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Abstract
LLMs are transforming software development,001
yet current code generation and code repair002
benchmarks mainly assess syntactic and func-003
tional correctness in simple, single-error cases.004
LLMs’ capabilities to autonomously find and005
fix runtime logical errors in complex data sci-006
ence code remain largely unexplored. To ad-007
dress this gap, we introduce DSDBench: the008
Data Science Debugging Benchmark, the first009
benchmark for systematic evaluation of LLMs010
on multi-hop error tracing and multi-bug de-011
tection in data science code debugging. DS-012
DBench adapts datasets from existing data013
science task benchmarks, such as DABench014
and MatPlotBench, featuring realistic data sci-015
ence debugging tasks with automatically syn-016
thesized multi-hop, multi-bug code snippets.017
DSDBench includes 1,117 annotated samples018
with 741 cause-effect error pairs and runtime019
error messages. Evaluations of state-of-the-art020
LLMs on DSDBench show significant perfor-021
mance gaps, highlighting challenges in debug-022
ging logical runtime errors in data science code.023
DSDBench offers a crucial resource to evaluate024
and improve LLMs’ debugging and reasoning025
capabilities, enabling more reliable AI-assisted026
data science in the future.027

1 Introduction028

Recent advancements in Large Language Mod-029

els (LLMs) have significantly reshaped software030

development practices, particularly in automat-031

ing code generation and debugging. Benchmarks032

like DebugBench (Tian et al., 2024), CodeEditor-033

Bench (Guo et al., 2024a), and DebugEval (Yang034

et al., 2025) have played a pivotal role in eval-035

uating LLMs’ capabilities in code repair. How-036

ever, these benchmarks largely rely on simplified037

programming exercises from platforms like Leet-038

Code, which prioritize syntactic correctness and039

functional accuracy in isolated and single-error040

scenarios, far removed from real-world software041

complexity.042

Meanwhile, growing research efforts are explor- 043

ing LLMs’ potential in data science coding (Yang 044

et al., 2024b; Hu et al., 2024; Zhang et al., 2024b; 045

Hong et al., 2024), where practitioners routinely 046

tackle challenges involving black-box library func- 047

tions, intricate data transformations, and statisti- 048

cal modeling. Yet, a critical gap persists: despite 049

this emerging focus, there remains a striking lack 050

of investigation into LLMs’ ability to debug dy- 051

namic logical errors in data science code. Such 052

errors, manifesting only at runtime, are endemic 053

to this domain due to hidden dependencies in data 054

pipelines, implicit assumptions in mathematical 055

operations, and unpredictable interactions with ex- 056

ternal resources. 057

As illustrated in Figure 1, unlike constrained 058

programming exercises, debugging data science 059

codebases presents unique challenges: 1) Its heavy 060

reliance on external libraries (e.g., pandas, NumPy, 061

scikit-learn, matplotlib) means subtle misuses or 062

incorrect data processing steps can easily trigger 063

downstream runtime exceptions. 2) Data scien- 064

tists often work in interactive environments like 065

Jupyter Notebooks, which lack robust debugging 066

tools. This makes it harder to identify and fix 067

runtime bugs, especially when multiple subtle 068

errors, such as incorrect data transformations or 069

misaligned indices, coexist and interact within the 070

code, complicating the debugging process. 3) Stan- 071

dard debugging tools offer limited assistance in 072

diagnosing multi-hop logical errors within com- 073

plex workflows. The root cause of these errors 074

can be distantly located from the point of error 075

manifestation. Standard debuggers typically re- 076

port the symptom (the line of error manifestation 077

in the stack trace) rather than the root cause re- 078

sponsible for the program’s termination. Overall, 079

a dedicated benchmark for rigorously assessing 080

LLMs’ dynamic debugging of multi-hop logical 081

errors in complex multi-bug data science code is 082

still lacking. 083
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cause_error_line: 
y_pred = model.predict(X_train)
effect_error_line (different from cause): 
mse = mean_squared_error(y_test, y_pred)
error_message: 
ValueError: Found input variables with 
inconsistent numbers of samples

cause_error_line: 
X = imputer.fit_transform(y)
effect_error_line (different from cause): 
model.fit(X_train, y_train)
error_message: 
ValueError: Input y contains NaN.

Error Annotation  ×N 

import …

[code unmodified]
# Logical error 1 injected here
X = imputer.fit_transform(y)
[code unmodified]
# Logical error 2 injected here
y_pred = model.predict(X_train)
[code unmodified]

cause_error_line: 
y_pred = model.predict(X_train)
effect_error_line (different from cause): 
mse = mean_squared_error(y_test, y_pred)
error_message: 
ValueError: Found input variables with 
inconsistent numbers of samples

cause_error_line: 
X = imputer.fit_transform(y)
effect_error_line (different from cause): 
model.fit(X_train, y_train)
error_message: 
ValueError: Input y contains NaN.

import …

[code unmodified]
# Logical error 1 injected here
X = imputer.fit_transform(y)
[code unmodified]
# Logical error 2 injected here
y_pred = model.predict(X_train)
[code unmodified]

import …

[code unmodified]
# Logical error 1
X = imputer.fit_transform(y)
[code unmodified]
# Logical error 2
y_pred = model.predict(X_train)
[code unmodified]
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cause_error_line: 
y_pred = model.predict(X_train)
effect_error_line (different from cause): 
mse = mean_squared_error(y_test, y_pred)
error_message: 
ValueError: Found input variables with 
inconsistent numbers of samples

import ……
df = pd.read_csv('unemployement_industry.csv’)
…
y = imputer.fit_transform(y)
…
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.3, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)

Apply machine learning techniques to predict the 

employment level in March 2020. Split the dataset, 

train a simple linear regression model, evaluate its 

performance using Mean Squared Error.

Question

Correct Code

cause_error_line: 
X = imputer.fit_transform(y)
effect_error_line (different from cause): 
model.fit(X_train, y_train)
error_message: 
ValueError: Input y contains NaN.

Figure 1: Dataset construction pipeline of DSDBench.

Benchmark Domain Error Multi-Hop Error
Complexity Error Type

DebugBench General Multi-Bug ✗ Static
DebugEval General Multi-Bug ✗ Static
CodeEditorBench General Single-Bug ✗ Static

DSDBench Data Science Multi-Bug ✓ Runtime

Table 1: Comparison with existing benchmarks.

