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Abstract

To generate evidence regarding the safety and efficacy of artificial intelligence (AI)
enabled medical devices, AI models need to be evaluated on a diverse population of
patient cases, some of which may not be readily available. We propose an evaluation
approach for testing medical imaging AI models that relies on in silico imaging
pipelines in which stochastic digital models of human anatomy (in object space)
with and without pathology are imaged using a digital replica imaging acquisition
system to generate realistic synthetic image datasets. Here, we release M-SYNTH*,
a dataset of cohorts with four breast fibroglandular density distributions imaged at
different exposure levels using Monte Carlo x-ray simulations with the publicly
available Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE)
toolkit. We utilize the synthetic dataset to analyze AI model performance and find
that model performance decreases with increasing breast density and increases
with higher mass density, as expected. As exposure levels decrease, AI model
performance drops with the highest performance achieved at exposure levels lower
than the nominal recommended dose for the breast type.

1 Introduction

The goal of this work is to demonstrate that AI models for medical imaging can be evaluated using
simulations, specifically, using an in silico (also known as synthetic) imaging pipeline equipped with
a stochastic model for human anatomy and disease [1]. We show that in silico methods can constitute
rich sources of data with realistic physical variability for performing comparative analysis of AI
device performance.

To date, computational models have been applied to some extent for the analysis of nearly all
medical imaging modalities and for a wide variety of clinical tasks [2]. Since it is critical to ensure
patient safety and system effectiveness in healthcare applications, rigorous and thorough testing
procedures must be performed in order to study performance in the intended population, including
subpopulations of interest. To prevent estimates that might be biased by overfitting, model testing is
typically performed on a previously unseen dataset. However, datasets consisting of patient images
may present a limited distribution of the variability in human anatomy and may not always capture
rare, but life-critical cases, and may be biased towards specific populations or parameters of image
acquisition devices dominant at specific clinical sites. In addition, patient data and associated health
records may not be available due to patient privacy, cost, or additional risk associated with additional
imaging procedures. Precise mass location and extent (e.g., mass boundaries) are typically not
available in the patient’s records, and it is burdensome, error-prone, and sometimes impossible to
collect this information retrospectively. In many medical imaging applications, these limitations pose

*Code and data links available at: https://github.com/DIDSR/msynth-release/
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a significant barrier to development and evaluation of novel computational techniques in medical
imaging products.

We propose evaluating AI models using physics-based simulations. We create realistic test cases by
imaging digital objects using digital image acquisition systems. Our in silico testing pipeline offers the
ability to control both object and acquisition parameters, and generate highly realistic test cases.We
show that digital objects and computer-simulated replicas of image acquisition devices offer a rich
source of realistic data capturing a variety of patient and imaging conditions for evaluation purposes.
In particular, our approach (and associated dataset) allows for performing comparative analysis of
AI performance across physical breast properties (e.g., mass size) and imaging characteristics (e.g.,
radiation dose). Such testing typically cannot be performed with patient data, as the data may be too
costly to collect or unsafe to acquire (e.g., one cannot ethically re-image the same patient multiple
times using ionizing radiation). Our contributions in this work can be summarized as follows:

• We demonstrate that, using this approach, we can detect differences in AI model performance based
on selected image acquisition device or physical object model parameters. Specifically, we evaluate
the effect of image acquisition (radiation dose) and object model (breast and mass densities, mass
size) parameters on the performance of the AI model.

• We release a dataset, M-SYNTH, to facilitate testing with pre-computed data using the proposed
pipeline. The dataset consists of 1,200 stochastic knowledge-based models and their associated
digital mammography (DM) images with varying physical (breast density, mass size and density)
and imaging (dose) characteristics.

2 Background

First, we introduce the concepts of knowledge-based models and physics-based imaging simulation
that form the in silico imaging pipeline, the foundation of our work.

