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Pause-Tuning for Long-Context Comprehension:
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Abstract
LLMs have demonstrated remarkable proficiency
in understanding tasks but continue to strug-
gle with long-context comprehension, particu-
larly with content located in the middle of ex-
tensive inputs. This limitation, known as the Lost-
in-the-Middle (LITM) problem, hinders models
from fully processing and utilizing information
across lengthy contexts. To address this issue,
we introduce pause-tuning, a technique that re-
distributes attention to enhance comprehension
of long-context inputs. Our approach fine-tunes
language models on datasets with inserted pause
tokens, segmenting inputs into manageable parts.
We evaluate pause-tuning against alternative ap-
proaches using the Needle-in-a-Haystack (NIAH)
and LongBench v2 benchmarks, in which mod-
els must retrieve specific information and an-
swer challenging multiple-choice questions re-
spectively based on long contexts. Experimen-
tal results demonstrate significant performance
gains, suggesting that pause-tuning successfully
enhances attention redistribution and improves
long-context retention. We also observe signif-
icant changes in the attention distribution when
pause-tuning is applied. The code and data are
available at https://anonymous.4open.
science/r/LITM-PauseTokens-7357.

1. Introduction
Language models like GPT (Brown et al., 2020) and
LLaMA (Grattafiori et al., 2024) have demonstrated remark-
able utility in tasks such as summarization, long document
analysis, and contextual understanding (Minaee et al., 2024).
Effectively handling long contexts is essential for maintain-
ing the accuracy and reliability of a model’s output in these
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applications. However, language models often suffer from
the lost-in-the-middle problem (Liu et al., 2023), where
they disproportionately focus on the beginning and end of
sequences while neglecting information in the middle. Ex-
isting attempts at solutions often fall short of being broadly
applicable. Many approaches rely on computationally inten-
sive mechanisms or involve modifications of the base lan-
guage model other than simple fine-tuning (He et al., 2024;
Tworkowski et al., 2023; Liu & Abbeel, 2023). While effec-
tive in certain scenarios, these methods may be impractical
in resource-constrained environments or general-purpose
applications.

To address this gap, we propose a novel approach that uti-
lizes pause tokens (Goyal et al., 2024) to mitigate the LITM
problem. Pause tokens are markers that are strategically
inserted into the input sequence, intended to recalibrate the
model’s attention distribution. These tokens prompt the
model to pause and process additional computation before
proceeding with the rest of the sequence. By segmenting
the input sequence into smaller, more manageable chunks,
pause tokens allow the model to process each segment with
greater focus and parity. This simple yet effective method
offers a lightweight alternative to existing resource-intensive
techniques. We investigate various strategies for inserting
pause tokens, as depicted in Figure 1.

Figure 1. We propose five potential techniques for pause token
injection and test them on the needle-in-a-haystack and LongBench
v2 evaluation frameworks.
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We experimentally evaluate pause token efficacy by com-
paring base models with those fine-tuned for pause-aware
long-context processing. Our results demonstrate that:

• Pause-tuning consistently improves long-context reten-
tion and processing, outperforming alternative tech-
niques.

• Pause tokens induce meaningful shifts in attention dis-
tribution, enhancing information retrieval across ex-
tended input sequences.

Our findings highlight pause-tuning as an effective and com-
putationally efficient mechanism for mitigating long-context
deficiencies in LLMs.

2. Related Work
2.1. Lost-in-the-Middle

Large language models exhibit a U-shaped performance
curve when processing long inputs, demonstrating a pro-
nounced primacy and recency bias (Liu et al., 2023). That
is, they allocate greater attention to the beginning and end
of a sequence while neglecting the middle (Khandelwal
et al., 2018; Press et al., 2021). Xiao et al. (2023) further
observed that models assign disproportionately high atten-
tion scores to initial tokens, even when these tokens lack
semantic significance. This phenomenon extends to multi-
document question-answering tasks as well as key-value
retrieval tasks, both of which are closely related to our eval-
uation methods. Building on these findings, our research
investigates whether similar biases emerge in our specific
context and examines their implications.

