). We adapt their derivations to the input–output Jacobians relevant for PINNs.
Theorem C.1 (Adapted from prior work on shattered gradients). Consider a depth-L, width-n fully-
connected network with random Gaussian initialization as in Poole et al. (2016); Balduzzi et al.
(2017). Let Jθ(z) = ∇zuθ(z) denote the input–output Jacobian at input z. In the mean-field limit
n → ∞ the following hold:

(A) Exponential decorrelation. For nearby inputs z, z′, correlations between Jacobians decay
exponentially with depth:

E
[
cos(Jθ(z), Jθ(z

′))
]
= O(ρL), ρ ∈ (0, 1).

(B) Norm growth/decay. Jacobian norms scale exponentially with depth:
E∥Jθ(z)∥2F = Θ(γL),

with γ = 1 only on the edge-of-chaos manifold; generically γ ̸= 1, yielding vanishing or
exploding norms.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof sketch. The argument mirrors Poole et al. (2016); Pennington et al. (2018). Pre-activations
converge to Gaussian processes in the mean-field limit, and input sensitivities evolve via multiplica-
tive recursions depending on E[ϕ′(u)2]. Cross-input correlations shrink by a factor ρ < 1 per layer,
while sensitivity norms scale by γ. Full details can be found in the cited works; here we simply
specialize the analysis to the input–output Jacobians of PINNs.

Empirical illustration. The mean-field analysis predicts vanishing or exploding Jacobian norms
and exponential loss of correlation across nearby inputs. Figure 4 provides an empirical counterpart:
for the convection PDE, we plot the distribution of input–output Jacobian entries on a 50×50 eval-
uation grid. For a trained PINN, most Jacobian values concentrate near zero, indicating collapsed
sensitivities, with only a few gradients reflecting the true structure of the solution. By contrast, the
analytical Jacobian remains well spread, showing the expected variation across space–time. This
behavior has been also observed on other PDES where PINNs exhibit failure modes.

D PDE SETUPS AND METRICS

D.1 METRICS

In our experiments, we report three metrics: the training loss (defined in Eq. (2)), the relative mean
absolute error (rMAE), and the relative root mean squared error (rMSE). For a set of evaluation
points S, model prediction uθ, and ground-truth solution u∗, we define

rMAE =

∑
x∈S

∣∣uθ(x)− u∗(x)
∣∣

∑
x∈S

∣∣u∗(x)
∣∣ , rMSE =

√√√√√√√
∑
x∈S

(
uθ(x)− u∗(x)

)2
∑
x∈S

(
u∗(x)

)2 . (11)

Note that both uθ(x) and u∗(x) can take positive or negative values; consequently, rMAE and rMSE
may exceed 1.

D.2 BENCHMARKS

To comprehensively test our algorithm, we include four benchmarks. The first three correspond to
canonical PDEs widely used in the PINN literature (see Figure 7), while the last one is the large-scale
PINNacle benchmark Zhongkai et al. (2024).

1D–Reaction. This one-dimensional nonlinear ODE models chemical reactions:

∂u

∂t
− ρu(1− u) = 0, x ∈ (0, 2π), t ∈ (0, 1),

with initial and boundary conditions

u(x, 0) = exp

(
− (x− π)2

2(π/4)2

)
, u(0, t) = u(2π, t).

The analytic solution is

u(x, t) =
h(x)eρt

h(x)eρt + 1− h(x)
, h(x) = exp

(
− (x− π)2

2(π/4)2

)
,

with ρ = 5. Prior work Raissi et al. (2019); Krishnapriyan et al. (2021) identified this case as a
“PINN failure mode” due to the nonlinear term, and its sharp interior boundary adds further diffi-
culty. Following PINNsFormer Xu et al. (2025), we sample 101 points on the initial/boundary sets
and a 101× 101 grid on the residual domain. Evaluation uses the same mesh.

1D–Wave. A standard hyperbolic PDE from acoustics and fluid dynamics:

∂2u

∂t2
− 4

∂2u

∂x2
= 0, x ∈ (0, 1), t ∈ (0, 1),

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: PDE benchmarks from PINNacle Zhongkai et al. (2024). We list input dimensionality,
training/testing sizes, and representative simplified equations. All PDEs here are second-order.
Full formalizations, coefficient meanings, and boundary/initial conditions appear in Zhongkai et al.
(2024).

