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Abstract

Causal representation learning is the task of identi-
fying the underlying causal variables and their re-
lations from high-dimensional observations, such
as images. Recent work has shown that one can
reconstruct the causal variables from temporal se-
quences of observations under the assumption that
there are no instantaneous causal relations between
them. In practical applications, however, our mea-
surement or frame rate might be slower than many
of the causal effects. This effectively creates “in-
stantaneous” effects and invalidates previous iden-
tifiability results. To address this issue, we propose
iCITRIS, a causal representation learning method
that can handle instantaneous effects in temporal
sequences when given perfect interventions with
known intervention targets. iCITRIS identifies the
intervention-dependent part of the causal factors
from temporal observations, while simultaneously
using a differentiable causal discovery method to
learn their causal graph. We demonstrate this in ex-
periments on two video datasets.

1 INTRODUCTION

Causal representation learning aims at learning representa-
tions of causal factors in an underlying system from high-
dimensional observations like images (Brehmer et al., 2022;
Locatello et al., 2020a; Schölkopf et al., 2021; Yang et al.,
2021). Several works have considered identifying causal
factors from time series data, assuming that the variables
are independent of each other conditioned on the previous
time step (Gresele et al., 2021; Khemakhem et al., 2020;
Lachapelle et al., 2022; Lippe et al., 2022b; Yao et al., 2022).
This scenario assumes that within each discrete, measured
time step, intervening on one causal factor does not affect
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any other instantaneously. However, in real-world systems,
this assumption is often violated, as there might be causal ef-
fects that act faster than the measurement or frame rate. For
instance, consider the example of a light switch and a light
bulb. When flipping the switch, there is an almost immedi-
ate effect on the light by turning it on or off. In this case, an
intervention on a variable (e.g. the switch) also affects other
variables (e.g. the bulb) in the same time step, violating the
assumption that each variable is independent of the others in
the same time step, conditioned on the previous time step.

To overcome this limitation, we consider the task of identi-
fying causal variables and their causal graphs from temporal
sequences, even under potentially instantaneous cause-effect
relations. This task contains two main challenges: disentan-
gling the causal factors from observations, and learning the
causal relations between those factors. As opposed to tempo-
ral sequences without instantaneous effects, neither of these
two tasks can be completed without the other: without know-
ing the variables, we cannot identify the graph; but without
knowing the graph, we cannot disentangle the causal vari-
ables since they are not conditionally independent. In par-
ticular, in contrast to causal relations across time steps, the
orientations of instantaneous edges are not determined by
the temporal ordering, hence requiring to jointly solve the
task of causal representation learning and causal discovery.

As a first step, we show that in the presence of potential in-
stantaneous causal effects, we cannot identify the causal fac-
tors from observations, unless we have access to perfect in-
terventions or strong additional assumptions. Intuitively, if
the graph remains unchanged in experiments, one cannot dis-
tinguish between entanglements in the observational space
(e.g. images) and instantaneous causal relations. For exam-
ple, consider a blue object illuminated by a white spotlight.
If we change the spotlight color to red, the object will appear
black. From purely observational data, we cannot distin-
guish whether the spotlight’s color caused a change in the ob-
ject’s actual color, or if it just changed its appearance. How-
ever, if after performing a perfect intervention on the object
color, e.g. by fixing it to green, we observe that the perceived
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object color is not the one we expected, then we can deduce
how the entanglement happens in the observation function.

Further, we consider the general setting in which causal
factors can be multidimensional. Following Lippe et al.
(2022b), we focus on the minimal causal variables, i.e. the
parts of the causal factors that are affected by the interven-
tions, since interventions may leave some dimensions un-
changed. In this setting, we prove that we can identify the
minimal causal variables and their graph, if we have se-
quences with perfect interventions on known targets.

As a practical implementation, we propose instantaneous
CITRIS, or iCITRIS, which, inspired by the recent causal
representation learning method CITRIS (Lippe et al.,
2022b), can discover the minimal causal variables and their
causal graph for both instantaneous and temporal effects.
iCITRIS maps high-dimensional observations like images
to a latent space, on which it learns an instantaneous causal
graph by integrating a causal discovery method into its prior.
In particular, we consider two recent differentiable causal
discovery methods: NOTEARS (Zheng et al., 2018) and
ENCO (Lippe et al., 2022a). In experiments on two video
datasets, we show that iCITRIS can disentangle the causal
variables while accurately recovering their causal graph.

Related work Most works in the field of causal representa-
tion learning have focused so far on identifying independent
factors of variations from data (Klindt et al., 2021; Kumar
et al., 2018; Locatello et al., 2019, 2020b; Träuble et al.,
2021), including recent works in Independent Component
Analysis (ICA) (Gresele et al., 2021; Hyvärinen et al., 2001,
2019; Monti et al., 2019). In particular, Lachapelle et al.
(2022); Yao et al. (2022) discuss identifiability of causal vari-
ables from temporal sequences, but require all causal vari-
ables to be conditionally independent and scalar. Focusing
on causal structures in the data, von Kügelgen et al. (2021)
demonstrate that contrastive learning methods can block-
identify causal variables invariant to augmentations. CITRIS
(Lippe et al., 2022b) uses temporal sequences with interven-
tions to identify the minimal causal variables, i.e. the part of
a potentially multidimensional causal variable that is influ-
enced by the provided interventions. Still, similar to works
on ICA, CITRIS requires the causal variables within a time
step to be independent conditioned on the previous time
step, which is violated by instantaneous effects. Locatello
et al. (2020a) identify independent latent causal factors from
pairs of observations that only differ in a subset of causal
factors. Brehmer et al. (2022) have recently extended this
setup to variables with instantaneous causal effects. How-
ever, in contrast to our approach, Brehmer et al. (2022) re-
quire counterfactual observations where for a pair of obser-
vations, the noise term for all variables is identical, except
for a single intervened variable. To the best of our knowl-
edge, iCITRIS is the first method to identify causal variables
and their causal graph from temporal, intervened sequences
in the case of potentially instantaneous causal effects.
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Figure 1: An example causal graph in iTRIS. A latent causal
factor Ct+1

i can have as potential parents the causal fac-
tors at the previous time step Ct = (Ct1, . . . , C

t
K), instanta-

neous parents Ct+1
j , i ̸= j, and its intervention target It+1

i .
All causal variables Ct+1 and the noise Et+1 cause the ob-
servation Xt+1. Rt+1 is a potential latent confounder be-
tween the intervention targets.

2 IDENTIFIABILITY IN TEMPORAL
INTERVENED SEQUENCES WITH
INSTANTANEOUS EFFECTS

We first describe our setting, Instantaneous TempoRal Inter-
vened Sequences (iTRIS). We then discuss the challenges
that arise due to instantaneous effects, and their implica-
tions on the identifiability of the causal factors. Finally, we
present the identifiability results in iTRIS.

2.1 INSTANTANEOUS TEMPORAL INTERVENED
SEQUENCES (ITRIS)

iTRIS considers a latent temporal causal process with K
causal factors (Ct1, C

t
2, ..., C

t
K)Tt=1 with both causal rela-

tions across time steps, i.e. temporal, and within a time
step, i.e. instantaneous. At each time step t, we measure a
high-dimensional observation Xt from this process, repre-
senting a noisy, entangled view of all causal factors Ct =
(Ct1, C

t
2, ..., C

t
K). The following paragraphs describe this

setup in more detail, which is visualized in Figure 1.

Causal factors: We consider causal factors to be potentially
multidimensional, i.e., Ci ∈ DMi

i with Mi ≥ 1 being the
unobserved dimensionality of Ci and Di the domain, for
example R for continuous variables. We define the causal
factor space as C = DM1

1 × ...×DMK

K .

Causal structure assumptions: We assume that the under-
lying latent causal process is a dynamic Bayesian network
(DBN) (Dean and Kanazawa, 1989; Murphy, 2002) over the
multidimensional random variables (C1, C2, ..., CK) that is
first-order Markov, stationary, and potentially has instanta-



neous effects between different variables. This means that
each causal factor Ci is instantiated at each time step t, de-
noted by Cti , and its causal parents pa(Cti ) can be any sub-
set of the causal factors at time t − 1 and t, including its
own previous value Ct−1

i . Additionally, we assume that the
complete structure of the graph is acyclic. Furthermore, the
graph and its parameters are assumed to be time-invariant
(i.e., they repeat across each time step). Finally, we assume
that the causal factors are causally sufficient (i.e., there are
no additional latent confounders) and that the distribution
satisfies the causal faithfulness assumption (i.e., there are
no additional independences w.r.t. the ones encoded in the
graph). Further details are provided in Appendix A.1.

Interventions: In each time step, we consider that interven-
tions may have been performed on a subset of causal factors.
We assume that we have access to the intervention targets,
but not the sampled values of the intervened variables. We
denote these targets by the binary vector It+1 ∈ {0, 1}K
where It+1

i = 1 refers to an intervention that has been per-
formed on the causal variable Ct+1

i . Further, we assume the
observational and interventional distributions to share the
same support on C. Finally, the intervention targets may be
confounded by a latent regime variable Rt+1.

Observation function: We define the observation function
h(Ct1, C

t
2, ..., C

t
K , E

t) = Xt, where Et is any noise affect-
ing the observation Xt independent of the causal factors
Ct, and h : C × E → X is a function from the causal factor
space C and the space of the noise variables E to the obser-
vation space X . We assume that h is bijective, so we can
identify each causal factor uniquely from observations.

2.2 CHALLENGES OF INSTANTANEOUS CAUSAL
EFFECTS

In iTRIS, causal variables within a time step can be related in
two ways: they can be entangled by the observation function
h to create the observation Xt, or they are causally related
in the instantaneous causal graph, as discussed in the moti-
vating example with a spotlight and an object changing col-
ors in the introduction. To truly disentangle and identify the
causal variables, we need to distinguish between these two
forms of entanglement. Intuitively, a perfect intervention on
a variable removes all its incoming edges, including instan-
taneous effects, thus excluding one type of entanglement.

To formalize this intuition, we consider an example in iTRIS
with only two latent causal factors C1 and C2, and, for sim-
plicity, without temporal relations. We assume C1 and C2

do not cause each other, and the observation function is sim-
ply X = [C1, C1 + C2]. We show that one cannot iden-
tify the causal factors or their graph from p(X), since there
are multiple different representations that can model p(X)
equally well. For instance, an alternative representation is
Ĉ1 = X1 = C1, Ĉ2 = X2 = C1+C2 with the causal graph

Ĉ1 → Ĉ2, since p(Ĉ2|Ĉ1) = p(C1 +C2|C1) = p(C2) and
hence p(Ĉ1, Ĉ2) = p(C1, C2) = p(X). Even under soft in-
terventions that change the conditional distributions of C1

and C2, we cannot necessarily tell the two representations
apart, because the causal graph can remain unchanged.

Perfect interventions, on the other hand, force the intervened
variable to be independent of its parents, which includes
instantaneous effects. Thus, under perfect interventions on
C2, the identified representation of C2 must be independent
of all its parents, including any potential instantaneous effect.
This eliminates the possible representation of Ĉ2 = C1+C2,
since C1 + C2 ⊥̸⊥ C1|I2 = 1 implies Ĉ2 ⊥̸⊥ Ĉ1|I2 = 1.
Thus, we come to the following conclusion:

Lemma 2.1. A causal variable Ci cannot always be
uniquely identified in iTRIS if Ci potentially has instanta-
neous parents and the available data does not contain any
perfect intervention on Ci.

We provide the proof for this lemma and an example with
temporal relations in Appendix A.2.1. This lemma implies
that without perfects interventions on a causal variable Ci,
we can only disentangle it from a set of other causal vari-
ables, C̃ where Ci ̸∈ C̃, if we assume that Ci does not have
instantaneous parents in C̃. Otherwise, there may exist addi-
tional representations, similar to the example before, where
Ci is entangled with other causal variables in C̃.

2.3 IDENTIFYING THE MINIMAL CAUSAL
VARIABLES

As a result of Lemma 2.1, we extend our assumptions to
identify the causal variables. First, we assume that all in-
terventions performed are perfect, i.e. p(Cti |pa(Cti ), I

t
i =

1) = p(Cti |Iti = 1). We require that the causal variables on
which interventions are never performed in the observed se-
quence, i.e. ∀t, Iti = 0, are not instantaneous children of any
variable with observed interventions. Further, to differenti-
ate between interventions on different variables, we assume
that no intervention target is a deterministic function of any
other, e.g. by not allowing ∀t, Iti = Itj , i ̸= j. Finally, if
there exist symmetries in the distribution of a causal variable
Ci, the representation of Ci may depend on other causal
variables without changing the likelihood. For instance, a
one dimensional Gaussian has the symmetry of flipping the
variable Ci around its mean. Thus, Ci could be flipped, con-
ditioned on another variable Cj , i ̸= j, without changing
the likelihood. To break this symmetry, the mean must de-
pend on the intervention target and/or any variable from the
previous time step. Hence, we assume that the temporal de-
pendencies and provided interventions break all symmetries
in the distributions. Appendix A.2 provides further details
on the assumptions and their necessity.

