
OCCAM: Online Continuous Controller Adaptation
with Meta-Learned Models

Hersh Sanghvi, Spencer Folk, Camillo Jose Taylor
School of Engineering and Applied Science

University of Pennsylvania
{hsanghvi,sfolk,cjtaylor}@seas.upenn.edu

Abstract: Control tuning and adaptation present a significant challenge to the us-
age of robots in diverse environments. It is often nontrivial to find a single set of
control parameters by hand that work well across the broad array of environments
and conditions that a robot might encounter. Automated adaptation approaches
must utilize prior knowledge about the system while adapting to significant do-
main shifts to find new control parameters quickly. In this work, we present a gen-
eral framework for online controller adaptation that deals with these challenges.
We combine meta-learning with Bayesian recursive estimation to learn prior pre-
dictive models of system performance that quickly adapt to online data, even when
there is significant domain shift. These predictive models can be used as cost func-
tions within efficient sampling-based optimization routines to find new control pa-
rameters online that maximize system performance. Our framework is powerful
and flexible enough to adapt controllers for four diverse systems: a simulated race
car, a simulated quadrupedal robot, and a simulated and physical quadrotor. The
video and code can be found at https://hersh500.github.io/occam.

Keywords: Controller Adaptation, Robot Model Learning, Meta-Learning

1 Introduction

Figure 1: We demonstrate a flexi-
ble method for controller optimization
based on online adaptation of meta-
learned models on diverse robots.

Robust and highly-performant control policies are critical
for the successful application of robots in diverse environ-
ments. All control algorithms for robots have parameters
that must be carefully tuned for good performance, but
whose optimal values are generally not obvious a priori
and are not easily computed. In practice, these parameters
are often tuned based on the designer’s intuition and using
heuristics that do not align with the actual downstream
task of the robot–for instance, gain tuning a quadrotor us-
ing the step response. This problem is often exacerbated
by the sim-to-real gap [1], requiring designers to fine-tune
control parameters directly on the real system. Further-
more, the optimal control parameters can vary over time
if the robot’s physical attributes change or the robot en-
ters new environments. Modern data-driven approaches
that adapt to these changes usually perform online sys-
tem identification (potentially in a latent space) for optimization-based control or policy learning
[2, 3, 4, 5]. These adaptive methods have shown strong results, though for many of these approaches,
it is difficult to tune their behaviors after training, and their generalizability to novel domains is un-
clear.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://hersh500.github.io/occam


Figure 2: An overview of our method and predictive model f̂ . Given previous sensor measurements
and inputs from the system, the Optimization phase uses the prediction model to search for the
best gain to try next. This gain is sent to the real system for the Evaluation phase, during which
sensor measurements and performance measures are collected. The Adaptation phase computes
new weights to update the prediction model with the information gathered during the evaluation.
Arrows in red indicate predicted and estimated quantities, while arrows in black indicate signals
from the actual system.

In this paper we present OCCAM, a framework for online controller adaptation to new environ-
ments using adaptable learned models of performance metrics. Our main contribution is applying
meta-learning and online Bayesian regression to train predictive models on simulated data that pro-
vide a strong prior on controller performance and are readily adapted to data gathered during online
operation. We show that we can use these models as cost functions to search for optimal control
parameters in new environments unseen during training. One of the major advantages is the flexi-
bility of our framework: it can easily be applied to any system with a parameterized controller. We
demonstrate that our method performs online controller adaptation on a simulated race car equipped
with a nonlinear control law, a simulated and physical quadrotor micro-aerial-vehicle (MAV) with
a model-based geometric controller, and a simulated quadruped with a neural-network locomotion
policy.

2 Related Work

Automated Controller Tuning: Approaches for controller tuning often use Bayesian Optimization
(BO) with Gaussian Process (GP) surrogate models [6, 7, 8, 9], probabilistic sampling-based ap-
proaches [10, 11, 12], or gradient descent through the controller and dynamics [13]. Prior data can
be incorporated into BO by simply adding datapoints to the GP or specifying a prior mean function.
[14, 15] add prior datapoints to a GP to find control policies for damaged robots online; [16, 17]
instead use offline data to learn fixed kernel functions that make BO more efficient. These methods
can degrade if the kernel or prior becomes inaccurate as the true underlying function changes. Our
method is instead trained to accommodate these domain shifts.

Adaptation in Data-Driven Control: A closely-related line of works combines Reinforcement
Learning (RL) for learning low-level control policies with system identification. Short-term histo-
ries, or contexts, of states and actions are encoded as latent variables to condition either model-free
policies [5, 18, 19, 20, 21] or dynamics models [22], allowing the model to modulate its behavior
in different environments. [23, 24, 25, 26] instead learn a repertoire of diverse policies for varying
environments. The deep context encoders common in these works might not be accurate when the
test system lies outside training distribution. A key idea in our method is to explicitly adapt the
model to the observed performance online.

Meta-Learning for Robotics: Meta-learning aims to deal with the lack of adaptability of learned
models by incorporating the adaptation procedure into the training loss to train models that are well-
suited to efficiently fit new data. [27, 28, 29] use meta-learning to train adaptable mean, kernel, and
acquisition functions for BO with applications to controller tuning. [30] use Bayesian regression
to meta-learn dynamics models that can be adapted to new dynamics at test-time. [21, 31, 32, 33]
employ meta-learning to train low-level control policies with RL that can be adapted quickly to new

2



contexts. In this work, we alleviate overfitting issues common to these meta-learning methods [34]
by adapting our model in a low-dimensional space and training it to characterize the uncertainty in
its predictions.

Adaptive Control: Adaptive control generally seeks to augment the control inputs to a system to
cancel out disturbances and align the system’s closed-loop dynamics to those of a desired reference
model [35]. Both indirect and direct adaptive control approaches such as L1-Adaptive control,
online model learning, and Model Reference Adaptive Control have successfully been applied to
robotic aerial vehicles [36, 37, 38, 39, 40], manipulators [41], and bipedal robots [3, 42]. Poor values
of the tunable adaptive gains introduced by adaptive control can render the controller unstable [43].
It also may not be possible for the actual system to track the chosen reference model, and adaptive
control generally requires strong assumptions about model structure and differentiability [38, 39],
which our method does not require.

3 Problem Statement

In this work we address the problem of continuously adapting a controller using a combination of
offline simulation data and data gathered from the robot online. The goal of the OCCAM procedure
is then to find the control gains at iteration k, gk, that maximize the reward over some upcoming
time horizon ∆T that is chosen by the user:

g∗ = argmax
g

J(yk+∆T ) = argmax
g

J(fθk(gk, zk:k+∆T , uk:k+∆T , τk)) (1)

Where we let zk ∈ RNz denote a vector containing the sensor observations from the system at
the k’th discrete timestep and uk ∈ RNu denote the control inputs applied to the system by the
controller. yk+∆T ∈ RNy denotes a vector of performance measures, such as tracking error, control
effort, or speed, computed as a fixed function of the control gains, measurements and control history
over the horizon ∆T : yk+∆T = f(gk, zk:k+∆T , uk:k+∆T , τk). In addition, we specify a reward
function, J that maps the vector of performance measures onto a single scalar value: J(y) ∈ R.

The dynamics of our system are governed by a set of unobserved intrinsic and extrinsic system
parameters such as inertial parameters or friction coefficients. We refer to these system parameters
collectively as θk. When generating data in simulation the designer would typically perform domain
randomization by sampling possible values of θ to explore the behavior of the system in different
regimes.

We are also given a control policy, C (e.g. PID, MPC, etc.) that computes control inputs from pre-
vious measurements: uk+1 = Cgk(τk, z0:k, u0:k). C is parameterized by tunable gains gk ∈ RNg ,
and τk, which is the control objective of the controller derived from the robot’s task. For example,
τk could denote an encoding of the upcoming trajectory that we want a mobile robot to follow.

4 Method

4.1 Modeling Controller Performance

The foundation of OCCAM is a predictive model f̂ which is designed to predict future performance
measures as a function of the chosen control parameters. The structure of this prediction model is
shown in Figure 2 (left). The recent measurements and control inputs (from a sliding window of
size H), zk−H:k, uk−H:k, are fed into a shallow fully connected network that produces a context
encoding [5] that captures relevant, observable aspects of the system. This encoded result is com-
bined with an encoding of the current task, τk and the proposed control parameters, gk and fed into
another fully connected network.

