
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPLITMEANFLOW: INTERVAL SPLITTING CONSIS-
TENCY IN FEW-STEP GENERATIVE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Flow Matching has achieved prominent performance in generative modeling, yet
it is plagued by high computational costs due to iterative sampling. Recent ap-
proaches such as MeanFlow address this bottleneck by learning average velocity
fields instead of instantaneous velocities. However, we demonstrate that Mean-
Flow’s differential formulation is a special case of a more fundamental principle.
In this work, we revisit the first principles of average velocity fields and derive
a key algebraic identity: Interval Splitting Consistency. Building on this, we
propose SplitMeanFlow, a novel framework that directly enforces this algebraic
consistency as a core learning objective. Theoretically, we show that SplitMean-
Flow recovers MeanFlow’s differential identity in the limit, thereby establishing
a more general and robust basis for average velocity field learning. Practically,
SplitMeanFlow simplifies training by eliminating the need for JVP and enables
one-step synthesis. Extensive experiments on large-scale speech synthesis tasks
verify its superiority: SplitMeanFlow achieves a 10× speedup and a 20× reduc-
tion in computational cost, while preserving speech quality, delivering substantial
efficiency gains without compromising generative performance.

1 INTRODUCTION

Generative modeling has seen remarkable advancements, with approaches such as Diffusion Mod-
els Sohl-Dickstein et al. (2015) and Flow Matching Liu et al. (2023); Song et al. (2021) establish-
ing new benchmarks for generating high-fidelity samples across various domains, including im-
ages Rombach et al. (2022); Esser et al. (2024), video Kong et al. (2024); Bar-Tal et al. (2024), and
audio Guan et al. (2024); Tian et al. (2025). Despite their impressive capabilities, these models are
often limited in practical use by a significant computational bottleneck: their dependence on iter-
ative sampling, which typically requires tens or even hundreds of neural network inferences. This
high computational cost presents a major challenge, especially in resource-constrained or latency-
sensitive environments. As a result, research has increasingly focused on developing ”few-step” or
even ”one-step” generative models to mitigate this sampling overhead.

In response to this challenge, several innovative approaches have emerged. Consistency Mod-
els Song et al. (2023); Luo et al. (2023a); Peng et al. (2025); Lu & Song (2025); Liu et al. (2024);
Wang et al. (2024); Luo et al. (2023b); Xiao et al. (2023), for example, introduced a novel training
paradigm that enforces output consistency along the same trajectory, yielding promising results for
few-step generation. Building on this, MeanFlow Geng et al. (2025) provided a significant concep-
tual breakthrough: for large-step generation, directly modeling the average velocity across the entire
path from noise to data is more effective than modeling the instantaneous velocity at each individ-
ual point. This shift from a local to a global perspective is better suited for few-step, large-stride
predictions, and has propelled MeanFlow to achieve state-of-the-art performance.

The success of MeanFlow Geng et al. (2025) has demonstrated the effectiveness of learning the
average velocity field to enable few-step generation. However, the approach introduces significant
challenges, both computational and practical. The reliance on a differential formulation not only
results in computational inefficiencies due to the complexity of the differential operations, but also
complicates implementation. Specifically, the need to support Jacobian-vector products (JVP) in
custom operators makes the training of existing models under MeanFlow objectives non-trivial.
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In this work, we introduce SplitMeanFlow, a new framework that addresses these issues by returning
to the first principles of average velocity, which is defined as the integral of instantaneous velocity
over a time interval. Unlike MeanFlow, which approximates this relationship using differential iden-
tities, SplitMeanFlow avoids derivatives and instead leverages the algebraic structure of the integral.
A key insight is the additivity property of definite integrals, which allows the decomposition of the
integral over an entire time interval into the sum of integrals over subintervals. This leads to a novel,
purely algebraic identity, Interval Splitting Consistency, that governs the relationship between aver-
age velocities across different time intervals. We formally demonstrate that the differential identity
central to MeanFlow is recovered as a special case of our formulation when the splitting point ap-
proaches the time interval endpoint. In this limit, our algebraic relation simplifies to the differential
form, revealing that MeanFlow’s training objective is a specific instance of our broader consistency
principle. By enforcing the algebraic consistency directly as a training objective, SplitMeanFlow
provides a more efficient and practical method for learning the average velocity field.

Our contributions are as follows: (1) We introduce SplitMeanFlow, a method grounded in Inter-
val Splitting Consistency, which extends the principles of MeanFlow by providing a more general
framework for learning average velocity fields. (2) SplitMeanFlow eliminates the need for JVP op-
erations, leading to improved computational efficiency, simplified implementation, and more stable
training. (3) We demonstrate the practical impact of SplitMeanFlow through its successful deploy-
ment in large-scale industrial applications, and its integration with open-source models, showcasing
both its robustness and scalability.