Under these assumptions, we aim to identify the causal
variables from high-dimensional observations. As shown by



Lippe et al. (2022b), multidimensional causal variables are
not always identifiable, since interventions can potentially
only affect a subset of the variables dimensions. Thus, we
are limited to identifying the intervention-dependent parts
of variables, i.e. the minimal causal variables.

In particular, we learn an invertible mapping, gθ : X → Z ,
from observations X to a latent space Z ∈ RM with M di-
mensions. The latent space is structured by an assignment
function ψ : J1..MK → J0..KK mapping each dimension
of Z to a causal factor C1, ..., CK . We index the set of la-
tent variables that ψ assigns to the causal factor Ci with
zψi

= {zj |j ∈ J1..MK, ψ(j) = i}. Thereby, we use zψ0

to summarize all latents that model the noise Eto and the
intervention-independent parts of all causal variables. Fur-
thermore, to model the instantaneous causal relations, we
learn a directed, acyclic graph G on the K latent variable
groups zψ0

, ..., zψK
. The graph G induces a parent structure

denoted by zψpa
i

= {zj |j ∈ J1..MK, ψ(j) ∈ paG(i)} where
we set paG(0) = ∅, i.e. the variables in zψ0

have no instan-
taneous parents. Meanwhile, the temporal causal graph, i.e.
between Ct and Ct+1, is implicitly learned by conditioning
the latent variables of a time step, zt+1, on all latents of the
previous time step, zt. Since the orientations of the edges
are known, i.e. from Ct to Ct+1, no causal discovery setup
as for the instantaneous graph is strictly necessary, and the
temporal graph can instead be pruned in a post-processing
step. Overall, this results in the following prior:

pϕ,G
(
zt+1|zt, It+1

)
= pϕ

(
zt+1
ψ0

|zt
)
·

K∏
i=1

pϕ

(
zt+1
ψi

|zt, zt+1
ψpa

i
, It+1
i

) (1)

Under interventions, we mask out the parents zt and zt+1
ψpa

i

for the prior of zt+1
ψi

, maintaining the independence rela-
tions under perfect interventions. Given a dataset of triplets
{xt, xt+1, It+1} with observations xt, xt+1 ∈ X and inter-
vention targets It+1, the full likelihood objective becomes:

pϕ,θ,G(x
t+1|xt, It+1) =

∣∣det Jgθ (xt+1)
∣∣ pϕ,G(zt+1|zt, It+1)

(2)
where the Jacobian of the invertible map gθ,∣∣det Jgθ (xt+1)

∣∣, comes from the change of variables of x
to z. Under this setup, we derive the following result:

Theorem 2.2. Suppose that ϕ∗, θ∗, ψ∗ and G∗ are the
parameters that, under the constraint of maximizing the
likelihood pϕ,θ,G(x

t+1|xt, It+1), maximize the informa-
tion content of pϕ(zt+1

ψ0
|zt) and minimize the edges in G∗.

Then, with sufficient latent dimensions, the model ϕ∗, θ∗, ψ∗

learns a latent structure where zt+1
ψi

models the minimal
causal variable of Ci, and G∗ is the true instantaneous
graph between these variables. Removing edges based on
conditional independencies between time steps t and t+ 1
identifies the true temporal graph. Finally, zψ0 models all
remaining information.

The proof for this theorem in Appendix A follows three main
steps. First, we show that the true disentanglement function
constitutes a global optimum of the likelihood objective
of Equation (2), but is not necessarily unique. Second, we
derive that any global optimum must have disentangled the
minimal causal variables in the latent representation, and
that maximizing the information content of zψ0 uniquely
identifies the minimal causal variables. Finally, we show that
under this disentanglement, optimizing the likelihood of the
observational and interventional data identifies the complete
causal graph between the minimal causal variables.

Intuitively, this theorem shows that we can identify and dis-
entangle the minimal causal variables, even when instanta-
neous effects are present. Furthermore, we are able to find
the instantaneous causal graph G∗ between the minimal
causal variables, which, however, might not be exactly the
same as the causal graph GC between the true causal vari-
ables Ct1, ..., C

t
K . Every edge ztψi

→ ztψj
in G∗ implies an

edge Cti → Ctj in GC . However, some edges in GC might
be modeled by relations between intervention-independent
parts of causal variables, which are captured by an edge
ztψ0

→ ztψj
in G∗. Still, translating the edges from G∗ to

GC following the previous implication does not introduce
any wrong edge or orientation that was not present in GC .

3 LEARNING VARIABLES WITH
INSTANTANEOUS EFFECTS

Based on the theoretical results presented above, we pro-
pose iCITRIS, a causal representation learning method that
simultaneously identifies the causal variables and the in-
stantaneous causal graph between them. Inspired by CIT-
RIS (Lippe et al., 2022b), iCITRIS implements the mapping
from observations to latent space either by a variational au-
toencoder (VAE) (Kingma and Welling, 2014) or by a nor-
malizing flow (Rezende and Mohamed, 2015) trained on the
representations of a pretrained autoencoder. In both cases,
the disentanglement of the causal variables in latent space is
promoted by enforcing the structure of Equation (1). How-
ever, crucially, the instantaneous graph G∗ must be learned
jointly with the causal representations, as we describe next.

3.1 LEARNING THE INSTANTANEOUS GRAPH

To learn the instantaneous causal graph simultaneously with
the causal representation, we incorporate recent differen-
tiable, score-based causal discovery methods in iCITRIS.
Given a prior distribution over graphs p(G), the prior distri-
bution over the latent variables zt+1 of Equation (1) is:

pϕ
(
zt+1|zt, It+1

)
= pϕ

(
zt+1
ψ0

|zt
)
·

EG

[
K∏
i=1

pϕ

(
zt+1
ψi

|zt, zt+1
ψpa

i
, It+1
i

)] (3)



where the parent sets, zt+1
ψpa

i
, depend on the graph structureG.

The goal is to jointly optimize pϕ and p(G) under maximiz-
ing the likelihood objective of Equation (2), such that p(G)
is peaked at the correct causal graph. To apply causal discov-
ery methods in this setup, we consider each group of latents,
zt+1
ψi

, as the potentially multidimensional causal factor Ci,
on which the graphs must be recovered. To this end, we ex-
periment with two different discovery methods: NOTEARS
(Zheng et al., 2018), and ENCO (Lippe et al., 2022a).

NOTEARS (Zheng et al., 2018) casts structure learning as
a continuous optimization problem by providing a contin-
uous constraint to enforce acyclicity. Specifically, an adja-
cency matrix A is acyclic if the following holds: c(A) =
tr (exp(A ◦A)) −K = 0, where ◦ is the Hadamard prod-
uct, exp(...) the matrix exponential, and K the number of
causal variables. Following Ng et al. (2022), we model the
adjacency matrix A with independent edge likelihoods, and
differentially sample from it using the Gumbel-Softmax
trick (Jang et al., 2017). We use these samples as graphs in
the prior pϕ

(
zt+1|zt, It+1

)
to mask the parents of the indi-

vidual causal variables, and obtain gradients for the graph
through the maximum likelihood objective of the prior. In
order to promote acyclicity, we use the constraint c(A) as a
regularizer, and exponentially increase its weight over train-
ing. This ensures that at the end of the training, c(A) is close
to zero, and, thus, the predicted graph is acyclic.

ENCO (Lippe et al., 2022a), on the other hand, uses in-
terventional data and a different graph parameterization to
obtain acyclic graphs. The graph parameters are split into
two sets: one for modeling the orientation per edge, and one
for whether the edge exists or not. By using solely adjacent
interventions to update the orientation parameters, Lippe
et al. (2022a) show that ENCO naturally converges to the
true, acyclic graph in the sample limit. Since iCITRIS re-
quires interventions on variables that have potential edges
of unknown orientations, we can integrate ENCO without
additional constraints on the dataset. Instead of the Gumbel-
Softmax trick, ENCO uses low-variance, unbiased gradi-
ents based on REINFORCE (Williams, 1992) to update the
graph parameters, potentially providing a more stable op-
timization than NOTEARS. For efficiency, we merge the
distribution and graph learning stage of ENCO, and update
both the graph and distribution parameters at each iteration.

3.2 STABILIZING THE OPTIMIZATION PROCESS

The main challenge in iCITRIS is that simultaneously identi-
fying the causal variables and their graph leads to a chicken-
and-egg situation: without knowing the variables, we cannot
identify the graph; but without knowing the graph, we can-
not disentangle the causal variables. This can cause the opti-
mization to be naturally unstable and to converge to local
minima with incorrect graphs. To stabilize the optimization
process, we propose the following two approaches.

Graph learning scheduler During the first training itera-
tions, the assignment of latent to causal variables is almost
uniform, such that the gradients for the graph parameters
are very noisy and uninformative. Thus, we use a learning
rate schedule for the graph learning parameters such that the
graph parameters are frozen for the first couple of epochs.
During those training iterations, the model learns to fit the
latent variables to the intervention variables under an arbi-
trary graph, leading to an initial, rough assignment of latent
to causal variables. Then, we warm up the learning rate to
slowly start the graph learning process while continuing to
disentangle the causal variables in latent space.

Mutual information estimator Since iCITRIS requires per-
fect interventions, we can further exploit this information
in the optimization process by enforcing independencies be-
tween parents and children under interventions. In partic-
ular, under interventions on the variable Ci at time t, i.e.
Iti = 1, the following independencies must hold: Cti ⊥⊥
pa(Cti )|Iti = 1. The same independencies can be trans-
ferred to the latent space as ztψi

⊥⊥ (zt
ψpa

i
, zt−1)|Iti = 1. To

use these independencies as learning signals in iCITRIS’s
gradient-based framework, we use the fact that two vari-
ables being independent corresponds to the mutual infor-
mation (MI) of both to be zero (Kullback, 1997). Follow-
ing previous work on neural network based MI estimation
(Belghazi et al., 2018; Hjelm et al., 2019; van den Oord
et al., 2018), we implement this framework by training a
network to distinguish between samples from the joint dis-
tribution p(ztψi

, zt
ψpa

i
, zt−1|Iti = 1) and the product of their

marginals, i.e. p(ztψi
|Iti = 1)p(zt

ψpa
i
, zt−1|Iti = 1). While

the MI estimator network is trained to optimize its classifi-
cation accuracy, the latents are optimized to do the opposite,
effectively minimizing the mutual information between ztψi

and its parents under interventions.

4 EXPERIMENTS

We evaluate iCITRIS on two videos datasets and compare it
to common disentanglement methods. We publish our code
at https://github.com/phlippe/CITRIS.

4.1 EXPERIMENTAL SETTINGS

Baselines Since iCITRIS is, to the best of our knowledge,
the first method to identify causal variables with instanta-
neous effects in this setting, we compare it to methods for
disentangling conditionally independent causal variables.
Firstly, we use CITRIS (Lippe et al., 2022b) and the Identi-
fiable VAE (iVAE) (Khemakhem et al., 2020), which both
assume that the variables are independent given the previ-
ous time step and intervention targets. Additionally, to also
compare to a model with dependencies among latent vari-
ables, we evaluate the iVAE with an autoregressive prior,

https://github.com/phlippe/CITRIS


Table 1: Results on Instantaneous Temporal Causal3DIdent
over three seeds. iCITRIS-ENCO performs best in identify-
ing the variables and their graph.

Model R2 (diag ↑ / sep ↓) SHD (instant ↓ / temp ↓)

iCITRIS-ENCO 0.96 / 0.05 1.33 / 5.00
iCITRIS-NOTEARS 0.95 / 0.09 4.00 / 5.00
CITRIS 0.92 / 0.19 4.67 / 10.00
iVAE 0.82 / 0.20 6.67 / 15.33
iVAE-AR 0.79 / 0.29 11.00 / 12.67

which we denote with iVAE-AR. To ensure comparability,
we share the general model setup where possible (e.g. en-
coder/decoder network) across all methods.

Evaluation metrics We follow Lippe et al. (2022b) in re-
porting the R2 correlation scores between the true causal
factors and the latent variables that have been assigned to a
specific causal variable by the learned model. We denote the
average correlation of the predicted causal factor to its true
value with R2-diag (optimal 1), and the maximum correla-
tion besides its true factor with R2-sep (optimal 0). Further-
more, to investigate the modeling of the temporal and instan-
taneous relations between the causal factors, we perform
causal discovery as a post-processing step on the latent rep-
resentations of all models, and report the structural hamming
distance (SHD) between the predicted and true causal graph.