PDE Dimension Ntrain Ntest Key Equation

Burgers
1D+Time (1d-C) 16384 12288 ∂u

∂t + u · ∇u− ν∆u = 0

2D+Time (2d-C) 98308 82690 same form in 2D

Poisson

2D (2d-C) 12288 10240 −∆u = 0

2D (2d-CG) 12288 10240 −∆u+ k2u = f(x, y)

3D (3d-CG) 49152 40960 −µi∆u+ k2i u = f(x, y, z), i = 1, 2

2D (2d-MS) 12288 10329 −∇(a(x)∇u) = f(x, y)

Heat
2D+Time (2d-VC) 65536 49189 ∂u

∂t −∇(a(x)∇u) = f(x, t)

2D+Time (2d-MS) 65536 49189 ∂u
∂t − 1

(500π)2uxx − 1
π2uyy = 0

2D+Time (2d-CG) 65536 49152 ∂u
∂t −∆u = 0

Navier–Stokes
2D (2d-C) 14337 12378 u · ∇u+∇p− 1

Re∆u = 0, ∇ · u = 0

2D (2d-CG) 14055 12007 same form

Wave
1D+Time (1d-C) 12288 10329 utt − 4uxx = 0

2D+Time (2d-CG) 49170 42194
[
∇2 − 1

c(x)
∂2

∂t2

]
u(x, t) = 0

Chaotic (GS) 2D+Time 65536 61780
{
ut = ε1∆u+ b(1− u)− uv2,

vt = ε2∆v − dv + uv2

High-dim
5D (P-Nd) 49152 67241 −∆u = π2

4

∑n
i=1 sin

(
π
2xi

)
5D+Time (H-Nd) 65537 49152 ∂u

∂t = k∆u+ f(x, t)

with initial and boundary conditions

u(x, 0) = sin(πx) + 1
2 sin(βπx),

∂u(x, 0)

∂t
= 0, u(0, t) = u(1, t) = 0.

The analytic solution is

u(x, t) = sin(πx) cos(2πt) + 1
2 sin(βπx) cos(2βπt),

with β = 3. Compared to Reaction and Convection, the solution is smoother, making it easier for
deep models. Training/evaluation meshes are sampled as in Reaction.

1D–Convection. A hyperbolic PDE relevant in fluids, atmosphere, and heat transfer:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ (0, 2π), t ∈ (0, 1),

with
u(x, 0) = sin(x), u(0, t) = u(2π, t).

The analytic solution is u(x, t) = sin(x − βt), where we set β = 50. Despite its simple closed
form, this problem is challenging for PINNs due to the high-frequency oscillations and sharp loss
landscape Krishnapriyan et al. (2021). Training/evaluation meshes follow the same setup as above.

PINNacle. The fourth benchmark is PINNacle Zhongkai et al. (2024), built on DeepXDE Lu
et al. (2021b). It comprises 20 PDE tasks covering fluid dynamics, heat conduction, nonlinear and
multiscale phenomena, and high-dimensional settings. We found that several subtasks are unsolved
by existing methods (e.g., Heat–2d-LT, NS–2d-LT, Wave–2d-MS, Kuramoto–Sivashinsky). These

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Results on PINNacle. Baseline results are from Wu et al. (2024); Xu et al. (2025). OOM
means Out-of-Memory.