2 RELATED WORKS

2.1 DIFFUSION MODELS AND FLOW MATCHING

Diffusion models Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al. (2020); Song et al.
(2021); Nichol & Dhariwal (2021); Rombach et al. (2021); Peebles & Xie (2023) have achieved
impressive results across various generative tasks by transforming noise into data through iterative
denoising. Despite their success, these models often require hundreds of sampling steps, making
inference computationally expensive and limiting their applicability in real-time settings Yang et al.
(2023). To address this inefficiency, flow matching Lipman et al. (2023); Karras et al. (2022);
Albergo et al. (2023) has been proposed as an alternative framework that directly learns a time-
dependent velocity field to match the probability flow of a diffusion process. Flow Matching offers
advantages such as faster inference and empirical performance gains. Building on this framework,
recent variants such as Rectified Flow Liu et al. (2023) aim to improve training stability and con-
vergence by adjusting the reference interpolation path. However, despite these improvements, most
FM-based approaches still rely on multi-step integration during sampling. To reduce the computa-
tional burden of iterative sampling, recent research has focused on few-step generative models that
aim to accelerate inference while preserving the high sample quality of diffusion-based methods.

2.2 FEW-STEP GENERATIVE MODELS

Consistency Models. Consistency models Song et al. (2023); Heek et al. (2024); Lu & Song (2024)
have been developed to achieve few-step generation for visual Luo et al. (2023a); Oertell et al. (2024)
and audio Fei et al. (2024); Liu et al. (2024). These methods enforce self-consistency by requiring
that predictions remain invariant under repeated model application or temporal interpolation across
varying noise levels. Such constraints encourage the generative trajectory to become coherent and
predictable, thereby allowing accurate approximation with substantially fewer steps. Despite their
empirical effectiveness, these consistency constraints are generally heuristic in nature, introduced as
external regularization without explicit theoretical grounding.

MeanFlow MeanFlow Geng et al. (2025) presents a principled framework for one-step generative
modeling by introducing the concept of average velocity, defined as the displacement over a time
interval divided by its duration. In contrast to Flow Matching, which models instantaneous velocity
at each time step, MeanFlow adopts average velocity as the learning target. It further derives an
analytic relation, termed the MeanFlow Identity, that connects the average and instantaneous veloc-
ities via a time derivative. This formulation offers a well-grounded training objective that avoids
heuristic consistency constraints and provides a clear physical interpretation.
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3 BACKGROUND

To properly contextualize our proposed SplitMeanFlow, we first revisit the foundational principles
of Flow Matching, the framework upon which our work is built. Flow Matching offers a powerful
and intuitive paradigm for generative modeling, designed to learn a velocity field that transports
samples from a simple prior distribution (e.g., a Gaussian) to a complex target data distribution.
Both the preceding MeanFlow model and our SplitMeanFlow are fundamentally grounded in the
core mechanics of this approach.

3.1 FLOW PATHS AND INSTANTANEOUS VELOCITY

The central idea of Flow Matching Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al.
(2020); Song et al. (2021); Nichol & Dhariwal (2021); Rombach et al. (2021); Peebles & Xie (2023)
is to define a continuous-time flow path, denoted by zt, that connects a prior sample ϵ ∼ pprior(ϵ) to
a data sample x ∼ pdata(x). This path is typically parameterized over the time interval t ∈ [0, 1] as:

zt = atx+ btϵ, (1)

where at and bt are predefined scalar schedules satisfying boundary conditions such as a0 = 1, b0 =
0 and a1 = 0, b1 = 1. A common and simple choice is the linear schedule at = 1 − t and bt = t,
which defines a straight-line trajectory from x at t = 0 to ϵ at t = 1.

Associated with this path is an instantaneous velocity field vt, defined as the time derivative:

vt =
dzt
dt

= a′tx+ b′tϵ. (2)

Since this velocity is defined conditioned on a specific data sample x, it is referred to as the condi-
tional velocity, denoted vt(zt|x). For the linear schedule mentioned above, the conditional velocity
takes the simple form vt = ϵ− x.

3.2 CONDITIONAL FLOW MATCHING LOSS

In practice, any given point zt on a trajectory could have been generated by numerous different
(x, ϵ) pairs. The ultimate goal of a generative model is therefore not to learn any single conditional
velocity, but rather the expectation over all possibilities, known as the marginal velocity v(zt, t) =
E[vt(zt|x)|zt]. However, directly computing a loss against this marginal velocity is intractable.

To circumvent this challenge, Lipman et al. (2023); Karras et al. (2022); Albergo et al. (2023)
introduces an elegant and practical objective: the Conditional Flow Matching (CFM) loss. This
objective trains a neural network vθ by minimizing the discrepancy between its prediction and the
easily computable conditional velocity. The loss function is formulated as:

LCFM(θ) = Et,x,ϵ ∥vθ(zt, t)− (a′tx+ b′tϵ)∥
2
. (3)

It has been shown that minimizing this conditional loss is equivalent to minimizing the loss with
respect to the true marginal velocity field. By optimizing this objective, the network vθ effectively
learns the vector field that governs the transformation of the entire distribution.

Once the model vθ is trained, new samples can be generated by solving the ordinary differential
equation (ODE) dzt

dt = vθ(zt, t), starting from a prior sample z1 = ϵ and integrating backward in
time to t = 0. This integration typically requires a numerical ODE solver, which often involves
multiple evaluation steps and has motivated the research into more efficient few-step and one-step
generation methods.

4 METHOD

4.1 MODELING AVERAGE VELOCITY FOR EFFICIENT GENERATION

Efficiently transforming a simple prior distribution into a complex data distribution with minimal
computational overhead is a fundamental goal in generative modeling, especially in few-step and
one-step generation. While models like Diffusion Models and Flow Matching have made significant
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progress, they face limitations when confronted with the demands of extreme efficiency. Addressing
this challenge requires rethinking what a model must learn to achieve both efficiency and accuracy
in generation.