4.2 3D OBJECT RENDERINGS: CAUSAL3DIDENT

We use the Temporal Causal3DIdent dataset (von Kügel-
gen et al., 2021; Lippe et al., 2022b) which contains 3D
renderings (64 × 64 pixels) of different object shapes un-
der varying positions, rotations, and lights. To introduce in-
stantaneous effects into the dataset, we replace all tempo-
ral relations with instantaneous edges, except those on the
same variable (Cti → Ct+1

i ). For instance, a change in the
rotation leads to an instantaneous change in the position of
the object, which again influences the spotlight. Overall, we
obtain an instantaneous graph of eight edges between the
seven multidimensional causal variables. Since the dataset
is visually complex, we use the normalizing flow variant of
iCITRIS and CITRIS applied on a pretrained autoencoder.

Table 1 shows that iCITRIS-ENCO disentangles the causal
variables well and recovers most instantaneous relations in
this challenging setup, with one error on average. The tem-
poral graph had more false positive edges due to minor, addi-
tional correlations. On the other hand, iCITRIS-NOTEARS
struggles with the graph learning and incorrectly oriented
edges during training, underlining the benefit of ENCO as
the graph learning method in iCITRIS. The baselines have
a significantly higher entanglement of the causal variables
and struggle with finding the true causal graph. In summary,
iCITRIS-ENCO can identify the causal variables and their
instantaneous graph in this visually challenging dataset well.

Table 2: Results on the Causal Pinball dataset (three seeds).

Model R2 (diag ↑ / sep ↓) SHD (instant ↓ / temp ↓)

iCITRIS-ENCO 0.98 / 0.04 0.67 / 3.67
iCITRIS-NOTEARS 0.98 / 0.06 2.33 / 3.67
CITRIS 0.98 / 0.04 2.67 / 4.00
iVAE 0.55 / 0.04 2.33 / 4.33
iVAE-AR 0.53 / 0.15 4.33 / 6.33

4.3 REAL GAME DYNAMICS: CAUSAL PINBALL

Finally, we consider a simplified version of the game Pinball,
which naturally comes with instantaneous causal effects: if
the user activates the paddles when the ball is close, the ball
is accelerated immediately. Similarly, when the ball hits a
bumper, its light turns on and the score increases directly.
This results in instantaneous effects under common frame
rates. In this environment, we consider five causal variables:
the position of the left paddle, the right paddle, the ball
(position and velocity), the state of the bumpers, and the
score. Pinball is closer to a real-world environment than the
other two datasets and has two characteristic differences: (1)
many aspects of the environment are deterministic, e.g. the
ball movement, and (2) the instantaneous effects are sparse,
e.g. the paddles do not influence the ball if it is far away
of them. The first aspect violates assumptions of iCITRIS,
questioning whether iCITRIS yet empirically works here.

The results in Table 2 suggest that iCITRIS still works
well on this environment. Besides disentangling the causal
variables well, iCITRIS-ENCO identifies the instantaneous
causal graph with minor errors. Interestingly, CITRIS ob-
tains a good disentanglement score as well, which is due
to the instantaneous effects being often sparse. Yet, there
is still a gap between iCITRIS-ENCO and CITRIS in the
instantaneous SHD, showing the benefit of learning the in-
stantaneous graph jointly with the causal variables.

5 CONCLUSION

We propose iCITRIS, a causal representation learning frame-
work for temporal intervened sequences with instantaneous
effects. iCITRIS identifies the minimal causal variables
while jointly learning the causal graph, including the instan-
taneous relations. In experiments, iCITRIS accurately recov-
ers the causal factors and their graph in two video datasets.
While we envision a future application of methods similar
to iCITRIS in a reinforcement learning setting, the limiting
factor currently are the assumptions on the availability of
perfect interventions with known targets. Future work in-
cludes investigating a setup where a sequence of actions is
needed to perform targeted interventions. Finally, iCITRIS
is limited to acyclic graphs, while for instantaneous causal
effects cycles could occur under low frame rates, which is
also an interesting future direction.
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A PROOFS

In this section, we provide the proof for the identifiability
theorem 2.2 in Section 2 and Lemma 2.1. The section is
structured into three main parts. First, in Appendix A.1, we
give an overview of the notation and elements that are used
in the proof. Next, we discuss the assumptions needed for
Theorem 2.2, with a focus on why they are needed and what
a violation of these assumptions can cause. Additionally, we
provide a proof of Lemma 2.1 in this subsection. Finally, we
provide the proof of Theorem 2.2, structured into multiple
subsections as different main steps of the proof. A detailed
overview of the proof is provided in Appendix A.3.

A.1 PRELIMINARIES

To clarify the used notation and definitions in the proof,
we first discuss the definitions of the properties of causal
models. Next, we review the used notation for all other
elements in the proof.

A.1.1 Causal model definition

Given a causal graph G = (V,E), each node i ∈ V is as-
sociated with a causal variable Ci, which can be scalar or
vector valued. Each edge (i, j) ∈ E represents a causal re-
lation from Ci to Cj : Ci → Cj , where Ci is a parent of
Cj and paG(Ci) are all parents of Ci in G. We can clus-
ter multiple causal variables C1, . . . , CK in a single vari-
able C = (C1, . . . , CK). C then inherits all incoming and
outgoing edges from its components Ci for i = 1, . . . ,K.
We assume that the underlying latent causal process is a
dynamic Bayesian network (DBN) (Dean and Kanazawa,
1989; Murphy, 2002) G over (C1, C2, ..., CK) that is first-
order Markov, stationary, and without instantaneous ef-
fects. This means that in G each causal factor Ci is instan-
tiated at each time step t, denoted by Cti , and its causal
parents can only be causal factors at time t − 1, denoted
as Ct−1

j , including its own previous value Ct−1
i , and fac-

tors at time t, excluding its own value. In other words, for
t = 1, . . . , T and for each causal factor i = 1, . . . ,K
we can model Cti = fi(paG(C

t
i ), ϵi), where paG(C

t
i ) ⊆

{Ct−1
1 , . . . , Ct−1

K , Ct1, . . . , C
t
i−1, C

t
i+1, . . . , C

t
K}. We also

assume all ϵi for i = 1, . . . ,K are mutually independent
noises. To represent a DBN, the graph structure must be
acyclic. This means that there does not exist a directed path
in G from any node Cti back to itself. Further, the structure
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of the graph is time-invariant, i.e., paG(C
t
i ) = paG(C

1
i ) for

any t = 1, . . . , T .

We use a binary intervention vector It ∈ {0, 1}K to indi-
cate that a variable Cti in G is intervened upon if and only if
Iti = 1. We consider that the intervention vector components
Iti might be confounded by another Itj , i ̸= j, and represent
these dependencies with an unobserved regime variable Rt,
which is similar to “policy variables” in Spirtes et al. (2000)
or “regime indicators” in Didelez et al. (2006); Mooij et al.
(2020). We augment the underlying causal graph G with the
intervention variable Iti associated with each causal factor
Cti by including it in its parent set: paG′(Cti ) = paG(C

t
i ) ∪

{Iti}. Each intervened variable Ctj in a time step will have
its corresponding intervention variable Itj set to 1, otherwise
the intervention variable will be set to 0 if the causal fac-
tor is not intervened upon at the time step t. We say that a
distribution p is Markov w.r.t. the augmented DAG G′ if it
factors as p(V ′) =

∏
j∈V ′ p(Vj | paG′(Vj)), where Vj in-

cludes the causal factors Cti , the intervention vector com-
ponents Iti , and the regime Rt. Moreover, we say that p is
faithful to a causal graph G′, if there are no additional con-
ditional independencies to the d-separations one can read
from the graph G′. The augmented graph G′ can model
interventions with an arbitrary number of targets, includ-
ing observational data. In this paper, we consider soft inter-
ventions (Eberhardt, 2007), in which the conditional distri-
bution changes while potentially maintaining parent rela-
tions, i.e., p(Cti |paG(C

t
i ), I

t
i = 1) ̸= p(Cti |paG(C

t
i ), I

t
i =

0), and perfect interventions (Pearl, 2009), which change
a causal variable independent of its original parents, i.e.,
p(Cti |paG(C

t
i ), I

t
i = 1) = p(Cti |Iti = 1). The latter cor-

responds to a do-operation do(Cti = ci) in Pearl (2009),
where ci is randomly sampled from p(Cti |Iti = 1).

A.1.2 Notation

Throughout the proof, we will the same notation as used in
the main paper, and try to align it as much as possible with
Lippe et al. (2022b). As a summary, the notation is:

• We denote the K causal factors in the latent causal
dynamical system as C1, . . . , CK ;

• The dimensions and space of a causal variable is de-
noted as Ci ∈ DMi

i with Mi ≥ 1 and let Di be R for
continuous variables (e.g., spatial position), Z for dis-
crete variables (e.g., the score of a player) or mixed;

• We group all causal factors in a single variable C =
(C1, . . . , CK) ∈ C, where C is the causal factor space
C = DM1

1 ×DM2
2 × ...×DMK

K ;
• The data we base our identifiability on is generated

by a latent Dynamic Bayesian network with variables
(Ct1, C

t
2, ..., C

t
K)Tt=1;

• We assume to know at each time step the binary inter-
vention vector It ∈ {0, 1}K+1 where Iti = 1 refers to
an intervention on the causal factor Cti . As a special

case It0 = 0 for all t;
• For each causal factor Ci, there exists a split
svari (Ci), s

inv
i (Ci) such that svari (Ci) represents the

variable/manipulable part of Ci, while sinvi (Ci) repre-
sents the invariable part of Ci;

• The minimal causal split is defined as the one which
only contains the intervention-dependent information
in svari (Ci), and everything else in sinvi (Ci). This split
is denoted by svar

∗

i (Ci) and sinv
∗

i (Ci)
• At each time step, we can access observations
xt, xt+1 ∈ X ⊆ RN ;

• There exist a bijective mapping between observations
and causal/noise space, denoted by h : C × E → X ,
where E is the space of the noise variables;

• The noiseEt ∈ E at a time step t subsumes all random-
ness besides the causal model which influences the ob-
servations. For example, this could be brightness shifts
in Causal3D, or color shifts in the Causal Pinball envi-
ronment since no causal factor is encoded in brightness
and color in these setups respectively. While this set-
ting is quite general, we still require that the values of
the causal factors must be identifiable from single ob-
servations. Hence, the joint dimensionality of the noise
and causal model is limited to the image size.

• For any model learning a latent space, we denote the
vector of latent variables by zt ∈ Z ⊆ RM , where Z is
the latent space of dimension M ≥ dim(E) + dim(C);

• In iCITRIS, we learn the inverse of the observation
function as gθ : X → Z;

• In iCITRIS, we learn an assignment from latent di-
mensions to causal factors, denoted by ψ : J1..MK →
J0..KK;

• The latent variables assigned to each causal factor Ci
by ψ are denoted as zψi

= {zj |j ∈ J1..MK, ψ(j) =
i} = {gθ(xt)j |j ∈ J1..MK, ψ(j) = i};

• The remaining latent variables that are not assigned to
any causal factor are denoted as zψ0 ;

• In iCITRIS, we learn a directed, acyclic graph G =
(V,E) where V = {zψi

|i ∈ J0..KK} and the edges
represent directed causal relations;

• The graph G induces a parent structure which we de-
note by zψpa

i
= {zj |j ∈ J1..MK, ψ(j) ∈ paG(i)}

where paG(0) = ∅, i.e. the variables in zψ0 having no
instantaneous parents;

• The parents of a causal variable within the same time
step t+1 are denoted by pat+1(Ct+1

i ), and the parents
of the previous time step t by pat(Ct+1

i );
• As a special case, we denote the function gθ with the

parameters θ that precisely model the inverse of the
true observation function, h−1, as the disentanglement
function δ∗ : X → C̃ × Ẽ with C̃ = DM̃1 × ...×DM̃K

and M̃i being the number of latent dimensions assigned
to the causal factor Ci by ψ∗. We denote the output of
δ∗ for an observation X as δ∗(X) = (C̃1, C̃2, ..., Ẽ).
The representation of δ∗ as a learnable function is de-



noted by g∗θ and ψ∗;
• In the following proof, we will use entropy as a mea-

sure of information content in a random variable. To
be invariant to possible invertible transformations, e.g.
scaling by 2, we use the notion of the limiting den-
sity of discrete points (LDDP) (Jaynes, 1957, 1968).
In contrast to differential entropy, LDDP introduces an
invariant measure m(X), which can be seen as a refer-
ence distribution we measure the entropy of p(X) to.
The entropy is thereby defined as:

H(X) = −
∫
p(X) log

p(X)

m(X)
dx (4)

In the following proof, we will consider entropy mea-
sures over latent and causal variables. For the latent
variables, we consider m(X) to be the push-forward
distribution of an arbitrary, but fixed distribution in X
(e.g. random Gaussian if X = Rn) through gθ. For the
causal variables, we consider it to be the push-forward
through h−1. For more details on LDDP, see Lippe et al.
(2022b, Appendix A.1.2) and Jaynes (1957, 1968).