To quickly adapt to new data received from the robot during online deployment, the second fully
connected network employs a last linear layer structure [30, 44] wherein the network outputs a

3



matrix Φ ∈ RNy×Nb that is combined with a weight vector wt ∈ RNb to produce the final pre-
diction: ŷt = Φtwt. We can think of the columns of the matrix Φ = [ϕ1, ...ϕNb

] as a set of basis
functions weighted by wt. Here we use t as an index instead of k to denote that this adaptation
occurs at a different rate than the low-level control and sensing, with ∆t > ∆k. Due to uncer-
tainties in the model and measurements, we model wt as a normally distributed random variable:
wt ∼ N (µt,Σt). Because ŷ is a linear transformation of w, we obtain the following distribution for
it: ŷt ∼ N (Φtµt, ΦtΣtΦ

T
t ). We use a Kalman filter with identity dynamics to recursively estimate

w as new data, (Φt, yt), is obtained online from the system at test time:

Σ̄t+1 = Σt +Q

K = Σ̄t+1Φt+1

(
Φt+1Σ̄t+1Φ

T
t+1 +R

)−1

wt+1 = wt +K(yt+1 − Φt+1wt)

Σt+1 = (I −KΦt+1) Σ̄t+1

(2)

Informally adopting standard Kalman Filter terminology, Q is a positive definite matrix that scales
with our confidence in keeping w constant, while R captures the error in our model, Φ, and the
noise in the measurements of y. More information on this formulation can be found in the appendix.

4.2 Meta-Training

Algorithm 1: Meta-Learning with Kalman Filter Base
Learner
Input: Training dataset D, network parameters ψ, wpre
Output: Trained parameters ψ, w0,Σ0, Q,R
Initialize w0 = wpre ;
Initialize Σ0, Q,R = I ;
foreach training epoch do

foreach parameter dataset Dθ = (G,Z,U, τ, Y ) ∈
D do

Sample subset Dtrain of random size n from Dθ;
Initialize w′

0 = w0,Σ
′
0 = Σ0 ;

foreach datapoint (gi, zi, ui, τi, yi) in Dtrain do
Compute w′

i,Σ
′
i using (2)

end
Compute L = ∥Φψ(G,Z,U, τ)w′

n − Y ∥2 ;
foreach p ∈ {ψ,w0,Σ0, Q,R} do

p← p− α∇pL ;
end

end
end

While training our model on of-
fline data, our goal is to produce
learned basis functions that capture
the variation in performance we ob-
serve across different system param-
eters, θ. Instead of estimating θ di-
rectly, our approach adapts in the la-
tent space of w. To achieve this,
after pretraining our network for a
few epochs using standard gradient
descent, we switch to gradient-based
meta-learning [31], which consists
of a base learner which adapts the
base model’s initial parameters to
data from different “scenarios”, and
an outer loop which adjusts the initial
parameters of the base model using
the loss achieved by the base learner
after adaptation. Our base learner is
the recursive Kalman update (2) ap-
plied sequentially to n random data-
points gathered from a system with
new θ. Because every computation in the Kalman Filter is fully differentiable, once the final weights
wn are computed, the gradient of the predictive loss can be backpropagated through the full compu-
tation graph to update the neural network parameters and the Kalman filter parameters w0,Σ0, Q,R
using standard automatic differentiation tools. Algorithm 1 shows how we use the standard meta-
learning loops with our Kalman Filter base learner as the inner loop. Meta-learning w0 and Σ0 is
similar in philosophy to Harrison et al. [30] and Bertinetto et al. [45], which also learn the prior
distribution for the last-layer weights. However, they do not consider a Kalman Filter formulation
for regression, and thus do not include process and measurement covariance matrices Q and R.

4.3 Controller Optimization With Learned Model

When running OCCAM online, we want to use the learned prediction model to solve (1) while
also using our knowledge of the uncertainty on the model’s predictions. More specifically, at regular

4



intervals OCCAM seeks to find a choice of control parameters that maximizes the uncertainty-aware
reward:

g∗ = argmax
g

µ(J(ŷk+∆T )) + βσ(J(ŷk+∆T ))

where ŷk+∆T = Φ(gk, τ, z, u)wk is the output of the prediction model, and β is a scalar penalty that
controls the confidence bound. While many optimizers could be used, we employ a particle filter-
based random search in our evaluation settings. In each search iteration, we generate a fixed number
of random controller gains from a uniform distribution Gr = U(gmin, gmax). We also propagate
previous samples by applying Nr random perturbations to the optimal gains found in the T previous
trials, generating T × Nr search samples Ge. The full set of samples is thus G = Gr ∪ Ge. Each
sample gain is concatenated with the upcoming command, τk and system history, zk−H:k, uk−H:k,
and passed through the network to obtain the expected reward. After evaluating all samples, we
pick the sample with the highest expected reward. This optimization approach introduces minimal
hyperparameters and is computationally efficient; all search samples can be collated into a single
batch and evaluated with a single forward pass through the network.

5 Experimental Procedures

5.1 Simulated Evaluation Platforms

To show the flexibility of our framework, we evaluate it on three distinct simulated and one real
robotic platform, described below. More details on each system and its accompanying controllers
are provided in the supplementary material.

2D Race Car with Nonlinear Controller: Our first simulated robotic system is a 2-dimensional car
racing around procedurally generated race tracks, modified from OpenAI’s gym environment [46].
The car has unknown mass, engine power, and tire friction as θ, with an encoding of the race track
shape as task τ . OCCAM’s goal is to continually optimize the six-dimensional control gains g of a
nonlinear PD steering controller that keeps the car on the centerline of the track, and a proportional
acceleration controller that accelerates and brakes the car based on tunable speed thresholds. The
speed thresholds improve performance but make the controller nonlinear and nondifferentiable. The
reward function is a linear combination of the performance measures: inverse average lateral track-
ing error, inverse average wheelslip, and average speed over the upcoming track segment. OCCAM
adapts and selects new gains every time the car traverses 1

3 of a lap.

Quadrotor with Geometric Controller: Our second simulated platform is a quadrotor MAV
equipped with a geometric trajectory tracking controller defined on SE(3) [47], implemented in
RotorPy [48]. The quadrotor has five unknown system parameters θ which are the quadrotor’s true
mass, principal moments of inertia, and thrust coefficient. The controller computes a feedforward
motor speed command based on reference trajectory τ using the quadrotor’s nominal parameters
(centered around those of the Crazyflie platform [49]) and a feedback command to correct tracking
errors. The controller is parameterized by eight PD gains on the position and attitude. The reward
function is a linear combination of the inverse average positional tracking error, inverse average
yaw tracking error, inverse average pitch and roll, and inverse average commanded thrust over the
episode. The adaptation frequency ∆T is 4 seconds. We also evaluate our framework on a physical
Crazyflie with the same controller and performance measures. Details of the physical experiments
are described in Section 6.2.

Quadrupedal Robot with Learned Locomotion Policy: Our third simulated robotic platform is a
quadrupedal robot equipped with a static pretrained locomotion policy π trained using model-free
RL [26]. π outputs joint angles at 50Hz such that the torso of the robot follows a velocity twist
command τk = (ẋdes, ẏdes, ω̇des). We treat π as our controller C for this system. Although π is
parameterized by a deep neural network, it is also conditioned on an additional, eight-dimensional
command gk that allows the user to specify high-level desired behaviors that the policy should fol-
low: stepping frequency, body height, footswing height, stance width, and three discrete variables

5



which jointly specify the quadrupedal gait. We treat gk as the controller parameters to be tuned au-
tomatically based on the quadruped’s randomized parameters and the twist command. The unknown
system parameters θk for the quadruped are added mass payloads to the robot base, motor strengths,
and the friction and restitution coefficients of the terrain. The adaptation frequency ∆T is 3 seconds.

5.2 Model Training and Testing

To generate training data from each simulated platform, we randomly sample N parameter vectors
θ0:N . For each θi, we sample NB random samples of g and τ , drive the system to a random initial
dynamical state to collect history z, u, and finally roll-out the system with controller g to gather
performance metrics y. We train a separate basis-function network for each system.

We test each method on robots with system parameters sampled from outside of the range of the
training dataset, testing the ability of each method to extrapolate outside of the training data. We
evaluate methods on 15 out-of-distribution system parameters on multiple different tasks (racetracks
for the racecar, ellipsoidal trajectories for the quadrotor, and twist commands for the quadruped) and
8 random seeds. For each platform, we fix the reward functions J and uncertainty penalty β. Each
test consists of multiple iterations of the “Optimize, Evaluate, Adapt” procedure shown in Figure 2.
Because we run each test in an online setting with no resets between timesteps, if a method selects
dangerous gains that cause a crash, the reward for every subsequent timestep of that evaluation is set
to zero. More details on dataset sizes, model architecture, and training and testing parameter ranges
are provided in the supplementary material.

