
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPLITMEANFLOW: INTERVAL SPLITTING CONSIS-
TENCY IN FEW-STEP GENERATIVE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Flow Matching has achieved prominent performance in generative modeling, yet
it is plagued by high computational costs due to iterative sampling. Recent ap-
proaches such as MeanFlow address this bottleneck by learning average velocity
fields instead of instantaneous velocities. However, we demonstrate that Mean-
Flow’s differential formulation is a special case of a more fundamental principle.
In this work, we revisit the first principles of average velocity fields and derive
a key algebraic identity: Interval Splitting Consistency. Building on this, we
propose SplitMeanFlow, a novel framework that directly enforces this algebraic
consistency as a core learning objective. Theoretically, we show that SplitMean-
Flow recovers MeanFlow’s differential identity in the limit, thereby establishing
a more general and robust basis for average velocity field learning. Practically,
SplitMeanFlow simplifies training by eliminating the need for JVP and enables
one-step synthesis. Extensive experiments on large-scale speech synthesis tasks
verify its superiority: SplitMeanFlow achieves a 10× speedup and a 20× reduc-
tion in computational cost, while preserving speech quality, delivering substantial
efficiency gains without compromising generative performance.

1 INTRODUCTION

Generative modeling has seen remarkable advancements, with approaches such as Diffusion Mod-
els Sohl-Dickstein et al. (2015) and Flow Matching Liu et al. (2023); Song et al. (2021) establish-
ing new benchmarks for generating high-fidelity samples across various domains, including im-
ages Rombach et al. (2022); Esser et al. (2024), video Kong et al. (2024); Bar-Tal et al. (2024), and
audio Guan et al. (2024); Tian et al. (2025). Despite their impressive capabilities, these models are
often limited in practical use by a significant computational bottleneck: their dependence on iter-
ative sampling, which typically requires tens or even hundreds of neural network inferences. This
high computational cost presents a major challenge, especially in resource-constrained or latency-
sensitive environments. As a result, research has increasingly focused on developing ”few-step” or
even ”one-step” generative models to mitigate this sampling overhead.

In response to this challenge, several innovative approaches have emerged. Consistency Mod-
els Song et al. (2023); Luo et al. (2023a); Peng et al. (2025); Lu & Song (2025); Liu et al. (2024);
Wang et al. (2024); Luo et al. (2023b); Xiao et al. (2023), for example, introduced a novel training
paradigm that enforces output consistency along the same trajectory, yielding promising results for
few-step generation. Building on this, MeanFlow Geng et al. (2025) provided a significant concep-
tual breakthrough: for large-step generation, directly modeling the average velocity across the entire
path from noise to data is more effective than modeling the instantaneous velocity at each individ-
ual point. This shift from a local to a global perspective is better suited for few-step, large-stride
predictions, and has propelled MeanFlow to achieve state-of-the-art performance.

The success of MeanFlow Geng et al. (2025) has demonstrated the effectiveness of learning the
average velocity field to enable few-step generation. However, the approach introduces significant
challenges, both computational and practical. The reliance on a differential formulation not only
results in computational inefficiencies due to the complexity of the differential operations, but also
complicates implementation. Specifically, the need to support Jacobian-vector products (JVP) in
custom operators makes the training of existing models under MeanFlow objectives non-trivial.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In this work, we introduce SplitMeanFlow, a new framework that addresses these issues by returning
to the first principles of average velocity, which is defined as the integral of instantaneous velocity
over a time interval. Unlike MeanFlow, which approximates this relationship using differential iden-
tities, SplitMeanFlow avoids derivatives and instead leverages the algebraic structure of the integral.
A key insight is the additivity property of definite integrals, which allows the decomposition of the
integral over an entire time interval into the sum of integrals over subintervals. This leads to a novel,
purely algebraic identity, Interval Splitting Consistency, that governs the relationship between aver-
age velocities across different time intervals. We formally demonstrate that the differential identity
central to MeanFlow is recovered as a special case of our formulation when the splitting point ap-
proaches the time interval endpoint. In this limit, our algebraic relation simplifies to the differential
form, revealing that MeanFlow’s training objective is a specific instance of our broader consistency
principle. By enforcing the algebraic consistency directly as a training objective, SplitMeanFlow
provides a more efficient and practical method for learning the average velocity field.

Our contributions are as follows: (1) We introduce SplitMeanFlow, a method grounded in Inter-
val Splitting Consistency, which extends the principles of MeanFlow by providing a more general
framework for learning average velocity fields. (2) SplitMeanFlow eliminates the need for JVP op-
erations, leading to improved computational efficiency, simplified implementation, and more stable
training. (3) We demonstrate the practical impact of SplitMeanFlow through its successful deploy-
ment in large-scale industrial applications, and its integration with open-source models, showcasing
both its robustness and scalability.

2 RELATED WORKS

2.1 DIFFUSION MODELS AND FLOW MATCHING

Diffusion models Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al. (2020); Song et al.
(2021); Nichol & Dhariwal (2021); Rombach et al. (2021); Peebles & Xie (2023) have achieved
impressive results across various generative tasks by transforming noise into data through iterative
denoising. Despite their success, these models often require hundreds of sampling steps, making
inference computationally expensive and limiting their applicability in real-time settings Yang et al.
(2023). To address this inefficiency, flow matching Lipman et al. (2023); Karras et al. (2022);
Albergo et al. (2023) has been proposed as an alternative framework that directly learns a time-
dependent velocity field to match the probability flow of a diffusion process. Flow Matching offers
advantages such as faster inference and empirical performance gains. Building on this framework,
recent variants such as Rectified Flow Liu et al. (2023) aim to improve training stability and con-
vergence by adjusting the reference interpolation path. However, despite these improvements, most
FM-based approaches still rely on multi-step integration during sampling. To reduce the computa-
tional burden of iterative sampling, recent research has focused on few-step generative models that
aim to accelerate inference while preserving the high sample quality of diffusion-based methods.

