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ABSTRACT

Large language models (LLMs) are increasingly employed in real-world appli-
cations, driving a need to determine when their generated text can be trusted or
should be questioned. To assess the trustworthiness of the generated text, reli-
able uncertainty estimation is essential. Current LLMs generate text through a
stochastic process that can lead to different output sequences for the same prompt.
Consequently, leading uncertainty measures require generating multiple output se-
quences to estimate the LLM’s uncertainty. However, generating additional output
sequences is computationally expensive, making these uncertainty estimates im-
practical at scale. In this work, we challenge the theoretical foundations of the
leading measures and derive an alternative measure that eliminates the need for
generating multiple output sequences. Our new measure is based solely on the
negative log-likelihood of the most likely output sequence. This vastly simpli-
fies uncertainty estimation while maintaining theoretical rigor. Empirical results
demonstrate that our new measure achieves state-of-the-art performance across
various models and tasks. Our work lays the foundation for reliable and efficient
uncertainty estimation in LLMs, challenging the necessity of the more compli-
cated methods currently leading the field.

1 INTRODUCTION

Language models are increasingly adopted in a wide range of real-world applications. Despite the
advancements in language models, determining whether a generated text can be trusted remains a
significant challenge. To address this challenge, it is crucial to reliably assess the level of certainty
a language model has regarding its generated text. While uncertainty estimates do not guarantee
factuality for generated text based on consistent but erroneous training data, they are a reliable
indicator of errors at present (Kuhn et al., 2023; Aichberger et al., 2024; Farquhar et al., 2024).

Assessing predictive uncertainty in language models is inherently difficult due to their autoregressive
nature. For a given input sequence, language models predict the next token probabilities, based on
which a specific token is selected and appended to the sequence. This stochastic process is repeated
for each new token. Selecting different tokens at specific steps during the generation leads to varying
output sequences for the same input sequence with the same language model. Consequently, the
space of possible output sequences is vast and computationally intractable to fully explore (Sutskever
et al., 2014; Vaswani et al., 2017; Radford et al., 2018).

Current uncertainty estimation methods rely on assessing the probability distribution over all possi-
ble output sequences. However, the generation of each additional token is computationally expen-
sive, and practical methods can only sample a small fraction of possible output sequences (Malinin
& Gales, 2021; Kadavath et al., 2022). Moreover, even after having generated multiple likely out-
put sequences, the question remains whether these indicate high uncertainty. A language model that
likely generates different output sequences is not necessarily uncertain about the underlying meaning
if the output sequences are semantically equivalent. Leading uncertainty measures address this fact
by considering the semantics of the output sequences, utilizing separate language inference models
(Kuhn et al., 2023; Farquhar et al., 2024). While these measures improve the performance of the
uncertainty estimates, they also further add complexity and computational overhead. These factors
make current uncertainty estimation methods impractical at scale, hindering their broad adoption in
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real-world applications. There is a need for efficient uncertainty estimation methods that give clear
insights into the reliability of language models without incurring substantial computational costs.

In this work, we assess whether we can theoretically motivate an uncertainty measure that does not
rely on the probability distribution over all possible output sequences. Building on insights from
the principled framework of proper scoring rules (Kotelevskii & Panov, 2024; Hofman et al., 2024),
we adopt the zero-one score as an alternative to the currently used logarithmic score for uncertainty
measures in NLG. This leads to a theoretically motivated measure that does not require generating
multiple output sequences but solely relies upon a single output sequence. Our proposed measure
is straightforward: it simply is the negative log-likelihood of the most likely output sequence. By
eliminating the need to generate and semantically cluster multiple output sequences, our measure
significantly reduces computational costs and complexity.

Experimental results demonstrate that our new measure matches or even exceeds the performance
of current state-of-the-art uncertainty estimation methods across various model classes, model sizes,
model stages, tasks, datasets, and evaluation metrics. In summary, our new measure not only pre-
serves theoretical rigor but also provides a more scalable solution for uncertainty estimation in lan-
guage models, making it highly practical for real-world applications.

Our main contributions are:
• We introduce the negative log-likelihood of the most likely output sequence as an efficient and

practical measure of uncertainty in NLG.
• We provide a rigorous theoretical foundation for our measure, building upon established principles

in uncertainty theory and proper scoring rules.
• We conduct extensive experiments demonstrating that our measure achieves strong performance,

matching or surpassing state-of-the-art methods while significantly reducing computational costs.

2 PREDICTIVE UNCERTAINTY IN NLG

Preliminaries. We assume a fixed training dataset D = {si}Ni=1 consisting of ordered tokens
st ∈ V , with V being a given vocabulary. Each token at step t is assumed to be sampled according
to the predictive distribution p(st | s<t,w

∗), conditioned on the sequence of preceding tokens
s<t and the true (but unknown) language model parameters w∗. We assume that the given model
class can theoretically represent the true predictive distribution, a common and usually necessary
assumption (Hüllermeier & Waegeman, 2021). How likely language model parameters w̃ match
w∗ is determined by the posterior distribution p(w̃ | D) = p(D | w̃)p(w̃)/p(D).