Traditional generative frameworks learn an instantaneous velocity field, v(zt, t), describing the rate
of change at a specific moment in time. During inference, the model simulates the trajectory from
z1 to z0 by numerically integrating this field, solving the ordinary differential equation:

z0 = z1 −
∫ 1

0

v(zτ , τ)dτ. (4)

With sufficient function evaluations, numerical solvers can generate high-quality samples. However,
as the number of sampling steps decreases for efficiency, the error in numerical integration increases.
In one-step generation, this reduces to a single Euler step:

z0 ≈ z1 − 1 · v(z1, 1). (5)

This approximation equates the average rate of change over the interval with the instantaneous ve-
locity at the terminal point, introducing significant discretization error.

To achieve efficient and accurate generation, the model must learn the average velocity field, u,
which satisfies the exact relation:

z0 = z1 − u(z1, 0, 1). (6)

By learning u, the integration burden is shifted from inference to training, eliminating discretization
error by design. Modeling average velocity thus enables more efficient and accurate few-step and
one-step generation.

Formally, the average velocity u is defined as the integral of the instantaneous velocity v(zτ , τ) over
the interval [r, t], normalized by t − r. This defines u as a ground-truth field, determined by the
underlying instantaneous velocity field v, and serves as an ideal target for modeling.

However, the integral is computationally intractable during training, as it requires knowledge of the
instantaneous velocity at all intermediate points along an unknown trajectory, making it unsuitable
as a direct learning objective.

Given that u is the ideal target but its integral is not directly computable, a tractable objective func-
tion must be designed to enable a neural network uθ to approximate u. This motivates the develop-
ment of two distinct methodological approaches, which are detailed in the subsequent section.

4.2 SPLITMEANFLOW: FROM DIFFERENTIAL TO ALGEBRAIC SOLUTION

To address the challenge of training a neural network to learn the integral-defined average velocity,
two approaches arise. The first, exemplified by MeanFlow Geng et al. (2025), is a “differential
solution” that bypasses direct integration by relating the average velocity u to the instantaneous
velocity v through a differential equation. Instead of directly computing u ∝

∫
vdτ , MeanFlow

derives a differential identity called the MeanFlow Identity:

u(zt, r, t) = v(zt, t)− (t− r)
d

dt
u(zt, r, t) (7)

Thus, MeanFlow solves the problem indirectly by fitting the model to a differential equation derived
from the integral’s definition.

The second path, as proposed in this work, is the algebraic solution of SplitMeanFlow. SplitMean-
Flow leverages the algebraic property of integratio, additivity, instead of relying on differentiation.
The core idea is that the intrinsic structure of the integral itself provides sufficient self-consistency,
eliminating the need for external differential operators. The fundamental property of additivity states
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v (zt, t) = vtarget

(a) Flow Matching (Instantaneous Velocity)
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u(zt, r, t)

zr

zt

v(zt, t)
(t r) d

dtu
=

Consistency

u(zt, r, t) = v(zt, t) (t r) d
dtu

(b) MeanFlow (Differential Solution)
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zt

(t r)u(zt, r, t)

zr

zs

zt

(t r)u(zt, s, t)

(s-r)u(zs, r, s)

=
Consistency

(t r)u(zt, r, t) = (s r)u(zs, r, s) + (t s)u(zt, s, t)
(c) SplitMeanFlow (Algebraic Solution)

Figure 1: Conceptual Comparison of Generative Flow Methods

that the integral of a function over a full interval is the sum of the integrals over its subintervals. For
any ordered time points r ≤ s ≤ t, this property can be expressed as:

∫ t

r

v(zτ , τ)dτ =

∫ s

r

v(zτ , τ)dτ +

∫ t

s

v(zτ , τ)dτ (8)

This identity reflects a key geometric property of the flow: the total displacement from time r to t is
the sum of displacements from r to s, and from s to t.

To connect this principle to the average velocity u, we recall the definition of displacement as the
product of average velocity and time duration:

D(a, b) = (b− a)u(zb, a, b) =

∫ b

a

v(zτ , τ)dτ (9)

This results in a purely algebraic relationship involving the average velocity field, the Interval Split-
ting Consistency identity:

(t− r)u(zt, r, t) = (s− r)u(zs, r, s) + (t− s)u(zt, s, t) (10)

This identity serves as the foundation for SplitMeanFlow, providing a self-consistent constraint on
the structure of the average velocity field.

To make the training process feasible, we divide both sides of the equation by t − r and define
λ = t−s

t−r ∈ [0, 1], where s = (1− λ)t+ λr. This leads to the following form:

u(zt, r, t) = (1− λ)u(zs, r, s) + λu(zt, s, t) (11)

This equation can be interpreted as stating that the average velocity over the interval [r, t] is a
weighted sum of the average velocities over the subintervals [r, s] and [s, t], with the weights pro-
portional to the length of the intervals. The formulation requires appropriate boundary conditions
to ensure well-posedness and prevent degenerate solutions. Specifically, the boundary condition
u(zt, r, t) = v(zt, t) must hold when r = t, ensuring that the average velocity matches the instanta-
neous velocity at the terminal time. The full training procedure, which incorporates these boundary
conditions, is outlined in Algorithm 1. Additional details on the boundary conditions are provided
in the section 5.1.
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Algorithm 1 SplitMeanFlow Training
Require: Neural network uθ, a batch of data x.