A.2 ASSUMPTIONS FOR IDENTIFIABILITY

In this section, we provide a detailed discussion of the as-
sumptions of iCITRIS to enable the identification of an un-
derlying causal graph with instantaneous effects. We thereby
focus on why these assumptions are necessary, and how a
violation of those can lead to scenarios where the causal
variables and graph is not identifiable.

A.2.1 Assumption 1: The interventions on the causal
variables are perfect

iCITRIS requires perfect interventions on the causal vari-
ables, in order to disentangle the variables in latent space.
The perfect interventions are necessary to obtain samples
in which the dependencies among the causal variables are
broken, as stated in Lemma 2.1 and copied here for com-
pleteness:

Lemma A.1. A causal variable Ci cannot always be
uniquely identified in iTRIS if Ci has instantaneous parents
and no perfect interventions on Ci have been observed.

Proof. To prove this Lemma, it is sufficient to present a
counterexample for which a variable Ci cannot be uniquely
identified. Consider two random, causal variables C1, C2

with the causal graph Ct1 → Ct+1
1 , Ct2 → Ct+1

2 . The two
causal variables C1, C2 have therefore no instantaneous
relations. Further, consider the (soft-interventional) distri-
butions p1(Ct+1

1 |C1
t , I

t+1
1 ) and p2(Ct+1

2 |C1
2 , I

t+1
2 ) whose

form can be arbitrary, but for this example, we choose them

to be Gaussian with constant variance:

p1(C
t+1
1 |Ct1, It+1

1 ) ={
N (Ct+1

1 |µ1(C
t
1), σ1(C

t
1)

2) if It+1
1 = 0

N (Ct+1
1 |µ̃1(C

t
2), σ̃1(C

t
1)

2) if It+1
1 = 1

(5)

p2(C
t+1
2 |Ct2, It+1

2 ) ={
N (Ct+1

2 |µ2(C
t
2), σ2(C

t
2)

2) if It+1
2 = 0

N (Ct+1
2 |µ̃2(C

t
2), σ̃2(C

t
2)

2) if It+1
2 = 1

(6)

where µ1, µ̃1, µ2, µ̃2, σ1, σ̃1, σ2, σ̃2 are arbitrary, potentially
non-linear functions of Ct1 and Ct2 respectively. Further, to
consider the simplest case, suppose that the observation Xt

at a time step t are the causal variables themselves, Xt =
[Ct1, C

t
2], and we observe data points of all intervention

settings, i.e. It+1
i ∼ Bernoulli(q) with 0 < q < 1.

Under this setup, the true generative model follows the
distribution:

p(Xt+1|Xt, It+1) = p(Ct+1
1 , Ct+1

2 |Ct1, Ct2, It+1) (7)

= p(Ct+1
1 |Ct1, Ct2, It+1

1 , It+1
2 )·

p(Ct+1
2 |Ct1, Ct2, It+1

1 , It+1
2 )

(8)

= p1(C
t+1
1 |Ct1, It+1

1 )·
p2(C

t+1
2 |Ct2, It+1

2 )
(9)

where Ct+1
1 ⊥⊥ Ct+1

2 |Xt, It+1. To show that the causal
variables are not uniquely identifiable, we need at least one
other representation which can achieve the same likelihood
as the true generative model under all intervention settings
It+1. For this, consider the following distribution:

p(Xt+1|Xt, It+1) = p(Ct+1
1 , Ct+1

2 |Ct1, Ct2, It+1) (10)

= p(Ct+1
1 |Ct1, Ct2, It+1

1 , It+1
2 )·

p(Ct+1
2 |Ct1, Ct2, Ct+1

1 , It+1
1 , It+1

2 )

(11)

= p1(C
t+1
1 |Ct1, It+1

1 )·
p̂2(C

t+1
1 + Ct+1

2 |Ct2, Ct+1
1 , It+1

2 )

(12)

= p1(Ĉ
t+1
1 |Ct1, It+1

1 )·
p̂2(Ĉ

t+1
2 |Ct2, Ĉt+1

1 , It+1
2 )

(13)

with Ĉt+1
1 = Ct+1

1 , Ĉt+1
2 = Ct+1

1 + Ct+1
2 . Note the addi-

tional dependency of Ĉt+1
2 on Ĉt+1

1 , which is possible in
the space of possible causal models with an additional in-
stantaneous causal edge Ĉt+1

1 → Ĉt+1
2 . The new distribu-



tion p̂2 is identical to the true distribution, since:

p̂2(C
t+1
1 + Ct+1

2 |Ct2, Ct+1
1 , It+1

2 = 0) =

= N (Ct+1
1 + Ct+1

2 |Ct+1
1 + µ2(C

t
2), σ2(C

t
2)

2)
(14)

=
1√

2πσ2(Ct2)
e
− 1

2

(Ct+1
1 +C

t+1
2 −(C

t+1
1 +µ2(Ct

2)))
2

σ2(Ct
2)2 (15)

=
1√

2πσ2(Ct2)
e
− 1

2

(Ct+1
2 −µ2(Ct

2))
2

σ2(Ct
2)2 (16)

= N (Ct+1
2 |µ2(C

t
2), σ2(C

t
2)

2) (17)

= p2(C
t+1
2 |Ct2, It+1

2 = 0) (18)

Similarly, one can show that p̂2(C
t+1
1 +

Ct+1
2 |Ct2, Ct+1

1 , It+1
2 = 1) = p2(C

t+1
2 |Ct2, It+1

2 = 1).
Hence, the alternative representation Ĉt+1

1 , Ĉt+1
2 can model

the distribution p(Xt+1|Xt, It+1) as well as the true causal
model. In conclusion, from the samples alone, we cannot
distinguish between the two representation C1, C2 and
Ĉ1, Ĉ2, and the model is therefore not identifiable.

An alternative example with a non-trivial observation func-
tion is visualized in Figure 2, which further underlines the
problem.

This shows that with soft interventions, one cannot distin-
guish between causal relations introduced by the observa-
tion function and those that are in the true causal model. Per-
fect interventions, however, provide an opportunity to do so
since if we had known that the intervention on C2 is perfect,
the second causal model could not have modeled the correct
distribution under I2 = 1. This is since under interventions
on a variable, all causal relations to its parents are broken,
but only the relations introduced by the encoding function
remain. Thus, we can distinguish between the two, allowing
us to identify the correct causal model.

While we have shown that soft interventions are not suffi-
cient for finding the instantaneous causal graph, this does
not necessarily hold for the temporal relations. For instance,
one might have interventions that are perfect within a time
step, but keeps the dependency to the previous time step.
However, for simplicity, we focus here on fully perfect in-
terventions, and leave this relaxation to future work.

A.2.2 Assumption 2: Additional variables without
interventions are not children of intervened
variables

In practice, it may not be feasible to obtain interventions
for every causal variable in a complex, dynamical system.
Thus, we need to deal with having interventions on only a
subgroup of the causal variables.

For those variables, we need to take the assumption that
they are not children of the variables, for which we have

observed interventions. The necessity of this assumption be-
comes clear when considering Appendix A.2.1, in which we
have shown that soft interventions are not sufficient to tell
apart entanglement introduced by the observation function,
and entanglement induced by the causal relations. Coming
back to the example of the proof in Appendix A.2.1, suppose
that we have only given perfect interventions on C1, and not
C2. From interventions on C1 alone, we cannot distinguish
between the true causal model and Ĉt+1

1 = Ct+1
1 , Ĉt+1

2 =

Ct+1
1 + Ct+1

2 (Ĉt+1
1 → Ĉt+1

2 as causal graph), since the
intervention on C1 does not affect the entanglement and
causal mechanism of Ĉt+1

2 . Thus, it is not possible to iden-
tify the causal variables and the respective graph if there
may exist instantaneous effects from variables with interven-
tions to those without. However, under the assumption that
the variables without interventions have no instantaneous
relation with the intervened variables, one can distinguish
between the solely passively observed variables and those
with perfect interventions, since all entanglement between
those within a time step must come from the observation
function, not the causal model. Still, among all causal vari-
ables without interventions, a disentanglement cannot be
guaranteed without further assumptions due to the lack of
observed change in their causal mechanism, and a causal
graph among those may exist as well.

A.2.3 Assumption 3: The intervention targets are
unique for each causal variable

iCITRIS builds upon interventions to identify the causal
variables. The intervention targets are not necessarily inde-
pendent of each other, but can be confounded. For instance,
we could have a setting where we only obtain single-target
interventions, or a certain variable Ci can only be jointly in-
tervened upon with another variable Cj . In this large space
of possible experimental settings, we naturally cannot guar-
antee identifiability all the time. In particular, we require
that intervention targets for the different causal variables are
unique:

Lemma A.2. All information that is strictly dependent on
the intervention target Iti , i.e. svar(Ci) - the minimal causal
variable of Ci, cannot be disentangled from another causal
variable, Cj with j ̸= i, if their intervention targets are
identical: ∀t, Iti = Itj .

Proof. Lippe et al. (2022b) have shown that two causal vari-
ables Ci, Cj cannot be disentangled from observational data
alone if they follow a Gaussian distribution with equal vari-
ance over time. Taking this setup, consider that additionally
to observational data, we observe samples where both vari-
ables have been intervened upon, It+1

i = It+1
j = 1. If the

interventional distribution of Ci and Cj are both Gaussian
with the same variance, we have the same non-identifiability
as in the observational case. Since the entanglement axes can
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(a) Observational distribution
p(Xt|Xt−1 = C, It1 = 0, It2 = 0)
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(b) Interventional distribution
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(c) Interventional distribution
p(Xt|Xt−1 = C, It1 = 0, It2 = 1)

Figure 2: Example distribution for showcasing the necessity of perfect interventions for disentangling causal variables with
instantaneous effects. Suppose we are given two-dimensional observationsXt, for which the observational and interventional
distributions are plotted in (a)-(c). The central plot of each subfigure shows a 2D histogram, and the subplots above and
on the right show the 1D marginal histograms. For simplicity, we keep the previous time step, Xt−1, constant here. From
the interventional distribution, one might suggest that we have the latent causal graph C1 → C2 since under It1 = 1, the
distribution of both observational distributions change, while It2 = 1 keeps X2 unchanged. However, the data has been
actually generated from two independent causal variables, which have been entangled by having Xt = [Ct1, C

t
1 + Ct2]. We

cannot distinguish between these two latent models from interventions that do not reliably break instantaneous causal effects,
showing the need for perfect interventions.

transfer between the two setups, Ci and Cj cannot be disen-
tangled, and therefore their minimal causal variables.

In other words, if two variables are always jointly inter-
vened or passively observed, we cannot distinguish whether
information belongs to causal variable Ci or Cj . Since the
causal system is stationary, having one time step t for which
Iti ̸= Itj implies that in the sample limit, we will observe
samples with Iti ̸= Itj in the limit as well. Further, when we
only observe joint interventions on two variables, Ci, Cj ,
the causal graph among the two variable cannot be identi-
fied for arbitrary distributions (Eberhardt, 2007), making
the identifiability of the graph and variables impossible.

CITRIS (Lippe et al., 2022b) additionally requires that two
intervention targets cannot be the invert of each other, i.e.
Iti = 1 − Itj . However, this is not strictly required here,
since for Iti = 1, the perfect interventions imply Ci being
independent of all its parents, which is not the case for the
observational regime, i.e. Iti = 0. Thus, as long as Ci and
Cj have any parents, there is a possibility to disambiguate
the variables even under ∀t, Iti = 1− Itj .

Still, since there may exist variables without parents, we take
the same assumption as Lippe et al. (2022b). Specifically,
for every causal variable Ci with observed interventions, we
require that the following independence holds:

Ct+1
i ⊥̸⊥ It+1

i |Ct, pat+1(Ct+1
i ), It+1

j for any i ̸= j (19)

This also implies that there does not exist a variable Cj
for which ∀t, Iti = 1 − Itj . As mentioned before, under

additional assumptions such that every causal variable has at
least one parents, it can be relaxed to unique interventions.