2.2 FEW-STEP GENERATIVE MODELS

Consistency Models. Consistency models Song et al. (2023); Heek et al. (2024); Lu & Song (2024)
have been developed to achieve few-step generation for visual Luo et al. (2023a); Oertell et al. (2024)
and audio Fei et al. (2024); Liu et al. (2024). These methods enforce self-consistency by requiring
that predictions remain invariant under repeated model application or temporal interpolation across
varying noise levels. Such constraints encourage the generative trajectory to become coherent and
predictable, thereby allowing accurate approximation with substantially fewer steps. Despite their
empirical effectiveness, these consistency constraints are generally heuristic in nature, introduced as
external regularization without explicit theoretical grounding.

MeanFlow MeanFlow Geng et al. (2025) presents a principled framework for one-step generative
modeling by introducing the concept of average velocity, defined as the displacement over a time
interval divided by its duration. In contrast to Flow Matching, which models instantaneous velocity
at each time step, MeanFlow adopts average velocity as the learning target. It further derives an
analytic relation, termed the MeanFlow Identity, that connects the average and instantaneous veloc-
ities via a time derivative. This formulation offers a well-grounded training objective that avoids
heuristic consistency constraints and provides a clear physical interpretation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 BACKGROUND

To properly contextualize our proposed SplitMeanFlow, we first revisit the foundational principles
of Flow Matching, the framework upon which our work is built. Flow Matching offers a powerful
and intuitive paradigm for generative modeling, designed to learn a velocity field that transports
samples from a simple prior distribution (e.g., a Gaussian) to a complex target data distribution.
Both the preceding MeanFlow model and our SplitMeanFlow are fundamentally grounded in the
core mechanics of this approach.

3.1 FLOW PATHS AND INSTANTANEOUS VELOCITY

The central idea of Flow Matching Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al.
(2020); Song et al. (2021); Nichol & Dhariwal (2021); Rombach et al. (2021); Peebles & Xie (2023)
is to define a continuous-time flow path, denoted by zt, that connects a prior sample ϵ ∼ pprior(ϵ) to
a data sample x ∼ pdata(x). This path is typically parameterized over the time interval t ∈ [0, 1] as:

zt = atx+ btϵ, (1)

where at and bt are predefined scalar schedules satisfying boundary conditions such as a0 = 1, b0 =
0 and a1 = 0, b1 = 1. A common and simple choice is the linear schedule at = 1 − t and bt = t,
which defines a straight-line trajectory from x at t = 0 to ϵ at t = 1.

Associated with this path is an instantaneous velocity field vt, defined as the time derivative:

vt =
dzt
dt

= a′tx+ b′tϵ. (2)

Since this velocity is defined conditioned on a specific data sample x, it is referred to as the condi-
tional velocity, denoted vt(zt|x). For the linear schedule mentioned above, the conditional velocity
takes the simple form vt = ϵ− x.

3.2 CONDITIONAL FLOW MATCHING LOSS

In practice, any given point zt on a trajectory could have been generated by numerous different
(x, ϵ) pairs. The ultimate goal of a generative model is therefore not to learn any single conditional
velocity, but rather the expectation over all possibilities, known as the marginal velocity v(zt, t) =
E[vt(zt|x)|zt]. However, directly computing a loss against this marginal velocity is intractable.

To circumvent this challenge, Lipman et al. (2023); Karras et al. (2022); Albergo et al. (2023)
introduces an elegant and practical objective: the Conditional Flow Matching (CFM) loss. This
objective trains a neural network vθ by minimizing the discrepancy between its prediction and the
easily computable conditional velocity. The loss function is formulated as:

LCFM(θ) = Et,x,ϵ ∥vθ(zt, t)− (a′tx+ b′tϵ)∥
2
. (3)

It has been shown that minimizing this conditional loss is equivalent to minimizing the loss with
respect to the true marginal velocity field. By optimizing this objective, the network vθ effectively
learns the vector field that governs the transformation of the entire distribution.

Once the model vθ is trained, new samples can be generated by solving the ordinary differential
equation (ODE) dzt

dt = vθ(zt, t), starting from a prior sample z1 = ϵ and integrating backward in
time to t = 0. This integration typically requires a numerical ODE solver, which often involves
multiple evaluation steps and has motivated the research into more efficient few-step and one-step
generation methods.

4 METHOD

4.1 MODELING AVERAGE VELOCITY FOR EFFICIENT GENERATION

Efficiently transforming a simple prior distribution into a complex data distribution with minimal
computational overhead is a fundamental goal in generative modeling, especially in few-step and
one-step generation. While models like Diffusion Models and Flow Matching have made significant

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

progress, they face limitations when confronted with the demands of extreme efficiency. Addressing
this challenge requires rethinking what a model must learn to achieve both efficiency and accuracy
in generation.

Traditional generative frameworks learn an instantaneous velocity field, v(zt, t), describing the rate
of change at a specific moment in time. During inference, the model simulates the trajectory from
z1 to z0 by numerically integrating this field, solving the ordinary differential equation:

z0 = z1 −
∫ 1

0

v(zτ , τ)dτ. (4)

With sufficient function evaluations, numerical solvers can generate high-quality samples. However,
as the number of sampling steps decreases for efficiency, the error in numerical integration increases.
In one-step generation, this reduces to a single Euler step:

z0 ≈ z1 − 1 · v(z1, 1). (5)

This approximation equates the average rate of change over the interval with the instantaneous ve-
locity at the terminal point, introducing significant discretization error.

To achieve efficient and accurate generation, the model must learn the average velocity field, u,
which satisfies the exact relation:

z0 = z1 − u(z1, 0, 1). (6)

By learning u, the integration burden is shifted from inference to training, eliminating discretization
error by design. Modeling average velocity thus enables more efficient and accurate few-step and
one-step generation.

Formally, the average velocity u is defined as the integral of the instantaneous velocity v(zτ , τ) over
the interval [r, t], normalized by t − r. This defines u as a ground-truth field, determined by the
underlying instantaneous velocity field v, and serves as an ideal target for modeling.

However, the integral is computationally intractable during training, as it requires knowledge of the
instantaneous velocity at all intermediate points along an unknown trajectory, making it unsuitable
as a direct learning objective.