Figure 2. LLaMA 3.2 3B Instruct needle-in-a-haystack perfor-
mance across techniques. The score declines as context length
increases. Pause-tuning consistently outperforms other methods,
except at the 128K length.

2.2. Pause Tokens

Goyal et al. (2024) introduced the concept of pause tokens
in language model training. Their approach involves insert-
ing learnable pause tokens during pretraining and finetun-
ing, showing improvements on various Question-Answer

tasks (Kwiatkowski et al., 2019; Talmor et al., 2019; Ra-
jpurkar et al., 2016). Expanding on this idea, Rawte et al.
(2024) proposed the ”Sorry, Come Again” (SCA) prompting
technique, which integrates optimal paraphrasing with pause
token injection. This method has been shown to effectively
mitigate hallucinations in large language models, further un-
derscoring the potential of pause tokens in enhancing model
reliability and interpretability.

3. Method
3.1. Token Placement Strategy

We employ a systematic approach to injecting pause to-
kens across different experimental configurations. The most
straightforward implementation involves inserting a spe-
cial "<PAUSE>" token after each paragraph in the testing
context. This token serves as a standardized pause marker,
facilitating natural segmentation within the input sequence.
By introducing these structured breaks, our approach en-
ables the model to redistribute attention more effectively,
ensuring comprehensive processing of information from all
parts of the input.

3.2. Experimental Configurations

Our study explores various approaches for pause token in-
sertion, as illustrated in Figure 1, using trials without input
sequence modifications as the baseline for comparison. We
evaluate the following techniques across 15 context depths
and 3 trials for single needle tests and 15 randomized trials
for multi-needle tests to identify the optimal method:

1. Standard Pause Tokens: Standard pause tokens are
inserted after every paragraph in the input sequence.

2. Instruction-Augmented Pause Tokens: Pause tokens,
followed by an explicit instruction to ”stop and absorb
the information [the model] has just read,” are inserted
after every paragraph in the input sequence.

3. Pre-Prompt Instruction with Standard Pause Tokens:
A general instruction at the beginning of the prompt
directs the model to stop and absorb information after
every pause token, while standard pause tokens are
inserted after every paragraph in the input sequence.

4. Pause-Tuned Model with Standard Pause Tokens: Stan-
dard pause tokens are inserted after every paragraph in
the input sequence, which is then processed by a model
fine-tuned with standard pause tokens in long contexts.

The use of these variations is intended to systematically
determine the optimal method for enhancing the attention
mechanism in long-context tasks. Technique 2 and Tech-
nique 3 evaluate whether the model requires additional in-
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Figure 3. LLaMA 3.1 8B Instruct needle-in-a-haystack perfor-
mance across techniques. The score declines as context length
increases. Pause-tuning consistently outperforms other methods at
all context lengths.

structions or can naturally interpret pause tokens. Technique
4 employs pause-tuning, aligning the model with the pause
token structure to enhance performance.

4. Experiments
4.1. Models

We evaluate several widely used large language models
(LLMs) on NIAH, including GPT-3.5 Turbo 0125 (Brown
et al., 2020), GPT-4o Mini 2024-07-18 (Hurst et al., 2024),
LLaMA 3.2 1B Instruct, LLaMA 3.2 3B Instruct, and
LLaMA 3.1 8B Instruct (Grattafiori et al., 2024). For Tech-
nique 4, we employ pause-tuned versions of the LLaMA
3.2 3B Instruct and LLaMA 3.1 8B Instruct models. We
expand our experiment to also include the instruction-tuned
versions of Phi 4 mini (Abouelenin et al., 2025), Phi 4 (Ab-
din et al., 2024), and Gemma 3 12B (Team et al., 2025) for
testing on LongBench v2.

4.2. Evaluation

We conduct our first set of experiments on the Needle-in-
a-Haystack evaluation framework (Kamradt, 2023). In this
framework, a critical piece of information (the ”needle”) is
embedded within a lengthy context (the ”haystack”). Our
evaluation spans various context lengths, ranging from 1K
to 128K tokens, depending on each model’s input capacity.
Additionally, we assess both single-needle and multi-needle
scenarios to examine the effectiveness of our method across
different conditions. For multi-needle inputs, we embed
three distinct needles within the context.