In language model inference, the input to a given language model parameterized by w is a sequence
x = (x1, ..., xM ) and the output is a sequence y = (y1, ..., yT ) ∈ YT , with x, y ∈ V and YT

being the set of all possible output sequences with a sequence length smaller equal to T . The
likelihood of a token yt ∈ y being generated by the language model is conditioned on both the input
sequence and all previously generated tokens, denoted as p(yt | x,y<t,w). The likelihood of output
sequences y ∈ YT being generated by the language model is then the product of the individual token
probabilities, denoted as p(y | x,w) =

∏T
t=1 p(yt | x,y<t,w) (Sutskever et al., 2014), while the

heuristic length-normalized variant is p̄(y | x,w) = exp
(

1
T

∑T
t=1 log p(yt | x,y<t,w)

)
(Malinin

& Gales, 2021).

Computing the likelihood of a specific output sequence y being generated by the language model
parameterized by w – or in other words, being sampled from the probability distribution over pos-
sible output sequences y ∼ p(y | x,w) – is straightforward. The language model directly provides
the individual token likelihoods. However, determining the full probability distribution over pos-
sible output sequences is considerably more challenging, since YT scales exponentially with the
sequence length T . The computational complexity of evaluating all possible sequences grows as
O(|V|T ). Since modern language models even exceed a vocabulary size |V| of one hundred thou-
sand tokens, this distribution becomes intractable to compute, even for relatively short maximal
sequence lengths T (Dubey et al., 2024).
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Uncertainty Measures and Proper Scoring Rules. We now derive measures to estimate uncer-
tainty in NLG. Throughout this work, the focus is on estimating the predictive uncertainty of a
single, given “off-the-shelf” model. We assume to that a given language model parameterized by w
is the predicting model used to sample output sequences y ∼ p(y | x,w). Furthermore, we assume
that any language model parameterized by w̃ is an approximation of the true predictive distribution
according to its posterior probability p(w̃ | D). Together, these two assumptions give rise to spe-
cific uncertainty measures (Schweighofer et al., 2023; 2024), as elaborated on in more detail below.
Aichberger et al. (2024) shows that established uncertainty measures in NLG, such as Predictive En-
tropy (PE) (Malinin & Gales, 2021) and Semantic Entropy (SE) (Kuhn et al., 2023; Farquhar et al.,
2024), naturally emerge under this assumption. In general, the information-theoretic entropy has
become the standard measure to assess predictive uncertainty. However, recent studies by Lahlou
et al. (2023); Gruber & Buettner (2023); Kotelevskii & Panov (2024) and Hofman et al. (2024) have
shown that these information-theoretic measures are not the only viable options. A broader class
of proper scoring rules provides a principled framework for predictive uncertainty measures. In the
following, we leverage this framework to derive our alternative measure that relies solely on a single
output sequence. We begin by discussing the concept of proper scoring rules.

In general, proper scoring rules are a class of functions that evaluate the quality of probabilistic
predictions by assigning a numerical score based on the predictive distribution and the actual obser-
vations (Gneiting & Raftery, 2007). For uncertainty estimation in NLG, the general notion of proper
scoring rules assigns a numerical score to how well the predicted distribution of output sequences
p(y | x, ·) aligns with the observed output sequence y′. In particular, a proper scoring rule is an
extended real-valued function S : P × Y → [−∞,∞], such that S(p, ·) is P-quasi-integrable over
a convex class of probability measures P . The expected score over possible output sequences y′ is
given by

Ey′∼p(y′|x,·) [S (p(y | x, ·),y′)] (1)

Given this general formulation, we now incorporate the assumptions outlined above to establish the
connection to uncertainty measures (Schweighofer et al., 2024). First, under the assumption about
the predicting model, the distribution giving rise to the observed output sequences p(y′ | x, ·) corre-
sponds to the predictive distribution of the given language model, denoted as p(y′ | x,w). Second,
under the assumption about the approximation of the true predictive distribution, a sampled output
sequence y′ has to be compared to all possible language models parameterized by w̃, according
to their posterior distribution p(w̃ | D). This captures how much the sampled output sequence
aligns with all possible predictive distributions p(y | x, w̃). Therefore, we take a posterior expecta-
tion over Eq. (1), which can be additively decomposed into an entropy term and a divergence term
(Gneiting & Raftery, 2007; Kull & Flach, 2015):

Ew̃∼p(w̃|D)

[
Ey′∼p(y′|x,w) [S (p(y | x, w̃),y′)]

]︸ ︷︷ ︸
expected score

(2)

= Ey′∼p(y′|x,w) [S (p(y | x,w),y′)]︸ ︷︷ ︸
entropy term

+ Ew̃∼p(w̃|D)

[
Ey′∼p(y′|x,w) [S (p(y | x, w̃),y′)− S (p(y | x,w),y′)]

]︸ ︷︷ ︸
divergence term

.