1: Sample time points r, t such that 0 ≤ r ≤ t ≤ 1
2: Sample λ ∼ U(0, 1), set s = (1− λ)t+ λr.
3: Sample prior ϵ ∼ N (0, I).
4: Construct flow path point at time t: zt = (1− t)x+ tϵ.
5: if r = t then
6: target = v(zt, t) ▷ Apply boundary condition
7: else
8: u2 = uθ(zt, s, t)
9: zs = zt − (t− s)u2

10: u1 = uθ(zs, r, s)
11: target = (1− λ)u1 + λu2

12: end if
13: L = ∥uθ(zt, r, t)− sg(target)∥ ▷ sg is the stop gradient function.
14: Update θ using the gradient of L.

4.3 SPLITMEANFLOW AS A GENERALIZED CASE OF MEANFLOW

The algebraic identity at the core of SplitMeanFlow, Eq. 10, provides not only a self-contained
training principle but also a theoretical generalization of the differential identity used in MeanFlow.
Define g(s) := (s− r)u(zs, r, s), Eq. 10 can be rewritten as:

g(t)− g(s)

t− s
= u(zt, s, t). (12)

Taking the limit s → t yields:
g′(t) = v(zt, t). (13)

Differentiate g(t) = (t− r)u(zs, r, s) to evaluate g′(t):

g′(t) = u(zt, r, t) + (t− r)
d

dt
u(zt, r, t). (14)

With Eq. 13 and Eq. 14 , we can recover the MeanFlow identity (Eq. 7). For a more detailed deriva-
tion of the steps leading to this conclusion, see Appendix A. This formally establishes the MeanFlow
objective as a limiting special case of the SplitMeanFlow objective. As such, SplitMeanFlow serves
as a more general and foundational framework that remains valid across finite intervals without
resorting to infinitesimal approximations.

It is important to note that while the shortcut model Frans et al. (2025) achieves partial equivalence
to our formulation for the special case s = r+t

2 , the design philosophies differ significantly. Split-
MeanFlow leverages the concept of average velocity and the additivity of integration to construct
the identity in Eq. 10, which holds for arbitrary s ∈ [r, t]. Our method generalizes the concept of av-
erage velocity for any time points r, s, and t, with 0 ≤ r ≤ s ≤ t ≤ 1, using continuous parameters.
In contrast, the shortcut model uses a discrete variable.

5 EXPERIMENTS

Baselines The proposed SplitMeanFlow method is applicable to a variety of architectures that
utilize flow-based modules. To evaluate its effectiveness, we validate SplitMeanFlow on the text-
to-speech (TTS) task using both open-source and private TTS models. Specifically, we conduct
experiments on the following four models: (1) F5-TTS Chen et al. (2024), a pure flow-based non
auto-regressive (NAR) TTS model that directly maps text to mel-spectrograms. An official BigV-
GAN Lee et al. checkpoint is used to reconstruct the waveform. Since F5-TTS employs only flow
for TTS, it serves as the primary model for our main experiments. (2) CosyVoice2 Du et al. (2024),
which first uses a language model to map text to semantic tokens, and then applies a flow-based
module to map these tokens to mel-spectrograms. An official HiFiGAN Kong et al. (2020) check-
point is used to reconstruct the waveform. (3) DiTAR Jia et al. (2025), which uses a language model

6
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(LM) to convert text into continuous-space embeddings, and then maps these embeddings to the
latent space of a variational autoencoder (VAE) using a flow module. (4) Seed-TTS Anastassiou
et al. (2024), which is similar to CosyVoice2 but maps semantic tokens to VAE latents.

Datasets We conduct experiments using the Emilia He et al. (2024) dataset for F5-TTS and
CosyVoice2. Emilia is a multilingual and diverse in-the-wild speech dataset designed for large-
scale speech generation, and for this study, we use the English and Chinese subsets, each containing
50,000 hours of speech data. For CosyVoice2, we only train the flow module, while utilizing the of-
ficial checkpoint for LM. The evaluation is carried out using two benchmarks: (1) SeedTTS test-en,
a test set from Seed-TTS containing 1,000 samples extracted from the Common Voice dataset Ardila
et al. (2020), and (2) SeedTTS test-zh, a test set from Seed-TTS containing 2,000 samples extracted
from the DiDiSpeech dataset Guo et al. (2021) for Chinese speech. Experiments on the private mod-
els are conducted with proprietary datasets.

Metrics We adopt five metrics to evaluate the performance of our method: (1) Word Error Rate
(WER), which measures the accuracy of speech content generation. For English, we use Whisper-
large-v3 Radford et al. (2023), and for Chinese, we use Paraformer-zh Gao et al. (2023). (2) Speaker
Similarity (SIM), which evaluates the similarity between the generated and reference speaker’s
speech using cosine similarity between speaker embeddings extracted with WavLM-large Chen et al.
(2022). (3) Comparative Mean Opinion Score (CMOS), which is collected through human evalua-
tions, with a score ranging from -2 to +2, where a higher score indicates preference for the proposed
model. All CMOS evaluations in this work are compared against the corresponding flow matching
baseline in each table. (4) UTMOS Saeki et al. (2022), which is evaluated using an open-source
MOS prediction model, providing an estimate of human preference when exhaustive CMOS eval-
uations are not feasible. (5) Real-Time Factor (RTF), which measures the efficiency by calculating
the time taken to generate speech relative to the input duration. For TTS models with multiple
components, RTF for the flow module is reported.