Given that u is the ideal target but its integral is not directly computable, a tractable objective func-
tion must be designed to enable a neural network uθ to approximate u. This motivates the develop-
ment of two distinct methodological approaches, which are detailed in the subsequent section.

4.2 SPLITMEANFLOW: FROM DIFFERENTIAL TO ALGEBRAIC SOLUTION

To address the challenge of training a neural network to learn the integral-defined average velocity,
two approaches arise. The first, exemplified by MeanFlow Geng et al. (2025), is a “differential
solution” that bypasses direct integration by relating the average velocity u to the instantaneous
velocity v through a differential equation. Instead of directly computing u ∝

∫
vdτ , MeanFlow

derives a differential identity called the MeanFlow Identity:

u(zt, r, t) = v(zt, t)− (t− r)
d

dt
u(zt, r, t) (7)

Thus, MeanFlow solves the problem indirectly by fitting the model to a differential equation derived
from the integral’s definition.

The second path, as proposed in this work, is the algebraic solution of SplitMeanFlow. SplitMean-
Flow leverages the algebraic property of integratio, additivity, instead of relying on differentiation.
The core idea is that the intrinsic structure of the integral itself provides sufficient self-consistency,
eliminating the need for external differential operators. The fundamental property of additivity states

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ztv(zt, t)

v (zt, t) = vtarget

(a) Flow Matching (Instantaneous Velocity)

zr

zt

u(zt, r, t)

zr

zt

v(zt, t)
(t r) d

dtu
=

Consistency

u(zt, r, t) = v(zt, t) (t r) d
dtu

(b) MeanFlow (Differential Solution)

zr

zt

(t r)u(zt, r, t)

zr

zs

zt

(t r)u(zt, s, t)

(s-r)u(zs, r, s)

=
Consistency

(t r)u(zt, r, t) = (s r)u(zs, r, s) + (t s)u(zt, s, t)
(c) SplitMeanFlow (Algebraic Solution)

Figure 1: Conceptual Comparison of Generative Flow Methods

that the integral of a function over a full interval is the sum of the integrals over its subintervals. For
any ordered time points r ≤ s ≤ t, this property can be expressed as:

∫ t

r

v(zτ , τ)dτ =

∫ s

r

v(zτ , τ)dτ +

∫ t

s

v(zτ , τ)dτ (8)

This identity reflects a key geometric property of the flow: the total displacement from time r to t is
the sum of displacements from r to s, and from s to t.

To connect this principle to the average velocity u, we recall the definition of displacement as the
product of average velocity and time duration:

D(a, b) = (b− a)u(zb, a, b) =

∫ b

a

v(zτ , τ)dτ (9)

This results in a purely algebraic relationship involving the average velocity field, the Interval Split-
ting Consistency identity:

(t− r)u(zt, r, t) = (s− r)u(zs, r, s) + (t− s)u(zt, s, t) (10)

This identity serves as the foundation for SplitMeanFlow, providing a self-consistent constraint on
the structure of the average velocity field.

To make the training process feasible, we divide both sides of the equation by t − r and define
λ = t−s

t−r ∈ [0, 1], where s = (1− λ)t+ λr. This leads to the following form:

u(zt, r, t) = (1− λ)u(zs, r, s) + λu(zt, s, t) (11)

This equation can be interpreted as stating that the average velocity over the interval [r, t] is a
weighted sum of the average velocities over the subintervals [r, s] and [s, t], with the weights pro-
portional to the length of the intervals. The formulation requires appropriate boundary conditions
to ensure well-posedness and prevent degenerate solutions. Specifically, the boundary condition
u(zt, r, t) = v(zt, t) must hold when r = t, ensuring that the average velocity matches the instanta-
neous velocity at the terminal time. The full training procedure, which incorporates these boundary
conditions, is outlined in Algorithm 1. Additional details on the boundary conditions are provided
in the section 5.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 SplitMeanFlow Training
Require: Neural network uθ, a batch of data x.

1: Sample time points r, t such that 0 ≤ r ≤ t ≤ 1
2: Sample λ ∼ U(0, 1), set s = (1− λ)t+ λr.
3: Sample prior ϵ ∼ N (0, I).
4: Construct flow path point at time t: zt = (1− t)x+ tϵ.
5: if r = t then
6: target = v(zt, t) ▷ Apply boundary condition
7: else
8: u2 = uθ(zt, s, t)
9: zs = zt − (t− s)u2

10: u1 = uθ(zs, r, s)
11: target = (1− λ)u1 + λu2

12: end if
13: L = ∥uθ(zt, r, t)− sg(target)∥ ▷ sg is the stop gradient function.
14: Update θ using the gradient of L.

4.3 SPLITMEANFLOW AS A GENERALIZED CASE OF MEANFLOW

The algebraic identity at the core of SplitMeanFlow, Eq. 10, provides not only a self-contained
training principle but also a theoretical generalization of the differential identity used in MeanFlow.
Define g(s) := (s− r)u(zs, r, s), Eq. 10 can be rewritten as:

g(t)− g(s)

t− s
= u(zt, s, t). (12)

Taking the limit s → t yields:
g′(t) = v(zt, t). (13)

Differentiate g(t) = (t− r)u(zs, r, s) to evaluate g′(t):

g′(t) = u(zt, r, t) + (t− r)
d

dt
u(zt, r, t). (14)

With Eq. 13 and Eq. 14 , we can recover the MeanFlow identity (Eq. 7). For a more detailed deriva-
tion of the steps leading to this conclusion, see Appendix A. This formally establishes the MeanFlow
objective as a limiting special case of the SplitMeanFlow objective. As such, SplitMeanFlow serves
as a more general and foundational framework that remains valid across finite intervals without
resorting to infinitesimal approximations.

It is important to note that while the shortcut model Frans et al. (2025) achieves partial equivalence
to our formulation for the special case s = r+t

2 , the design philosophies differ significantly. Split-
MeanFlow leverages the concept of average velocity and the additivity of integration to construct
the identity in Eq. 10, which holds for arbitrary s ∈ [r, t]. Our method generalizes the concept of av-
erage velocity for any time points r, s, and t, with 0 ≤ r ≤ s ≤ t ≤ 1, using continuous parameters.
In contrast, the shortcut model uses a discrete variable.