Motivated by this evident gap in evaluating084

LLMs’ dynamic debugging skills for data sci-085

ence, we introduce DSDBench: the Data Science086

Debugging Benchmark. Distinct from prior works087

that primarily focus on repairing single, syntac-088

tic and static errors, where these errors are easily089

caught by interpreters or compilers, DSDBench090

is the first benchmark to systematically evaluate091

LLMs on: (1) Multi-Hop Error Tracing: requir-092

ing models to trace runtime errors back through093

multiple lines of data science code to identify the094

root cause; and (2) Multi-Bug Error Detection:095

assessing their ability to concurrently detect and096

reason about multiple logical errors within a sin-097

gle data science code snippet. Table 1 summarizes098

the comparisons between DSDBench and existing099

code debugging benchmarks.100

DSDBench leverages datasets and tasks from101

established data science coding benchmarks like102

DABench (Hu et al., 2024), MatPlotBench (Yang103

et al., 2024b), and DSEval (Zhang et al., 2024b).104

We systematically inject errors into data science105

code, synthesizing multi-error scenarios by combin-106

ing individual bugs. Our dataset comprises 1,117107

meticulously annotated samples, complete with108

ground-truth cause-effect error line pairs and cap- 109

tured runtime error messages. 110

In summary, our contributions are threefold: 111

• DSDBench Benchmark: We release the first 112

dedicated benchmark and dataset for evaluating 113

LLMs in runtime, multi-bug debugging of data 114

science code. DSDBench features realistic logi- 115

cal errors, multi-hop error scenarios, and detailed 116

annotations, addressing a critical gap in current 117

debugging benchmarks. 118

• Automated Error Injection and Annotation 119

Framework: We develop a robust pipeline for 120

automated error injection, runtime execution trac- 121

ing, and alignment of interpreter outputs with 122

error-originating code lines, facilitating scalable 123

benchmark creation and future expansion. 124

• Empirical Analysis and Insights: We present a 125

comprehensive empirical evaluation of state-of- 126

the-art closed-source and open-source LLMs on 127

DSDBench. Our findings reveal significant per- 128

formance gaps and highlight critical challenges 129

in dynamic debugging for complex, real-world 130

data science code. 131

2 DSDBench Construction 132

The creation of a high-quality dataset is paramount 133

for a robust benchmark. As illustrated in Figure 1, 134

DSDBench is meticulously constructed through a 135

multi-stage process encompassing data sourcing, 136
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correct code preparation, error injection, error an-137

notation, and quality assurance.138

2.1 Data Collection139

We build the DSDBench upon three widely-140

adopted data science coding benchmarks for their141

realistic data science tasks and diverse scenarios, in-142

cluding DABench (Hu et al., 2024), MatPlotBench143

(Yang et al., 2024b), and DSEval (Zhang et al.,144

2024b). We focus on the hard subset of DABench145

because error injection in its easy and medium sub-146

sets rarely produces runtime exceptions. MatPlot-147

Bench and DSEval supplement DABench, expand-148

ing task diversity and library coverage (pandas,149

sklearn, scipy, matplotlib, numpy) to represent150

typical data science workflows. These benchmarks151

cover data manipulation, statistical analysis, ma-152

chine learning, and visualization.153

However, some of these datasets mainly contain154

the natural language instructions and the final re-155

sults after running the data science code, while the156

ground-truth correct codes are not provided. As157

the first step, we prepare the correct and error-free158

codes for each benchmark as follows:159

DABench We design an agent-based annotation160

framework, which includes a self-debugging code161

agent and an error verifier agent. Annotation be-162

gins by feeding benchmark questions and metadata163

to the self-debugging code agent, which generates164

initial code and debugs it based on error messages.165

Subsequently, the error verifier agent analyzes this166

code to correct logical errors, meanwhile ensures167

the code produces correct answers according to168

DABench’s ground truths. The details of the agent-169

based annotation framework are presented in Ap-170

pendix A.171

MatPlotBench Similar agent-based code genera-172

tion is adopted, but automated verification is chal-173

lenging due to the visual nature of plot outputs.174

Therefore, manual expert verification is employed,175

comparing plots to ground truth images and cor-176

recting code for accurate visualizations.177

DSEval We extract and concatenate code blocks178

from ground truth Jupyter notebooks provided by179

DSEval, using concatenated code as our bench-180

mark’s correct code.181

2.2 Error Injection182

To systematically introduce errors, we employ two183

error injection methodologies. The details regard-184

ing the error injection prompts are provided in Ap- 185

pendix B. 186

Strong LLM-based Error Injection One pri- 187

mary method is called strong LLM-based error 188

injection, which utilizes a strong LLM, i.e., GPT- 189

4o, to inject runtime-interrupting errors. This in- 190

volves a two-stage process: 1) We identify code 191

lines using data science libraries (numpy, scipy, 192

matplotlib, sklearn, pandas) by instructing 193

GPT-4o to extract relevant core library functions. 194

2) We inject runtime errors into these lines using 195

GPT-4o by introducing plausible, contextually rel- 196

evant runtime errors within code identified in the 197

first step, causing programs to halt. In terms of 198

multi-hop errors, error injection on one line could 199

cause a runtime error to manifest on a later line due 200

to sequential code execution. 201

Weak LLM-based Direct Error Generation 202

Across our three data sources, we explore weak 203

LLM-based direct error generation using Llama- 204

3.1-8B. We instruct Llama-3.1-8B to directly gen- 205

erate Python code from benchmark questions. Due 206

to the limitations of weaker LLMs, the generated 207

code often contains errors. In terms of multi-hop 208

errors, in directly generated code with functions, 209

an error in a sub-function could trigger an error 210

reported in the main function during execution. 211

2.3 Error Annotation 212

For each buggy code snippet, we annotate 213

three ground truths, cause_error_line, 214

effect_error_line, and runtime error 215

messages. Our annotation process can be divided 216

into single-error and multi-error phases. 217

Single-Error Annotation We commence dy- 218

namic error capture with snoop1, a Python debug- 219

ging library that logs execution details, for single- 220

error ground truth. snoop monitors the execution 221

of both injected and direct generated error code. 222

We first filter out successfully executed ones. For 223

error-triggering snippets, we analyze snoop’s exe- 224

cution traces to extract: cause_error_line (error 225

origin), effect_error_line (error manifestation), 226

and runtime error messages, providing ground 227

truths for single-error annotation. 228

Multi-Error Annotation Multi-error annota- 229

tions are generated based on single-error annota- 230

tions. For each question, we systematically gen- 231

1https://pypi.org/project/snoop/
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Dataset Size Example Type Multi-Error Examples Code Complexity Question Complexity

Total # Examples # Single-Error # Multi-Error # Single-hop # Multi-hop Avg Errors/Example Avg Code Length Avg Question Length
1,117 741 376 385 356 2.87 ± 1.14 65.31 ± 21.31 92.42 ± 55.86

Table 2: Dataset statistics of DSDBench.