The results from each trial are assigned a score from 1 to 10
based on the success of the information retrieval attempt, as
described in Appendix A.

We further conduct experiments using the LongBench v2
benchmark (Bai et al., 2025). LongBench v2 is designed to
assess LLM performance on long-context multiple choice

problems requiring both understanding and reasoning across
various tasks. Our tests span a range of 1K to 128K tokens,
across six categories: single-document QA, multi-document
QA, long in-context learning, long-dialogue history under-
standing, code repository understanding, and long structured
data understanding.

4.3. Datasets

We use the Deep Essays Dataset (Gibin & Acharya, 2024)
and the DAIGT Gemini-Pro 8.5K Essays dataset (Demir,
2024) for fine-tuning and a collection of Paul Graham’s es-
says (Graham, 2001/2023) to create the haystack for testing.

4.4. Pause-Tuning

We fine-tune two LLaMA models for pause tokens in long
contexts. These models were selected for their ability to
handle sequences of up to 128K tokens and their strong
performance in instructional tasks.

To construct an appropriate fine-tuning dataset, we concate-
nate multiple shorter essays and systematically inject pause
tokens until the target context length is reached. Addition-
ally, we embed a randomly selected piece of information-
a ”needle”-within this extended context ”haystack” to as-
sess retrieval capabilities. The models are trained using
LoRA (Hu et al., 2021) and Unsloth AI (Han et al., 2023).
The hyperparameters for training are in Appendix C. The
training prompt adopts a one-shot format, consisting of four
key components: an instruction outlining the purpose of the
fine-tuning, a long-context input with injected pauses that
contains the needle, an example user query that depends on
retrieving the embedded information, and a response that
reproduces the needle verbatim as it was originally inserted
into the essay.

5. Results

Technique 1 2 3 4

GPT 3.5 0.37 0.37 0.37 —
GPT 4o 1.68 2.15 1.87 —
LLaMA 3.2 1B 2.53 3.75 11.44 —
LLaMA 3.2 3B 1.03 -1.70 -1.72 10.61
LLaMA 3.1 8B -1.67 -2.60 0.14 3.57

Table 1: Percent Change for each technique compared to
baseline, averaged across all context lengths.

5.1. Needle-in-a-Haystack

The results for the baseline and each technique using a single
needle are presented in Table 5, while the results for multiple
needles can be found in Appendix F. A visualization of the
performance scores can be found in Figure 2 and Figure 3.
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Pause-tuned models significantly outperformed the baseline
and other techniques. While Technique 3 proves highly ef-
fective (11.44% improvement) on the LLaMA 3.2 1B model,
as seen in Table 1, its impact is less pronounced on the other
models. In contrast, Technique 4 demonstrates substantial
improvements, with 10.61% and 3.57% increases, across
both models, supporting our hypothesis that combining fine-
tuning with pause tokens yields the best results. This aligns
with the intuition that consistent structural training enhances
performance.

5.2. LongBench v2

Table 4 and Table 2 present the results on the LongBench v2
benchmark. We observe similar trends to the NIAH testing,
and pause-tuning proves to be the most successful technique
again, with 6.20% improvement averaged over both models.

Technique 1 2 4

GPT 4o 4.70 -15.79 —
LLaMA 3.2 1B 2.46 0.10 —
LLaMA 3.2 3B 5.21 -5.46 6.22
LLaMA 3.1 8B 3.89 6.41 6.17
Phi 4 Mini -0.44 -4.13 —
Phi 4 2.88 5.60 —
Gemma 3 12B 8.72 2.09 —

Table 2: Percent Change for each technique compared to
baseline, averaged across all context lengths.

6. Attention Analysis
Figure 4 depicts the scaled attention distribution across dif-
ferent layers when generating the first answer token for the
baseline and Techniques 1 and 5. Due to computational
constraints, we visualize approximately 6500 token input
sequences, which is a similar point to when performance
starts to degrade for smaller models. The observed retrieval
improvements for sequences up to 128K tokens suggest that
this pattern likely extends to longer contexts.