5 EXPERIMENTS

Baselines The proposed SplitMeanFlow method is applicable to a variety of architectures that
utilize flow-based modules. To evaluate its effectiveness, we validate SplitMeanFlow on the text-
to-speech (TTS) task using both open-source and private TTS models. Specifically, we conduct
experiments on the following four models: (1) F5-TTS Chen et al. (2024), a pure flow-based non
auto-regressive (NAR) TTS model that directly maps text to mel-spectrograms. An official BigV-
GAN Lee et al. checkpoint is used to reconstruct the waveform. Since F5-TTS employs only flow
for TTS, it serves as the primary model for our main experiments. (2) CosyVoice2 Du et al. (2024),
which first uses a language model to map text to semantic tokens, and then applies a flow-based
module to map these tokens to mel-spectrograms. An official HiFiGAN Kong et al. (2020) check-
point is used to reconstruct the waveform. (3) DiTAR Jia et al. (2025), which uses a language model

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(LM) to convert text into continuous-space embeddings, and then maps these embeddings to the
latent space of a variational autoencoder (VAE) using a flow module. (4) Seed-TTS Anastassiou
et al. (2024), which is similar to CosyVoice2 but maps semantic tokens to VAE latents.

Datasets We conduct experiments using the Emilia He et al. (2024) dataset for F5-TTS and
CosyVoice2. Emilia is a multilingual and diverse in-the-wild speech dataset designed for large-
scale speech generation, and for this study, we use the English and Chinese subsets, each containing
50,000 hours of speech data. For CosyVoice2, we only train the flow module, while utilizing the of-
ficial checkpoint for LM. The evaluation is carried out using two benchmarks: (1) SeedTTS test-en,
a test set from Seed-TTS containing 1,000 samples extracted from the Common Voice dataset Ardila
et al. (2020), and (2) SeedTTS test-zh, a test set from Seed-TTS containing 2,000 samples extracted
from the DiDiSpeech dataset Guo et al. (2021) for Chinese speech. Experiments on the private mod-
els are conducted with proprietary datasets.

Metrics We adopt five metrics to evaluate the performance of our method: (1) Word Error Rate
(WER), which measures the accuracy of speech content generation. For English, we use Whisper-
large-v3 Radford et al. (2023), and for Chinese, we use Paraformer-zh Gao et al. (2023). (2) Speaker
Similarity (SIM), which evaluates the similarity between the generated and reference speaker’s
speech using cosine similarity between speaker embeddings extracted with WavLM-large Chen et al.
(2022). (3) Comparative Mean Opinion Score (CMOS), which is collected through human evalua-
tions, with a score ranging from -2 to +2, where a higher score indicates preference for the proposed
model. All CMOS evaluations in this work are compared against the corresponding flow matching
baseline in each table. (4) UTMOS Saeki et al. (2022), which is evaluated using an open-source
MOS prediction model, providing an estimate of human preference when exhaustive CMOS eval-
uations are not feasible. (5) Real-Time Factor (RTF), which measures the efficiency by calculating
the time taken to generate speech relative to the input duration. For TTS models with multiple
components, RTF for the flow module is reported.

5.1 TRAINING DETAILS

Initialization and Distillation with Flow Matching While SplitMeanFlow can be trained from
scratch, we find that a two-stage approach, combining pretraining and distillation, yields signifi-
cantly faster convergence and superior final performance, especially for large-scale industrial appli-
cations. This strategy ensures that the SplitMeanFlow model learns from a stable and high-quality
supervision signal. The first stage is dedicated to training a standard flow matching model, which
will serve as the teacher. The model is trained using the standard flow matching loss, which is
equivalent to our framework when the boundary condition is exclusively enforced. In the second
stage, we train our SplitMeanFlow model, referred to as the student with initialization and boundary
condition supervision from teacher. The detailed initialization strategy and code snippets are avail-
able in Appendix B. During distillation, the CFG Ho & Salimans (2022) dropout for the student
model is set to 0.0. The teacher generates instantaneous velocity with a fixed CFG scale, enabling
the CFG-free inference for Mstudent. More details on training can be found in Appendix E

Boundary Conditions The loss requires a boundary condition to avoid collapsing to a trivial solu-
tion. This anchor to reality is the instantaneous velocity condition: u(zt, t, t) = v(zt, t). In Stage 2,
same as MeanFlow, we use a flow ratio p to create a mixed objective. For a fraction p of the samples
in a batch, we set r = t to enforce the boundary condition using the teacher’s velocity v(zt, t) as the
target. For the remaining 1− p fraction, we enforce the Interval Splitting Consistency loss(Eq. 10).
However, in a distillation setup, we can adopt an approximated teacher’s average velocity from t to
r as the anchor. The details of using such an anchor are discussed in Appendix C.

5.2 SPLITMEANFLOW IN NAR TTS

We apply SplitMeanFlow to F5-TTS, a pure flow-based TTS model that directly converts text to mel-
spectrograms. Given that F5-TTS is entirely flow-based, it benefits significantly from the accelera-
tion introduced by SplitMeanFlow. F5-TTS necessitates the learning of an inherent time alignment
between text and mel-spectrograms, which is a more challenging task compared to AR methods
that leverage an LM to generate time-aligned sematic tokens. As shown in Table 1, SplitMean-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparing with Flow Matching with SplitMeanFlow on F5-TTS.
Method NFE CFG WER (%, ↓) SIM (↑) UTMOS(↑) CMOS (↑) RTF(↓)

Seed-TTS test-en
Human N/A N/A 2.14 0.73 3.52 -0.17 N/A

Flow Matching 32 Y 1.87 0.67 3.70 0.00 0.243
SplitMeanFlow 3 N 1.67 0.65 3.72 -0.03 0.021
SplitMeanFlow 4 N 1.60 0.66 3.75 0.00 0.027

Seed-TTS test-zh
Human N/A N/A 1.25 0.76 2.78 -0.35 N/A

Flow Matching 32 Y 1.52 0.76 2.96 0.00 0.243
SplitMeanFlow 3 N 1.66 0.74 3.01 -0.01 0.021
SplitMeanFlow 4 N 1.61 0.75 3.07 -0.01 0.027

Flow enables 3 to 4-NFE inference on F5-TTS without compromising the quality of the generated
speech, as evaluated on both the Seed-TTS English and Chinese test sets. Note that training F5-TTS
with MeanFlow is not feasible due to excessive memory consumption from JVP calculations, which
forces the batch size to 1. Detailed results on F5-TTS with more hyperparams setups and inference
NFEs are discussed in Appendix D.1 and Appendix D.2, respectively.