PINN PINNsFormer PINNMamba ResPINN

Equation rMAE rRMSE rMAE rRMSE rMAE rRMSE rMAE rRMSE

Burgers 1d-C 1.1e-2 3.3e-2 9.3e-3 1.4e-2 3.7e-3 1.1e-3 4.6e-3 1.4e-3
Burgers 2d-C 4.5e-1 5.2e-1 OOM OOM OOM OOM OOM OOM
Poisson 2d-C 7.5e-1 6.8e-1 7.2e-1 6.6e-1 6.2e-1 5.7e-1 7.8e-1 7.1e-1
Poisson 2d-CG 5.4e-1 6.6e-1 5.4e-1 6.3e-1 1.2e-1 1.4e-1 4.4e-3 8.6e-3
Poisson 3d-CG 4.2e-1 5.0e-1 OOM OOM OOM OOM OOM OOM
Poisson 2d-MS 7.8e-1 6.4e-1 1.3e+0 1.1e+0 7.2e-1 6.0e-1 9.0e-1 7.5e-1
Heat 2d-VC 1.2e+0 9.8e-1 OOM OOM OOM OOM OOM OOM
Heat 2d-MS 4.7e-2 6.9e-2 OOM OOM OOM OOM 6.5e-3 4.5e-3
Heat 2d-CG 2.7e-2 2.3e-2 OOM OOM OOM OOM OOM OOM
NS 2d-C 6.1e-2 5.1e-2 OOM OOM OOM OOM OOM OOM
NS 2d-CG 1.8e-1 1.1e-1 1.0e-1 7.0e-2 1.1e-2 7.8e-3 1.4e-2 9.8e-3
Wave 1d-C 5.5e-1 5.5e-1 5.0e-1 5.1e-1 1.0e-1 1.0e-1 3.4-2 3.7e-2
Wave 2d-CG 2.3e+0 1.6e+0 OOM OOM OOM OOM OOM OOM
Chaotic GS 2.1e-2 9.4e-2 OOM OOM OOM OOM OOM OOM
High-dim PNd 1.2e-3 1.1e-3 OOM OOM OOM OOM OOM OOM
High-dim HNd 1.2e-2 5.3e-3 OOM OOM OOM OOM OOM OOM

involve long-time dynamics or high-order derivatives, which present challenges beyond those noted
in the original paper. To focus on training paradigms rather than backbone design, we omit these
four hardest cases and evaluate on the remaining 16 tasks. Dataset details are summarized in Table 4.

E PINNACLE PDE BENCHMARK

F ODE SOLVERS AND RESIDUAL FLOWS

For completeness, we recall the connection between residual updates and classical numerical ODE
solvers. Consider an ODE

dh(t)

dt
= f(h(t), t), h(0) = h0.

F.1 RESIDUAL FLOW SOLVERS

Forward Euler. The simplest explicit solver advances in steps of size α > 0 via

hk+1 = hk + α f(hk, tk).

This is precisely the form of a residual block: each step applies a correction around the identity.

Runge–Kutta (RK4). Higher-order solvers reduce truncation error by evaluating f at intermediate
points. The classical fourth-order Runge–Kutta scheme computes

k1 = f(hk, tk),

k2 = f(hk + α
2 k1, tk + α

2),

k3 = f(hk + α
2 k2, tk + α

2),

k4 = f(hk + αk3, tk + α),

hk+1 = hk + α
6 (k1 + 2k2 + 2k3 + k4).

ResPINNs correspond to Euler-like discrete updates , while O-PINNs instantiate the continuous limit
using RK4 integration with weight sharing. Implementattion details follow.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Input Embedding

Residual Flow Network

Multi-Layer Perceptron

+

+

+

+

+ + + +

Linear Linear

Activation Activation

+

Linear

+ Nx

Figure 5: ResPINN overview. Inputs (x, t) are encoded to a latent state h(0), which is iteratively
refined by a residual flow in pseudo-time s. The flow is realized either as a stacked residual (Euler)
network or as a higher-order explicit solver RK4. The terminal state h(S) is decoded to the PDE
solution u(x, t).

F.2 IMPLEMENTATION OF RESIDUAL FLOWS

ResPINN (discrete residual stack). A fixed-depth network composed of K = 10 residual blocks,
each block containing three fully connected layers of width 64 with a skip connection. A linear
encoder maps inputs to latent space, and a single fully connected output head maps back to the PDE
solution.

O-PINN (continuous residual flow). Uses the same residual block as the vector field fθ, but
instead of stacking layers explicitly, the dynamics are integrated with RK4. This yields a continuous-
depth model whose trajectory corresponds to an effectively deeper residual flow.

Progressive Flow. Starts with three residual blocks and adds two new blocks at each training stage
while freezing earlier ones. Both encoder and decoder are linear projections, ensuring that represen-
tational capacity resides in the blocks. At each stage, the final projection layer is re-initialized and
trained as a predictor of the PDE solution, providing a direct probe of iterative refinement.

An overview of ResPINN and O-PINN archirectures is shown in Figure 5.