5.3 Baselines

We compare our method on each test system against three baselines. The first baseline is Reptile
[50], a first-order version of the common gradient-based meta-learning method MAML [31]. Reptile
uses minibatched gradient descent as the base learner and it only outputs a single point prediction
of y. For our second baseline, we compare against a GP model whose kernel function is the com-
position of our network trained without meta-learning with an RBF kernel, mirroring [17, 29]. We
also compare against control parameters that were hand-tuned by experts for robust and conservative
performance across a variety of commands and system parameters. In our quadrotor example, we
additionally consider an L1-Adaptive control [36] baseline adapted from [37], which augments the
nominal control with an additional term based on an estimated disturbance vector.

To evaluate the usefulness of adapting the prediction model, we perform an ablation where we do not
adapt w from trial to trial and only use w0 and Σ0 (context-only). This ablation mimics methods
that directly estimate latent system parameters from state and action histories, such as Kumar et al.
[5], since the prediction network only uses the history context encoder and does not utilize our last-
layer weight adaptation. To evaluate the usefulness of meta-training, we also run an ablation where
last-layer weight adaptation occurs, but the network is trained without our meta-learning procedure
(no-meta).

6 Results

In Table 1 we report the crash rate and final average reward achieved by each method. To show the
advantage of each method over simply using the expert-tuned nominal gains, in Figure 3 we plot the
difference between each method’s reward and the nominal gain’s reward over time in each test. We
report the raw performance metrics achieved by each method in the supplementary material.

OCCAM outperforms both ablations and all baselines on all benchmarks, demonstrating the util-
ity of both meta-learning basis functions and weight adaptation. Adaptation with our method also
occurs within a few timesteps, which corresponds to 10-20 seconds of data on each system. The
quadruped environment is challenging in particular, as OCCAM must predict the performance of
an expressive RL policy; nonetheless, it finds behavior parameters that improve the policy’s perfor-
mance. The quadrotor also presents unique challenges, as the parameters of the quadrotors in the test

6



Table 1: Average Final Reward and Crash Rate on Robotic Systems

Race Car Quadrotor Quadruped

Method Avg Final Rwd (↑) Crash % (↓) Avg Final Rwd (↑) Crash % (↓) Avg Final Rwd (↑) Crash % (↓)

Nominal 0.25 ± 0 8 0.72 ± 0.24 33.8 0.69 ± 0.08 8.8
LK-GP 0.29 ± 0.14 24.2 1.11 ± 0.34 29.9 0.74 ± 0.07 6.6
Reptile [50] 0.29 ± 0.25 14.2 1.19 ± 0.37 33.8 0.70 ± 0.09 8.1
L1-Adaptive [36] - - 0.61 ± 0.25 33.6 - -

OCCAM (no-meta) 0.1 ± 0.16 45.9 1.05 ± 0.42 32.8 0.73 ± 0.09 8.1
OCCAM (context-only) 0.22 ± 0.16 37.3 1.08 ± 0.38 27.3 0.73 ± 0.07 6.7
OCCAM (Ours) 0.40 ± 0.17 13.4 1.40 ± 0.30 26.3 0.75 ± 0.07 6.3

(a) Plots of performance reward value vs time on robotic systems (Higher is Better)

Figure 3: Time vs. Reward curves on all test systems. Our method shows robust prior performance
and adaptation across all tests. For the robotic systems, normalized reward is computed by standard-
izing rewards according to the training dataset statistics for that system and subsequently subtracting
the nominal controller’s reward.

set can vary from 1
3× to 3× the nominal parameters. In our problem setup, this must be compensated

only by tuning PD feedback gains (the controller does not have an integral term). These extreme
parametric errors also cause instability and poor tracking in the L1-adaptive controller. Meanwhile,
our method finds gains that result in the lowest crash rate and nearly a 50% reduction in tracking
error compared to the nominal gains and L1-Adaptive controller. Both Reptile and LK-GP saturate
early in the evaluations. Reptile tends to overfit to the training set and online training data [34] and
gets stuck in a loop of selecting the same gains and repeatedly fitting to them.

In the supplementary material, we additionally show that OCCAM also performs well on common
global function optimization benchmarks, makes interpretable optimizations to the gains as system
parameters change, and learns a structured latent weight space.

6.1 Weight Adaptation Enables Out-of-Distribution Generalization

To further demonstrate the necessity of model adaptation for controller tuning in out-of-distribution
scenarios, we also evaluate each baseline on test scenarios that lie within the training distribution,
and present a table of these results in the supplement. In these test cases, the context-only baseline
performs comparably to our full method. Therefore, its performance drop in the out-of-distribution
scenarios suggests that the learned context encoder alone is not sufficient to achieve generalization.
Similarly, our method outperforms LK-GP because the usefulness of the latent space of the kernel
network degrades as we move out of its training distribution.

To emphasize OCCAM’s generalizability, we also use OCCAM to tune the controller gains of a
simulated Crazyflie to minimize tracking error in three different wind conditions up to 0.5 m/s, when
wind was not encountered at all during training. OCCAM is able to achieve an average tracking
error of under 7cm, outperforming all baselines including L1-Adaptive control (10cm), shown in
the supplementary material. Meanwhile, context-only achieves the worst tracking performance
(30cm).

7



6.2 OCCAM crosses the Sim-to-Real Gap

Figure 4: Positional tracking error results on
physical Crazyflie quadrotor following a 3-
dimensional ellipsoidal reference trajectory.

Finally, we apply OCCAM to tune the gains of
a physical Crazyflie quadrotor. The controller
for the physical Crazyflie runs on a Robot Op-
erating System (ROS) node running on a lap-
top with no GPU and a 1.6Ghz Intel i5 pro-
cessor. The ROS node receives the quadrotor’s
position through a Vicon motion-capture sys-
tem1 running at 100Hz and computes a desired
collective thrust and quaternion attitude com-
mand for the quadrotor, which the onboard PID
controller then converts into motor speeds. We
train our predictive model on simulation data
sampled from both the train and test parameter
ranges, and add OCCAM as a lightweight layer
that runs every 3 seconds on top of the ROS
control node.

Position tracking error results for a three-dimensional ellipsoidal reference trajectory are shown in
Figure 4. Control parameters tuned by OCCAM result in lower tracking error than the expert-tuned
nominal controller and achieve comparable tracking error to the L1-Adaptive controller. We also
run additional experiments where a 5 gram mass is added to the Crazyflie (see Figure 1), which
represents a 20% increase from the its nominal mass. Our method is able to find gains that decrease
the quadrotor’s tracking error in the z-axis by 54% compared to the nominal controller and by 17%
compared to the L1-Adaptive controller. Figures of tracking errors from these physical Crazyflie
experiments are shown in the supplementary material.

7 Discussion and Limitations

Our results demonstrate a single algorithm that optimizes controllers on a diverse array of robotic
platforms using simple search techniques. Importantly OCCAM obviates the need for manual gain
tuning that typically requires domain expertise, and instead provides automatic controller adaptation
based on task-relevant metrics. OCCAM is also compatible with any controller with tunable param-
eters, allowing straightforward application to controllers that are nonlinear, discontinuous, and not
analytic. As shown in our Crazyflie experiment, OCCAM’s models and optimization routine are
lightweight enough to run in realtime without a GPU. We expect OCCAM to perform best on sys-
tems with a well-defined and relatively smooth mapping between control gains and performance;
this and further assumptions are discussed in the appendix.

In this work, we tested OCCAM on commonly used controllers with relatively low-dimensional gain
spaces, though one might also wish to tune a higher-dimensional policy, such as a neural network.
Although the policy could be conditioned on a low-dimensional behavior vector, one could also treat
the weights of either the entire neural network or its last few layers [51, 52] as the controller gains
and use a more powerful optimizer.

Beyond this, there are a few areas in which our method could be improved. If the stochastic opti-
mizer makes a poor initial choice and the uncertainty penalty is poorly tuned, OCCAM sometimes
settles early in a suboptimal local maximum. For some systems, this incorrect choice of gains can
cause crashes. Incorporating a more sophisticated optimizer and exploration strategy would be in-
teresting future work. Lastly, in this work we do not rigorously evaluate how far the generalizability
of our method applies, or changing the reward function J online. Future work includes addressing
these limitations, along with demonstrating our method on broader classes of systems.

1https://www.vicon.com/

8



Acknowledgments

The authors would like to thank the reviewers, who gave helpful feedback during the discussion
phase. This work was supported by NSF grant CCF-2112665 (TILOS).