The insertion of pause tokens significantly transforms the
attention distribution. We observe distinct attention spikes
at the locations of several pause tokens. This distinction is
especially present surrounding the needle and in the latter
half of the context for both the standard pause token inser-
tion and the pause-tuned model. These findings suggest
pause tokens act as anchors, interrupting attention decay
and promoting more thorough engagement across sections.
The model likely treats pause-separated paragraphs as dis-
tinct sections, refreshing attention and reducing information
loss. This structured attention recalibration provides insight
into the improved retrieval performance observed in long
contexts.

Figure 4. Attention distribution for LLaMA 3.1 8B with normal-
ized attention scores across different layers when generating the
first answer token for baseline, standard pause token insertion,
and pause-tuned with pause tokens inserted. The purple highlight
indicates the position of the needle. The red dots indicate inserted
pause tokens.

7. Limitations
One limitation is that our study evaluates the pause-tuning
technique only on relatively small models (<12B parame-
ters). Whether these findings extend to large-scale models
remains an open question and requires further investigation.

A further limitation exists in the representation and place-
ment of pause tokens. At present, pause tokens are po-
sitioned to reflect the structure of paragraphs. However,
exploring alternative strategies, such as semantic segmen-
tation or adaptive placement based on textual complexity,
could enhance the effectiveness of pause-tuning.

8. Conclusion
We introduced pause-tuning, an effective, lightweight solu-
tion for the LITM problem and long-context comprehension
challenges in LLMs. By strategically injecting pause tokens
into input sequences, we enhance attention redistribution,
enabling models to retrieve information more effectively
across extensive contexts. Our experiments demonstrate
significant improvements in retrieval performance over base-
line models on both benchmarks. The results confirm that
pause-tuning consistently enhances long-context retention
across various input lengths. These findings highlight pause-
tuning’s potential to mitigate LITM issues, enabling more
robust long-context processing in future LLMs.
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A. Needle-in-a-Haystack Scoring
To score the retrievals for the needle-in-a-haystack test, the following framework was used, with relevance assessed by the
model:
Score 1: The answer is completely unrelated to the reference.
Score 3: The answer has minor relevance but does not align with the reference.
Score 5: The answer has moderate relevance but contains inaccuracies.
Score 7: The answer aligns with the reference but has minor omissions.
Score 10: The answer is completely accurate and aligns perfectly with the reference.

B. Prompt Formatting

Prompt without ¡PAUSE¿ tokens

Below is an instruction that describes a task, paired with a context that provides further information. An input will
request information from the context. Write a response that appropriately completes the request.

###Instruction:

You are a helpful assistant that will be provided a context which the user wants to ask a question about,
your job is to answer the question with only statements provided in the context and nothing else.

###Context:

{context}

###Input:

{input}

Prompt with ¡PAUSE¿ tokens

Below is an instruction that describes a task, paired with a context that provides further information. An input will
request information from the context. Write a response that appropriately completes the request.

###Instruction:

You are a helpful assistant that will be provided a context which the user wants to ask a question about,
the context has ¡PAUSE¿ tokens that tell you when to take a pause to comprehend the context before continuing,
your job is to answer the question with only statements provided in the context and nothing else.

###Context:

{context}

###Input:

{input}
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C. Hyperparameters
The parameters in Table 3 were used as part of the fine-tuning process.

LoRA Parameters
Rank (r) 16
Alpha 16
Dropout 0
Target Modules [”q proj”, ”k proj”, ”v proj”, ”o proj”, ”gate proj”, ”up proj”, ”down proj”]

Training Parameters
Batch Size 2
Gradient Accumulation Steps 4
Learning Rate 2e-4
Weight Decay 0.01
Warmup Steps 6
Steps 60
LR Scheduler linear
Optimizer adamw 8bit

Other
Mixed Precision fp16
Quantization Bits 4 bit

Table 3: Training Hyperparameters

D. LongBenchv2 Detailed Results

Technique Overall Easy Hard Short Medium Long

GPT 4o Mini

Baseline 29.3 31.1 28.2 31.8 28.6 26.2
Standard Pause Tokens 30.2 34.6 27.5 31.8 28.7 30.4
+ Instruction-Augmented Tokens 25.2 24.7 25.5 28.7 24.4 20.7