A.2.4 Assumption 4: The observational and
interventional distributions share the same
support

If the observational and interventional distribution do not
share the same support, there exist data points for which
the intervention targets can be determined from the obser-
vation Xt alone. In such situation, the encoder can change
its encoding depending on the intervention target, as long
as the decoder can yet recover the full observation. This
can potentially create representation models that ignore the
latent structure, since the intervention targets are already
known. Furthermore, when intervention targets are known
from seeing causal variables, we potentially introduce new
independencies from intervention targets. For instance, if
we have the graph C1, C2 → C3 where I3 = 1 only if
I1 = 1, I2 = 0, we can induce the intervention targets from
other causal factors, making C3 essential independent of
I3. To prevent such degenerate solutions, we take the as-
sumption that the observational and intervention distribu-
tions share the same support. This assumption implies that
any data point could come from either the interventional or
observational regime, ensuring that the intervention target
cannot deterministically be found from an observation Xt.



C1 C2 C3

Figure 3: Example instantaneous causal graph between 3
causal variables C1, C2, C3. Without temporal dependen-
cies, we could encode information of C1 dependent on C3

without needing an edge in the distribution.

A.2.5 Assumption 5: Temporal connections and
interventions break all symmetries in the
distributions

The temporal and interventional dependencies are an essen-
tial part in iCITRIS to guarantee identifiability and disentan-
glement of the causal variables. Without any of these depen-
dencies, there may exist multiple representations that model
the same distribution p(Xt|Xt−1, It), while following the
enforced latent structure by iCITRIS. The problem is that
variables can functional dependent on each other, where
these dependencies exploit symmetries, leaving the distribu-
tion unchanged.

For instance, consider the instantaneous causal graph of
three variables C1, C2, C3 with C1, C3 → C2, as depicted
in Figure 3. Suppose that C1 does not have any temporal
parents, and the observational distribution of it follows a
Gaussian: p(Ct1|It1 = 0) = N (Ct1|µ1, σ

2
1) with µ1, σ

2
1 be-

ing constants. Further, suppose that under interventions,
only the standard deviation changes, i.e. p(Ct1|It1 = 1) =
N (Ct1|µ1, σ̃

2
1) with σ̃2

1 ̸= σ2
1 . Then, for any point Ct1 = c1,

there exists a second point, c′1 = 2µ1 − c1, which has the
same probability for any value of It1. This is because both
distributions, p(Ct1|It1 = 0) and p(Ct1|It1 = 1), share a sym-
metry around the mean µ1.

Now, suppose we have the optimal encoder which maps an
observation Xt of this system to the three causal variables
with their ground truth values. Then, there exist an alterna-
tive encoder, which flips the observed value of Ct1 around
the mean µ1, deterministically conditioned on the remaining
variables Ct2 and Ct3. For instance, we could have the fol-
lowing representation Ĉt1, Ĉ

t
2, Ĉ

t
3 for the causal variables:

Ĉt2 = Ct2, Ĉ
t
3 = Ct3, Ĉ

t
1 =

{
Ct1 if Ĉt3 > 0

2µ1 − Ct1 otherwise
(20)

This alternative representation model shares the same like-
lihood as the optimal encoder in terms of p(Xt|Xt−1, It),
since flipping the value of Ct1 around the mean does not
change its probability. Further, despite the flipping, the orig-
inal observation Xt can be recovered from this alternative
representation Ĉt by the decoder, because the possible con-
ditioning factors, i.e. Ĉt3 in this case, are observable to the
decoder. Hence, both representations are equally valid for
the causal models. Yet, one cannot recover the value of the
true causal variable, Ct1, from its alternative representation

Ĉt1 alone, since Ĉt3 needs to be known to invert the example
condition. This shows that we can have functional depen-
dencies between representations of causal variables while
their distributions remain independent. Thus, there exist
more than one representation that cannot be distinguished
between from having samples of p(Xt|Xt−1, It) alone.

More generally speaking, functional dependencies between
variables can be introduced if there exists a transformation
that leaves the probability of a variable Ci unchanged for
any possible value of its parents unseen in Xt, i.e. its inter-
vention target Iti and temporal parents Ct−1. Whether this
transformation is performed or not can now be conditioned
on other variables at time step t. Meanwhile, this transfor-
mation does not introduce additional dependencies in the
causal graph, since the distribution does not change.

To prevent such transformations from being possible, the
temporal parents and intervention targets need to break all
symmetries in the distributions. We can specify it in the
following assumption:

Assumption 5: For a causal variable Ci and its causal
mechanism p(Cti |pat+1(Ci), pat(Ci), Iti ), there exist no in-
vertible, smooth transformation T with T (Cti |Ct−i) = C̃ti
besides the identity, for which the following holds:

∀Ct−1, Ct, It : p(Cti |pat+1(Cti ), pat(Cti ), I
t
i ) =∣∣∣∣∂T (Cti |Ct−i)∂Cti

∣∣∣∣ · p(C̃ti |pat+1(Cti ), pat(Cti ), I
t
i )

(21)

Intuitively, this means that there does not exist any sym-
metry that is shared across all possible values of the par-
ents (temporal and interventions) of a causal variable. While
this might first sound restricting, this assumption will likely
hold in most practical scenarios. For instance, if the distri-
bution is a Gaussian, then the assumption holds as long as
the mean is not constant since the intervention breaks any
parent dependencies are broken by the perfect interventions.
The same holds in higher dimensions, as the new symme-
tries, i.e. rotations, are yet broken if the center point is not
constant. Note that these symmetries can be smooth trans-
formations, in contrast to the discontinuous flipping opera-
tion on the Gaussian (i.e. either we flip the distribution or
not, but there is no step in between).

A.2.6 Assumption 6: Causal graph structure
requirements

Besides disentangling and identifying the true causal vari-
ables, we are also interested in finding the instantaneous
causal graph. This requires us to perform causal discovery,
for which we need to take additional assumptions. First, we
assume that the causal graph is acyclic, i.e. for any causal
variable Cti , there does not exist a path through the directed



causal graph that loops back to it. Note that this excludes
different instances over time, meaning that a path from Cti
to Ct+τi is not considered a loop. In real-world setups, there
potentially exist instantaneous graphs which are not acyclic,
which essentially model a feedback loop over multiple vari-
ables. However, to rely on the graph as a distribution factor-
ization, we assume it to be acyclic, and leave extension to
cyclic causal graphs for future work. As the second causal
graph assumption, we require that the causal graph is faith-
ful, which means that all independences between causal vari-
ables are implications of the graph structure, not the specific
parameterization of the distributions (Hyttinen et al., 2013;
Pearl, 2009). Without faithfulness, the graph might not be
fully recoverable. Finally, we assume causal sufficiency, i.e.
there do not exist any additional latent confounders that in-
troduce dependencies between variables beyond the ones
we model. Note that this excludes the potential latent con-
founder between the intervention targets, and we rather fo-
cus on confounders on the causal variables C1, ..., CK be-
sides their intervention targets, the previous time step Ct,
and instantaneous parents Ct+1.

A.3 THEOREM 2.2 - PROOF OUTLINE

The goal of this section is to proof Theorem 2.2: the global
optimum of iCITRIS will identify the minimal causal vari-
ables and their instantaneous causal graph. The proof fol-
lows a similar structure as Lippe et al. (2022b) used for
proofing the identifiability in CITRIS, but requires addi-
tional steps to integrate the possible instantaneous relations.
In summary, we will take the following steps in the proof:

1. (Appendix A.4) Firstly, we show that the func-
tion δ∗ that disentangles the true latent variables
C1, ..., CK and assigns them to the corresponding
sets zψ1

, ..., zψK
constitutes a global, but not neces-

sarily unique, optimum for maximizing the likelihood
p(Xt+1|Xt, It+1).

2. (Appendix A.5) Next, we characterize the class of dis-
entanglement functions ∆∗ which all represent a global
maximum of the likelihood, i.e. get the same score as
the true disentanglement. We do this by proving that all
functions in ∆∗ must disentangle the minimal causal
variables.

3. (Appendix A.6) In a third step, we show that based on
the disentanglement of the minimal causal variables,
the causal graph on these learned representations must
contain at least the same edges as in the ground truth
graph.

4. (Appendix A.7) Finally, we put all parts together and
derive Theorem 2.2.

We will make use of Figure 4 summarizing the temporal
causal graph, and the notation introduced in Appendix A.1.
For the remainder of the proof, we assume for simplicity of
exposition that:

Ct

Ct+1
1 Ct+1

2
· · · Ct+1

K Xt+1

Et+1

Xt

Et

It+1
1 It+1

2
· · · It+1

K

Rt+1

Temporal causal
relations

Instantaneous
causal relations

Interventions

Latent
confounding

Observations

Ct+1

Figure 4: An example causal graph in iTRIS. A latent causal
factor Ct+1

i can have as potential parents the causal fac-
tors at the previous time step Ct = (Ct1, . . . , C

t
K), instanta-

neous parents Ct+1
j , i ̸= j, and its intervention target It+1

i .
All causal variables Ct+1 and the noise Et+1 cause the ob-
servation Xt+1. Rt+1 is a potential latent confounder be-
tween the intervention targets.

• The invertible map gθ and the prior pϕ
(
zt+1|zt, It+1

)
are sufficiently complex to approximate any possible
function and distribution one might consider in iTRIS.
In practice, over-parameterized neural networks can
approximate most functions with sufficient accuracy.

• The latent dimension size is unlimited, i.e. Z ∈ R∞.
This is assumed such that there are no limitations on
how many latent variables zψi

can be used to represent
a causal factorCi. To maintain invertibility in gθ, we as-
sume that dimensions beyond dim(C)+dim(E) can po-
tentially become constants. In practice, however, this is
not a limiting factor as long as we can overestimate the
dimensions of the causal factors and noise variables.

• The sample size for the provided experimental settings
is unlimited. This ensures that dependencies and con-
ditional independencies in the causal graph of Figure 4
transfer to the observed dataset, and no additional re-
lations are introduced by sample biases. In practice, a
large sample size is likely to give an accurate enough
description of the true distributions.

A.4 THEOREM 2.2 - PROOF STEP 1: THE TRUE
MODEL IS A GLOBAL OPTIMUM OF THE
LIKELIHOOD OBJECTIVE

We start the identifiability discussion by proving the follow-
ing Lemma:

Lemma A.3. The true disentanglement function δ∗ that cor-
rectly disentangles the true causal factors Ct+1

1 , ..., Ct+1
K

from observations Xt, Xt+1 using the true ψ∗ assignment
function on the latent variables Zt+1 and the true causal



graph G∗ is one of the global maxima of the likelihood of
p(Xt+1|Xt, It+1).

This lemma ensures that the true model is part of
the solution space of maximum likelihood objective on
p(Xt+1|Xt, It+1).

Proof. In order to prove this, we first rewrite the objective
in terms of the true causal factors. This can be done by
using the causal graph in Figure 4, which represents the true
generative model:

p(Xt, Xt+1, Ct, Ct+1, It+1) = p(Xt+1|Ct+1)·[
K∏
i=1

p(Ct+1
i |Ct, pat+1

G (Ct+1
i ), It+1

i )

]
·

p(Xt|Ct) · p(Ct) · p(It+1)

(22)

The context variable Rt+1 is subsumed in p(It+1), since
it is a confounder between the intervention targets and is
independent of all other factors given It+1.

In order to obtain p(Xt+1|Xt, It+1) from
p(Xt, Xt+1, Ct, Ct+1, It+1), we need to marginalize out
Ct and Ct+1, and condition the distribution on Xt and
It+1:

p(Xt+1|Xt, It+1) =

∫
Ct+1

∫
Ct

p(Xt+1|Ct+1)·[
K∏
i=1

p(Ct+1
i |Ct, pat+1

G (Ct+1
i ), It+1

i )

]
·

p(Ct|Xt)dCtdCt+1

(23)

In the assumptions with respect to the observation function
h, we have defined h to be bijective, meaning that there
exists an inverse f that can identify the causal factors Ct

and noise variable Et from Xt. The noise variables thereby
represent all the stochasticity in the observation function
that is not described by the causal factors. For instance, this
can be color shifts, limited observation noise, or similar.
However, independent of the noise, the causal factors need
to be identifiable. This means that the joint dimensionality of
the noise and the causal factor are limited by the image size:
dim(C) + dim(E) ≤ dim(X ). The observation function
h can represent an invertible map between the two spaces
even under dim(C)+ dim(E) < dim(X ), since X does not
necessarily need to be Rdim(X ), but rather a subspace.

Using the invertible map, we can write p(Ct|Xt) =
δf(Xt)=Ct , where δ is a Dirac delta. We also remove Et

from the conditioning set since it is independent of Xt+1.