5.1 TRAINING DETAILS

Initialization and Distillation with Flow Matching While SplitMeanFlow can be trained from
scratch, we find that a two-stage approach, combining pretraining and distillation, yields signifi-
cantly faster convergence and superior final performance, especially for large-scale industrial appli-
cations. This strategy ensures that the SplitMeanFlow model learns from a stable and high-quality
supervision signal. The first stage is dedicated to training a standard flow matching model, which
will serve as the teacher. The model is trained using the standard flow matching loss, which is
equivalent to our framework when the boundary condition is exclusively enforced. In the second
stage, we train our SplitMeanFlow model, referred to as the student with initialization and boundary
condition supervision from teacher. The detailed initialization strategy and code snippets are avail-
able in Appendix B. During distillation, the CFG Ho & Salimans (2022) dropout for the student
model is set to 0.0. The teacher generates instantaneous velocity with a fixed CFG scale, enabling
the CFG-free inference for Mstudent. More details on training can be found in Appendix E

Boundary Conditions The loss requires a boundary condition to avoid collapsing to a trivial solu-
tion. This anchor to reality is the instantaneous velocity condition: u(zt, t, t) = v(zt, t). In Stage 2,
same as MeanFlow, we use a flow ratio p to create a mixed objective. For a fraction p of the samples
in a batch, we set r = t to enforce the boundary condition using the teacher’s velocity v(zt, t) as the
target. For the remaining 1− p fraction, we enforce the Interval Splitting Consistency loss(Eq. 10).
However, in a distillation setup, we can adopt an approximated teacher’s average velocity from t to
r as the anchor. The details of using such an anchor are discussed in Appendix C.

5.2 SPLITMEANFLOW IN NAR TTS

We apply SplitMeanFlow to F5-TTS, a pure flow-based TTS model that directly converts text to mel-
spectrograms. Given that F5-TTS is entirely flow-based, it benefits significantly from the accelera-
tion introduced by SplitMeanFlow. F5-TTS necessitates the learning of an inherent time alignment
between text and mel-spectrograms, which is a more challenging task compared to AR methods
that leverage an LM to generate time-aligned sematic tokens. As shown in Table 1, SplitMean-
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Table 1: Comparing with Flow Matching with SplitMeanFlow on F5-TTS.
Method NFE CFG WER (%, ↓) SIM (↑) UTMOS(↑) CMOS (↑) RTF(↓)

Seed-TTS test-en
Human N/A N/A 2.14 0.73 3.52 -0.17 N/A

Flow Matching 32 Y 1.87 0.67 3.70 0.00 0.243
SplitMeanFlow 3 N 1.67 0.65 3.72 -0.03 0.021
SplitMeanFlow 4 N 1.60 0.66 3.75 0.00 0.027

Seed-TTS test-zh
Human N/A N/A 1.25 0.76 2.78 -0.35 N/A

Flow Matching 32 Y 1.52 0.76 2.96 0.00 0.243
SplitMeanFlow 3 N 1.66 0.74 3.01 -0.01 0.021
SplitMeanFlow 4 N 1.61 0.75 3.07 -0.01 0.027

Flow enables 3 to 4-NFE inference on F5-TTS without compromising the quality of the generated
speech, as evaluated on both the Seed-TTS English and Chinese test sets. Note that training F5-TTS
with MeanFlow is not feasible due to excessive memory consumption from JVP calculations, which
forces the batch size to 1. Detailed results on F5-TTS with more hyperparams setups and inference
NFEs are discussed in Appendix D.1 and Appendix D.2, respectively.

5.3 SPLITMEANFLOW IN AR TTS

Table 2: Comparing with Flow Matching with SplitMeanFlow on CosyVoice2.
Method NFE CFG WER (%, ↓) SIM (↑) UTMOS(↑) RTF(↓)

Seed-TTS test-en
Human N/A N/A 2.14 0.73 3.52 N/A

Flow Matching 32 Y 2.57 0.65 3.70 0.510
MeanFlow 1 N 2.53 0.64 3.37 0.026

SplitMeanFlow 1 N 2.49 0.64 3.71 0.026
SplitMeanFlow 2 N 2.42 0.65 3.73 0.050

Seed-TTS test-zh
Human N/A N/A 1.25 0.76 2.78 N/A

Flow Matching 32 Y 1.47 0.73 2.96 0.510
MeanFlow 1 N 1.66 0.74 2.78 0.026

SplitMeanFlow 1 N 1.66 0.74 2.96 0.026
SplitMeanFlow 2 N 1.61 0.75 2.98 0.050

We conduct experiments by applying SplitMeanFlow to CosyVoice2, DiTAR, and Seed-TTS. These
models indirectly benefit from the flow module acceleration, as they first use an AR LM module to
generate time-aligned representations, which are then mapped to mel-spectrograms or VAE latents
by the flow module. This setup eliminates the need for the flow module to learn time alignment. As
shown in Table 2, SplitMeanFlow achieves 1 to 2-NFE inference on CosyVoice2 without a noticeable
drop in speech quality. We also conduct experiments with MeanFlow, reducing the batch size to 0.1
of the original to accommodate the memory consumption. Experiments show that while MeanFlow
achieves comparable WER and speaker similarity results to the baseline, it experiences a drop in
UTMOS scores. The speech generated by MeanFlow also exhibits noticeable background noise,
likely due to the reduced batch size. This explains the drop in UTMOS despite the comparable
WER and speaker similarity scores: the ASR and speaker verification models used are trained to
be robust to noise, while UTMOS evaluates background noise as part of speech quality assessment.
Generated speech samples can be found in the supplementary material.