5.3 SPLITMEANFLOW IN AR TTS

Table 2: Comparing with Flow Matching with SplitMeanFlow on CosyVoice2.
Method NFE CFG WER (%, ↓) SIM (↑) UTMOS(↑) RTF(↓)

Seed-TTS test-en
Human N/A N/A 2.14 0.73 3.52 N/A

Flow Matching 32 Y 2.57 0.65 3.70 0.510
MeanFlow 1 N 2.53 0.64 3.37 0.026

SplitMeanFlow 1 N 2.49 0.64 3.71 0.026
SplitMeanFlow 2 N 2.42 0.65 3.73 0.050

Seed-TTS test-zh
Human N/A N/A 1.25 0.76 2.78 N/A

Flow Matching 32 Y 1.47 0.73 2.96 0.510
MeanFlow 1 N 1.66 0.74 2.78 0.026

SplitMeanFlow 1 N 1.66 0.74 2.96 0.026
SplitMeanFlow 2 N 1.61 0.75 2.98 0.050

We conduct experiments by applying SplitMeanFlow to CosyVoice2, DiTAR, and Seed-TTS. These
models indirectly benefit from the flow module acceleration, as they first use an AR LM module to
generate time-aligned representations, which are then mapped to mel-spectrograms or VAE latents
by the flow module. This setup eliminates the need for the flow module to learn time alignment. As
shown in Table 2, SplitMeanFlow achieves 1 to 2-NFE inference on CosyVoice2 without a noticeable
drop in speech quality. We also conduct experiments with MeanFlow, reducing the batch size to 0.1
of the original to accommodate the memory consumption. Experiments show that while MeanFlow
achieves comparable WER and speaker similarity results to the baseline, it experiences a drop in
UTMOS scores. The speech generated by MeanFlow also exhibits noticeable background noise,
likely due to the reduced batch size. This explains the drop in UTMOS despite the comparable
WER and speaker similarity scores: the ASR and speaker verification models used are trained to
be robust to noise, while UTMOS evaluates background noise as part of speech quality assessment.
Generated speech samples can be found in the supplementary material.

In Table 3, Seed-TTSSFT refers to the Supervised Fine-Tuning task within the Seed-TTS framework,
where the model is trained on labeled speech-text pairs to optimize text-to-speech performance met-
rics as described in Anastassiou et al. (2024). Compared to the 10-step Flow Matching baseline, our
method reduces sampling steps by 5× and eliminates the need for Classifier-Free Guidance (CFG),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparing SplitMeanFlow with Flow Matching and DMD on Seed-TTSSFT tasks.
Method NFE CFG WER (%, ↓) SIM (↑) CMOS (↑)

Flow Matching 10 Y 5.51 0.79 0.00
DMD 2 N 5.61 0.79 -0.04

SplitMeanFlow 2 N 5.61 0.79 -0.01

significantly reducing computational overhead. Despite this acceleration, the quality degradation is
minimal. The CMOS score of -0.01 indicates that human evaluators found the audio quality of our
2-step model almost identical to the 10-step baseline. We also compare our method to DMD Yin
et al. (2024), another recent few-step generation method. SplitMeanFlow outperforms DMD in both
speaker similarity and CMOS score, suggesting a perceptual preference for our model.

Table 4: Comparing SplitMeanFlow with Flow Matching on Seed-TTSICL task.
Model NFE CFG WER (%, ↓) SIM (↑) CMOS (↑)

Flow Matching 10 Y 2.86 0.69 0.00
SplitMeanFlow 2 N 2.97 0.68 0.00
SplitMeanFlow 1 N 2.86 0.69 0.00

We also evaluated SplitMeanFlow on Voice Cloning (Seed-TTSICL) tasks as detailed in Anastassiou
et al. (2024). As shown in Table 4, the 2-step SplitMeanFlow model delivers strong performance,
with a neutral CMOS score of 0, indicating that human evaluators found its quality equivalent to
the 10-step baseline, despite minor fluctuations in objective metrics. Most notably, our 1-step Split-
MeanFlow model achieves performance statistically comparable to the 10-step Flow Matching base-
line across all metrics. The neutral CMOS score of 0 further confirms perceptual equivalence. This
result demonstrates a 10-fold RTF acceleration and 20-fold reduction in computational cost with-
out any noticeable quality loss, highlighting the effectiveness of learning the average velocity field
via our algebraic consistency. This establishes SplitMeanFlow as a significant advancement toward
truly one-step generative modeling.

Table 5: Comparing SplitMeanFlow with Flow Matching on Single Speaker SFT with DiTAR.
Model NFE CFG WER (%, ↓) CMOS (↑) RTF(↓)

Flow Matching 10 Y 1.47 0.00 0.341
SplitMeanFlow 2 N 1.32 -0.01 0.073
SplitMeanFlow 1 N 1.38 -0.08 0.038

Single-speaker synthesis is a critical task in industrial TTS, where the goal is to achieve highly
expressive and natural speech synthesis, possibly by sacrificing the voice cloning capacity. We
evaluate SplitMeanFlow in this setup using the DiTAR framework. As shown in Table 5, even under
the demanding conditions of single-speaker expressive speech generation, SplitMeanFlow exhibits
only a minor CMOS degradation of 0.01. Remarkably, it achieves a 5-fold acceleration and a 10-
fold reduction in computational cost, underscoring the practical applicability of SplitMeanFlow for
large-scale, industrial-level TTS applications.