G ADDITIONAL ALIGNMENT PLOTS

H MORE PLOTS ON ITERATIVE REFINEMENT OF PDE SOLUTIONS

I MORE ON ERROR AND SOLUTION MAPS

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Block index

0.5

1.0

1.5

2.0

2.5

3.0
T(

z)
/z

ResPINN (convection)
PINN (convection)

Figure 6: Relative transformation magnitude ∥T (zk)∥/∥zk∥ per block for the convection problem.
ResPINNs keep ratios near unity, suppressing spectral growth and stabilizing gradient flow. In
contrast, PINNs amplify inputs more strongly, reflecting anisotropy and poor conditioning.

0 2 4 6 8
Block index

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Co
sin

e
Al

ig
nm

en
t

ResPINN (convection)
PINN (convection)

Figure 7: Cosine alignment between block updates and local loss gradients for the convection prob-
lem. ResPINNs remain close to zero, indicating residual updates act primarily as stabilizers rather
than directly following descent directions. PINNs oscillate between positive and negative values,
reflecting inconsistent alignment and unstable propagation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 2 4 6 8
Block index

0.0004

0.0003

0.0002

0.0001

0.0000

0.0001

0.0002

0.0003

z k
(z

k)
T(

z k
)

ResPINN (convection)
PINN (convection)

Figure 8: Inner product between block update T (zk) and the local loss gradient across block depth
for the 1D convection problem. ResPINNs maintain values close to zero, consistent with near-
isometric transformations. Standard PINNs exhibit larger fluctuations, indicating unstable amplifi-
cation of activation directions.

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t

Stage 1 | rMSE=0.838 Stage 2 | rMSE=0.637 Stage 3 | rMSE=0.530 Stage 4 | rMSE=0.008

Stage 5 | rMSE=0.008 Stage 6 | rMSE=0.008 Stage 7 | rMSE=0.009 Stage 8 | rMSE=0.007

Stage 9 | rMSE=0.007

Predictions (all stages)

Figure 9: Predicted solutions across blocks. Earlier blocks run into failure modes where they fail to
capture temporal dynamics of the convection PDE on β = 50. With more residual steps, the model
captures increasingly fine temporal dynamics.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

t
Stage 1 | rMSE=0.062 Stage 2 | rMSE=0.037 Stage 3 | rMSE=0.037 Stage 4 | rMSE=0.037

Stage 5 | rMSE=0.037 Stage 6 | rMSE=0.037 Stage 7 | rMSE=0.037 Stage 8 | rMSE=0.037

Stage 9 | rMSE=0.037

Absolute Errors (all stages)

Figure 10: Absolute Errors across blocks on wave PDE.

Vanilla PINN PINNsformer PINNMamba ResPINN

-0.40

-0.20

0.00

0.20

0.40

-1.00

-0.50

0.00

0.50

1.00

Figure 11: Qualitative comparison on 1D wave PDE. Top: predicted solutions. Bottom: pointwise
errors.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Vanilla PINN PINNsformer PINNMamba ResPINN

0.00
0.20
0.40
0.60
0.80
1.00

0.20

0.40

0.60

0.80

1.00

Figure 12: Qualitative comparison on 1D Reaction PDE. Top: predicted solutions. Bottom: point-
wise errors.

22

	Revisiting Failure Modes in PINNs
	Dissecting Existing Approaches to Failure Modes
	Mitigating Failure Modes with Residual Alignment
	Preliminaries
	Gradient Misalignment in PINNs
	Flow Mismatch can hurt PINNs

	Related Work
	Empirical Evaluation
	Do Residual flows mitigate Failure Modes?
	Iterative Refinement and Gradient Alignment
	Ablation Study
	Experiments on Complex Problems

	Conclusion
	Reproducibility Statement.
	The Use of Large Language Models (LLMs)
	Proofs
	Mean-field gradient shattering for PINN Jacobians
	PDE Setups and Metrics
	Metrics
	Benchmarks

	PINNacle PDE Benchmark
	ODE Solvers and Residual Flows
	Residual Flow Solvers
	Implementation of Residual Flows

	Additional alignment plots
	More Plots on Iterative refinement of PDE solutions
	More On Error and Solution Maps