erated all combinations of the already annotated232

single errors to create a pool of candidate multi-233

error annotations. From each question’s candidate234

pool, we randomly sample a subset to form our235

multi-error dataset.236

2.4 Human Verification and Quality Control237

To ensure the quality and correctness of the con-238

structed dataset, we perform a two-stage verifi-239

cation process: code-based checks and LLM-240

assisted verification. 1) Code checks involve print-241

ing and manually inspecting annotated cause and242

effect lines to correct nonsensical annotations by243

human annotators. We also print error messages,244

identifying and resolving a common plt.show()245

backend issue by adding backend settings to the246

MatPlotBench correct code examples. 2) LLM-247

assisted verification is used to review all annota-248

tions, flagging remaining inconsistencies that re-249

quire human intervention to correct the annotations.250

Overall, the pass rates of the human verification for251

the two stages are 83% and 87%, respectively. The252

high pass rates also validate the effectiveness of the253

automated annotation process.254

2.5 Dataset Characteristics255

This section presents a statistical overview of the256

DSDBench dataset, characterizing its composition,257

diversity, and complexity. Table 2 provides a sta-258

tistical overview of the DSDBench dataset. The259

dataset size and splits are as follows: the total260

number of examples is 1,117, of which 741 are261

single-error examples and 376 are multi-error ex-262

amples. For single-error examples, the number263

of examples with multi-hop cause and effect error264

lines is 356, the rest 385 examples contain identical265

cause and effect error lines i.e., single-hop errors).266

For multi-error examples, the number of errors per267

example ranges from 2 to 9, with an average of268

2.87 errors per example. Regarding complexity,269

the average code length is 65.31 lines, and the av-270

erage question length is 92.42 words. For a more271

detailed breakdown of these statistics, please refer272

to Table 2.273

Figure 2 illustrates the error type distribution274

in DSDBench. Figure 3 shows the data science275

library coverage within the dataset.276

ValueError, 224

KeyError, 140
AttributeError, 

95

TypeError, 94

NameError, 68

FileNotFoundError, 

63

IndexError, 20 Other, 37

Figure 2: Distribution of different error types. Details
of error types are described in Appendix C.

pandas, 357

matplotlib, 204

sklearn, 90

numpy, 68

scipy, 19 Other, 3

Figure 3: Distribution of different data science libraries.

3 Problem Formulation 277

3.1 Task Definition 278

This section formally defines the task of Data Sci- 279

ence Code Debugging for the DSDBench bench- 280

mark, outlining the input, desired output, and evalu- 281

ation settings. The primary objective of DSDBench 282

is to evaluate the capability of LLM-based debug- 283

gers to identify and explain logical errors in data 284

science Python code during simulated runtime 285

execution. 286

The benchmark is specifically designed to assess 287

two critical dimensions of debugging proficiency: 288

multi-hop error detection and multi-bug error 289

detection. Multi-hop error detection evaluates the 290

LLMs’ ability to trace errors to their root cause 291

(cause_error_line), which may precede the in- 292

terpreter’s error point (effect_error_line) by 293

several lines of code. Multi-bug error detection 294

assesses the LLMs’ ability to identify and explain 295

multiple, concurrent logical errors within a sin- 296

gle code snippet, rather than solely the initial error 297

encountered. A further goal is to evaluate the qual- 298

ity of error message reproduction, specifically 299

the ability of LLMs to accurately reproduce the er- 300
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ror messages thrown by the Python interpreter301