References
[1] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-Real Transfer of Robotic

Control with Dynamics Randomization. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 1–8, Brisbane, Australia, May 2018. IEEE Press. doi:10.1109/
ICRA.2018.8460528.

[2] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
Information theoretic mpc for model-based reinforcement learning. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1714–1721, 2017. doi:
10.1109/ICRA.2017.7989202.

[3] Y. Sun, W. L. Ubellacker, W.-L. Ma, X. Zhang, C. Wang, N. V. Csomay-Shanklin,
M. Tomizuka, K. Sreenath, and A. D. Ames. Online Learning of Unknown Dynamics for
Model-Based Controllers in Legged Locomotion. IEEE Robotics and Automation Letters, 6
(4):8442–8449, Oct. 2021. ISSN 2377-3766. doi:10.1109/LRA.2021.3108510.

[4] T. Z. Jiahao, K. Y. Chee, and M. A. Hsieh. Online dynamics learning for predictive control with
an application to aerial robots. In Conference on Robot Learning, pages 2251–2261. PMLR,
2023.

[5] A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA: Rapid Motor Adaptation for Legged Robots.
arXiv:2107.04034 [cs], July 2021.

[6] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth. Bayesian optimization for learning
gaits under uncertainty. Annals of Mathematics and Artificial Intelligence, 76(1):5–23, Feb.
2016. ISSN 1573-7470. doi:10.1007/s10472-015-9463-9.

[7] M. Neumann-Brosig, A. Marco, D. Schwarzmann, and S. Trimpe. Data-efficient Auto-tuning
with Bayesian Optimization: An Industrial Control Study. IEEE Transactions on Control
Systems Technology, 28(3):730–740, May 2020. ISSN 1063-6536, 1558-0865, 2374-0159.
doi:10.1109/TCST.2018.2886159.

[8] A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause, S. Schaal, and S. Trimpe.
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learn-
ing with Bayesian Optimization. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 1557–1563, May 2017. doi:10.1109/ICRA.2017.7989186.

[9] F. Berkenkamp, A. P. Schoellig, and A. Krause. Safe Controller Optimization for Quadrotors
with Gaussian Processes. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 491–496, May 2016. doi:10.1109/ICRA.2016.7487170.

[10] A. Loquercio, A. Saviolo, and D. Scaramuzza. AutoTune: Controller Tuning for High-Speed
Flight. IEEE Robotics and Automation Letters, 7(2):4432–4439, Apr. 2022. ISSN 2377-3766,
2377-3774. doi:10.1109/LRA.2022.3146897.

[11] A. Romero, S. Govil, G. Yilmaz, Y. Song, and D. Scaramuzza. Weighted maximum likelihood
for controller tuning. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 1334–1341, 2023. doi:10.1109/ICRA48891.2023.10161417.

[12] A. Schperberg, S. D. Cairano, and M. Menner. Auto-Tuning of Controller and Online Tra-
jectory Planner for Legged Robots. IEEE Robotics and Automation Letters, pages 1–8, 2022.
ISSN 2377-3766. doi:10.1109/LRA.2022.3185387.

9

http://dx.doi.org/10.1109/ICRA.2018.8460528
http://dx.doi.org/10.1109/ICRA.2018.8460528
http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/ICRA.2017.7989202
http://dx.doi.org/10.1109/LRA.2021.3108510
http://dx.doi.org/10.1007/s10472-015-9463-9
http://dx.doi.org/10.1109/TCST.2018.2886159
http://dx.doi.org/10.1109/ICRA.2017.7989186
http://dx.doi.org/10.1109/ICRA.2016.7487170
http://dx.doi.org/10.1109/LRA.2022.3146897
http://dx.doi.org/10.1109/ICRA48891.2023.10161417
http://dx.doi.org/10.1109/LRA.2022.3185387


[13] S. Cheng, M. Kim, L. Song, C. Yang, Y. Jin, S. Wang, and N. Hovakimyan. DiffTune: Auto-
Tuning through Auto-Differentiation. IEEE Transactions on Robotics, pages 1–17, 2024. ISSN
1941-0468. doi:10.1109/TRO.2024.3429191.

[14] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals. Nature,
521(7553):503–507, May 2015. ISSN 1476-4687. doi:10.1038/nature14422.

[15] K. Chatzilygeroudis, V. Vassiliades, and J.-B. Mouret. Reset-free Trial-and-Error Learning for
Robot Damage Recovery. Robotics and Autonomous Systems, 100, Feb. 2018. ISSN 09218890.
doi:10.1016/j.robot.2017.11.010. URL http://arxiv.org/abs/1610.04213.

[16] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Deep kernel learning. In A. Gretton
and C. C. Robert, editors, Proceedings of the 19th International Conference on Artificial Intel-
ligence and Statistics, volume 51 of Proceedings of Machine Learning Research, pages 370–
378, Cadiz, Spain, 09–11 May 2016. PMLR. URL https://proceedings.mlr.press/

v51/wilson16.html.

[17] A. Rai, R. Antonova, F. Meier, and C. G. Atkeson. Using simulation to improve sample-
efficiency of bayesian optimization for bipedal robots. Journal of Machine Learning Research,
20(49):1–24, 2019.

[18] A. Kumar, Z. Li, J. Zeng, D. Pathak, K. Sreenath, and J. Malik. Adapting rapid motor adapta-
tion for bipedal robots. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1161–1168, 2022. doi:10.1109/IROS47612.2022.9981091.

[19] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-
ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022. doi:10.1126/scirobotics.abk2822. URL https://www.science.org/doi/abs/10.

1126/scirobotics.abk2822.

[20] H. Qi, A. Kumar, R. Calandra, Y. Ma, and J. Malik. In-Hand Object Rotation via Rapid Motor
Adaptation. In Conference on Robot Learning (CoRL), 2022.

[21] W. Yu, J. Tan, Y. Bai, E. Coumans, and S. Ha. Learning Fast Adaptation with Meta Strategy
Optimization, Feb. 2020.

[22] K. Lee, Y. Seo, S. Lee, H. Lee, and J. Shin. Context-aware dynamics model for gener-
alization in model-based reinforcement learning. In H. D. III and A. Singh, editors, Pro-
ceedings of the 37th International Conference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 5757–5766. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/lee20g.html.

[23] R. Yang, X. Sun, and K. Narasimhan. A generalized algorithm for multi-objective reinforce-
ment learning and policy adaptation. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_

files/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf.

[24] B. Lim, L. Grillotti, L. Bernasconi, and A. Cully. Dynamics-Aware Quality-Diversity for
Efficient Learning of Skill Repertoires. In 2022 International Conference on Robotics and
Automation (ICRA), pages 5360–5366, May 2022. doi:10.1109/ICRA46639.2022.9811559.

[25] T. Zahavy, Y. Schroecker, F. Behbahani, K. Baumli, S. Flennerhag, S. Hou, and S. Singh.
Discovering policies with DOMiNO: Diversity optimization maintaining near optimality. In
The Eleventh International Conference on Learning Representations, 2023. URL https:

//openreview.net/forum?id=kjkdzBW3b8p.

10

http://dx.doi.org/10.1109/TRO.2024.3429191
http://dx.doi.org/10.1038/nature14422
http://dx.doi.org/10.1016/j.robot.2017.11.010
http://arxiv.org/abs/1610.04213
https://proceedings.mlr.press/v51/wilson16.html
https://proceedings.mlr.press/v51/wilson16.html
http://dx.doi.org/10.1109/IROS47612.2022.9981091
http://dx.doi.org/10.1126/scirobotics.abk2822
https://www.science.org/doi/abs/10.1126/scirobotics.abk2822
https://www.science.org/doi/abs/10.1126/scirobotics.abk2822
https://proceedings.mlr.press/v119/lee20g.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
http://dx.doi.org/10.1109/ICRA46639.2022.9811559
https://openreview.net/forum?id=kjkdzBW3b8p
https://openreview.net/forum?id=kjkdzBW3b8p


[26] G. B. Margolis and P. Agrawal. Walk these ways: Tuning robot control for generalization
with multiplicity of behavior. In 6th Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=52c5e73SlS2.

[27] R. Pautrat, K. Chatzilygeroudis, and J.-B. Mouret. Bayesian optimization with automatic prior
selection for data-efficient direct policy search. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 7571–7578, 2018. doi:10.1109/ICRA.2018.8463197.