In Table 3, Seed-TTSSFT refers to the Supervised Fine-Tuning task within the Seed-TTS framework,
where the model is trained on labeled speech-text pairs to optimize text-to-speech performance met-
rics as described in Anastassiou et al. (2024). Compared to the 10-step Flow Matching baseline, our
method reduces sampling steps by 5× and eliminates the need for Classifier-Free Guidance (CFG),
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Table 3: Comparing SplitMeanFlow with Flow Matching and DMD on Seed-TTSSFT tasks.
Method NFE CFG WER (%, ↓) SIM (↑) CMOS (↑)

Flow Matching 10 Y 5.51 0.79 0.00
DMD 2 N 5.61 0.79 -0.04

SplitMeanFlow 2 N 5.61 0.79 -0.01

significantly reducing computational overhead. Despite this acceleration, the quality degradation is
minimal. The CMOS score of -0.01 indicates that human evaluators found the audio quality of our
2-step model almost identical to the 10-step baseline. We also compare our method to DMD Yin
et al. (2024), another recent few-step generation method. SplitMeanFlow outperforms DMD in both
speaker similarity and CMOS score, suggesting a perceptual preference for our model.

Table 4: Comparing SplitMeanFlow with Flow Matching on Seed-TTSICL task.
Model NFE CFG WER (%, ↓) SIM (↑) CMOS (↑)

Flow Matching 10 Y 2.86 0.69 0.00
SplitMeanFlow 2 N 2.97 0.68 0.00
SplitMeanFlow 1 N 2.86 0.69 0.00

We also evaluated SplitMeanFlow on Voice Cloning (Seed-TTSICL) tasks as detailed in Anastassiou
et al. (2024). As shown in Table 4, the 2-step SplitMeanFlow model delivers strong performance,
with a neutral CMOS score of 0, indicating that human evaluators found its quality equivalent to
the 10-step baseline, despite minor fluctuations in objective metrics. Most notably, our 1-step Split-
MeanFlow model achieves performance statistically comparable to the 10-step Flow Matching base-
line across all metrics. The neutral CMOS score of 0 further confirms perceptual equivalence. This
result demonstrates a 10-fold RTF acceleration and 20-fold reduction in computational cost with-
out any noticeable quality loss, highlighting the effectiveness of learning the average velocity field
via our algebraic consistency. This establishes SplitMeanFlow as a significant advancement toward
truly one-step generative modeling.

Table 5: Comparing SplitMeanFlow with Flow Matching on Single Speaker SFT with DiTAR.
Model NFE CFG WER (%, ↓) CMOS (↑) RTF(↓)

Flow Matching 10 Y 1.47 0.00 0.341
SplitMeanFlow 2 N 1.32 -0.01 0.073
SplitMeanFlow 1 N 1.38 -0.08 0.038

Single-speaker synthesis is a critical task in industrial TTS, where the goal is to achieve highly
expressive and natural speech synthesis, possibly by sacrificing the voice cloning capacity. We
evaluate SplitMeanFlow in this setup using the DiTAR framework. As shown in Table 5, even under
the demanding conditions of single-speaker expressive speech generation, SplitMeanFlow exhibits
only a minor CMOS degradation of 0.01. Remarkably, it achieves a 5-fold acceleration and a 10-
fold reduction in computational cost, underscoring the practical applicability of SplitMeanFlow for
large-scale, industrial-level TTS applications.

6 CONCLUSION

In this work, we introduced SplitMeanFlow, a novel framework for training few-step generative
models. By returning to the first principles of average velocity and leveraging the additivity prop-
erty of integrals, we derived the Interval Splitting Consistency objective that avoids the need for dif-
ferential operators. We demonstrated that this algebraic formulation is a more general framework,
with the differential identity in MeanFlow emerging as a limiting case. This results in significant
practical advantages, including stable training, simpler implementation, and broader compatibility,
as SplitMeanFlow eliminates the need for Jacobian-Vector Product (JVP) computations. We vali-
date SplitMeanFlow on text-to-speech tasks with both AR and NAR setups, achieving 3 to 4-NFE
inference on NAR and 1 to 2-NFE for AR models, without compromising speech generation quality.
The algebraic perspective and practical effectiveness of SplitMeanFlow opens new possibilities for
more efficient and powerful generative models.
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7 REPRODUCIBILITY STATEMENT

The majority of our experiments are conducted using publicly available codebases (F5-TTS and
CosyVoice2) and datasets (Emilia). We utilize publicly available checkpoints for model initialization
and provide code snippets for implementing the initialization techniques in Appendix B, as well as
for the boundary condition supervision in Appendix C. Readers should be able to easily reproduce
our models based on these resources. Furthermore, we plan to release the code as pull requests to
existing Flow Matching repositories to ensure compatibility with SplitMeanFlow, along with pre-
trained models.
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A PROOF: SPLITMEANFLOW AS A GENERALIZED CASE OF MEANFLOW

Our proof begins with the cornerstone of SplitMeanFlow, the Interval Splitting Consistency identity
(Eq 10). To reveal its connection to MeanFlow, we first rearrange this equation algebraically:

(t− r)u(zt, r, t)− (s− r)u(zs, r, s)

t− s
= u(zt, s, t). (15)

This form already resembles the definition of a derivative. We now investigate its behavior in the
limit as the splitting point s approaches the right endpoint t, i.e., s → t.