LLaMA 3.2 1B

Baseline 22.9 20.3 24.4 26.7 20.0 22.2
Standard Pause Tokens 23.1 21.4 24.1 26.7 18.6 25.9
+ Instruction-Augmented Tokens 22.9 19.8 24.8 27.2 19.1 23.1

LLaMA 3.2 3B

Baseline 26.4 25.0 27.3 27.8 23.3 30.6
Standard Pause Tokens 27.8 25.5 29.3 28.3 24.7 33.3
+ Instruction-Augmented Tokens 25.0 21.4 27.3 26.7 20.5 31.5
Pause-Tuning 28.0 26.0 29.3 28.9 24.2 34.3

LLaMA 3.1 8B

Baseline 28.2 29.7 27.3 34.4 26.0 22.2
Standard Pause Tokens 29.2 32.8 27.0 37.8 25.1 23.1
+ Instruction-Augmented Tokens 29.6 32.8 27.7 36.1 26.0 25.9
Pause-Tuning 29.8 34.9 26.7 37.2 27.0 23.1

Phi 4 Mini

Baseline 28.2 27.1 28.9 32.2 23.3 31.5
Standard Pause Tokens 28.0 27.6 28.3 31.1 23.7 31.5
+ Instruction-Augmented Tokens 27.2 27.6 27.0 33.3 22.8 25.9

Phi 4

Baseline 27.4 27.6 27.3 31.1 23.7 28.7
Standard Pause Tokens 27.8 28.6 27.3 30.0 22.8 34.3
+ Instruction-Augmented Tokens 29.0 27.1 30.2 33.3 24.2 31.5

Gemma 3 12B

Baseline 29.2 27.6 30.2 34.4 26.0 26.9
Standard Pause Tokens 31.6 30.7 32.2 35.6 29.3 29.6
+ Instruction-Augmented Tokens 30.2 27.6 31.8 35.6 28.8 24.1

Table 4: Evaluation results (%) of the LongBench v2 benchmark with various models and settings, comparing the baseline to
Techniques 1, 2, and 5. Context Lengths are denoted as Short = 0-32K tokens, Medium = 32-64K tokens, Long = 64-128K
tokens. The best result for each model in each seeting is highlighted in bold.
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E. Needle in a Haystack Detailed Results

Technique 1K 2K 4K 8K 16K 32K 64K 128K

GPT 3.5

Baseline 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.3 ± 0.6 - - -
Standard Pause Tokens 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.4 ± 0.2 - - -
+ Instruction-Augmented Tokens 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.4 ± 0.1 - - -
+ Pre-Prompt Instruction 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.4 ± 0.1 - - -

GPT 4o

Baseline 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.8 ± 0.1 9.3 ± 0.2 8.8 ± 0.3
Standard Pause Tokens 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.7 ± 0.1 9.5 ± 0.0
+ Instruction-Augmented Tokens 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.5 ± 0.1
+ Pre-Prompt Instruction 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.7 ± 0.1 9.6 ± 0.1

LLaMA 3.2 1B

Baseline 7.7 ± 0.9 6.6 ± 1.9 4.1 ± 1.9 3.7 ± 0.8 1.4 ± 0.4 1.4 ± 0.7 1.0 ± 0.1 1.0 ± 0.0
Standard Pause Tokens 7.8 ± 0.5 6.3 ± 0.3 4.1 ± 0.3 4.0 ± 1.4 2.0 ± 0.3 1.4 ± 0.9 1.0 ± 0.0 1.0 ± 0.0
+ Instruction-Augmented Tokens 8.0 ± 0.7 6.6 ± 1.9 5.3 ± 2.9 3.1 ± 1.3 1.9 ± 0.8 1.0 ± 0.4 1.0 ± 0.0 1.0 ± 0.0
+ Pre-Prompt Instruction 7.2 ± 0.6 7.6 ± 0.7 6.0 ± 2.3 3.7 ± 0.6 1.8 ± 0.3 1.7 ± 0.3 1.0 ± 0.0 1.0 ± 0.0