[28] M. Volpp, L. P. Fröhlich, K. Fischer, A. Doerr, S. Falkner, F. Hutter, and C. Daniel. Meta-
learning acquisition functions for transfer learning in bayesian optimization. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?

id=ryeYpJSKwr.

[29] J. Rothfuss, D. Heyn, jinfan Chen, and A. Krause. Meta-learning reliable priors in the function
space. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?

id=H_qljL8t_A.

[30] J. Harrison, A. Sharma, and M. Pavone. Meta-learning priors for efficient online bayesian
regression. In Algorithmic Foundations of Robotics XIII, pages 318–337, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-44051-0.

[31] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 1126–1135. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/

v70/finn17a.html.

[32] A. Nagabandi. Deep Online Learning via Meta-Learning : Continual Adaptation for Model-
Based RL. 2019.

[33] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen. Efficient off-policy meta-
reinforcement learning via probabilistic context variables. In K. Chaudhuri and R. Salakhut-
dinov, editors, Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research, pages 5331–5340. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/v97/rakelly19a.html.

[34] J. Rajendran, A. Irpan, and E. Jang. Meta-Learning Requires Meta-Augmentation. In Ad-
vances in Neural Information Processing Systems, volume 33, pages 5705–5715. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

3e5190eeb51ebe6c5bbc54ee8950c548-Abstract.html.

[35] K. J. Åström and B. Wittenmark. Adaptive control. Courier Corporation, 2008.

[36] Z. Wu, S. Cheng, K. A. Ackerman, A. Gahlawat, A. Lakshmanan, P. Zhao, and N. Hov-
akimyan. L1 adaptive augmentation for geometric tracking control of quadrotors. In Proceed-
ings of the International Conference on Robotics and Automation, pages 1329–1336, Philadel-
phia, PA, USA, 2022.

[37] K. Huang, R. Rana, A. Spitzer, G. Shi, and B. Boots. DATT: Deep adaptive trajectory tracking
for quadrotor control. In 7th Annual Conference on Robot Learning, 2023. URL https:

//openreview.net/forum?id=XEw-cnNsr6.

[38] M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J. Chung.
Neural-fly enables rapid learning for agile flight in strong winds. Science Robotics, 7(66):
eabm6597, 2022. doi:10.1126/scirobotics.abm6597. URL https://www.science.org/

doi/abs/10.1126/scirobotics.abm6597.

11

https://openreview.net/forum?id=52c5e73SlS2
http://dx.doi.org/10.1109/ICRA.2018.8463197
https://openreview.net/forum?id=ryeYpJSKwr
https://openreview.net/forum?id=ryeYpJSKwr
https://openreview.net/forum?id=H_qljL8t_A
https://openreview.net/forum?id=H_qljL8t_A
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v97/rakelly19a.html
https://proceedings.neurips.cc/paper/2020/hash/3e5190eeb51ebe6c5bbc54ee8950c548-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3e5190eeb51ebe6c5bbc54ee8950c548-Abstract.html
https://openreview.net/forum?id=XEw-cnNsr6
https://openreview.net/forum?id=XEw-cnNsr6
http://dx.doi.org/10.1126/scirobotics.abm6597
https://www.science.org/doi/abs/10.1126/scirobotics.abm6597
https://www.science.org/doi/abs/10.1126/scirobotics.abm6597


[39] S. M. Richards, N. Azizan, J.-J. Slotine, and M. Pavone. Adaptive-Control-Oriented Meta-
Learning for Nonlinear Systems, June 2021.

[40] K. Y. Chee, T. Z. Jiahao, and M. A. Hsieh. Knode-mpc: A knowledge-based data-driven
predictive control framework for aerial robots. IEEE Robotics and Automation Letters, 7(2):
2819–2826, 2022.

[41] D. Zhang and B. Wei. A review on model reference adaptive control of robotic manipulators.
Annual Reviews in Control, 43, 02 2017. doi:10.1016/j.arcontrol.2017.02.002.

[42] Q. Nguyen and K. Sreenath. L1 adaptive control for bipedal robots with control lyapunov
function based quadratic programs. In 2015 American Control Conference (ACC), pages 862–
867, 2015. doi:10.1109/ACC.2015.7170842.

[43] I. M. Y. Mareels, B. D. O. Anderson, R. R. Bitmead, M. Bodson, and S. Sastry. Revisiting the
mit rule for adaptive control. IFAC Proceedings Volumes, 20:161–166, 1987.

[44] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat,
and R. Adams. Scalable bayesian optimization using deep neural networks. In F. Bach and
D. Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research, pages 2171–2180, Lille, France, 07–09
Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/snoek15.html.

[45] L. Bertinetto, J. F. Henriques, P. H. S. Torr, and A. Vedaldi. Meta-learning with differentiable
closed-form solvers. Technical Report arXiv:1805.08136, arXiv, July 2019. URL http://

arxiv.org/abs/1805.08136. arXiv:1805.08136 [cs, stat] type: article.

[46] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[47] T. Lee, M. Leok, and N. H. McClamroch. Geometric tracking control of a quadrotor uav on
se(3). In 49th IEEE Conference on Decision and Control (CDC), pages 5420–5425, 2010.
doi:10.1109/CDC.2010.5717652.

[48] S. Folk, J. Paulos, and V. Kumar. Rotorpy: A python-based multirotor simulator with aerody-
namics for education and research. arXiv preprint arXiv:2306.04485, 2023.

[49] Crazyflie 2.1 — Bitcraze. https://www.bitcraze.io/products/crazyflie-2-1/.

[50] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms, 2018.

[51] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. Rapid learning or feature reuse? towards
understanding the effectiveness of maml, 2020.

[52] Y. Lee, A. S. Chen, F. Tajwar, A. Kumar, H. Yao, P. Liang, and C. Finn. Surgical fine-tuning
improves adaptation to distribution shifts. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=APuPRxjHvZ.

12

http://dx.doi.org/10.1016/j.arcontrol.2017.02.002
http://dx.doi.org/10.1109/ACC.2015.7170842
https://proceedings.mlr.press/v37/snoek15.html
http://arxiv.org/abs/1805.08136
http://arxiv.org/abs/1805.08136
http://dx.doi.org/10.1109/CDC.2010.5717652
https://openreview.net/forum?id=APuPRxjHvZ


A Table of Notation

Table 1: Table of Model Elements
zk Vector of sensed values
z0:k History of sensed values to date
uk Vector of control inputs
u0:k History of control inputs to date

yk+∆T Performance metrics over time k to k +∆T
J Reward function maps performance metrics to a scalar
θk System parameters, intrinsic and extrinsic (unknown)
τk Control objective derived from current task
gk Vector of control parameters
C Control law uk = C(gk, τk, z0:k, u0:k) (grey-box)
∆T Frequency at which OCCAM adapts and computes new gains

B Discussion on Kalman Filter Formulation

In this section, we will discuss the aspects of our formulation that lead to the choice of the
Kalman Filter as our online estimator. First, we choose a linear output layer of our neural net-
work: y = Φ(g, z, u, τ)w, which has been shown to improve model generalization in meta-learning
settings [1, 2]. Then, given data pairs (Φt, yt) received in a stream from the robot, solving for the
optimal mapping s.t. Φw = y is an online linear regression problem. However, there is significant
uncertainty in the regression problem arising from our lack of knowledge of θ, combined with epis-
temic uncertainty in the model and environmental noise. Therefore, we would like to estimate the
posterior distribution of w to characterize the uncertainty in the model, especially for the purposes
of downstream decision making using the network’s predictions. This estimate also needs to be able
to vary with time, since the environment parameters θ could slowly change as the robot moves into a
new environment. Given the choice of a linear measurement model and the additional factors above,
this strongly resembles the time-varying parameter estimation problem, to which a linear Kalman
Filter with identity dynamics is commonly applied. Representing w as a Gaussian random variable
enables analytic computation of the posterior and keeps the filtering procedure differentiable, which
enables our meta-learning pipeline.

C Applicability of OCCAM

Although our experiments show that OCCAM can be applied to a wide variety of systems, we do
not yet have a precise theoretical characterization of OCCAM’s performance. However, we do make
a few implicit assumptions about the kinds of systems that OCCAM would work well on.

1. For OCCAM to work well, the closed loop dynamics of the system should allow a well-
defined mapping between control gains and performance. This mapping does not have to
be known, can vary as the system parameters vary, and can be stochastic. However, if it is
too noisy or nonsmooth, then the performance of the predictive model will degrade. For
example, if the closed loop dynamics are chaotic, then the effect of control gains on system
performance might be unpredictable. Although we make no assumptions about the shape
of the mapping, we expect OCCAM to work best if the mapping is relatively smooth.