1. Analyzing the Right-Hand Side (RHS): As s → t, the length of the time interval [s, t] for
the average velocity u(zt, s, t) approaches zero. By its definition:

u(zt, s, t) =
1

t− s

∫ t

s

v(zτ , τ)dτ (16)

which converges to the instantaneous velocity at that point. Thus:
lim
s→t

u(zt, s, t) = v(zt, t). (17)

2. Analyzing the Left-Hand Side (LHS): To clarify the structure of the LHS, we define an
auxiliary function for the total displacement from r to t, letting g(t) = (t − r)u(zt, r, t).
The LHS of Eq. 15 can then be expressed as:

g(t)− g(s)

t− s
. (18)

This is precisely the definition of the derivative of the function g at point t. Therefore:

lim
s→t

g(t)− g(s)

t− s
= g′(t). (19)

3. Connecting the Sides and Expanding: By equating the limits of both sides, we arrive at
the new identity g′(t) = v(zt, t). We now find the explicit form of g′(t) by taking the total
derivative of g(t) = (t − r)u(zt, r, t) with respect to t. Applying the product rule and the
chain rule yields:

g′(t) =
d

dt
[(t− r)u(zt, r, t)] = u(zt, r, t) + (t− r)

d

dt
u(zt, r, t). (20)

Substituting this expansion back into g′(t) = v(zt, t), we get:

u(zt, r, t) + (t− r)
d

dt
u(zt, r, t) = v(zt, t). (21)

A simple rearrangement recovers the core differential identity of MeanFlow:

u(zt, r, t) = v(zt, t)− (t− r)
d

dt
u(zt, r, t). (22)

B INITIALIZATION STRATEGY

SplitMeanFlow models the average velocity between timesteps t and r. Both timesteps are passed
through the same embedding network, concatenated, and then projected back into the feature space
of t via a linear mapping W.

Let the embeddings for t and r be denoted as et = E(t) and er = E(r), respectively. The concate-
nated embeddings et,r are projected to e′t,r as follows:

et,r = [et, er]; e′t,r = Wet,r (23)

To ensure that SplitMeanFlow retains the behavior of the original flow-matching model, the linear
mapping W is initialized as:

W = [Ddiag 0] (24)

where Ddiag represents a diagonal matrix. This initialization guarantees that the model behaves
identical to the original model at the start of training. The code snippet is shown as following:
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self.time_proj = nn.Linear(dim * 2, dim)
with torch.no_grad():

self.time_proj.weight.zero_()
self.time_proj.bias.zero_()
self.time_proj.weight[:, :dim] = torch.eye(dim)

C TEACHER’S VELOCITY AS THE TRAINING ANCHOR

C.1 METHODOLOGY

In a distillation setup, we observed that using the instantaneous velocity of the teacher model as
an anchor to prevent training collapse can lead to a performance drop in both objective and subjec-
tive metrics. To address this, we propose using the approximated average velocity of the teacher
over the interval [t, r] as the anchor. This is achieved by performing iterative sampling of the
teacher model during distillation. The interval [t, r] is discretized into n subintervals, with time
steps t0 = t, t1, . . . , tn = r. At each step, the teacher model evolves the state based on the discrete
approximation of the ODE:

ztk+1
= ztk + (tk+1 − tk) · v(ztk , tk; θ) (25)

where t0 = t, tn = r, and t1, t2, . . . , tn−1 are intermediate time steps. The total displacement over
the interval [t, r] is computed as:

∆zteacher =

n−1∑
k=0

(
ztk+1

− ztk
)
=

n−1∑
k=0

(tk+1 − tk) · v(ztk , tk; θ) (26)

This discrete displacement approximates the integral of the instantaneous velocity v(zt, t; θ) over
[t, r], which is the continuous process the student model aims to replicate. To approximate the
average velocity, we normalize the displacement by the length of the interval:

v̄teacher(zt, t, r) =
∆zteacher

r − t
(27)

Thus, the teacher’s discrete displacement provides a numerical approximation of this integral. The
anchor loss is then defined as:

Lanchor = Et,r

[
∥ustudent(zt, t, r)− v̄teacher(zt, t, r)∥2

]
(28)

It is important to note that this strategy may impact training speed due to the multiple NFEs required
by the teacher model during distillation. In our experiments, we set the teacher NFE to 2 during
distillation.