Aleatoric and Epistemic Uncertainty. In terms of predictive uncertainty, this general framework
can be interpreted as follows. The expected score over possible output sequences and language
model parameters captures the total uncertainty of the given language model. The entropy term
reflects aleatoric uncertainty, which is the uncertainty inherent in the data generation process, arising
from the inherent variability and randomness in natural language (Gal, 2016; Kendall & Gal, 2017).
The divergence term reflects epistemic uncertainty, which quantifies the uncertainty due to lack of
knowledge about the true language model parameters, arising from limited data or model capacity
(Houlsby et al., 2011; Gal, 2016; Malinin, 2019; Hüllermeier & Waegeman, 2021).

The concrete total, aleatoric, and epistemic uncertainty measures depends on the choice of proper
scoring rule. For instance, the logarithmic score is the most common proper scoring rule that
gives rise to the well-known information-theoretic uncertainty measures in both classification tasks
(Houlsby et al., 2011; Gal, 2016) and NLG (Malinin & Gales, 2021; Kuhn et al., 2023).
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In the following, we first revisit these uncertainty measures that are based on the logarithmic score
and analyze their effectiveness in estimating aleatoric and epistemic uncertainty. Thereafter, we
propose uncertainty measures that are based on another proper scoring rule, the zero-one score.
This score has not yet been considered for uncertainty estimation in NLG. We show that utilizing
uncertainty measures based on the zero-one score offers certain advantages.

2.1 ESTABLISHED UNCERTAINTY MEASURES IN NLG BASED ON LOGARITHMIC SCORE

The logarithmic score is usually assumed implicitly to derive uncertainty measures, due to the foun-
dation of resulting measures in information theory (Lahlou et al., 2023; Gruber & Buettner, 2023;
Hofman et al., 2024; Kotelevskii & Panov, 2024). In the context of NLG, it considers the negative
log-likelihood of a generated output sequence y′:

Slog (p(y | x, ·),y′) = − log p(y = y′ | x, ·) . (3)

Using the logarithmic score in Eq. (2) results in the cross-entropy CE(· ; ·) between the output se-
quence distribution of the given language model and that of every possible language model according
to their posterior p(w̃ | D) (Schweighofer et al., 2023; Aichberger et al., 2024):

Ew̃∼p(w̃|D)

[
CE(p(y | x,w); p(y | x, w̃))

]︸ ︷︷ ︸
total

(4)

= H(p(y | x,w))︸ ︷︷ ︸
aleatoric

+Ew̃∼p(w̃|D)

[
KL(p(y | x,w) ∥ p(y | x, w̃))

]︸ ︷︷ ︸
epistemic

.

The epistemic uncertainty is a posterior expectation of the Kullback-Leibler divergence KL(· ∥ ·)
between the output sequence distribution of the given model and that of all possible models. This
requires considering every possible model parametrization. Since modern language models have
billions of parameters (Radford et al., 2018; Zhang et al., 2022; Touvron et al., 2023; Zuo et al.,
2024; Dubey et al., 2024), the epistemic uncertainty is particularly challenging to estimate.

Current work usually solely considers the aleatoric uncertainty, which is the Shannon entropy H(·)
of the output sequence distribution of the given language model (Malinin & Gales, 2021; Kuhn et al.,
2023; Aichberger et al., 2024). Computing the output sequence distribution still requires considering
the whole set of possible output sequences YT . Thus, the primary objective of uncertainty estimation
based on the logarithmic score is to closely approximate this output sequence distribution.

Predictive Entropy. The aleatoric uncertainty under a given language model is the entropy of the
output sequence distribution, commonly referred to as Predictive Entropy (PE). Intuitively, high PE
implies that the language model is likely to generate different output sequences from the same input
sequence, indicating high uncertainty of the language model. PE usually is estimated via Monte
Carlo (MC) sampling (Malinin & Gales, 2021):

H(p(y | x,w)) = Ey∼p(y|x,w) [− log p(y | x,w)] (5)

≈ 1

N

N∑
n=1

− log p(yn | x,w) , yn ∼ p(y | x,w) .