2. We also assume that the offline dataset (generated through simulation or from previous
experience) captures the important characteristics of how gains affect performance and
how that mapping changes as the environment changes. Although our method can adapt
to a significant domain gap (as demonstrated by our experiments), if the domain gap is too
large then the basis functions and prior weights learned from offline data will not be useful
and our method will take many iterations to adapt.

1



3. The closed-loop system should be stable enough that a suboptimal set of control gains (such
as those deployed in the early iterations of adaptation) will not cause an immediate crash.

4. Our use of a sampling-based optimization method limits the dimensionality of gain spaces
that our method can handle. However, we could use a more powerful optimizer to overcome
this, and many model-based control methods of interest (PID, MPC, LQR, etc.) do have
gain spaces that are low-dimensional.

D Details on Simulated Platforms

In this section we provide additional details about each of our simulated evaluation platforms, in-
cluding two benchmark functions which are commonly used to test global functional optimization
algorithms.

D.1 Benchmark Functions

We first validate our method on randomized variations of two common global optimization bench-
mark functions [3]. The first is the Branin function, which has a 2D input space and 1D output
space:

f(x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t)cos(x1) + s

We treat as system parameters the six constants that parameterize the shape of the Branin function:
θ = [a, b, c, s, t, r].

The second is the Hartmann function, which has a 6D input space and 1D output space:

f(x) = −
4∑
i

θiexp

−
6∑

j=1

Aij(xj − Pij)
2


Where A and P are constant matrices, and we randomize over the 4-dimensional vector θ as system
parameters.

For these benchmark functions, there are no measured quantities z0:k or control actions u0:k. We
consider the inputs to the benchmark functions to be the “gains” gk, and the outputs of the functions
to be the performance measures yk. Therefore the data tuples for these functions consist of only
the inputs x and scalar “metrics” y = f(x). For these functions, the reward function is simply set
to the negative of the scalar function values: J(y) = −y. Because there is no history context, the
context-only baseline in these two examples is simply our method without weight adaptation.

For the benchmark functions, we use F-PACOH [4], which is based on training neural networks with
regularization to serve as mean and kernel functions in a GP. F-PACOH is ill-suited to our robotic
tests due to the high dimensionality of the full input space to the networks, so we use the LK-GP
baseline in our robotic experiments instead.

D.2 2D Race Car

Our first simulated robotic system is a 2-dimensional car racing around a track, modified from the
OpenAI Gym “Car Racing” environment [5]. The environment models a powerful rear-wheel-drive
car with sliding friction, making control nontrivial while trying to maximize speed on track. The
system has three control inputs: uk = [us, ug, ub]. The controller C of the car consists of a
nonlinear proportional-plus-derivative (PD) controller that computes steering input us to steer the
car towards the centerline of the track and a simple control law that accelerates the car by force
ug on straightaways up to a maximum speed, or brakes the car by force ub for corners above a
certain curvature threshold. The tunable maximum speed and curvature braking thresholds induce
saturation and branching behavior in the controller. The sensor measurements of this system are
zk = [v, ωk, elat], where v is the forward velocity of the car, ωk is the angular velocity, and elat
is the lateral distance between the car and the track centerline. The controller C uses zk and an

2



estimate for track curvature, c, derived from a vector of upcoming track waypoints τk to compute
uk as follows:

us = kpselat + kdsėlat

ug =

{
kpg, if v ≤ vmax

0, otherwise

ub =

{
kpb, if c ≥ cthresh

0, otherwise

The tunable parameters of this controller are

g = [kps kds kpg kpb vmax cthresh]

The racing car environment has three unknown system parameters θ = [m, p, µ], which are respec-
tively the mass of the car, the car’s engine power, and the friction between the tires and track.

For the racing car, the evaluation function computes the vector of performance metrics

yk:k+∆T =
1

∆T

[
1

1 +
∑

i elati
,

1

1 +
∑

wi
,
∑

vi

]
These are respectively the inverse average lateral tracking error, inverse of total number of timesteps
during which a wheel was slipping, and average velocity over a fixed evaluation horizon. We invert
tracking error and wheelslip since, in general, they ought to be minimized. In this case, the evalu-
ation horizon is not a fixed ∆T but instead is however long it takes for the car to traverse a fixed
distance on track. For online testing of this system, we set the reward function to be a weighted
combination of the reward terms: J(y) =

∑3
j=0 rjy[j].

The reasoning behind inverting certain performance measures is to focus the model onto gains which
have good performance. In this racing car setting, for example, “good performance” equates to low
tracking error, low wheelslip, and high speed. At test time, we will only select and deploy gains for
which the network predicts good performance. Therefore, our preference is that the network should
be very discriminating between two gains that have good performance, i.e. low tracking error and
wheelslip. If two gains result in high tracking errors, we do not care about exactly predicting that
difference, because we will not deploy those gains. However, during training time, using the Mean
Squared Error Loss function has the opposite effect - the network predicting that a gain will have
a tracking error of 1m vs 2m will result in a very large gradient, while the network mispredicting
by a small amount will have a small effect on the gradient. Inverting the performance measures
for which lower values are better has the desired effect of increasing the distance between high
performing gains, while compressing the “bad” gains into a small region of the space. And because
the inversion is invertible, we can recover the original, interpretable metrics if necessary.

D.3 Quadrotor with Model-Based Controller

Our second simulated platform is a quadrotor MAV equipped with a geometric trajectory track-
ing controller defined on SE(3) [6]. This controller takes in a reference trajectory τk defined
in the quadrotor’s flat output space: position (px, py, pz) and yaw. The controller computes
a feedforward motor speed command based on τk using the quadrotor’s nominal mass, iner-
tial tensor, thrust and drag torque coefficients. It then uses measurements from the quadrotor
zk = [px, py, pz, vx, vy, vz, R]k, where R is the rotation matrix representation of attitude, to com-
pute feedback commands to correct tracking errors. The controller is parameterized by PD gains on
the 3D position and PD gains on the attitude: gk = [kx, kv, kR, kΩ] (following the convention given
by [6]). The quadrotor has five unknown system parameters which are the quadrotor’s mass, princi-
pal moments of inertia, and thrust coefficient: θ = [m, Ixx, Iyy, Izz, kη]. The baseline controller is
only aware of the nominal parameters, which are centered around those of the Crazyflie platform [7],
and not the actual values. Thus, the feedback gains must be used to compensate for this parametric
error. For more detailed information about the quadrotor’s dynamics and the controller derivation,
see [6].

3



For this system, the four performance measures y are the inverted average positional tracking error,
inverted average yaw tracking error, inverted average pitch and roll, and inverted average com-
manded thrust over the episode. Following the racing car example, we choose the reward function
to be a weighted combination of the terms of y: J(y) =

∑4
j=0 rjy[j]. For this system, we set

∆T = 4 seconds.

For our quadrotor experiments, the commanded trajectories τ consist of 3-dimensional ellipsoidal
trajectories of varying radii and frequencies. Because of the simplicity of these trajectories, we
do not have to provide information about τ as input to the network for this system. We leave the
incorporation of more general and complex trajectories to future work. We use RotorPy [8] and its
included SE(3) controller for all quadrotor simulations. For this environment, we also evaluate our
framework on a physical quadrotor with the same controller and performance measures.

D.4 Quadrupedal Robot with Learned Locomotion Policy

Our third simulated robotic platform is a quadrupedal robot equipped with a static pretrained lo-
comotion policy π trained using model-free RL [9]. π outputs joint angles such that the torso
of the robot follows a velocity twist command ck = (ẋdes, ẏdes, ω̇des). The policy takes as high-
dimensional input measurements zk the joint positions and velocities qk, q̇k, previous joint angle
commands ak−1, commands ck, timing reference variables, and estimated base velocity and ground
friction. We treat π as our controller C for this system.

Although π is parameterized by a deep neural network, it is also conditioned on an additional com-
mand that allows the user to specify high-level behaviors that the policy should follow:

bk =
[
θcmd
1 , θcmd

2 , θcmd
3 , f cmd, hcmd, hcmd

f , scmd]
The three terms

[
θcmd
1 , θcmd

2 , θcmd
3

]
jointly specify the quadrupedal gait, f cmd is the commanded

stepping frequency, hcmd is the commanded body height, hcmd
f is the commanded footswing height,

and scmd is the commanded stance width. Thus, the policy tries to follow the velocity command ck
while satisfying the behavior constraints. In the original work bk is a quantity to be selected by a
human operator, while in this work we treat bk as the controller parameters to be tuned automatically
based on the quadruped’s randomized parameters and the task ct. For details on how the learned
policy is trained, see [9].