for each identified error.302

Formally, for each task instance i, the input is303

a pair (Qi, Ci), where Qi is a natural language304

question describing a data science task, and Ci is305

a Python code snippet intended to perform task306

Qi, but containing logical errors. The task of307

the LLM is to predict a structured output Oi =308

(Lcause,i, Leffect,i,Mi), where Lcause,i is the ex-309

act line of code for the cause error, Leffect,i is the310

exact line of code for the effect error, and Mi is311

the error message that would be produced by a312

Python interpreter when executing Ci. The DS-313

DBench benchmark dataset can be represented314

as D = {(Qi, Ci, L
GT
cause,i, L

GT
effect,i,M

GT
i )}Ni=1,315

where GT denotes the ground truth annotation.316

The objective is to evaluate LLMs’ capabilities317

to perform the task of f : (Qi, Ci) 7→ Oi which318

localizes and interprets the error.319

3.2 Evaluation Metrics320

This section details evaluation metrics for LLM321

debugger performance on DSDBench, focusing on322

error localization accuracy and description qual-323

ity. Model performance is evaluated across four324

dimensions, including Cause Line Matching, Ef-325

fect Line Matching, Error Type Matching, and326

Error Message Matching.327

Specifically, we calculate cause_line_score,328

effect_line_score, and error_type_score as329

binary metrics (1 for exact match with ground truth,330

0 otherwise). error_message_score is evaluated331

by GPT-4o on a scale in [0.0, 0.25, 0.5, 0.75, 1.0]332

based on the relevance and correctness of the repro-333

duced error message compared to the ground truth334

error message.335

Dimension-Level Definitions: For each evalu-336

ated dimension:337

• TP (True Positives): Number of instances338

with correct LLM predictions (exact match for339

lines/types, error_message_score ≥ 0.75 for340

error messages).341

• FP (False Positives): Number of instances with342

specific incorrect LLM predictions (commission343

errors).344

• FN (False Negatives): Number of instances345

where LLM failed to provide a relevant predic-346

tion, (omission errors) e.g., incorrect output for-347

mat ; FN = GT_Instances − (TP + FP ).348

• GT_Instances: Total Ground Truth Instances for349

the dimension.350

Evaluation Metrics (per dimension): We em- 351

ploy Precision, Recall, F1-score, and Accuracy to 352

evaluate performance across dimensions. Because 353

DSDBench only contains test cases with errors, 354

meaning there is no True Negatives in model pre- 355

dictions. Therefore, we calculate Recall by (True 356

Positive Rate - TPR) to measure the completeness 357

of error detection as: 358

Recall (TPR) =
TP

GT_Instances
359

making Recall (TPR) numerically equivalent to 360

Accuracy. All metrics are calculated dimension- 361

wise to provide a detailed performance profile. 362

4 Experiments 363

4.1 Setup 364

Models We benchmarked a diverse set of state- 365

of-the-art models on the DSDBench dataset, in- 366

cluding both closed-source models and open- 367

source models. Specifically, the closed-source 368

models we employed were GPT-4o, GPT-4o- 369

mini, o1-mini (OpenAI, 2024), Gemini 2.0 Flash 370

Thinking (Google, 2024), and Claude 3.5 sonnet- 371

20240620. Open-source model consisted of Llama- 372

3.1-8B-instruct, Llama-3.1-70B-instruct, Llama- 373

3.1-405B-instruct (Meta, 2024), Qwen2.5-7B- 374

Instruct, Qwen2.5-32B-Instruct, Qwen2.5-72B- 375

Instruct (Qwen, 2025), DeepSeek-V3, DeepSeek- 376

R1 (DeepSeek-AI, 2025). Notably, we categorize 377

Gemini 2.0 Flash Thinking, DeepSeek-R1 and o1- 378

mini as Large Reasoning Models (LRMs). All 379

models were used with their default decoding pa- 380

rameters apart from setting temperature to 0. Zero- 381

shot setting were used. We used OpenRouter’s API 382

services for all models. 383

Evaluation Protocol The prompt used to evalu- 384

ate all models are identical, including task descrip- 385

tion, buggy Python code snippet from DSDBench, 386

and instructions to output the debugging analysis 387

in a structured JSON format. The precise prompt 388

template is in Appendix D. This zero-shot eval- 389

uation approach allows us to assess the inherent 390

debugging abilities of each model. We utilized 391

the metrics defined in Section 3.2 for quantitative 392

assessment. 393

4.2 Main Results 394

Table 3 and Table 4 present the primary results of 395

our experiments, showing the accuracy of various 396

models in detecting single and multi-bug scenarios 397

across the full and subset DSDBench datasets. 398
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Model Cause Line Effect Line Error Type Error Message
Single-Bug Multi-Bug Single-Bug Multi-Bug Single-Bug Multi-Bug Single-Bug Multi-Bug

GPT-4o 39.0 20.3 34.3 10.4 30.6 3.6 31.4 4.7
GPT-4o-mini 40.2 11.2 23.9 2.7 21.7 2.2 21.3 0.8
Claude 3.5 sonnet 43.7 12.3 35.2 4.1 36.3 1.9 34.0 2.5
Deepseek-V3 48.3 15.1 34.5 6.6 35.9 3.3 34.7 4.7
Llama-3.1-8B-instruct 25.2 3.0 14.2 0.0 7.7 0.0 7.2 0.0
Llama-3.1-70B-instruct 42.5 0.0 29.3 0.0 20.4 0.0 20.9 0.0
Llama-3.1-405B-instruct 41.7 18.6 31.3 8.5 29.3 1.1 29.3 2.5
Qwen2.5-7B-Instruct 29.3 4.7 19.3 1.1 10.7 0.3 10.9 0.0
Qwen2.5-32B-Instruct 40.9 17.5 30.5 6.3 24.7 2.2 24.7 2.2
Qwen2.5-72B-Instruct 41.6 21.4 36.2 11.2 27.5 3.0 27.4 3.6

Table 3: Overall evaluation results of LLMs on DSDBench. The reported score is the Accuracy (%), while full
metrics are presented in Appendix E.

Model Cause Line Effect Line Error Type Error Message
Single-Bug Multi-Bug Single-Bug Multi-Bug Single-Bug Multi-Bug Single-Bug Multi-Bug

LLMs
GPT-4o 35.4 12.5 31.2 5.0 33.3 2.5 33.3 2.5
GPT-4o-mini 39.6 7.5 29.2 5.0 25.0 2.5 22.9 0.0
Deepseek-V3 44.8 12.5 28.1 7.5 34.4 5.0 34.4 7.5

LRMs
Gemini 2.0 Flash Thinking 42.7 20.0 32.3 12.5 33.3 0.0 35.4 2.5
Deepseek-R1 49.0 32.5 49.0 25.0 53.1 15.0 54.2 17.5
o1-mini 43.8 35.0 36.5 22.5 43.8 17.5 46.9 17.5

Table 4: Comparison with large reasoning models (LRMs). The reported score is the Accuracy (%), while full
metrics are presented in Appendix E. Due to the unstableness of certain LRM APIs, we randomly sample a subset
of DSDBench for this evaluation, which comprises of 96 Single-Error and 40 Multi-Error instances.

Single-Bug Debugging Performance As shown399

in Tables 3, top-performing LLMs like Deepseek-400

V3 and Claude 3.5 sonnet achieve reasonable ac-401

curacy across all tasks, indicating a degree of er-402

ror tracing capability. Conversely, smaller models403

such as Llama-3.1-8B-instruct and Qwen2.5-7B-404

Instruct exhibit significantly lower accuracy. No-405

tably, Qwen2.5-72B-instruct demonstrated strong406

performance, on par with state-of-the-art closed-407

source LLMs such as GPT-4o and Claude 3.5 son-408

net. In general, effect line accuracy is consis-409

tently lower than cause line accuracy across models,410

showing LLMs’ deficiency to reason about code411

execution traces and find the exact location where412

the program would trigger an error. Error type and413

error message accuracy vary across different mod-414

els, suggesting varying levels of understanding and415

interpretation of runtime errors.416

Challenges in Multi-Bug Debugging The re-417

sults reveal a dramatic decrease in accuracy when418

models are challenged with multi-bug scenarios,419

models fails to identify an correct set of errors420

within a code snippet with multiple bugs. Even for421

the best-performing models, cause line accuracy422

drops to around 20% on the full dataset and 30%423

on the subset. This substantial performance degra-424

dation underscores the increased complexity of de-425

bugging multiple bugs concurrently. Furthermore,426

the low accuracy in error type and error message427

GPT-4o Claude Qwen2.510
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Figure 4: Impact of Self-Refinement.

prediction in multi-bug cases suggests that mod- 428

els struggle to correctly interpret error messages 429

within these more complex contexts. 430

LRMs Show Promise in Multi-Bug Debugging 431

Comparing LLMs and LRMs on the subset dataset 432

(Table 4) reveals that LRMs generally outperform 433

standard LLMs, particularly in the more demand- 434

ing multi-bug scenarios, indicating superior reason- 435

ing capabilities in LRMs are crucial for tackling 436

complex debugging tasks. A more detailed analysis 437

and case study can be found in Figure 7. 438

4.3 Impact of Self-Debugging 439

To further investigate the impact of LLM-as- 440

debuggers on real-world coding tasks, we explored 441

using LLM-generated debugging information in 442

data science coding tasks as a self-refining mech- 443

anism. In this experiment, models were tasked 444

with solving DABench-Hard either directly or by 445
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Error Type Cause Line Effect Line

GPT-4o Qwen DeepSeek GPT-4o Qwen DeepSeek

ValueError 57.9 61.6 66.1 50.5 59.6 54.0
TypeError 30.8 39.5 50.0 31.9 34.6 37.8
NameError 68.2 64.0 85.4 56.1 60.0 52.1
KeyError 22.7 28.4 37.8 22.7 17.6 27.9
AttributeError 35.1 40.5 40.0 22.3 14.9 15.0
IndexError 36.8 41.2 38.9 36.8 58.8 55.6
FileNotFoundError 0.0 9.6 13.0 1.6 9.6 11.1
Other 38.5 53.3 66.7 23.1 46.7 33.3

Table 5: Precision w.r.t. different error types. The bold
scores represent the best model performance across error
types and prediction tasks.