This leads us to:

p(Xt+1|Xt, It+1) =

∫
Ct+1[

K∏
i=1

p(Ct+1
i |Ct, pat+1

G (Ct+1
i ), It+1

i ), It+1
i )

]
·

p(Xt+1|Ct+1)dCt+1

(24)

We can use a similar step to relate Xt+1 with Ct+1 and
Et+1. However, since we model a distribution over Xt+1,
we need to respect possible non-volume preserving trans-
formations. Hence, we use the change of variables formula
with the Jacobian Jh = ∂h(Ct+1,Et+1)

∂Ct+1∂Et+1) of the observation
function h to obtain:

p(Xt+1|Xt, It+1) = |Jh|−1 ·[
K∏
i=1

p(Ct+1
i |Ct, pat+1

G (Ct+1
i ), It+1

i )

]
·

p(Et+1)

(25)

Since Equation (25) is a derivation of the true generative
model p(Xt, Xt+1, Ct, Ct+1, It+1), it constitutes a global
optimum of the maximum likelihood. Hence, one cannot
achieve higher likelihoods by reparameterizing the causal
factors or having a different graph, as long as the graph is
directed and acyclic.

In the next step, we relate this maximum likelihood solution
to iCITRIS, more specifically, the prior of iCITRIS. For
this setting, the learnable, invertible map gθ is identical to
the inverse of the observation function, h−1. In terms of
the latent variable prior, we have defined our objective of
iCITRIS as:

pϕ
(
zt+1|zt, It+1

)
=

K∏
i=0

pϕ

(
zt+1
ψi

|zt, zt+1
ψpa

i
, It+1
i

)
(26)

Since we know that g∗θ is an invertible function between X
and Z , we know that zt must include all information of Xt.
Thus, we can also replace it with zt = [Ct, Et], giving us:

pϕ
(
zt+1|Ct, Et, It+1

)
=

K∏
i=0

pϕ

(
zt+1
ψi

|Ct, Et, zt+1
ψpa

i
, It+1
i

)
(27)

Next, we consider the assignment function ψ∗. The optimal
assignment function ψ∗ assigns sufficient dimensions to
each causal factor C1, ..., CK , such that we can consider
zt+1
ψ∗

i
= Ct+1

i for i = 1, ...,K. Further, the same graph G is
used in the latent space as in the ground truth, except that
we additionally condition zψ∗

i
, i = 1, ...,K on zψ∗

0
. With

that, Equation (27) becomes:

pϕ
(
zt+1|Ct, Et, It+1

)
=[

K∏
i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, zt+1
ψpa

i
, zt+1
ψ∗

0
, It+1
i

)]
·

p(zt+1
ψ∗

0
|Ct, Et)

(28)



where we remove Et from the conditioning set for the
causal factors, since know that Ct+1 and Et+1 is indepen-
dent of Et. Now, zψ∗

0
must summarize all information of

zt+1 which is not modeled in the causal graph. Thus, zψ∗
0

represents the noise variables: zt+1
ψ∗

0
= Et+1.

pϕ
(
zt+1|Ct, Et, It+1

)
=[

K∏
i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, zt+1
ψpa

i
, zt+1
ψ∗

0
, It+1
i

)]
·

p(zt+1
ψ∗

0
= Et+1|Ct, Et)

(29)

Finally, by using g∗θ , we can replace the distribution on
zt+1 by a distribution on Xt+1 by the change of variables
formula:

pϕ
(
Xt+1|Ct, Et, It+1

)
=

∣∣∣∣∂g∗θ(zt+1)

∂zt+1

∣∣∣∣ ·[
K∏
i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, zt+1
ψpa

i
, zt+1
ψ∗

0
, It+1
i

)]
·

p(zt+1
ψ∗

0
= Et+1|Ct, Et)

(30)

We can simplify this distribution by using the independen-
cies of the noise term Et+1 in the causal graph of Figure 4:

pϕ
(
Xt+1|Ct, Et, It+1

)
=

∣∣∣∣∂g∗θ(zt+1)

∂zt+1

∣∣∣∣ ·[
K∏
i=1

pϕ

(
zt+1
ψ∗

i
= Ct+1

i |Ct, zt+1
ψpa

i
, It+1
i

)]
·

p(zt+1
ψ∗

0
= Et+1)

(31)

With this, Equation (31) represents the exact same distri-
bution as Equation (25). Therefore, we have shown that
the function δ∗ that disentangles the true latent variables
C1, ..., CK and assigns them to the corresponding sets
zψ1 , ..., zψK

constitutes a global optimum for maximizing
the likelihood. However, this solution is not necessarily
unique, and additional optima may exist. In the next steps
of the proof, we will discuss the class of disentanglement
functions and graphs that lead to the same optimum.

A.5 THEOREM 2.2 - PROOF STEP 2:
CHARACTERIZING THE
DISENTANGLEMENT CLASS

In this section, we discuss the disentanglement and identifia-
bility results of the causal variables in iCITRIS. We first de-
scribe the minimal causal variables in iTRIS, and how they
differ to TRIS in CITRIS (Lippe et al., 2022b). Next, we
identify the information that must be assigned to individual
parts of the latent representation, and similarly, what needs
to be disentangled. Finally, we discuss the final setup to en-
sure disentanglement, including the additional variables in
zψ0

.

A.5.1 Minimal causal variables

Lippe et al. (2022b) introduced the concept of a minimal
causal variable as an invertible split of a causal variable Ci
into one part that is strictly dependent on the intervention,
svar(Ci), and a part that is independent of it, sinv(Ci). For
iCITRIS, we consider the same concept, but adapt it to the
setup of iTRIS.

First, iTRIS assumes the presence of perfect interven-
tions. When given perfect interventions, we can ensure that
sinv(Ci) does not have any parents. This is because under
interventions, a causal variable Ci becomes independent of
all its parents, and hence sinv(Ci) must be as well. Since
sinv(Ci) is independent of Ii and thus does not change its
mechanism with the intervention, sinv(Ci) must always be
independent of all parents ofCi. Hence, we can limit our dis-
cussion to splits where sinv(Ci) does not have any parents.

Second, the presence of a causal graph in iCITRIS allows
dependencies between different parts of the latent space.
Further, zψ0

can be the parent of any other set of variables,
thus allowing for potential dependencies between sinv(Ci)
and svar(Ci). Note that those, however, must also be cut
off by the perfect intervention. Hence, the split si(Cti ) =
(svari (Cti ), s

inv
i (Cti )) must have the following distribution

structure:
p
(
si(C

t+1
i )|Ct, pat+1(Ct+1

i ), It+1
i

)
=

p
(
svari (Ct+1

i )|Ct, pat+1(Ct+1
i ), sinvi (Ct+1

i ), It+1
i

)
·

p
(
sinvi (Ct+1

i )
)

(32)

where
p
(
svari (Ct+1

i )|Ct, pat+1(Ct+1
i ), sinvi (Ct+1

i ), It+1
i

)
={

p̃
(
svari (Ct+1

i )
)

if It+1
i = 1

p
(
svari (Ct+1

i )|pa(Ct+1
i ), sinvi (Ct+1

i )
)

else
(33)

Thereby, the minimal causal variable with respect to its
intervention variable It+1

i is the split si which maximizes
the information content H(sinvi (Cti )). These relations are
visualized in Figure 5.

Causal variables for which the intervention target is constant,
i.e. no interventions have been observed, were modeled
by sinv(Ci) = Ci, s

var(Ci) = ∅ in CITRIS (Lippe et al.,
2022b). Here, this does not naturally hold anymore since
sinv(Ci) is restricted to not having any parents. Hence, for
the simplicity of exposition in this proof, we add the excep-
tion that for a causal variable Ci, if Iti = 0 for all t, its mini-
mal causal split is defined as sinv(Ci) = Ci, s

var(Ci) = ∅.

A.5.2 Identifying the minimal causal variables

As a first step towards disentanglement, we postulate the
following lemma:
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Figure 5: The minimal causal variable in terms of a causal graph under iTRIS. (a) In the original causal graph, Ct+1
i has as

potential parents the causal variables of the previous time stepCt (eventually a subset), its instantaneous parents pat+1(Ct+1
i ),

and the intervention target It+1
i . (b) The minimal causal variable splits Ct+1

i into an invariable part sinvi
(
Ct+1
i

)
and variable

part svari

(
Ct+1
i

)
. The invariable part sinvi

(
Ct+1
i

)
is independent of all parents due to perfect interventions. However, it can

be a parent of svari

(
Ct+1
i

)
due to the autoregressive distribution modeling.

Lemma A.4. For all representation functions in the disen-
tanglement class ∆∗, there exist a deterministic map from
the latent representation zψi to the minimal causal variable
svar(Ci) for all causal variables Ci, i = 1, ...,K.

This lemma intuitively states that the minimal causal vari-
able svar(Ci) is modeled in the latent representation zψi for
any representation that maximizes the likelihood objective.
Note that this does not imply exclusive modeling yet, mean-
ing that zψi

can contain more information than just svar(Ci).
We will discuss this aspect in Appendix A.5.3.

Proof. In order to prove this lemma, we first review some
relations between the conditional and joint entropy. Consider
two random variablesA,B of arbitrary space and dimension.
The conditional entropy between these two random variables
is defined as H(A|B) = H(A,B) − H(B) (Cover and
Thomas, 2005). Further, the maximum of the joint entropy
is the sum of the individual entropy terms, H(A,B) ≤
H(A) +H(B) (Cover and Thomas, 2005). Hence, we get
that H(A|B) = H(A,B) − H(B) ≤ H(A) + H(B) −
H(B) = H(A). In other words, the entropy of a random
variable A can only become lower when conditioned on any
other random variable B.

Using this relation, we move now to identifying the min-
imal causal variables. If a minimal causal variable is the
empty set, i.e. svar(Ci) = ∅, for instance due to not having
observed interventions on Ci, the lemma is already true by
construction since no information must be modeled in zψi

.
Thus, we can focus on cases where svar(Ci) ̸= ∅, which im-
plies that Ct+1

i ⊥̸⊥ It+1
i . Therefore, the following inequality

must strictly hold:

H(Ct+1
i |Ct, Ct+1

−i ) < H(Ct+1
i |Ct, Ct+1

−i , I
t+1
i ) (34)

for all i = 1, ...,K. Additionally, based on the assump-

tion that the observational and interventional distributions
share the same support, we know that the intervention poste-
rior, i.e. p(It+1|Xt+1), cannot be deterministic for any data
point Xt+1 and intervention target It+1

i . Thus, we cannot
derive It+1

i from the observation Xt+1. Thirdly, because
every latent variable is only conditioned on exactly one in-
tervention target in iCITRIS and there exist no deterministic
function between any pair of intervention targets, one can-
not identify It+1

i in any latent variables except zψi . There-
fore, the only way in iCITRIS to fully exploit the informa-
tion of the intervention target It+1

i is to model its depen-
dent information in zψi

. As this information corresponds
to the minimal causal variable, svar(Ci), any representa-
tion function must model the distribution p(svar(Ci)|...) in
p(zψi |It+1

i , ...) to achieve the maximum likelihood solution.
This is independent of the modeled causal graph structure,
meaning that if there exist representation functions with dif-
ferent graphs in ∆∗, then all of them must model svar(Ci)
in zψi

. Finally, using assumption 5 (Appendix A.2.5), we
obtain that this distributional relation implies a functional
independence of svar(Ci) in zψi to any other latent variable.
Thus, there exists a deterministic map from zψi to svar(Ci)
in any of the maximum likelihood solutions.

A.5.3 Disentangling the minimal causal variables

The previous subsection showed that zψi
models the min-

imal causal variable svar(Ci). This, however, is not neces-
sarily the only information in zψi . For instance, for two ran-
dom variables A,B ∈ R, the following distributions are
identical:

p(A) · p(B|A) = p(A) · p(B +A|A) = p(A) · p(B,A|A)
(35)

The second distribution can add additional information
about A arbitrarily to B without changing the likelihoods.
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Figure 6: Example instantaneous causal graph between 3
causal variables C1, C2, C3, and the augmented graphs un-
der different perfect, single-target interventions. The aug-
mented graphs have the edges to the intervened variables
removed. For readability, the intervened variables are col-
ored in red in the graphs.

This is because the distribution is conditioned on A, and
the conditional entropy of a random variable to itself is
H(A|A) = H(A) − H(A) = 0. Hence, for arbitrary au-
toregressive distributions, we cannot disentangle variables
from each other purely by looking at the likelihoods.

However, in iTRIS, we are given perfect interventions under
which variables are strictly independent of their parents.
With this, we postulate the following lemma:

Lemma A.5. For all representation functions in the
disentanglement class ∆∗, zψi

does not contain in-
formation about any other minimal causal variable
svar(Cj), j ̸= i, except svar(Ci), i.e. H(zψi

|svar(Ci)) =
H(zψi |svar(Ci), svar(Cj)).

Proof. In order to prove this lemma, we consider all aug-
mented graph structures that are induced by the provided per-
fect interventions. Specifically, given a graph G = (V,E)
with V being its vertices and E its edges, and a set of binary
intervention targets I = {I1, ..., I|V |}, we construct an aug-
mented DAG G′ = (V ′, E′), where V ′ = V and E′ = E \
{{paG(Vi) → Vi}|i = 1, ..., |V |, Ii = 1}. In other words,
the augmented graph G′ has all its input edges to intervened
variables removed. An example for a graph of three variables
and its three single-target interventions is shown in Figure 6.