Object Models. Knowledge-based (KB) models incorporate information about the physical world
into the data generation process to create realistic virtual representations of human parts or organs [3].
As discussed in [1], large cohorts of digital stochastic human models can be represented by:

{fs}Ss=1 =
∑
n

θsnϕn(r), (1)

where s denotes a particular state or random realization of a digital human in a cohort of size
S, r denotes a spatial variable, ϕn denote expansion (basis) functions, and θn denote expansion
coefficients. Knowledge-based models are specifically constructed by sampling a set of θn in Eq. 1
from distributions representing the relevant model characteristics, given a specific ϕn based on the
application. The characteristics of the distributions are often derived from physical or biological
measurements. In the case of breast, knowledge-based models allow us to vary physical patient
characteristics, including breast size, breast shape, mass size, and mass density. Specifically, the
object (breast) is a model D, parameterized by a vector x characterizing a fixed, user-defined set
of physiological properties (e.g., breast density, mass presence, mass size, glandularity). Given a
sample xs, we can generate a realistic, high-resolution object fs = D(xs). We rely on Graff’s breast
model [3] as the KB model for this project and describe its properties in Section 3.

Digital Mammography (DM) image generation. Once created, KB models are imaged using
simulations of x-ray transport through the materials present in each KB model. The image acquisition
device I is a parametric model that receives the object di as well as user-defined choices for control
parameters y (e.g., detector type, radiation dose) and outputs an image ri,j = I(di, yj) given a
sample choice of parameters yj and an input object di. Parameters of such a system (e.g., geometry,
source characteristics, detector technology, anti-scatter grid, etc.) can emulate system geometries and
x-ray acquisition parameters found in commercially available imaging device (e.g., mammography)
specifications. In our work, we used MC-GPU [4], a Monte Carlo x-ray simulation software
implemented on GPUs that generates mammography images. Additional details for this component
of the pipeline can be found in Section 3.
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3 Dataset Generation

The use of in silico imaging allows for the generation of large object and image datasets without the
need for human clinical trials. Here, we take advantage of the benefits of the in silico approach to
perform comparative analysis of AI model performance across different physical properties of the
case population of breast models. We rely on the VICTRE pipeline † for generating breast models and
their corresponding DM images. Previous work [5] has shown that the VICTRE pipeline replicated
the results of a clinical study comparing DM and digital breast tomosynthesis (DBT) involving
hundreds of enrolled women.

Breast Model Synthesis. In silico breast models [3] (also known as breast imaging phantoms) were
generated using a procedural analytic model which allows for adjusting various patient characteristics,
including breast shape, size and glandular density. The models are compressed in the craniocaudal
direction using FEBio [6], an open source finite-element software. We simplified the breast materials
into non-glandular (as fat) or glandular tissue with Young’s modulus and Poisson ratio of E = 5Pa,
ν = 0.49 and E = 15Pa, ν = 0.49, respectively. Lesions were inserted in a subset to create the
signal-present cohort. These models were then imaged using a state-of-the-art Monte Carlo x-ray
transport code (MC-GPU) [4]. We studied breast densities of extremely dense (referred to as “dense”),
heterogeneously dense (referred to as “hetero”), scattered, and fatty, matching the distributions from
[5]. For each breast density, a different breast size is used to correspond with population statistics.
Therefore, the dense breast is the smallest, followed by heterogeneously dense, then scattered, and
then fatty. Each breast model was compressed to 3.5 cm, 4.5 cm, 5.5 cm, and 6.0 cm for each
respective density, mimicking the organ compression during the imaging. Random spiculated breast
masses were generated using the de Sisternes model [7] with three different sizes (5 mm, 7 mm and
9 mm radii) and mass density was set to be a factor of glandular tissue density (1.0, 1.06 and 1.1
times). Note that for dense and hetero breasts, we only used mass sizes of 5 and 7 mm, since 9 mm
masses do not fit within the breast region. No micro-calcification clusters were inserted. To create the
signal-present cohort, a single spiculated mass was inserted in half of the cases at randomly chosen
locations chosen from a list of candidate sites determined by the position of the terminal duct lobular
units. The resulting in silico dataset comprises of 1,200 digital breast models, corresponding to 300
patients per breast size/density. Compared to the original VICTRE trial [5], we introduce variations
in mass size and density.

Digital Mammography (DM) Generation. To simulate the x-ray imaging process, we used
MC-GPU [4], a Monte Carlo x-ray simulation software implemented on GPUs that generates DM
images. The detector model relies on system geometries and x-ray acquisition parameters inspired
by the currently available Siemens Mammomat Inspiration DM system. The dosimetric and x-ray
acquisition parameters were selected based on publicly available device specifications and clinical
recommendations for each compressed breast thickness and glandularity (20-100% of the clinically
recommended dose), see [4, 8] for additional details. The detector model (known as DIR in [8]) is
representative of a solid-state amorphous selenium transducer in a direct detector configuration.