Library Cause Line Effect Line

GPT-4o Qwen DeepSeek GPT-4o Qwen DeepSeek

matplotlib 46.6 48.4 55.6 45.6 52.2 55.6
numpy 41.4 40.4 44.0 37.9 36.8 32.0
pandas 28.1 37.0 41.0 21.6 22.0 24.3
sklearn 65.1 72.5 87.7 58.1 63.8 53.8
scipy 36.4 54.5 72.7 18.2 36.4 45.5

Table 6: Precision w.r.t. different libraries.

refining their initial code using self-generated de-446

bugging information.447

Table 4 presents the accuracy of GPT-4o, Claude448

3.5 sonnet, and Qwen2.5-72B-Instruct in various449

settings. Across models, Self-Refinement signif-450

icantly improves accuracy compared to the Di-451

rect Solution. Furthermore, performance drops452

when either the cause line (No Cause) or effect453

line (No Effect) is removed from the debugging454

information. Removing only the error message (No455

Message) has less negative impact.456

4.4 Detailed Analysis457

This section analyzes model performance across458

error types, libraries, error counts, and multi-459

hop/single-hop to identify strengths and weak-460

nesses. We adopt GPT-4o, Qwen-72B-Instruct, and461

DeepSeek-V3 for analysis.462

Performance by error types Table 5 shows er-463

ror type precision. Models exhibit varying perfor-464

mance on different error types. Generally, mod-465

els perform better on more common error types466

and less on more obscure error types. Low perfor-467

mance on FileNotFoundError is possibly attributed468

to models not having access to the coding envi-469

ronment and file system. DeepSeek-V3 performs470

best on identifying Cause Lines, scoring the high-471

est on every error type except AttributeError and472

IndexError. Qwen-72B-Instruct performs best on473

identifying Effect Lines.474

Performance by data science libraries Table475

6 shows library-specific precision. Pandas is the476

most difficult library to debug, due to its intricate477
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Figure 5: Precision for multi-Bug detection with differ-
ent number of errors.
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Figure 6: Precision for single-bug detection comparing
multi-hop and single-hop errors.

and black-box data manipulation. Models demon- 478

strated best performance on scikit-learn and reason- 479

able performance on matplotlib, numpy and scipy, 480

with significant room for improvement. DeepSeek- 481

V3 demonstrated consistently better performance 482

than other models across all libraries, showing ro- 483

bustness on all kinds of data science coding tasks. 484

Performance by number of errors Figure 5 485

shows precision by error count. Precision decreases 486

significantly with more errors for all models. Preci- 487

sion drops sharply when there exists more than 3 488

errors, highlighting difficulty in multi-error scenar- 489

ios. GPT-4o performs best on retaining precision 490

on more than 2 bugs, showing potential in concur- 491

rent debugging. 492

Performance on single-hop vs. multi-hop errors 493

Figure 6 compares single-hop vs. multi-hop er- 494

ror precision. Cause Line precision is similar for 495

both types of errors across models. Effect Line 496

precision is significantly lower for multi-hop er- 497

rors, indicating increased difficulty when locating 498

the point where the program triggers an exception. 499

DeepSeek-V3 demonstrated best performance on 500

Cause Line detection on both single-hop and multi- 501

hop errors, while Qwen2.5-72B-Instruct performs 502

slightly better on Effect Line detection. 503

4.5 Case Study 504

According to Figure 7, LRMs have demonstrated 505

intriguing capabilities on reasoning multi-hop er- 506
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Buggy Code 

import …

df = pd.read_csv('unemployement_industry.csv’)

X = df['Mar.2019'].values.reshape(-1, 1)
y = df['Mar.2020'].values.reshape(-1, 1)
imputer = SimpleImputer(strategy='mean')

# Logical error injected here
X = imputer.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, 
test_size=0.3, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
mse_rounded = round(mse, 2)

The error is likely in the data preprocessing or 
model training part.... X=imputer.fit_transform(y).
This line is suspicious.
…
However, the prompt asks for the interpreter 
error. … This seems contradictory. If it's a logic 
error, it won't throw an interpreter error.
…
If y contains non-numeric values, then 
imputer.fit(y) might fail. …But the data is likely 
numeric. Let's assume data is numeric... If y 
contains strings that cannot be converted to float, 
then imputer.fit(y) will fail.
…
Assuming 'Mar.2020' column has a string like 
'N/A', then imputer.fit(y) will fail with ValueError: 

could not convert string to float.

Gemini 2.0 Flash Thinking

The line says X = imputer.fit_transform(y). Wait, 
that's odd. 
…
However, the problem states that there's an error 
that the Python interpreter would throw. So 
perhaps there's another error...
…
Ah! Wait, the code uses X and y after imputing. 
But after imputing, X is based on y (Mar.2020), 
and y is the original Mar.2020... If the original y 
(Mar.2020) has missing values, then y would 
contain NaNs... When the model is trained on 
y_train (which has NaNs), the LinearRegression's
fit method would throw an error because it 
cannot handle NaN values in y. In this case, the 
error would occur at the line model.fit(X_train, 

y_train) with a ValueError: Input contains NaN.✓

DeepSeek-R1

Both Models: 
• Quickly Identifying the Cause Error Line
• Systematic Code Execution Tracing 
• Exploration of Potential Error Scenarios 
• Iterative Refinement of Hypotheses

Analysis

Gemini Flash Thinking:
• Sidetracked by an early theory

DeepSeek-R1:
• More Persistent Pursuit of 

Runtime Error.
• "Aha!" Moment leading to the 

Intended Error.
• Demonstrated stronger 

reasoning ability to find 
the subtle runtime error.

Overall:
• Both models are highly capable and effectively used simulated code 

execution tracing and scenario exploration.

• The "interpreter error" constraint was a crucial driver for both models' 
reasoning, pushing them beyond simply identifying the cause error 
line and towards finding a runtime manifestation.