LLaMA 3.2 3B

Baseline 10.0 ± 0.0 9.9 ± 0.2 10.0 ± 0.0 9.1 ± 0.6 6.3 ± 1.4 3.8 ± 0.4 5.7 ± 1.8 5.2 ± 1.0
Standard Pause Tokens 10.0 ± 0.0 9.9 ± 0.1 9.7 ± 0.2 9.6 ± 0.3 6.5 ± 1.8 5.2 ± 0.5 5.6 ± 0.4 5.6 ± 0.5
+ Instruction-Augmented Tokens 10.0 ± 0.0 9.9 ± 0.1 9.9 ± 0.1 9.4 ± 0.4 6.4 ± 1.3 3.7 ± 0.4 5.4 ± 1.6 4.3 ± 1.5
+ Pre-Prompt Instruction 9.8 ± 0.4 9.9 ± 0.1 10.0 ± 0.0 9.6 ± 0.4 6.0 ± 2.2 5.8 ± 0.8 4.5 ± 1.3 3.3 ± 1.0
Pause-Tuning 10.0 ± 0.0 9.9 ± 0.1 9.9 ± 0.2 9.3 ± 0.5 7.9 ± 1.6 6.3 ± 1.7 5.9 ± 1.4 4.6 ± 0.4

LLaMA 3.1 8B

Baseline 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.6 ± 0.7 9.4 ± 0.0 7.9 ± 1.4 7.4 ± 0.2
Standard Pause Tokens 10.0 ± 0.0 10.0 ± 0.0 9.7 ± 0.4 10.0 ± 0.0 9.6 ± 0.4 8.8 ± 0.9 8.4 ± 1.5 7.2 ± 0.7
+ Instruction-Augmented Tokens 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.8 ± 0.4 8.8 ± 0.6 7.5 ± 0.2 6.3 ± 0.9
+ Pre-Prompt Instruction 10.0 ± 0.0 10.0 ± 0.0 9.8 ± 0.4 9.8 ± 0.4 9.6 ± 0.4 9.2 ± 0.7 8.8 ± 0.5 7.2 ± 0.1
Pause-Tuning 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0 9.4 ± 0.5 9.2 ± 0.3 8.0 ± 0.4

Table 5: Results of the single needle task, presented as mean ± standard deviation, comparing the baseline, pause token
methods, and pause-tuning. Token counts are denoted as 1K = 1,000 tokens, 2K = 2,000 tokens, etc. The best result for
128K tokens is shown in bold.

F. Multi-Needle Results
While the results in the main paper utilize a single needle, we also conduct tests with three needles in the haystack. The
results are reported in Table 6.
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Technique 1K 2K 4K 8K 16K 32K 64K 128K

GPT 3.5

Baseline 10.0 ± 0.0 9.6 ± 1.1 9.9 ± 0.5 8.0 ± 1.7 8.0 ± 1.4 - - -
Standard Pause Tokens 10.0 ± 0.0 9.4 ± 1.2 9.9 ± 0.3 8.7 ± 2.2 7.7 ± 1.7 - - -
+ Instruction-Augmented Tokens 10.0 ± 0.0 10.0 ± 0.0 9.9 ± 0.5 8.5 ± 1.5 8.2 ± 1.4 - - -
+ Pre-Prompt Instruction 10.0 ± 0.0 9.6 ± 1.6 9.6 ± 1.1 8.9 ± 1.4 7.9 ± 2.1 - - -

GPT 4o

Baseline 9.6 ± 1.1 10.0 ± 0.0 9.3 ± 1.6 8.8 ± 2.5 8.9 ± 2.3 7.2 ± 2.7 8.5 ± 2.6 7.6 ± 1.7
Standard Pause Tokens 9.2 ± 1.4 9.8 ± 0.8 9.6 ± 1.1 9.0 ± 1.5 8.5 ± 1.8 8.0 ± 2.5 7.8 ± 2.4 8.4 ± 1.9
+ Instruction-Augmented Tokens 10.0 ± 0.0 9.0 ± 1.1 8.6 ± 1.9 9.4 ± 1.2 8.0 ± 2.5 7.0 ± 3.2 7.7 ± 2.3 7.0 ± 2.3
+ Pre-Prompt Instruction 9.8 ± 0.8 10.0 ± 0.0 9.2 ± 1.8 9.4 ± 1.2 8.8 ± 1.5 8.2 ± 1.9 7.0 ± 2.3 7.2 ± 1.4