The randomized system parameters θk for the quadruped are added mass payloads to the robot base,
motor strengths, and the friction and restitution coefficients of the terrain. Although the π contains
an estimator module to regress the ground friction, it does not receive direct observations of any of
these parameters.

For use in our method, we input only a reduced-dimension subset of zk into our prediction model
network consisting of the estimated base linear and angular velocities and joint torques applied by
the motors.

The four performance measures for the quadruped are the inverted average velocity errors along
each axis of the command and inverted total commanded torque over the evaluation horizon. For
this system, we set the evaluation horizon ∆T = 3 seconds.

The reward function for the quadruped has the same form as the quadrotor system: J(y) =∑4
j=0 rjy[j]. All simulations are done using code and pretrained models from [9] and the Isaac

Gym simulator [10].

E Model Training and Testing Details

E.1 Network Pretraining

We observe that if the basis function network Φ is initialized randomly, the inner-loop adaptation
steps used in meta-training can become unstable and cause training to diverge. Other works that

4



History Size Encoder Layers Encoded Dim Network Layers Nonlinearity Basis Size Phase 1 epochs Phase 2 epochs

Branin - - - [16,16,16] ReLU 5 50 45
Hartmann - - - [32, 32, 32] ReLU 15 75 45
Racing Car 25 [32, 32] 15 [32, 32, 32] ReLU 5 40 55
Quadrotor 25 [64, 64] 15 [64, 64, 64] ReLU 15 50 40
Quadruped 20 [64, 64] 15 [64, 64, 64] ReLU 15 50 15

Table 2: Architecture and Training Hyperparameters for OCCAM Basis Function Network for all
tested systems

History Buffer Size Encoder Layers Encoded Dim Network Layers Nonlinearity Meta Training Epochs Inner Loop Steps

Branin - - - [16,16,16] ReLU 35 10
Hartmann - - - [32, 32, 32] ReLU 70 20
Racing Car 25 [32, 32] 15 [32, 32, 32] ReLU 70 10
Quadrotor 25 [64, 64] 25 [64, 64, 32] ReLU 25 20
Quadruped 20 [64, 64] 15 [64, 64, 64] ReLU 35 20

Table 3: Architecture and Training Hyperparameters for Reptile baseline for all tested systems

use meta-learning with closed-form inner-loop solvers use pre-trained networks [1, 2] to speed up
training and solve this problem. To mimic this approach in our setting, we divide our training
process into two phases. In the first phase, the network is trained as an average model using standard
stochastic gradient descent, with wpre as a fixed last layer that does not adapt to tasks. In the second
phase, we initialize w0 = wpre and we switch to meta-training with the Bayesian recursive update as
the inner loop optimizer. Σ0, Q0, and R0 are initialized before the second training phase as identity
matrices. Our no-meta ablation uses a network that is trained only with this first phase and not with
our meta-learning procedure.

E.2 Dataset Generation

The datasets for the robotic systems each consist of N = 1500 batches of NB = 64 datapoints
each. The hyperparameters of each dataset and network are provided in the supplementary material.
Note that our method does not require sampling only optimal or high-performing gains to generate
data - only random ones. Thus, the dataset for each system consists of N batches of datapoints:
[(g, τ, z, u, y)0:NB

]0:N . Each of these batches is used as a “task” for a single inner loop during the
meta-training process.

E.3 Model Architecture

We find that we are able to use small networks to model each system; the networks are all fully-
connected networks that consist of 3 hidden layers with fewer than 64 hidden units, outputting
between 5-20 bases, indicating that many of the robotic systems that we are interested in control-
ling can be effectively modeled with a relatively small number of parameters. The exact network
layer sizes and training hyperparameters are given in the supplementary material. All models are
implemented and trained in PyTorch [11].

Architectural details and training hyperparameters for OCCAM’s basis function network, Reptile,
and F-PACOH are presented in Tables 2, 3, and 4 respectively. The F-PACOH training hyperparam-
eters were chosen in accordance with experiments conducted in the original paper.

Training and testing parameter ranges for each system evaluated in this work are shown in Tables 5,
6, 7, 8, and 9. For the reward curves and tables shown in the main submission, test system parameters

Network Layers Num fitting iters Weight Decay Prior Factor Feature Dim

Branin [32,32,32] 2500 3e-5 0.06 5
Hartmann [32, 32, 32] 2500 0.03 0.23 6

Table 4: Training Details for F-PACOH baseline for all tested systems

5



Training Testing
Parameter low high low high

a 0.8 1.2 0.5 1.5
b 0.11 0.13 0.1 0.15
c 1.2 1.8 1 2
r 5.5 6.5 5 7
s 9 11 8 12
t 0.035 0.045 0.03 0.05

Table 5: Parameter ranges for Branin experi-
ments

Training Testing
Parameter low high low high

θ1 1.0 1.5 0.5 1.5
θ2 1.0 1.2 0.6 1.4
θ3 2.4 3.0 2.0 3.0
θ4 3.0 3.4 2.8 3.6

Table 6: Parameter ranges for Hartmann ex-
periments

Training Testing
Parameter low high low high

Size 0.01 0.03 0.005 0.04
Engine Power 2.5e4 4.5e4 2e4 5e4
Friction Limit 250 450 200 500

Table 7: Parameter ranges for Racing Car.
Note that these quantities are given in inter-
nal units used by the simulator, not SI units.

Training Testing
Parameter low high low high

Mass (kg) 0.02 0.09 0.01 0.1
Ixx (kg · m2) 2e-6 9e-4 1e-6 1e-3
Iyy (kg · m2) 2e-6 9e-4 1e-6 1e-3
Izz (kg · m2) 2e-6 9e-4 1e-6 1e-3
kη (N/(rad/s)2 2e-8 8e-7 1e-8 1e-6

Table 8: Parameter ranges for Quadrotor

were sampled exclusively from the set difference of the test parameter range and training parameter
range.

Training Testing
Parameter low high low high

Added Payload (kg) -0.8 2.5 -1.0 4.0
Motor Strength Factor 0.9 1.0 0.8 1.1

Friction Coefficient 0.25 1.75 0.2 2.0
Restitution Coefficient 0.1 0.3 0.05 5.0

Table 9: Parameter ranges for Quadruped

6



F Benchmark Function Results

Table 10: Average Final Obtained Value on Benchmark Systems
Average Value over Last 5 Trials (↓)

Branin Hartmann (×10−4)

F-PACOH [4] 2.26± 0.70 3.30± 4.55
Reptile [12] 3.47± 11.79 1.14± 1.98

OCCAM (no-meta) 1.80± 0.77 7.42± 11.4
OCCAM (context-only) 4.25± 3.92 12.83± 15.7
OCCAM (Ours) 1.65± 0.49 3.14± 5.97

Figure 1: Minima found on each benchmark function (Lower is Better)

We report the average final reward obtained by all methods on the Branin and Hartmann benchmarks
in Table 10, and show minima obtained by each method over time in Figure 1. Notably, our method
performs well in both settings. In the Branin setting, OCCAM learns a good initialization and finds
the best final minimum. In the Hartmann setting, even though OCCAM learns a relatively poor
prior, it is able to adapt and find the same final minimum as F-PACOH.

G Raw Performance Metrics

Figures 2, 3, and 4 show the raw performance metrics obtained by each method on each system
in the trials in which they did not crash. We note that each method is not directly optimizing for
these raw metrics, but instead a weighted combination of their normalized versions, so good or bad
performance in an individual metric in these plots does not necessarily translate to high or low reward
in the plots reported in the paper. For example, in the Racing Car example, our method obtains a
lower average speed than many other methods; however, this makes sense as, in the scalarized

Figure 2: Raw performance metrics obtained by each method on our out-of-distribution racing car
test set in successful runs.

7



Figure 3: Raw Performance metrics obtained by each method on our out-of-distribution quadrotor
test set in successful runs.

Figure 4: Raw Performance metrics obtained by each method on our out-of-distribution quadruped
car test set in successful runs.

objective the model was optimizing for, the speed metric was weighted much lower than the tracking
error metric. Also to faithfully report the raw metrics without the crashes skewing the averages, we
filter out the runs that crashed. For example, in the quadrotor example, although Reptile performs
well when it selects gains that don’t result in crashes, its higher crash rate brings down its overall
average reward.