Figure 7: Case study of LRMs.

roneous code. Both Gemini 2.0 Flash Thinking507

and DeepSeek-R1 can promptly identify the cause508

error line, then mentally simulate code execu-509

tion trace and explore multiple possible scenarios510

that could lead to runtime exception. However,511

Gemini 2.0 Flash Thinking was distracted by one512

of its early theories and produced an incorrect an-513

swer. On the other hand, DeepSeek-R1 ruled out514

all implausible possibilities after relentlessly pur-515

suing an explanation for triggering a runtime error,516

eventually came up with the correct answer.517

5 Related Work518

LLMs Coding and Debugging Early bench-519

marks like HumanEval (Chen et al., 2021) and520

MBPP (Austin et al., 2021) focus on assessing521

code generation correctness. Recent works use522

reinforcement learning to improve code generation523

(Wei et al., 2025; Zeng et al., 2025). Runtime in-524

formation is being used in LLM debuggers (Zhong525

et al., 2024). Multiple benchmarks (Yang et al.,526

2025; Tian et al., 2024; Jimenez et al., 2024; Ni527

et al., 2024; Yang et al., 2024a; Zan et al., 2025; Li528

et al., 2025a) have focused on LLM code reasoning.529

In data science coding, general tools like the530

Data Interpreter (Hong et al., 2024) and special-531

ized agents such as MatPlotAgent (Yang et al.,532

2024b) and DSAgent (Guo et al., 2024b) are pro-533

posed. Benchmarks such as DSBench (Jing et al.,534

2024), InfiAgent-DABench (Hu et al., 2024), DSE-535

val (Zhang et al., 2024b), and PyBench (Zhang536

et al., 2024a) are emerging to evaluate the perfor-537

mance of LLMs in data science coding. 538

However, DSDBench shifts the focus to dynamic 539

debugging of logical errors in real-world data sci- 540

ence code (e.g. runtime exceptions, data mismatch), 541

which remain challenging to state-of-the-art LLMs. 542

LLM Self-Verification Self-correction enhance 543

LLM reliability (Liang et al., 2024). But, LLMs 544

struggle to identify their own errors, especially 545

in complex reasoning (Stechly et al., 2024; Tyen 546

et al., 2024; He et al., 2025). While some in- 547

trinsic self-correction exists (Liu et al., 2024), its 548

effectiveness for subtle logical errors is debated 549

(Stechly et al., 2024). Approaches to improve self- 550

correction include confidence-guided methods (Li 551

et al., 2024), critique-focused training (Lin et al., 552

2024; Li et al., 2025b) and reinforcement learning 553

(Ma et al., 2025). 554

However, self-verification research mainly tar- 555

gets general language tasks or simplified reasoning. 556

DSDBench uniquely targets dynamic debugging of 557

runtime errors in data science code. 558

6 Conclusion 559

We introduced DSDBench, a novel benchmark fill- 560

ing a critical gap in LLM evaluation by focusing 561

on dynamic debugging of logical runtime errors 562

in data science code, specifically multi-hop error 563

tracing and multi-bug detection, built with a rigor- 564

ous dataset construction process, reveals significant 565

performance limitations of current state-of-the-art 566

LLMs in these complex debugging scenarios. 567
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Limitations568

Our proposed DSDBench benchmark primarily fo-569

cuses on the data science coding domain. While570

data science is a complex real-world task, our571

benchmark can be further expanded to encom-572

pass a wider range of practical coding scenar-573

ios, enabling a more comprehensive evaluation574

of LLMs’ debugging performance in real-world575

coding pipelines. Additionally, future work could576

prioritize investigating LLMs’ performance in de-577

bugging repository-level code with multi-file de-578

pendencies.579

Ethical Considerations580

To construct the DSDBench benchmark, we em-581

ployed human annotators for data labeling and ver-582

ification tasks. We recruited annotators from our583

research institution holding at least a master degree584

in Computer Science. All annotators participated585

voluntarily and were provided with comprehensive586

information regarding the task’s purpose, content,587

workload, and compensation prior to annotating.588
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A Data Annotation Agent 779
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of two components, a self-debugging code agent 781
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SYSTEM PROMPT: You are a cutting-edge
super capable code generation LLM. You will
be given a natural language query, generate
a runnable python code to satisfy all the
requirements in the query. You can use any
python library you want. When you complete
a plot, remember to save it to a png file.

USER PROMPT: Here is the query: """
{{query}} """ If the query requires data
manipulation from a csv file, process the
data from the csv file and draw the plot in
one piece of code. When you complete a plot,
remember to save it to a png file. The file
name should be """{{file_name}}""".

Figure 8: The code generation prompt for code agent in
Data Annotation.

USER PROMPT: There are some errors in
the code you gave: {{error_message}} please
correct the errors. Then give the complete
code and don’t omit anything even though
you have given it in the above code.

Figure 9: The self-debugging prompt for code agent in
Data Annotation.

and an error verifier agent. The prompts used for782

these agents are in Figure 8, 9, 10.783

the code agent receives benchmark questions784

as input, generate a draft code according to the785

requirements in the questions. Then, the system en-786

vironment in which the agent framework operates787

executes the draft code. If not successfully exe-788

cuted, the interpreter error message will be passed789

to the self-debugging code agent, prompting the790

agent to generate another draft code according to791

the error message and original benchmark question.792

The agent will be given a set amount of chances793

to refine its code according to the error message,794

if the code is still not executable after 5 rounds,795

the agent stops. If the code successfully executed796

within 5 retry times, then the error verifier agent797

will step in and check the code for further logical798

errors that may not elicit an interpreter error. If the799

error verifier agent deems the code correct, the sys-800

tem environment will execute the code and extract801

the answers from the code. Then we will compare802

the model generated answers with ground truth an-803

swers in each benchmark, if the answers match, we804

will collect the code that produces these answers805

as the correct code for our subsequent annotation806

process.807

B Prompts for Error Injection 808

Figure 11 demonstrates the prompt for error injec- 809

tion, the LLM injector is required to inject plausi- 810

ble runtime logical error into existing correct code 811

with meta information such as benchmark question, 812

data file information. The output format should be 813

a well-formatted JSON dict. 814

C Error Types 815

The error types collected in our benchmark are 816

all Python Built-in Exceptions, more information 817

can be accessed at: https://docs.python.org/ 818

3/library/exceptions.html 819

D Prompts for Evaluation 820

Figure 12 and 13 demonstrates the prompts used 821

for evaluating LLMs and LRMs on single bug and 822

multi bug detection. The models are provided with 823

a benchmark question and a snippet of buggy code. 824

The models should identify the error and locate 825

cause and effect error line of code and reproduce 826

error message thrown by the Python Interpreter. 827

The output for single bug detection should be a 828

well-formatted JSON dict, the output for multi bug 829

detection should a list of aforementioned JSON 830

dict. 831

E Full Evaluation Results 832

We provide the full results of Single-Bug and Multi- 833

Bug evaluation with all four metrics in Table 7, 8, 834

9 and 10. 835
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You will be provided with an original query
and a data analysis code. Your task is to:
1. Read the Question carefully, determine
whether the code has followed the query
requirements, if so, further identify any
errors in its data analysis process. If the
code faithfully followed seemingly wrong
data analysis practices explicitly stated
in the Question. Deem it as correct.
2. Explain any errors found, including:
Explanation: Explain why this is an error
and what issues it may cause. Expected
Outcome: Explain how this error will
affect the data analysis results, such as
misleading outcomes, degraded performance,
or incorrect interpretations.
Output Format:
json
"is_error": "true/false",
"error_explanation":
"error_type": "Describe the type of error",
"explanation": "Detailed explanation of
why this is an error and its impact",
"expected_outcome": "How this error will
affect model performance or results",
"suggestions": "Specific suggestions for
fixing the error",
"error_type": "Another error type if
multiple errors exist",
"explanation": "Explanation for the second
error", "expected_outcome": "Expected
outcome for the second error",
"suggestions": "Suggestions for fixing the
second error"
Important Notes:
1. Always provide the output in the exact
JSON format specified above
2. Set "is_error" to "false" if no errors
are found
3. If "is_error" is "false", provide an
empty array for error_explanation
4. If "is_error" is "true", include all
identified errors in the error_explanation
array
5. Consider the original query requirements
carefully, if the code follows the query’s
explicit requirements, even if they seem
incorrect, consider it correct