C.2 IMPLEMENTATION

@torch.no_grad()
def teacher_average_velocity(z, cond, text, mask, t, r, teacher,

teacher_nfe, teacher_cfg):
z0 = z
t_vals = get_epss_timesteps(teacher_nfe)
t_vals = t_vals - (torch.cos(torch.pi / 2 * t_vals) - 1 + t_vals)
t_vals = t_vals[None, :] * (r - t)[:, None] + t[:, None]
for i in range(0, teacher_nfe):

t_, r_ = t_vals[:, i], t_vals[:, i + 1]
v = teacher(x=z, cond=cond, text=text, time=t_, mask=mask)
pred, null_pred = torch.chunk(v, 2, dim=0)
v = teacher_cfg * pred + (1 - teacher_cfg) * null_pred
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z = z + (r_ - t_)[:, None, None] * v
v_target = (z - z0) / (r - t)[:, None, None]
return v_target

def get_epss_timesteps(n):
dt = 1 / 32
predefined_timesteps = {

2: [0, 10, 32],
3: [0, 4, 12, 32],
4: [0, 2, 6, 12, 32],
5: [0, 2, 4, 8, 16, 32],
6: [0, 2, 4, 6, 8, 16, 32],
7: [0, 2, 4, 6, 8, 16, 24, 32],
8: [0, 2, 4, 6, 8, 16, 24, 28, 32],
10: [0, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32],
12: [0, 2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32],
16: [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32],

}
if n not in predefined_timesteps:

return torch.linspace(0, 1, n + 1)
return dt * torch.tensor(predefined_timesteps[n])

C.3 ABLATION STUDY

Table 6 compares the performance of using the teacher’s instantaneous velocity versus the approx-
imated average velocity as the training anchor for SplitMeanFlow on F5-TTS. The results show a
clear degradation in all metrics. This suggests that the instantaneous velocity may not provide an
optimal anchor for training.

Table 6: Comparing anchor with teacher’s instantaneous velocity and average velocity.
Training Anchor WER (%, ↓) SIM (↑) UTMOS(↑) CMOS(↑)

Seed-TTS test-en
teacher approximated average velocity 1.67 0.65 3.72 -0.03
teacher instantaneous velocity 2.07 0.59 3.61 -0.08

Seed-TTS test-zh
teacher approximated average velocity 1.66 0.74 3.01 -0.01
teacher instantaneous velocity 2.04 0.65 2.92 -0.11

D SPLITMEANFLOW IN NAR TTS: DETAILED RESULTS

D.1 SPEECH GENERATION QUALITY VS. FLOW RATIO

The Flow Ratio reference to the p in section 5.1.

Table 7 presents an ablation study on the flow ratio p for SplitMeanFlow on F5-TTS. When p ≥ 0.5,
the results show comparable performance across the objective metrics, indicating that the model is
correctly guided by the supervision of boundary conditions. However, when p = 0.3, both speaker
similarity and UTMOS experience noticeable degradation. This suggests that the boundary con-
dition anchor becomes less effective at this ratio, leading to a deterioration in the quality of the
generated speech. At p = 0.1, the model fails to converge, with training collapsing entirely. This
indicates that the anchor is no longer providing meaningful guidance, and the training process is
unable to proceed in a reasonable direction.
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Table 7: Ablation on flow ratio for SplitMeanFlow on F5-TTS.
Flow Ratio WER (%, ↓) SIM (↑) UTMOS(↑)

Seed-TTS test-en
0.1 103.75 0.05 1.34
0.3 1.58 0.59 3.60
0.5 1.67 0.65 3.72
0.7 1.71 0.64 3.75
0.9 1.65 0.64 3.65

Seed-TTS test-zh
0.1 122.41 0.06 1.23
0.3 1.73 0.68 2.87
0.5 1.66 0.74 3.01
0.7 1.68 0.74 2.98
0.9 1.62 0.73 3.01
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Figure 2: Comparison of speech quality metrics between Flow Matching and SplitMeanFlow as a
function of inference NFE.

D.2 SPEECH GENERATION QUALITY VS INFERENCE NFE

Figure 2 illustrates the speech generation quality metrics as a function of inference NFE for Split-
MeanFlow and Flow Matching on F5-TTS. The results clearly show that SplitMeanFlow outper-
forms the Flow Matching baseline at lower NFEs. As the NFE increases, the performance gap
between the two approaches narrows. When the NFE approaches 32, both methods exhibit degra-
dation in objective metrics. This behavior reflects a typical challenge in TTS evaluation, where
objective metrics no longer effectively capture improvements in generation quality, making CMOS
evaluation necessary at this point.

E TRAINING DETAILS

For F5-TTS, we use the official Base model with 336M parameters as the Flow Matching teacher.
During distillation, we employ the Adam Kingma & Ba (2015) optimizer with a learning rate of
3 × 10−5. We initialize with the official F5-TTS Base checkpoint and continue training using the
distillation strategy for 300K steps.

For CosyVoice2, we use the official flow checkpoint with 107M parameters. The distillation process
also uses the Adam optimizer with a learning rate of 3 × 10−5. We initialize with the official
CosyVoice2-0.5B flow module checkpoint and continue training with the distillation strategy for
200K steps.

For the single-speaker configuration of DiTAR, we first pretrain the model on a large-scale internal
multi-speaker corpus and then fine-tune it on a small single-speaker dataset. During SplitMeanFlow
distillation, we update only the LocDiT component of DiTAR Jia et al. (2025), using the single-
speaker data. We distill LocDiT for 100K steps with a learning rate of 1× 10−5.
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F THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of LLM for assisting with tasks such as grammar correction, enhancing
expression diversity, formatting tables, and debugging code. However, we emphasize that all core
ideas, experiments, and analyses are original contributions.
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