6 CONCLUSION

In this work, we introduced SplitMeanFlow, a novel framework for training few-step generative
models. By returning to the first principles of average velocity and leveraging the additivity prop-
erty of integrals, we derived the Interval Splitting Consistency objective that avoids the need for dif-
ferential operators. We demonstrated that this algebraic formulation is a more general framework,
with the differential identity in MeanFlow emerging as a limiting case. This results in significant
practical advantages, including stable training, simpler implementation, and broader compatibility,
as SplitMeanFlow eliminates the need for Jacobian-Vector Product (JVP) computations. We vali-
date SplitMeanFlow on text-to-speech tasks with both AR and NAR setups, achieving 3 to 4-NFE
inference on NAR and 1 to 2-NFE for AR models, without compromising speech generation quality.
The algebraic perspective and practical effectiveness of SplitMeanFlow opens new possibilities for
more efficient and powerful generative models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

The majority of our experiments are conducted using publicly available codebases (F5-TTS and
CosyVoice2) and datasets (Emilia). We utilize publicly available checkpoints for model initialization
and provide code snippets for implementing the initialization techniques in Appendix B, as well as
for the boundary condition supervision in Appendix C. Readers should be able to easily reproduce
our models based on these resources. Furthermore, we plan to release the code as pull requests to
existing Flow Matching repositories to ensure compatibility with SplitMeanFlow, along with pre-
trained models.

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
Lelai Deng, Chuang Ding, Lu Gao, et al. Seed-tts: A family of high-quality versatile speech
generation models. arXiv preprint arXiv:2406.02430, 2024.

Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty,
Reuben Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common voice: A
massively-multilingual speech corpus. In Proceedings of the Twelfth Language Resources and
Evaluation Conference, pp. 4218–4222, 2020.

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
Junhwa Hur, Yuanzhen Li, Tomer Michaeli, et al. Lumiere: A space-time diffusion model for
video generation. arXiv preprint arXiv:2401.12945, 2024.

Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, Jian Zhao, Kai Yu, and Xie
Chen. F5-TTS: A fairytaler that fakes fluent and faithful speech with flow matching. arXiv
preprint arXiv:2410.06885, 2024.

Zhengyang Chen, Sanyuan Chen, Yu Wu, Yao Qian, Chengyi Wang, Shujie Liu, Yanmin Qian, and
Michael Zeng. Large-scale self-supervised speech representation learning for automatic speaker
verification. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6147–6151. IEEE, 2022.

Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large
language models. CoRR, 2024.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Zhengcong Fei, Mingyuan Fan, and Junshi Huang. Music consistency models. arXiv preprint
arXiv:2404.13358, 2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In International Conference on Learning Representations (ICLR), 2025.

Zhifu Gao, Zerui Li, Jiaming Wang, Haoneng Luo, Xian Shi, Mengzhe Chen, Yabin Li, Lingyun
Zuo, Zhihao Du, Zhangyu Xiao, et al. Funasr: A fundamental end-to-end speech recognition
toolkit. arXiv preprint arXiv:2305.11013, 2023.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Wenhao Guan, Kaidi Wang, Wangjin Zhou, Yang Wang, Feng Deng, Hui Wang, Lin Li, Qingyang
Hong, and Yong Qin. Lafma: A latent flow matching model for text-to-audio generation. arXiv
preprint arXiv:2406.08203, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tingwei Guo, Cheng Wen, Dongwei Jiang, Ne Luo, Ruixiong Zhang, Shuaijiang Zhao, Wubo Li,
Cheng Gong, Wei Zou, Kun Han, et al. Didispeech: A large scale mandarin speech corpus. In
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6968–6972. IEEE, 2021.

Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, et al. Emilia: An extensive, multilingual,
and diverse speech dataset for large-scale speech generation. arXiv preprint arXiv:2407.05361,
2024.

Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. arXiv
preprint arXiv:2403.06807, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Dongya Jia, Zhuo Chen, Jiawei Chen, Chenpeng Du, Jian Wu, Jian Cong, Xiaobin Zhuang, Chumin
Li, Zhen Wei, Yuping Wang, et al. Ditar: Diffusion transformer autoregressive modeling for
speech generation. In Forty-second International Conference on Machine Learning, 2025.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Neural Information Processing Systems (NeurIPS), 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for
efficient and high fidelity speech synthesis. Advances in neural information processing systems,
33:17022–17033, 2020.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan: A universal
neural vocoder with large-scale training. In The Eleventh International Conference on Learning
Representations.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In International Conference on Learning Representations
(ICLR), 2023.

Huadai Liu, Rongjie Huang, Yang Liu, Hengyuan Cao, Jialei Wang, Xize Cheng, Siqi Zheng, and
Zhou Zhao. Audiolcm: Text-to-audio generation with latent consistency models. arXiv preprint
arXiv:2406.00356, 2024.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In International Conference on Learning Representations (ICLR),
2023.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
arXiv preprint arXiv:2410.11081, 2024.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In International Conference on Learning Representations (ICLR), 2025.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Syn-
thesizing high-resolution images with few-step inference, 2023a.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo
Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module.
arXiv preprint arXiv:2311.05556, 2023b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning (ICML). PMLR, 2021.

Owen Oertell, Jonathan D Chang, Yiyi Zhang, Kianté Brantley, and Wen Sun. Rl for consistency
models: Faster reward guided text-to-image generation. arXiv preprint arXiv:2404.03673, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2023.

Yansong Peng, Kai Zhu, Yu Liu, Pingyu Wu, Hebei Li, Xiaoyan Sun, and Feng Wu. Flow-anchored
consistency models, 2025.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International conference on ma-
chine learning, pp. 28492–28518. PMLR, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hi-
roshi Saruwatari. Utmos: Utokyo-sarulab system for voicemos challenge 2022. arXiv preprint
arXiv:2204.02152, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-
ing (ICML), 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Neural Information Processing Systems (NeurIPS), 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International
Conference on Machine Learning (ICML), 2023.

Zeyue Tian, Yizhu Jin, Zhaoyang Liu, Ruibin Yuan, Xu Tan, Qifeng Chen, Wei Xue, and
Yike Guo. Audiox: Diffusion transformer for anything-to-audio generation. arXiv preprint
arXiv:2503.10522, 2025.