4 Results and Analysis

In this section, we present an approach to using our M-SYNTH dataset to evaluate an AI device.
Formally, an image processing AI model F takes as input an image r and predicts a specific property
of interest F (r) about the image. For example, such a model can predict the presence or absence
of a mass. Typically for AI models, F is a neural network and is trained on a dataset of images and
their labels Ttrain = {(r1, l1), (r2, l2), . . . (rn, ln)}, and then evaluated on a held-out dataset Ttest.
When using patient images, evaluation is limited to the variability contained in the samples and in the
annotations present across examples in the fixed test set Ttest. Instead, we propose to generate Ttrain

and Ttest dynamically using D and I described above in order to test F across variations in model x
and acquisition parameters y.

4.1 Implementation Details

Evaluation Metrics We evaluate performance using the area under curve (AUC) metric for a mass
detection task. Specifically, we treat evaluation as a multiple-reader multiple-case study, where an

†See VICTRE Github Page and FDA Regulatory Science Tools (RST) Catalog.
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AI model is a single reader. Multiple readers are obtained by re-training the model with different
random seeds. We rely on the iMRMC software [9, 10] to identify associated confidence intervals.

Network Training We represent the AI-enabled device as a neural network with an efficientnet_b0
architecture, receiving an image with one channel and dimensions of 224 by 224, and outputting a
binary mass presence label. The network is trained with batch size 64 using binary cross entropy loss
(BCE) and optimized using RMSProp optimizer (with learning rate 0.0001). We rely on the timm
library [11] and fine-tune the model pre-trained with ImageNet [12]. We also compared performance
with alternative architectures (vit_small_patch16_224 and vgg_16), but results were very similar (see
supplementary material). For each specific breast density, radiation dose level, and mass size and
density, the 300 images in the M-SYNTH dataset were divided into 200 for training, 50 for validation,
and 50 for testing. For comparison, we also trained the AI device on 410 patient DM images from
the INbreast dataset [13], where images were obtained using MammoNovation Siemens full-field
digital mammography system with a solid-state amorphous selenium detector. We use the same
pre-processing and training regimes on this dataset and learn a network to predict mass presence. The
trained models on the real patient dataset were then tested on 50 examples of the M-SYNTH dataset
for each specific breast density, dose level, and mass size and density. The full experimental setup is
implemented in Python and C over a cluster with 50 Tesla V100-SXM2 GPUs.

4.2 Experimental Results

We identify two tasks that can be performed using our method. In the subgroup analysis task, we
train and test an AI model using the released synthetic (M-SYNTH) dataset to identify performance
changes on specified subgroups. In the patient data evaluation task, we study how an AI model
trained on patient data (INbreast) performs on the proposed M-SYNTH dataset. This task can help
identify where the trained model may show variable performance for different subgroups belonging
to the target population.
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Figure 1: Subgroup analysis. Performance change across (a) mass size, (b) mass density, (c) breast
density, and (d) radiation dose, for models trained and tested on our M-SYNTH dataset. These
parameters remained constant for the set of experiments performed during both training and test: (a)
Fatty breast phantom, mass density of 1.06, and relative dose of 100%. (b) Fatty breast phantom,
mass size of 7 mm, and relative dose of 100%. (c) Mass density of 1.06, mass size of 7 mm, and
relative dose of 100%. (d) Fatty breast phantom, mass density of 1.06, and mass size of 7 mm.

Subgroup Analysis. In Figures 1 and 2, we report the results of the AI model performance at
detecting masses, when the model is trained and tested on our dataset (see Section 4.1 for details
of splits). We find that masses with larger sizes or higher densities (Figures 1a-b) are more easily
detected. Although models trained on all sizes or mass densities have the highest performance, when
the models are trained on smaller masses or lower densities, they generalize better to other masses
(more difficult cases). The performance of the models are highest when they are tested and trained on
the same breast density and decrease as the density of the test breast phantom differs from the train
phantom (Figures 1c). The dose levels applied in this study have minimal impact on the performance
of the models and resulted in similar AUC values (Figures 1d). Evaluation of the performance change
across all the breast densities (Figures 2a-b) reveals that the AUC improves with larger mass density
and mass size, yet is impacted by the breast density, where mass detection performance is lowest in
high-density breasts (dense) and highest in low-density breasts (fatty) in most of the cases, consistent
with findings from clinical practice.
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Figure 2: Subgroup analysis. Performance changes for models trained and tested on our M-SYNTH
dataset. For each data point, the model is trained on 250 images with masses of radii of 7 mm
and mass densities of 1.06, and tested on 50 images with mass characteristics shown in plots for
each specific breast density. The radiation dose level remains constant at 100% of the clinically
recommended dose for each breast density during training and test.