LLaMA 3.2 1B

Baseline 6.4 ± 4.6 8.6 ± 3.2 7.0 ± 4.4 1.0 ± 0.0 3.6 ± 4.1 1.0 ± 0.0 2.2 ± 3.2 1.0 ± 0.0
Standard Pause Tokens 8.2 ± 3.7 9.4 ± 2.3 9.4 ± 2.3 6.2 ± 4.5 5.0 ± 4.5 3.4 ± 4.1 2.8 ± 3.7 1.0 ± 0.0
+ Instruction-Augmented Tokens 3.0 ± 1.9 2.2 ± 1.9 2.8 ± 2.7 2.2 ± 2.2 1.4 ± 1.1 1.8 ± 2.4 1.6 ± 1.7 1.0 ± 0.0
+ Pre-Prompt Instruction 2.4 ± 1.6 2.2 ± 1.5 2.4 ± 1.6 2.8 ± 1.9 1.4 ± 1.1 1.6 ± 1.7 1.4 ± 1.1 1.0 ± 0.0

LLaMA 3.2 3B

Baseline 7.2 ± 3.1 6.2 ± 2.4 5.2 ± 2.2 3.6 ± 1.9 4.2 ± 2.1 3.4 ± 1.7 3.4 ± 2.3 2.2 ± 1.5
Standard Pause Tokens 8.0 ± 2.2 7.4 ± 1.9 6.1 ± 2.4 5.5 ± 1.9 4.8 ± 1.4 4.9 ± 1.8 4.3 ± 0.8 3.1 ± 2.7
+ Instruction-Augmented Tokens 7.1 ± 2.6 5.7 ± 2.7 5.3 ± 1.3 4.3 ± 1.4 5.0 ± 2.1 4.1 ± 1.2 3.7 ± 1.1 3.0 ± 2.5
+ Pre-Prompt Instruction 7.2 ± 2.7 7.0 ± 2.3 6.0 ± 1.5 4.4 ± 1.9 4.6 ± 2.3 4.0 ± 1.6 4.2 ± 1.4 3.0 ± 1.5
Pause-Tuning 7.0 ± 3.6 5.8 ± 2.7 4.8 ± 4.0 2.8 ± 3.0 1.2 ± 4.9 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

LLaMA 3.1 8B

Baseline 8.1 ± 2.7 7.5 ± 1.9 6.8 ± 1.8 6.4 ± 1.7 4.4 ± 2.1 4.3 ± 1.6 4.3 ± 0.8 4.2 ± 0.8
Standard Pause Tokens 8.0 ± 2.7 7.4 ± 1.6 6.7 ± 2.5 7.0 ± 2.0 5.2 ± 1.5 5.0 ± 1.5 4.5 ± 1.6 4.2 ± 1.4
+ Instruction-Augmented Tokens 9.0 ± 1.5 7.7 ± 1.5 7.5 ± 1.4 7.1 ± 1.0 6.7 ± 0.7 6.9 ± 0.5 6.6 ± 1.6 5.7 ± 1.7
+ Pre-Prompt Instruction 8.2 ± 1.5 7.4 ± 2.0 7.6 ± 1.2 7.1 ± 1.2 7.3 ± 0.8 7.2 ± 0.8 7.0 ± 0.0 5.3 ± 2.3
Pause-Tuning 8.3 ± 2.3 7.9 ± 2.7 8.0 ± 2.5 7.1 ± 2.5 6.0 ± 2.1 5.8 ± 2.3 4.7 ± 2.6 4.3 ± 2.7

Table 6: Results of the multiple-needle task, presented as mean ± standard deviation, comparing the baseline, pause token
methods, and pause-tuning. Token counts are denoted as 1K = 1,000 tokens, 2K = 2,000 tokens, etc. The best result for
128K tokens is shown in bold.
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