A representation function in the disentanglement class ∆∗

must model the optimal likelihood for all intervention-
augmented graphs of its originally learned graph Ĝ, since it
cannot achieve lower likelihood for any of the graphs than
the ground truth. For every pair of variables Ci, Cj , assump-

tion 3 (Appendix A.2.3) ensures that there exist one out of
three possible experiment sets: (1) we observe Iti = 1, Itj =
0 and Iti = 0, Itj = 1, (2) Iti = 0, Itj = 0, Iti = 1, Itj = 0,
and Iti = 1, Itj = 1, or (3) Iti = 0, Itj = 0, Iti = 0, Itj = 1,
and Iti = 1, Itj = 1. In all cases, there exist at least one aug-
mented graph in which zψi ⊥⊥ zψj since (2) and (3) observe
joint interventions on both variables. In (1), a constant con-
nection between the two variables would require both edges
Ci → Cj and Cj → Ci in the graph which is not acyclic.
Under the augmented graph, where zψi

⊥⊥ zψj
, the opti-

mal likelihood can only be achieved if zψi
is actually inde-

pendent of zψj , thus not containing any information about
svar(Cj). The same holds for zψj . Hence, a representation
function in the disentanglement class ∆∗ must disentangle
the minimal causal variables in the latent space.

A.5.4 Disentangling the remaining variables

In Appendix A.5.2 and Appendix A.5.3, we have shown that
for any solution in the disentanglement class ∆∗, we can
ensure that zψi

models the minimal causal variable svar(Ci),
and none other. Still, there exist more dimensions that need
to be modeled. The causal variables without interventions,
the invariant parts of the causal variables, sinv(Ci), as well
as the noise variables Et are part of the generative model
that influence an observation Xt. All these variables share
the property that they are not instantaneous children of any
minimal causal variable, and can only be parents of them.
This leads to the situation that any of these variables could be
modeled in the latent representation of zψi

for an arbitrary
i = 1, ...,K as long asCi is the parent of the same variables.
The reason for this is that the distribution modeling of such
variables is independent of interventions.

To exclude them from the causal variable modeling, we
follow the same strategy as in CITRIS (Lippe et al., 2022b)
by taking the representation function that maximizes the
entropy of zψ0 :

Lemma A.6. For all representation functions in the disen-
tanglement class ∆∗ that maximize the entropy of p(zψ0 |Ct),
the latent representation zψi models exclusively the minimal
causal variable svar(Ci) for all causal variables Ci, i =
1, ...,K.

Proof. Using Lemma A.4 and Lemma A.5, we know that
the only remaining information besides the minimal causal
variables are the causal variables without interventions, in-
variant parts of the causal variables, sinv(Ci), as well as the
noise variables Et. All these variables cannot be children
of the observed, intervened variables, as the assumption 2
(Appendix A.2.2) states. Thus, the remaining information
M = {sinv(C1), ..., s

inv(CK), Et} can be optimally mod-
eled by p(M|zt)p(zψ1 , ..., zψK

|M, zt, It+1). This implies
that there exist a solution where zψ0

= M, which can be
found by searching for the solution with the maximum en-



tropy of p(zψ0 |Ct). In this solution, the latent representa-
tion zψ1 , ..., zψK

does not model any subset of M, hence
modeling the minimal causal variables exclusively.

The overall disentanglement result is that we identify the
minimal causal variables in zψ1

, ..., zψK
, and all remaining

information is modeled in zψ0
. Note that the causal variables

without interventions, the noise variables and the invariant
part of the causal variables can be arbitrarily entangled in
zψ0 . Furthermore, since there exist variables in zψ0 that
may not have any temporal parents (e.g. the noise variables
and invariable parts of the intervened causal variables), we
cannot rely on assumption 5 (Appendix A.2.5) to ensure
functional independence. Hence, while the distribution of
p(zψ0

|zt) is independent of zψ1
, ..., zψK

, there may exist
dependencies such that for a single data point, a change in
zψi can result in a change of the noise or invariable parts of
the causal variables in the observational space.

A.6 THEOREM 2.2 - PROOF STEP 3:
IDENTIFIABILITY OF THE CAUSAL GRAPH

In this step of the proof, we discuss the identifiability of the
causal graph under the findings of the disentanglement. In
the first subsection, we discuss what graph we can optimally
find under the disentanglement of the minimal causal vari-
ables. In the second part, we then show how the maximum
likelihood objective is sufficient for identifying the instanta-
neous causal graph. Finally, we discuss the identifiability of
the temporal causal graph.

A.6.1 Causal graph on minimal causal variables

The identification of the causal graph naturally depends on
the learned latent representations of the causal variables.
In Appendix A.5, we have shown that one can only guar-
antee to find the minimal causal variables in iTRIS. Thus,
we are limited to finding the causal graph on the minimal
causal variables svar(C1), s

var(C2), ..., s
var(CK) and the

additional variables modeled in zψ0
. The graph between

the minimal causal variables is not necessarily equal to the
ground truth graph. For instance, consider a 2-dimensional
position (x, y) and the color of an object as two causal vari-
ables. If the x-position causes the color, but the minimal
causal variable of the position is only svar(C1) = y, then
the color has only sinv(C1) as parent, not svar(C1). In the
learned graph on the latent representation, it would mean
that we do not have an edge between zψ1

and zψ2
, but in-

stead zψ0 → zψ2 . Hence, we might have a mismatch be-
tween the ground truth graph on the full causal variables,
and the graph on the modeled minimal causal variables.

Still, there are patterns and guarantees that one can give for
how the optimal, learned graph looks like. Due to the inter-
ventions being perfect, the invariable part of a causal vari-

able, sinv(Ci), cannot have any parents. Thus, the parents
of a minimal causal variable svar(Ci) are the same ground
truth causal variables as in the true graph, i.e. pa(Ci) =
pa(svar(Ci)). The difference is how the parents are rep-
resented. Since each parent Cj ∈ pa(Ci) is split into a
variable and invariable part, any combination of the two
can represent a parent of svar(Ci). Thus, the learned set
of parents for svar(Ci), i.e. pa(zψi), must be a subset of
{svar(Cj)|Cj ∈ pa(Ci)} ∪ {zψ0

}. This implies that if there
is no causal edge between two causal variables Ci and Cj in
the ground truth causal graph, then there is also no edge be-
tween their minimal causal variables svar(Ci) and svar(Cj).
The causal graph between the true variables and the min-
imal causal variables therefore shares a lot of similarities,
and in practice, is often almost the same.

The additional latent variables zψ0 summarize all invariable
parts of the intervened variables, the remaining causal vari-
ables without interventions, and the noise variables. There-
fore, zψ0

cannot be an instantaneous child of any minimal
causal variable, and we can predefine the orientation for
those edges in the instantaneous graph.

A.6.2 Optimizing the maximum likelihood objective
uniquely identifies the causal graph under
perfect interventions

Next, we can discuss the identifiability guarantees for the
graph on the minimal causal variables. For simplicity, we
refer to identifying the causal graph on the minimal causal
variables as identifying the graph on C1, ..., CK .

Several causal discovery works have shown before that
causal graphs can be identified when given sufficient inter-
ventions (Brouillard et al., 2020; Eberhardt, 2007; Lippe
et al., 2022a; Pearl, 2009). Since the disentanglement of the
causal variables already requires perfect interventions, we
can exploit these interventions for learning and identifying
the graph as well. In assumption 6 (Appendix A.2.6), we
have assumed that the causal graph to identify is faithful.
This implies that any dependency between two variables,
C1, C2, which have a causal relation among them (C1 → C2

or C2 → C1), cannot be replaced by conditioning C1 and/or
C2 on other variables. In other words, in order to optimize
the overall likelihood p(C1, ..., CK), we require a graph that
has a causal edge between two variables if they are causally
related. Now, we are interested in whether we can identify
the orientation between every pair of causal variables that
have a causal relation in the ground truth graph, which leads
us to the following lemma:

Lemma A.7. In iTRIS, the orientation of an instanta-
neous causal effect between two causal variables Ci, Cj
can be identified by solely optimizing the likelihood of
p(Ci, Cj |Ii, Ij).
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Figure 7: Identifiability of a causal relation between two
variables C1, C2 under different interventional settings. (a)
The causal relation to consider. The discussion is identical
in case of the reverse orientation by switching the variable
names C1 and C2. (b-d) The tables describe the minimal
sets of experiments, i.e. unique combinations of I1, I2 in the
dataset, that guarantee the intervention targets to be unique,
i.e. not ∀t, It1 = It2. Under each of these sets of experi-
ments, we show that the maximum likelihood solution of
p(C1, C2|I1, I2) uniquely identifies the causal orientation.

Table 3: The probability distribution p(C1, C2|I1, I2) for
all possible causal graphs among the two causal variables
C1, C2 under different experimental settings. Observational
distributions are denoted with p(...), and interventional with
p̃(...). Note that under interventions, it is enforced that p̃(...)
is not conditioned on any parents, since we assume perfect
interventions.

Interventions Causal graph
I1 I2 C1 → C2 C2 → C1 C1 ⊥⊥ C2

0 0 p(C1)p(C2|C1) p(C2)p(C1|C2) p(C1)p(C2)
1 0 p̃(C1)p(C2|C1) p(C2)p̃(C1) p̃(C1)p(C2)
0 1 p(C1)p̃(C2) p̃(C2)p(C1|C2) p(C1)p̃(C2)
1 1 p̃(C1)p̃(C2) p̃(C1)p̃(C2) p̃(C1)p̃(C2)

Proof. To discuss the identifiability of the causal direction
between two variables C1, C2, we need to consider all pos-
sible minimal sets of experiments that fulfill the interven-
tion setup in assumption 3 (Appendix A.2.3). These three
sets are shown in Figure 7. For all three sets, we have to
show that the maximum likelihood of the conditional dis-
tribution p(C1, C2|I1, I2) can only be achieved by model-
ing the correct orientation, here C1 → C2. For cases where
the true graph is C2 → C1, the same argumentation holds,
just with the variables names C1 and C2 swapped. As an
overview, Table 3 shows the distribution p(C1, C2|I1, I2)
under all possible experiments and causal graphs.

Experimental setting 1 (Figure 7b) In the first experimental
setting, we are given single target interventions on C1 and
C2. In the experiment E0 which represents interventions on

C1 and passive observations onC2, the dependency between
C1 and C2 persists in the ground truth, i.e. C1 ⊥̸⊥ C2|I1 =
1, I2 = 0. Hence, only causal graphs that condition C2 on
C1 under interventions on C1 can achieve the maximum
likelihood in E0. From Table 3, we see that the only causal
graph that does this is C1 → C2. Thus, when single-target
interventions on C1 are observed, we can uniquely identify
the orientation of its outgoing edges.

Experimental setting 2 (Figure 7c) The second experimen-
tal setting provides the observational regime (E0), interven-
tions on C1 with C2 being passively observed (E1), and
joint interventions on C1 and C2 (E2). Since the experiment
E1 gives us the same setup as in experimental setting 1, we
can directly conclude that the causal orientation C1 → C2

is yet again identifiable.

Experimental setting 3 (Figure 7d) In the final experimen-
tal setting, C1 is only observed to be jointly intervened
upon with C2, not allowing for the same argument as in the
experimental settings 1 and 2. However, the causal graph
yet remains identifiable because of the following reasons.
Firstly, the experiment E0 with its purely observational
regime cannot be optimally modeled by a causal graph with-
out an edge between C1 and C2, reducing the set of pos-
sible causal graph to C1 → C2 and C2 → C1. Under the
joint interventions E2, both causal graphs model the same
distribution. Still, under the experiment E1 where only C2

has been intervened upon, the two distributions differ. The
graph with the anti-causal orientation compared to the true
graph, C2 → C1, uses the same distribution as in the ob-
servational regime to model C1, i.e. p(C1|C2). In order for
this to achieve the same likelihood as the true orientation, it
would need to be conditioned on I2 as the following deriva-
tion from the true distribution p(C1, C2|I1, I2) shows:

p(C1, C2|I1, I2) = p(C2|I1, I2) · p(C1|C2, I1, I2) (36)

p(C1|C2, I1, I2) =

{
p(C1|I1) if I2 = 1

p(C1|C2, I1) if I2 = 0
(37)

This derivation shows that p(C1|C2, I1, I2) strictly depends
on I2 if p(C1|C2, I1, I2 = 1) ̸= p(C1|C2, I1, I2 = 0),
which is ensured by C1, C2 not being conditionally indepen-
dent in the ground truth graph. As the causal graphC2 → C1

models C1 independently of I2, it therefore cannot achieve
the maximum likelihood solution in this experimental set-
tings. Hence, the only graph achieving the maximum like-
lihood solution is C1 → C2, such that the orientation can
again be uniquely identified.