Patient Data Evaluation. In Figure 3, we report experiments where the AI model is trained
on INbreast data and evaluated on the M-SYNTH data. Although the performance results for all
experiments are lower in general, we find a similar set of trends as when the model is trained
on M-SYNTH data. Note that we have made no attempt to match the radiation dose levels or
the image acquisition parameters for these comparisons using patient images. Even though the
simulated pipeline is designed to replicate a specific DM system with a particular detector technology
and technique factors, the comparison suggests similarity between the datasets. The images are
qualitatively different but overall have similar glandular patterns which is an important consideration
for the realism of the task of detecting masses in a noisy background. We also assessed similarity
between the INbreast and M-SYNTH datasets in terms of low-level pixel distributions using first five
statistical moments: mean, variance, skewness, kurtosis, and hyperskewness. We found that there is a
reasonably good alignment in terms of moments, especially when the synthetic images were included
at all four breast densities (see supplementary material). Future work should develop a more detailed
comparison, including radiomic features for the training and testing datasets used in the study to
complement the validation of our approach.

Limitations. There are a number of limitations to our work. First, simulations may require long
runtimes and demand large computational resources, thus somewhat limiting the amounts of data that
can be generated. This limitation needs to be considered with respect to the difficulty of obtaining
large patient image datasets with known mass locations. In addition, data can be pre-generated offline
(as we do with the M-SYNTH dataset), therefore, removing the large runtime limit and computational
burden off the user. Second, testing with simulations is constrained to the variability captured by the
parameter space of the object models for anatomy and pathology and the acquisition system. Thus,
the complexity of the object model and acquisition system may need to be adjusted depending on
the complexity of the questions to be investigated with simulated testing. In particular, a potential
risk of testing using simulated data is missing the variability observed in patient populations. Finally,
there is a risk of mis-judging model performance due to a domain gap between real and synthetic
examples. However, the realism and sophistication of object-based modeling of the imaging pipeline
are improving rapidly and may soon compete with other approaches, making approaches based on
synthetic data useful and practical for regulatory evaluation of AI-enabled medical devices.
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Figure 3: Model Evaluation. Performance changes for a model trained on 410 real patient images
(INbreast dataset) and tested on our M-SYNTH dataset. The test sets consist of 50 images using
parameters shown in the plots. The test radiation dose is set to 100% of the clinically recommended
dose for each breast density.

5 Conclusion and Future Work

We introduce an approach for validating AI models using physics-based simulations of digital humans
from the object space to the image data, specifically for the task of breast cancer mass detection.
The simulated images are highly realistic and offer a challenging test case for AI model evaluation.
Our findings are consistent with expected performance and show that the AI model performance
increases with mass size and mass density as expected. Finally, we show that our approach can be
used to validate a model trained on independent patient data. This finding suggests that the proposed
simulation setup can be used as a framework for more general evaluation of medical AI devices. The
goal of this study is to demonstrate as proof-of-concept the feasibility of using simulated data to
evaluate the comparative performance of AI models. In future work, it would be important to assess
the evaluation approach for additional parameters in terms of the distribution of the population of
digital humans in the object space, and for a range of image acquisition systems (e.g., by considering
alternative simulators). By imaging a more diverse population of breast models, we hope to identify
additional insights regarding AI evaluation. Finally, it is important to note that the testing is limited
to the variability captured in the digital representations and may not fully indicate absolute real-world
performance or trends. This study illustrates that physics-based simulation of mammography images
can be a least burdensome and cost-efficient approach to evaluate AI model performance for a wide
range of scenarios, including a variety of image acquisition parameters and diverse populations that
may not be available or are hard to obtain from human studies. Moreover, this approach offers a
complementary evaluation paradigm that does not depend on the availability of patient data.
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