Figure 10: The error verifying prompt in Data Annota-
tion.

You will receive three components:
1. Original Query: A user query that
contains specific requirements related to
data analysis.
2. Correct Data Analysis Code: A working
code snippet designed to analyze the data
according to the original query.
3. CSV Information: Details about the
structure content and sample data from the
CSV file being analyzed.
Your task is to:
1. Identify sklearn and pandas code:
Analyze the provided code and extract all
lines where sklearn or pandas libraries are
used. Organize these lines in a structured
format.
2. Inject errors that will cause
runtime interruptions: For EACH AND EVERY
identified sklearn and pandas lines inject
errors with the following guidelines:
Error Type: Inject errors that lead to
runtime interruptions such as syntax errors
attribute errors type errors or value
errors.
Plausibility: The modified lines should
still appear logical and plausible at first
glance but contain mistakes that will cause
the code to fail during execution.
Contextual alignment: Ensure the errors
take into account the structure and content
of the CSV file to create mistakes that are
realistic and aligned with potential data
issues.
Impact downstream processes: Errors should
trigger runtime interruptions effectively
halting the program before it completes
execution.
3. Explain each error: For every injected
error:
Describe why this is an error and the
conditions under which it would fail.
Provide details on the likely runtime error
e.g. KeyError ValueError AttributeError
etc..
4. Output the structured results:
Provide the original sklearn and pandas
code in a structured list.
Include the complete modified code with
runtimeinterrupting errors injected.
Clearly explain each injected error in a
concise and structured format.
Return your output in the following JSON
format:
original_sklearn_pandas_code:
Original sklearn or pandas code line
...
errors:
code: Modified whole code file with the
injected error
error_type: Specify the type of
runtimeinterrupting error e.g. KeyError
ValueError etc.
explanation: Describe why this is an error
and the conditions under which it will cause
a runtime interruption

Figure 11: The error injection prompt in Data Annota-
tion.
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SYSTEM PROMPT: You will be provided
with an original query and a data analysis
code. Your task is to:
1. Read the question carefully and identify
if there are any logic error injected into
the code.
2. For each logic error:
- Locate the Cause: Specify the exact line
of code that causes the issue.
- Locate the Effect: Identify the line of
code where the error will be triggered and
the interpreter will throw an error.
- Error Description: Provide a concise
description of the error message thrown
by the Python Interpreter (not the full
traceback).
Output Format:
json
cause_line: Specify the exact line of code
causing the issue
effect_line: Specify the exact line of
code where the error will be triggered
error_message: Provide a concise
description of the error message thrown
by the Python Interpreter not the full
traceback
There will be only one error in the code.
Output only ONE json dict in your response.

Figure 12: The single error evaluation prompt for tested
models.

SYSTEM PROMPT: You will be provided with
a data analysis code. Your task is to:
1. Read the code carefully and identify all
logic errors injected into the code. There
will be two or more logic errors in the
code.
2. For each logic error you identify:
- Locate the Cause: Specify the exact line
of code that causes the issue.
- Locate the Effect: Identify the line of
code where the error will be triggered and
the interpreter will throw an error or where
the incorrect behavior is observed.
- Error Description: Provide a concise
description of the error message thrown
by the Python Interpreter not the full
traceback. Focus on the type of error and
the reason if possible from the output.
Output Format:
json
cause_line: Specify the exact line of code
causing error 1
effect_line: Specify the exact line of code
where error 1 is triggered
error_message: Concise error message for
error 1 cause_line: Specify the exact line
of code causing error 2
effect_line: Specify the exact line of code
where error 2 is triggered
error_message: Concise error message for
error 2 ... and so on for all identified
errors There will be more than one error in
the code. BUT output only ONE json block
in your response.

Figure 13: The multi error evaluation prompt for tested
models.
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Model Cause Line Effect Line Error Type Error Message
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

gpt-4o 39.5 39.0 39.2 39.0 34.7 34.3 34.5 34.3 31.0 30.6 30.8 30.6 31.8 31.4 31.6 31.4
gpt-4o-mini 43.3 40.2 41.7 40.2 25.7 23.9 24.8 23.9 23.4 21.7 22.5 21.7 23.0 21.3 22.1 21.3
claude-3-5-sonnet 45.4 43.7 44.6 43.7 36.6 35.2 35.9 35.2 37.7 36.3 37.0 36.3 35.3 34.0 34.7 34.0
llama-3.1-8b-instant 32.4 25.2 28.4 25.2 18.2 14.2 15.9 14.2 9.9 7.7 8.6 7.7 9.2 7.2 8.0 7.2
llama-3.1-70b-versatile 45.7 42.5 44.0 42.5 31.4 29.3 30.3 29.3 21.9 20.4 21.1 20.4 22.5 20.9 21.7 20.9
llama-3.1-405b-instruct 46.9 41.7 44.1 41.7 35.2 31.3 33.1 31.3 32.9 29.3 31.0 29.3 32.9 29.3 31.0 29.3
Qwen2.5-7B-Instruct 31.0 29.3 30.1 29.3 20.4 19.3 19.8 19.3 11.3 10.7 11.0 10.7 11.6 10.9 11.2 10.9
Qwen2.5-32B-Instruct 43.5 40.9 42.1 40.9 32.4 30.5 31.4 30.5 26.3 24.7 25.5 24.7 26.3 24.7 25.5 24.7
Qwen2.5-72B-Instruct 43.8 41.6 42.6 41.6 38.1 36.2 37.1 36.2 29.0 27.5 28.2 27.5 28.8 27.4 28.1 27.4
deepseek-chat 50.6 48.3 49.4 48.3 36.2 34.5 35.4 34.5 37.6 35.9 36.7 35.9 36.4 34.7 35.5 34.7

Table 7: Overall evaluation results of Single-Bug Detection on DSDBench. P=Precision, R=Recall, F1=F1-Score,
Acc=Accuracy.