Fu-Yun Wang, Zhaoyang Huang, Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, and Hongsheng
Li. Animatelcm: Accelerating the animation of personalized diffusion models and adapters with
decoupled consistency learning. arXiv preprint arXiv:2402.00769, 2024.

Jie Xiao, Kai Zhu, Han Zhang, Zhiheng Liu, Yujun Shen, Yu Liu, Xueyang Fu, and Zheng-Jun
Zha. Ccm: Adding conditional controls to text-to-image consistency models. arXiv preprint
arXiv:2312.06971, 2023.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM computing surveys, 56(4):1–39, 2023.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF: SPLITMEANFLOW AS A GENERALIZED CASE OF MEANFLOW

Our proof begins with the cornerstone of SplitMeanFlow, the Interval Splitting Consistency identity
(Eq 10). To reveal its connection to MeanFlow, we first rearrange this equation algebraically:

(t− r)u(zt, r, t)− (s− r)u(zs, r, s)

t− s
= u(zt, s, t). (15)

This form already resembles the definition of a derivative. We now investigate its behavior in the
limit as the splitting point s approaches the right endpoint t, i.e., s → t.

1. Analyzing the Right-Hand Side (RHS): As s → t, the length of the time interval [s, t] for
the average velocity u(zt, s, t) approaches zero. By its definition:

u(zt, s, t) =
1

t− s

∫ t

s

v(zτ , τ)dτ (16)

which converges to the instantaneous velocity at that point. Thus:
lim
s→t

u(zt, s, t) = v(zt, t). (17)

2. Analyzing the Left-Hand Side (LHS): To clarify the structure of the LHS, we define an
auxiliary function for the total displacement from r to t, letting g(t) = (t − r)u(zt, r, t).
The LHS of Eq. 15 can then be expressed as:

g(t)− g(s)

t− s
. (18)

This is precisely the definition of the derivative of the function g at point t. Therefore:

lim
s→t

g(t)− g(s)

t− s
= g′(t). (19)

3. Connecting the Sides and Expanding: By equating the limits of both sides, we arrive at
the new identity g′(t) = v(zt, t). We now find the explicit form of g′(t) by taking the total
derivative of g(t) = (t − r)u(zt, r, t) with respect to t. Applying the product rule and the
chain rule yields:

g′(t) =
d

dt
[(t− r)u(zt, r, t)] = u(zt, r, t) + (t− r)

d

dt
u(zt, r, t). (20)

Substituting this expansion back into g′(t) = v(zt, t), we get:

u(zt, r, t) + (t− r)
d

dt
u(zt, r, t) = v(zt, t). (21)

A simple rearrangement recovers the core differential identity of MeanFlow:

u(zt, r, t) = v(zt, t)− (t− r)
d

dt
u(zt, r, t). (22)

B INITIALIZATION STRATEGY

SplitMeanFlow models the average velocity between timesteps t and r. Both timesteps are passed
through the same embedding network, concatenated, and then projected back into the feature space
of t via a linear mapping W.

Let the embeddings for t and r be denoted as et = E(t) and er = E(r), respectively. The concate-
nated embeddings et,r are projected to e′t,r as follows:

et,r = [et, er]; e′t,r = Wet,r (23)

To ensure that SplitMeanFlow retains the behavior of the original flow-matching model, the linear
mapping W is initialized as:

W = [Ddiag 0] (24)

where Ddiag represents a diagonal matrix. This initialization guarantees that the model behaves
identical to the original model at the start of training. The code snippet is shown as following:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

self.time_proj = nn.Linear(dim * 2, dim)
with torch.no_grad():

self.time_proj.weight.zero_()
self.time_proj.bias.zero_()
self.time_proj.weight[:, :dim] = torch.eye(dim)

C TEACHER’S VELOCITY AS THE TRAINING ANCHOR

C.1 METHODOLOGY

In a distillation setup, we observed that using the instantaneous velocity of the teacher model as
an anchor to prevent training collapse can lead to a performance drop in both objective and subjec-
tive metrics. To address this, we propose using the approximated average velocity of the teacher
over the interval [t, r] as the anchor. This is achieved by performing iterative sampling of the
teacher model during distillation. The interval [t, r] is discretized into n subintervals, with time
steps t0 = t, t1, . . . , tn = r. At each step, the teacher model evolves the state based on the discrete
approximation of the ODE:

ztk+1
= ztk + (tk+1 − tk) · v(ztk , tk; θ) (25)

where t0 = t, tn = r, and t1, t2, . . . , tn−1 are intermediate time steps. The total displacement over
the interval [t, r] is computed as:

∆zteacher =

n−1∑
k=0

(
ztk+1

− ztk
)
=

n−1∑
k=0

(tk+1 − tk) · v(ztk , tk; θ) (26)

This discrete displacement approximates the integral of the instantaneous velocity v(zt, t; θ) over
[t, r], which is the continuous process the student model aims to replicate. To approximate the
average velocity, we normalize the displacement by the length of the interval:

v̄teacher(zt, t, r) =
∆zteacher

r − t
(27)

Thus, the teacher’s discrete displacement provides a numerical approximation of this integral. The
anchor loss is then defined as:

Lanchor = Et,r

[
∥ustudent(zt, t, r)− v̄teacher(zt, t, r)∥2

]
(28)

It is important to note that this strategy may impact training speed due to the multiple NFEs required
by the teacher model during distillation. In our experiments, we set the teacher NFE to 2 during
distillation.