All other, possible experimental settings must contain one
of the three previously discussed experiments as a subset,
due to assumption 3 (Appendix A.2.3). Hence, we have
shown that for all valid experimental settings, optimizing
the maximum likelihood objective uniquely identifies the
causal orientations between pairs of variables under perfect
interventions.



Based on these orientations, we can exclude all additional
edges that could introduce a cycle in the graph, since we
strictly require an acyclic graph. The only remaining non-
identified parts of the graph are edges among variables
that are independent, conditioned on their parents. In terms
of maximum likelihood, these edges do not influence the
objective since for two variables C1, C2 with C1 ⊥⊥ C2,
p(C1) · p(C2) = p(C1|C2) · p(C2) = p(C1) · p(C2|C1).
Hence, the equivalence class in terms of maximum likeli-
hood includes all graphs that at least contain the true edges,
and are acyclic. By requiring structural minimality, i.e. tak-
ing the graph with the least amount of edges that yet fully
describe the probability distribution, we can therefore iden-
tify the full causal graph between C1, ..., CK .

A.6.3 Identifying the temporal causal relations by
pruning edges

So far, we have shown that the instantaneous causal relations
can be identified between the minimal causal variables. Be-
sides the instantaneous graph, there also exist temporal rela-
tions between Ct and Ct+1, which we also aim to identify:

Lemma A.8. In iTRIS, the temporal causal graph between
the minimal causal variables can be identified by removing
the edge between any pair of variables ztψi

, zt+1
ψj

with i, j ∈
J0..KK, if ztψi

⊥⊥ zt+1
ψj

|ztψ−i
, pat+1(zt+1

ψj
).

Proof. The prior in Equation (1) conditions the latents
variables zt+1 on all variables of the previous time step,
zt. Thus, this corresponds to modeling a fully connected
graph from ztψ0

, ztψ1
, ..., ztψK

to zt+1
ψ0

, zt+1
ψ1

, ..., zt+1
ψK

. Since
any temporal edge must be oriented from zt to zt+1, it is
clear that the true temporal graph, GT , must be a subset of
this graph. Further, since in assumption 6 (Appendix A.2.6),
we have stated that the true causal model is faithful, we
know that two variables, ztψi

and zt+1
ψj

, are only connected
by an edge, if they are not conditionally independent of each
other: ztψi

⊥̸⊥ zt+1
ψj

|ztψ−i
, pat+1(zt+1

ψj
). This implies that all

redundant edges must be between two, conditionally inde-
pendent variables with: ztψi

⊥⊥ zt+1
ψj

|pat(zt+1
ψj

), pat+1(zt+1
ψj

)

with pat(zt+1
ψj

) being a subset of ztψ−i
. Thus, we can find

the true temporal graph by iterating through all pairs of vari-
ables ztψi

and zt+1
ψj

, and remove the edge if both of them are
conditionally independent given ztψ−i

, pat+1(zt+1
ψj

).

A.7 THEOREM 2.2 - PROOF STEP 4: FINAL
IDENTIFIABILITY RESULT

Using the results derived in Appendix A.4, Appendix A.5
and Appendix A.6, we are finally able to derive the
full identifiability results. In Appendix A.5, we have
shown that any solution that maximizes the likelihood
pϕ,θ,G(x

t+1|xt, It+1) disentangles the minimal causal vari-

pos_o rot_orot_s

hue_o

hue_b hue_s

obj_s

Figure 8: The instantaneous causal graph in the Instanta-
neous Temporal Causal3DIdent dataset. The graph con-
tains several common sub-structures, such as a chain
(rot_o→pos_o→rot_s), a fork (hue_o,hue_b→rot_o), and
confounders (hue_b→hue_s,hue_o). The most difficult
edges to recover include rot_o→pos_o since the object ori-
entation has a complex, non-linear relation to the observa-
tion space which is difficult to model and prone to noise.
Further, the edge hue_b,hue_s→hue_o only holds for two
object shapes (Hare and Dragon), for which the background
and spotlight hue have an influence on the object color. For
the other five object shapes, the object color is independent
of the other two parents.

ables of C1, ..., CK in zψ1
, ..., zψK

. Further, we are able to
summarize all remaining variables in zψ0

by maximizing
the entropy (LDDP) of pϕ(zt+1

ψ0
|zt). In Appendix A.6, we

have used this disentanglement condition to show that the
causal graph that maximizes the likelihood must have at
least the same edges as the ground truth graph on the mini-
mal causal variables. To obtain the full ground truth graph,
we need to pick the one with the least edges.

These aspects together can be summarized into the following
theorem:

Theorem A.9. Suppose that ϕ∗, θ∗, ψ∗ and G∗ are the pa-
rameters that, under the constraint of maximizing the likeli-
hood pϕ,θ,G(xt+1|xt, It+1), maximize the information con-
tent of pϕ(zt+1

ψ0
|zt) and minimize the number of edges inG∗.

Then, with sufficient latent dimensions, the model ϕ∗, θ∗, ψ∗

learns a latent structure where zt+1
ψi

models the minimal
causal variable of Ci, and G∗ is the true instantaneous
causal graph between these minimal causal variables. Fur-
ther, pruning edges between time steps t and t+ 1 identifies
the true temporal graph. Finally, zψ0 models all remaining
information.

B DATASETS

The following section gives a detailed overview of the
datasets. Appendix B.1 discusses the Instantaneous Tem-
poral Causal3DIdent dataset, and Appendix B.2 the Causal
Pinball dataset.



Figure 9: Example sequence from the training set of the Instantaneous Temporal Causal3DIdent dataset (from left to right,
top to bottom). Each image is of size 64× 64 pixels. One can see the instantaneous effects of the background influencing
the object color, for instance, or the object color again influencing the rotation of the object.

B.1 INSTANTANEOUS TEMPORAL
CAUSAL3DIDENT

The creation of the Instantaneous Temporal Causal3DIdent
dataset closely followed the setup of von Kügelgen et al.
(2021); Lippe et al. (2022b), and we show an example se-
quence of the dataset in Figure 9. We used the code pro-
vided by Zimmermann et al. (2021)1 to render the images
via Blender (Blender Online Community, 2021), and used
the following seven object shapes: Cow (Crane, 2021), Head
(Rusinkiewicz et al., 2021), Dragon (Curless and Levoy,
1996), Hare (Turk and Levoy, 1994), Armadillo (Krishna-
murthy and Levoy, 1996), Horse (Praun et al., 2000), Teapot
(Newell, 1975). As a short recap, the seven causal factors are:
the object position as multidimensional vector [x, y, z] ∈
[−2, 2]3; the object rotation with two dimensions [α, β] ∈
[0, 2π)2; the hue of the object, background and spotlight
in [0, 2π); the spotlight’s rotation in [0, 2π); and the object
shape (categorical with seven values). We refer to Lippe et al.
(2022b, Appendix C.1) for the full detailed dataset descrip-
tion of Temporal Causal3DIdent, and describe here the steps
taken to adapt the datasets towards instantaneous effects.

The original temporal causal graph of the Temporal
Causal3DIdent dataset contains 15 edges, of which 8 are be-
tween different variables over time. Those relations form an
acyclic graph, which we can directly move to instantaneous
relations. Thus, the adjacency matrix of the temporal graph

1https://github.com/brendel-group/cl-ica

is an identity matrix, while the instantaneous causal graph
is visualized in Figure 8. The causal mechanisms remain un-
changed, except that the inputs may now be instantaneous.
For instance, the spotlight rotation is adapted as follows:

Previous version:

rot_st+1 = f
(
atan2(pos_xt, pos_yt), rot_st, ϵt+1

rs

) (38)

Instantaneous version:

rot_st+1 = f
(
atan2(pos_xt+1, pos_yt+1), rot_st, ϵt+1

rs

)
(39)

where f(a, b, c) = a−b
2 +c. The causal parents of other vari-

ables, here pos_x and pos_y, are now instantaneous instead
of the previous time step. Hence, an intervention on the po-
sition will lead to an instantaneous effect on the rotation of
the spotlight. All remaining aspects of the dataset genera-
tion are identical to the Temporal Causal3DIdent dataset.

B.2 CAUSAL PINBALL

The Causal Pinball dataset is a simplified environment of the
popular game Pinball, as shown in Figure 10. In Pinball, the
user controls two fixed paddles on the bottom of the playing
field, and tries to hit the ball such that it collides with various
objects for scoring points. There are several versions of
Pinball, but for this dataset, we limit it to the essential parts
representing the five, multidimensional causal variables:

• The ball is defined by four dimensions: the position on

https://github.com/brendel-group/cl-ica


Figure 10: An example sequence of the Pinball dataset, from left to right, top to bottom. The paddles, i.e. the two gray
rectangles in the bottom center, are accelerated forwards under interventions such that they make a large jump within an
image. For instance, in image 5, the right paddle has been intervened upon and hits the ball (gray circle). It is accelerated
immediately, showcasing the instantaneous effect between the two. When no interventions on the paddles are given, they
slowly move backwards. In image 8, the ball hits a bumper (5 circle centers with light red filling) which lights up. This
represents the scoring of a point, as the instantaneous increase in points shows in image 8 (the digits in the bottom right
corner). Note that technically, there is no winning or losing state here since we do not focus on learning a policy, but instead a
causal representation of the components. Further, not shown here, there exist a fourth channel representing the ball’s velocity.

paddle_left

paddle_right

ball bumpers score

Figure 11: The instantaneous causal graph in the Causal
Pinball dataset. An intervention on the paddles can have an
immediate effect on the ball by changing its position and
velocity. A change in the ball’s position again influences
the bumpers, whether their light is activated or not. Finally,
when the bumpers are activated, the score increases in the
same time step.

the x- and y-axis, and its velocity in x and y. Both are
continuous values, with the position being limited to
the available spots on the field.

• The left paddle y-position (paddle_left) describes the
position of the left paddle. Its maximum is close-to
the top of the black border next to it (e.g. image 7 in
Figure 10), and its minimum is close to the bottom (e.g.
image 10 in Figure 10).

• The right paddle y-position (paddle_right) is similar
to paddle_left, just for the right paddle.

• The bumpers represent the activation, i.e. the light,
of all 5 bumpers. It is a five-dimensional continuous
variable, each dimension being between 0 (light off,
e.g. image 1 in Figure 10) and 1 (light fully on, e.g.
image 8 in Figure 10).

• The score is a categorical variable summarizing the
number of points the player has scored. Its value ranges
from 0 to a maximum of 20.

The dynamics between these causal factors resembles the
standard game dynamics of Pinball, which results in the in-
stantaneous causal graph in Figure 11. The ball can collide
with the paddles, borders, and bumpers. When it collides
with the borders, it is simply reflected, and we reduce its ve-
locity by 10% (i.e. multiply by 0.9). Under collisions with
the paddles, we distinguish between a collision where the
paddle has been static or moving backwards, versus a colli-
sion where the paddle was moving. When the paddle was
static, we use the same collision dynamics as the borders,
except that we reduce its y-velocity by 70% to reduce os-
cillations around the paddle position. When the paddle was
moving, we instead set the y-velocity of the ball to the y-
velocity of the paddle. Finally, when the ball collides with a
bumper, it activates the bumper’s light and reflects from it,
similar to the borders. When a bumper’s light is turned on,
we increase the score by one, but include a 5% chance that
the score is not increased to introduce some stochastic ele-
ments and faulty components in the game. Next to the colli-
sions, the ball is influenced by a gravity towards the bottom,
adding a constant every time step to its y-velocity, and fric-
tion that reduces its velocity by 2% after each time step.

In terms of interventions, we sample the interventions on the
five elements independently, but with a chance that would
correspond more closely to the game dynamics. Specifically,
we intervene on the paddles in 20% of the frames, 10% on
the ball, and 5% each the score and bumpers. An interven-
tion of the paddle represents it moving forwards, from its
previous position, to a randomly sampled position between
the middle and maximum paddle position. Its velocity is set
to the difference between the previous position and new po-
sition. Since these interventions are usually elements of the



standard Pinball game play, we sample them rather often
with 20%. An intervention on the ball represents moving it
to a position between the two paddles and the bumpers, with
a small velocity sampled randomly. In real-life, this would
correspond to a player picking up the ball and placing it in
a new position. An intervention on the bumpers is that we
randomly set the bumper lights either to 0 or 1 with a 50%
chance. Finally, an intervention on the score resets it to a
random value between 0 and 4.

To render the images, we use matplotlib (Hunter, 2007) and
a resolution of 64× 64 pixels. The images are generated by
having a single sequence of 150k images.
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