Model Cause Line Effect Line Error Type Error Message
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

gpt-4o 20.5 20.3 20.4 20.3 10.5 10.4 10.5 10.4 3.6 3.6 3.6 3.6 4.7 4.7 4.7 4.7
gpt-4o-mini 11.3 11.2 11.2 11.2 2.7 2.7 2.7 2.7 2.2 2.2 2.2 2.2 0.8 0.8 0.8 0.8
claude-3-5-sonnet 12.5 12.3 12.4 12.3 4.2 4.1 4.1 4.1 1.9 1.9 1.9 1.9 2.5 2.5 2.5 2.5
llama-3.1-8b-instant 5.1 3.0 3.8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
llama-3.1-70b-versatile 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
llama-3.1-405b-instruct 24.2 18.6 21.1 18.6 11.0 8.5 9.6 8.5 1.4 1.1 1.2 1.1 3.2 2.5 2.8 2.5
Qwen2.5-7B-Instruct 5.9 4.7 5.2 4.7 1.4 1.1 1.2 1.1 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0
Qwen2.5-32B-Instruct 17.6 17.5 17.6 17.5 6.3 6.3 6.3 6.3 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2
Qwen2.5-72B-Instruct 21.4 21.4 21.4 21.4 11.2 11.2 11.2 11.2 3.0 3.0 3.0 3.0 3.6 3.6 3.6 3.6
deepseek-chat 15.2 15.1 15.1 15.1 6.6 6.6 6.6 6.6 3.3 3.3 3.3 3.3 4.7 4.7 4.7 4.7

Table 8: Overall evaluation results of Multi-Bug Detection on DSDBench. P=Precision, R=Recall, F1=F1-Score,
Acc=Accuracy.

Model Cause Line Effect Line Error Type Error Message
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

gpt-4o 35.8 35.4 35.6 35.4 31.6 31.2 31.4 31.2 33.7 33.3 33.5 33.3 33.7 33.3 33.5 33.3
gpt-4o-mini 42.7 39.6 41.1 39.6 31.5 29.2 30.3 29.2 27.0 25.0 25.9 25.0 24.7 22.9 23.8 22.9
claude-3-5-sonnet 37.0 35.4 36.2 35.4 27.2 26.0 26.6 26.0 34.8 33.3 34.0 33.3 32.6 31.2 31.9 31.2
llama-3.1-8b-instant 24.1 13.5 17.3 13.5 20.4 11.5 14.7 11.5 11.1 6.2 8.0 6.2 9.3 5.2 6.7 5.2
llama-3.1-70b-versatile 36.7 34.4 35.5 34.4 23.3 21.9 22.6 21.9 20.0 18.8 19.4 18.8 20.0 18.8 19.4 18.8
llama-3.1-405b-instruct 51.2 43.8 47.2 43.8 37.8 32.3 34.8 32.3 36.6 31.2 33.7 31.2 40.2 34.4 37.1 34.4
Qwen2.5-7B-Instruct 30.8 29.2 29.9 29.2 24.2 22.9 23.5 22.9 12.1 11.5 11.8 11.5 13.2 12.5 12.8 12.5
Qwen2.5-32B-Instruct 35.2 32.3 33.7 32.3 28.4 26.0 27.2 26.0 33.0 30.2 31.5 30.2 26.1 24.0 25.0 24.0
Qwen2.5-72B-Instruct 26.7 25.0 25.8 25.0 32.2 30.2 31.2 30.2 30.0 28.1 29.0 28.1 27.8 26.0 26.9 26.0
deepseek-chat 49.4 44.8 47.0 44.8 31.0 28.1 29.5 28.1 37.9 34.4 36.1 34.4 37.9 34.4 36.1 34.4
gemini-2.0-flash 49.4 42.7 45.8 42.7 37.3 32.3 34.6 32.3 38.6 33.3 35.8 33.3 41.0 35.4 38.0 35.4
deepseek-r1 51.6 49.0 50.3 49.0 51.6 49.0 50.3 49.0 56.0 53.1 54.5 53.1 57.1 54.2 55.6 54.2
o1-mini 46.2 43.8 44.9 43.8 38.5 36.5 37.4 36.5 46.2 43.8 44.9 43.8 49.5 46.9 48.1 46.9

Table 9: Comparison with large reasoning models (LRMs) on Single-Bug Detection. P=Precision, R=Recall,
F1=F1-Score, Acc=Accuracy.

Model Cause Line Effect Line Error Type Error Message
P R F1 Acc P R F1 Acc P R F1 Acc P R F1 Acc

gpt-4o 12.8 12.5 12.7 12.5 5.1 5.0 5.1 5.0 2.6 2.5 2.5 2.5 2.6 2.5 2.5 2.5
gpt-4o-mini 7.5 7.5 7.5 7.5 5.0 5.0 5.0 5.0 2.5 2.5 2.5 2.5 0.0 0.0 0.0 0.0
claude-3-5-sonnet 10.3 10.0 10.1 10.0 7.7 7.5 7.6 7.5 5.1 5.0 5.1 5.0 7.7 7.5 7.6 7.5
llama-3.1-8b-instant 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
llama-3.1-70b-versatile 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
llama-3.1-405b-instruct 23.3 17.5 20.0 17.5 16.7 12.5 14.3 12.5 6.7 5.0 5.7 5.0 6.7 5.0 5.7 5.0
Qwen2.5-7B-Instruct 3.3 2.5 2.9 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen2.5-32B-Instruct 17.5 17.5 17.5 17.5 0.0 0.0 0.0 0.0 5.0 5.0 5.0 5.0 2.5 2.5 2.5 2.5
Qwen2.5-72B-Instruct 22.5 22.5 22.5 22.5 17.5 17.5 17.5 17.5 2.5 2.5 2.5 2.5 5.0 5.0 5.0 5.0
deepseek-chat 12.8 12.5 12.7 12.5 7.7 7.5 7.6 7.5 5.1 5.0 5.1 5.0 7.7 7.5 7.6 7.5
o1-mini 37.8 35.0 36.4 35.0 24.3 22.5 23.4 22.5 18.9 17.5 18.2 17.5 18.9 17.5 18.2 17.5
gemini-2.0-flash 21.1 20.0 20.5 20.0 13.2 12.5 12.8 12.5 0.0 0.0 0.0 0.0 2.6 2.5 2.6 2.5
deepseek-r1 32.5 32.5 32.5 32.5 25.0 25.0 25.0 25.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

Table 10: Comparison with large reasoning models (LRMs) on Multi-Bug Detection. P=Precision, R=Recall,
F1=F1-Score, Acc=Accuracy.
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