C.2 IMPLEMENTATION

@torch.no_grad()
def teacher_average_velocity(z, cond, text, mask, t, r, teacher,

teacher_nfe, teacher_cfg):
z0 = z
t_vals = get_epss_timesteps(teacher_nfe)
t_vals = t_vals - (torch.cos(torch.pi / 2 * t_vals) - 1 + t_vals)
t_vals = t_vals[None, :] * (r - t)[:, None] + t[:, None]
for i in range(0, teacher_nfe):

t_, r_ = t_vals[:, i], t_vals[:, i + 1]
v = teacher(x=z, cond=cond, text=text, time=t_, mask=mask)
pred, null_pred = torch.chunk(v, 2, dim=0)
v = teacher_cfg * pred + (1 - teacher_cfg) * null_pred

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

z = z + (r_ - t_)[:, None, None] * v
v_target = (z - z0) / (r - t)[:, None, None]
return v_target

def get_epss_timesteps(n):
dt = 1 / 32
predefined_timesteps = {

2: [0, 10, 32],
3: [0, 4, 12, 32],
4: [0, 2, 6, 12, 32],
5: [0, 2, 4, 8, 16, 32],
6: [0, 2, 4, 6, 8, 16, 32],
7: [0, 2, 4, 6, 8, 16, 24, 32],
8: [0, 2, 4, 6, 8, 16, 24, 28, 32],
10: [0, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32],
12: [0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32],
16: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32],

}
if n not in predefined_timesteps:

return torch.linspace(0, 1, n + 1)
return dt * torch.tensor(predefined_timesteps[n])

C.3 ABLATION STUDY

Table 6 compares the performance of using the teacher’s instantaneous velocity versus the approx-
imated average velocity as the training anchor for SplitMeanFlow on F5-TTS. The results show a
clear degradation in all metrics. This suggests that the instantaneous velocity may not provide an
optimal anchor for training.

Table 6: Comparing anchor with teacher’s instantaneous velocity and average velocity.
Training Anchor WER (%, ↓) SIM (↑) UTMOS(↑) CMOS(↑)

Seed-TTS test-en
teacher approximated average velocity 1.67 0.65 3.72 -0.03
teacher instantaneous velocity 2.07 0.59 3.61 -0.08

Seed-TTS test-zh
teacher approximated average velocity 1.66 0.74 3.01 -0.01
teacher instantaneous velocity 2.04 0.65 2.92 -0.11

D SPLITMEANFLOW IN NAR TTS: DETAILED RESULTS

D.1 SPEECH GENERATION QUALITY VS. FLOW RATIO

The Flow Ratio reference to the p in section 5.1.

Table 7 presents an ablation study on the flow ratio p for SplitMeanFlow on F5-TTS. When p ≥ 0.5,
the results show comparable performance across the objective metrics, indicating that the model is
correctly guided by the supervision of boundary conditions. However, when p = 0.3, both speaker
similarity and UTMOS experience noticeable degradation. This suggests that the boundary con-
dition anchor becomes less effective at this ratio, leading to a deterioration in the quality of the
generated speech. At p = 0.1, the model fails to converge, with training collapsing entirely. This
indicates that the anchor is no longer providing meaningful guidance, and the training process is
unable to proceed in a reasonable direction.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Ablation on flow ratio for SplitMeanFlow on F5-TTS.
Flow Ratio WER (%, ↓) SIM (↑) UTMOS(↑)

Seed-TTS test-en
0.1 103.75 0.05 1.34
0.3 1.58 0.59 3.60
0.5 1.67 0.65 3.72
0.7 1.71 0.64 3.75
0.9 1.65 0.64 3.65

Seed-TTS test-zh
0.1 122.41 0.06 1.23
0.3 1.73 0.68 2.87
0.5 1.66 0.74 3.01
0.7 1.68 0.74 2.98
0.9 1.62 0.73 3.01

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 8 16 32

WER (%)

SplitMeanFlow

Flow Matching

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 8 16 32

SIM

SplitMeanFlow

Flow Matching

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 8 16 32

UTMOS

SplitMeanFlow

Flow Matching

Figure 2: Comparison of speech quality metrics between Flow Matching and SplitMeanFlow as a
function of inference NFE.

D.2 SPEECH GENERATION QUALITY VS INFERENCE NFE

Figure 2 illustrates the speech generation quality metrics as a function of inference NFE for Split-
MeanFlow and Flow Matching on F5-TTS. The results clearly show that SplitMeanFlow outper-
forms the Flow Matching baseline at lower NFEs. As the NFE increases, the performance gap
between the two approaches narrows. When the NFE approaches 32, both methods exhibit degra-
dation in objective metrics. This behavior reflects a typical challenge in TTS evaluation, where
objective metrics no longer effectively capture improvements in generation quality, making CMOS
evaluation necessary at this point.

E TRAINING DETAILS

For F5-TTS, we use the official Base model with 336M parameters as the Flow Matching teacher.
During distillation, we employ the Adam Kingma & Ba (2015) optimizer with a learning rate of
3 × 10−5. We initialize with the official F5-TTS Base checkpoint and continue training using the
distillation strategy for 300K steps.

For CosyVoice2, we use the official flow checkpoint with 107M parameters. The distillation process
also uses the Adam optimizer with a learning rate of 3 × 10−5. We initialize with the official
CosyVoice2-0.5B flow module checkpoint and continue training with the distillation strategy for
200K steps.

For the single-speaker configuration of DiTAR, we first pretrain the model on a large-scale internal
multi-speaker corpus and then fine-tune it on a small single-speaker dataset. During SplitMeanFlow
distillation, we update only the LocDiT component of DiTAR Jia et al. (2025), using the single-
speaker data. We distill LocDiT for 100K steps with a learning rate of 1× 10−5.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

F THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of LLM for assisting with tasks such as grammar correction, enhancing
expression diversity, formatting tables, and debugging code. However, we emphasize that all core
ideas, experiments, and analyses are original contributions.

17

	Introduction
	Related Works
	Diffusion Models and Flow Matching
	Few-Step Generative Models

	Background
	Flow Paths and Instantaneous Velocity
	Conditional Flow Matching Loss

	Method
	Modeling Average Velocity for Efficient Generation
	SplitMeanFlow: From Differential to Algebraic Solution
	SplitMeanFlow as a generalized case of MeanFlow

	Experiments
	Training Details
	SplitMeanFlow in NAR TTS
	SplitMeanFlow in AR TTS

	Conclusion
	reproducibility statement
	Proof: SplitMeanFlow as a generalized case of MeanFlow
	Initialization Strategy
	Teacher's Velocity as the Training Anchor
	Methodology
	Implementation
	Ablation Study

	SplitMeanFlow in NAR TTS: detailed results
	Speech generation quality vs. Flow Ratio
	Speech generation quality vs Inference NFE

	Training Details
	The Use of Large Language Models