H Additional Simulation Experiments

H.1 In-Distribution Experiments

Table 11: Average Final Reward and Crash Rate on In-Distribution Robotic Systems

Race Car Quadrotor Quadruped
Method Avg Final Rwd (↑) Crash % (↓) Avg Final Rwd (↑) Crash % (↓) Avg Final Rwd (↑) Crash % (↓)

Nominal 0.50± 0 0 1.15± 0.13 47.9 0.66± 0.9 14.7
LK-GP 0.49± 0.08 0 1.79± 0.38 37.7 0.74± 0.08 8.3
Reptile 0.42± 0.13 2.7 1.19± 0.37 33.8 0.72± 0.1 9.4
L1-Adaptive - - 1.37± 0.55 57.5 - -

OCCAM (context-only) 0.47± 0.06 2 1.94± 0.26 32.5 0.76± 0.07 5.6
OCCAM (Ours) 0.44± 0.19 4 1.82± 0.40 37.5 0.74± 0.09 8.7

We also run our method and each baseline on test sets randomly sampled from the training distri-
butions for each of the robotic systems (see Tables 7, 8, and 9). The average final obtained reward
and crash rates are reported in Table 11. The performances of each method naturally improve in this
setting as the sampled system parameters lie closer to the nominal parameters, but in particular the
context-only baseline, which only uses the fixed context encoder for sysid, and the LK-GP base-
line both obtain amongst the highest rewards and perform similarly to OCCAM, showing, within
the training distribution, these approaches perform well.

Also notable in this setting is that the L1-Adaptive controller obtains higher reward than the Nom-
inal controller, demonstrating that the adaptive control does indeed improve performance when the
deviation from the nominal dynamics is smaller. However, when the parametric error grows larger
in the out-of-distribution experiments in the main paper, the adaptive controller becomes unstable
and reduces performance.

8



Figure 6

(a) Basis weights computed in
the Racing Car Environment,
projected into two dimensions
and colored by the friction pa-
rameter. The weights form dis-
tinct clusters separated by differ-
ent friction coefficients.

(b) Basis weights computed in
the Quadruped Environment,
projected into two dimensions
and colored by the friction
parameter. The weights form
distinct clusters separated by
different added base payloads.

(c) Basis weights computed in
the Quadrotor Environment, pro-
jected into two dimensions and
colored by the friction parameter.
The weights form distinct clus-
ters separated by mass parame-
ters

H.2 OCCAM Makes Interpretable Adaptations to the Gains

To elucidate that our method finds semantically meaningful gains, we run an additional experi-
ment in the racing car environment where we sweep only friction coefficients across 3 differ-
ent tracks and plot the average final gains chosen by OCCAM in Figure 5. As friction in-
creases, OCCAM selects gains that cause the car to accelerate more aggressively and drive faster,
while in the low friction regime, the gains tend towards slower driving (higher brake gain, lower
speed in corners). Our method logically chooses a more aggressive driving profile as available
traction increases, showing physically meaningful adaptation to changes in system parameters.

Figure 5: Adapted gains found by our
framework for cars with increasing fric-
tion coefficients. For cars with higher
friction coefficients, our model chooses
gains that lead to faster and more ag-
gressive driving. Both the low-end and
high-end friction coefficients are out of
the training distribution of the model.

H.3 Is there structure to the learned weight space?

We also include preliminary experiments demonstrating
that the space of weights that OCCAM adapts in has
meaningful structure. For each test set in the paper, we
use t-SNE to project the weights computed by OCCAM’s
regression procedure into two dimensions and plot the
projected weights in Figures 6a, 6c, and 6b. Note that like
the weight adaptation procedure, the t-SNE embedding
procedure has no knowledge of the underlying system
parameters. For each system, the values of the weights
distinctly cluster according to the underlying system pa-
rameters.

H.4 Gain
Adaptation with Unseen Environmental Variations

We also run an experiment to assess the ability of
our method to tune controllers while novel environmental parameters are varied. We use
OCCAM to tune the controller gains of a simulated Crazyflie in three different wind con-
ditions up to 0.5 m/s to minimize the tracking error. Despite the fact that wind was
not modeled at all during training, OCCAM is able to achieve an average tracking er-
ror of under 7cm, outperforming all baselines, shown in Figure 7. Meanwhile, as ex-
pected from the previous section, no-adapt fails to tune the controller in this unseen setting.

I Additional Physical Crazyflie Experiments

9



Figure 7: Positional tracking error re-
sults on simulated Crazyflie quadrotor
following a 3-dimensional ellipsoidal
reference trajectory in windy conditions
unseen in training. For both versions of
OCCAM and Reptile, the control gains
are updated every 3 seconds.

We ran additional experiments on the physical Crazyflie
platform in which we added a 5-gram mass from the be-
ginning of the experiment and in the middle of the ex-
periment. Plots of the tracking error obtained by the
controller with OCCAM’s optimized gains, the nominal
gains, and with the L1-Adaptive control augmentation
are shown in Figures 8a and 8b. In both cases, OCCAM
finds gains that result in more robust tracking in the Z-
axis. We hypothesize that because our predictive model is
trained on data gathered from many quadrotors with var-
ied masses, it learns to select gains that better compensate
for these variations.

An interesting result are the minor, high frequency os-
cillations observed in the Z-axis in Figure 8a and in the
X- and Y-axes in Figure 8b towards the end of the ex-
periment. These are most likely the result of marginally
stable closed-loop attitude dynamics. One possible solution to this is augmenting the performance
measures y and measurement vector z with pitch and roll angular velocities, which might encourage
the predictive model and optimizer to select gains that do not result in oscillations. Another solu-
tion is to add small random force perturbations to the training simulations so that marginally stable
controllers achieve worse performance metrics. We leave exploring these additions to future work.

(a) Results with a 5-gram mass added from the start. (b) Results with a 5-gram mass added at roughly 26s

Figure 8: Positional tracking error results on physical Crazyflie quadrotor following a 3-dimensional
ellipsoidal reference trajectory, with added masses.

References
[1] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-Learning With Differentiable Con-

vex Optimization. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 10649–10657, Long Beach, CA, USA, June 2019. IEEE. ISBN 978-
1-72813-293-8. doi:10.1109/CVPR.2019.01091. URL https://ieeexplore.ieee.org/

document/8954109/.

[2] L. Bertinetto, J. F. Henriques, P. H. S. Torr, and A. Vedaldi. Meta-learning with differentiable
closed-form solvers. Technical Report arXiv:1805.08136, arXiv, July 2019. URL http://

arxiv.org/abs/1805.08136. arXiv:1805.08136 [cs, stat] type: article.

[3] L. C. W. Dixon and G. P. Szego. The global optimization problem: An introduction, 1978.

[4] J. Rothfuss, D. Heyn, jinfan Chen, and A. Krause. Meta-learning reliable priors in the function
space. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?

id=H_qljL8t_A.

10

http://dx.doi.org/10.1109/CVPR.2019.01091
https://ieeexplore.ieee.org/document/8954109/
https://ieeexplore.ieee.org/document/8954109/
http://arxiv.org/abs/1805.08136
http://arxiv.org/abs/1805.08136
https://openreview.net/forum?id=H_qljL8t_A
https://openreview.net/forum?id=H_qljL8t_A


[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[6] T. Lee, M. Leok, and N. H. McClamroch. Geometric tracking control of a quadrotor uav on
se(3). In 49th IEEE Conference on Decision and Control (CDC), pages 5420–5425, 2010.
doi:10.1109/CDC.2010.5717652.

[7] Crazyflie 2.1 — Bitcraze. https://www.bitcraze.io/products/crazyflie-2-1/.

[8] S. Folk, J. Paulos, and V. Kumar. Rotorpy: A python-based multirotor simulator with aerody-
namics for education and research. arXiv preprint arXiv:2306.04485, 2023.

[9] G. B. Margolis and P. Agrawal. Walk these ways: Tuning robot control for generalization
with multiplicity of behavior. In 6th Annual Conference on Robot Learning, 2022. URL
https://openreview.net/forum?id=52c5e73SlS2.

[10] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State. Isaac Gym: High Performance GPU-Based Physics
Simulation For Robot Learning, Aug. 2021.

[11] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[12] A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms, 2018.

11

http://dx.doi.org/10.1109/CDC.2010.5717652
https://openreview.net/forum?id=52c5e73SlS2
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Introduction
	Related Work
	Problem Statement
	Method
	Modeling Controller Performance
	Meta-Training
	Controller Optimization With Learned Model

	Experimental Procedures
	Simulated Evaluation Platforms
	Model Training and Testing
	Baselines

	Results
	Weight Adaptation Enables Out-of-Distribution Generalization
	OCCAM crosses the Sim-to-Real Gap

	Discussion and Limitations