Semantic Entropy. Semantic Entropy (SE) builds on the fact that output sequences may be different
on a token level but equivalent on a semantics level. In such cases, the PE can be misleading, as it
reflects high uncertainty even when different output sequences have the same semantic meaning. PE
also captures the uncertainty of the language model in expressing the semantically same statement,
which is often not the focus of uncertainty estimation in NLG. Thus, instead of the entropy of the
output sequence distribution, the entropy of the semantic cluster distribution is considered, denoted
as p(c | x,w) =

∑
Y p(c | x,y,w) p(y | x,w). The probability of an output sequence belonging

to a semantic cluster is usually approximated with a separate natural language inference model. High
SE implies that the language model is likely to generate output sequences that have high semantic
diversity, indicating high semantic uncertainty (Kuhn et al., 2023; Farquhar et al., 2024).

H(p(c | x,w)) = Ec∼p(c|x,w) [− log p(c | x,w)] (6)

≈ 1

N

N∑
n=1

− log p(cn | x,w) , cn ∼ p(c | x,w) .
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Each of these uncertainty measures based on the logarithmic score considers the distribution over
all possible output sequences p(y | x,w), which is defined over the entire set of possible output
sequences YT . To approximate this distribution, it requires sampling output sequences from YT .
This requires generating multiple output sequences, which is computationally expensive. In the
following, we eliminate this requirement by considering an alternative proper scoring rule.

2.2 NEW UNCERTAINTY MEASURES IN NLG BASED ON ZERO-ONE SCORE

Next, we introduce measures based on the zero-one score, which has not yet been considered as
a proper scoring rule for deriving uncertainty measures in NLG. The zero-one score considers the
predictive distribution for the most likely output sequence:

S0-1 (p(y | x, ·),y′) =

{
1− p(y = y′ | x, ·) if y′ = argmax y p(y | x, ·),
0 otherwise.

(7)

Using the zero-one score in Eq. (2) results in the total uncertainty being the expected confidence of
the given language model about the most likely output sequences generated by all language models
according to their posterior probability p(w | D):

Ew̃∼p(w̃|D) [1− p(y = ỹ∗ | x,w)]︸ ︷︷ ︸
total

(8)

= 1− p(y = y∗ | x,w)︸ ︷︷ ︸
aleatoric

+ p(y = y∗ | x,w)− Ew̃∼p(w̃|D) [p(y = ỹ∗ | x,w)]︸ ︷︷ ︸
epistemic

,

with y∗ = argmax y p(y | x,w) and ỹ∗ = argmax y p(y | x, w̃). Similar to Eq. (4), the epistemic
uncertainty is a posterior expectation that remains challenging to estimate. However, we again focus
on the aleatoric uncertainty, which solely considers the likelihood of the most likely output sequence
under the given language model.

While aleatoric uncertainty derived from the logarithmic score requires approximating the entire
output sequence distribution by sampling multiple sequences (as seen in Eq. (5) and Eq. (6)), the
aleatoric uncertainty based on the zero-one score (see Eq. (8)) requires approximating the most
likely output sequence under the given language model. This distinction is crucial, as approximating
the most likely output sequence aligns directly with standard inference techniques widely used in
language models, such as greedy decoding, beam search (Sutskever et al., 2014), top-k sampling,
or nucleus sampling (Holtzman et al., 2020). For numerical stability, we consider the negative
log-likelihood of the most likely output sequence that is proportional to the measure of aleatoric
uncertainty in Eq. (8). We propose to estimate this quantity using the greedily decoded output
sequence as an efficient and effective measure of aleatoric uncertainty:

NLL := −
T∑

t=1

log

(
max
yt

p(yt | x,y<t,w)

)
≈ − log p(y = y∗ | x,w) (9)

Discussion. Our proposed uncertainty measure challenges the prevailing reliance on multi-sequence
sampling and semantic clustering for uncertainty estimation in NLG. By solely relying on the out-
put sequences generated with greedy decoding, our approach significantly reduces computational
overhead while maintaining theoretical rigor through its foundation in proper scoring rules. While
uncertainty measures based on the logarithmic score could theoretically excel if the full distribu-
tion over output sequences p(y | x,w) were accessible – as in standard classification tasks – this
distribution is intractable for NLG tasks due to their sequential nature. As a result, sampling-based
methods often yield crude approximations, constrained by computational limits and sampling vari-
ability. In contrast, our uncertainty measure, based on the zero-one score, offers a more rigorous
alternative while eliminating the need for extensive sampling. In Sec. 4, we demonstrate that using
our measure of uncertainty yields performance that is superior to or at least on par with uncertainty
measures based on the logarithmic score. This makes our method more practical for large-scale
applications.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 RELATED WORK

In the previous section, we discussed uncertainty estimation methods based on the logarithmic score.
Beyond these, there is a body of work that extends the concept of Semantic Entropy (Kuhn et al.,
2023; Farquhar et al., 2024), for instance by either improving the semantic clustering (Nikitin et al.,
2024; Qiu & Miikkulainen, 2024), improving the sampling of output sequences (Aichberger et al.,
2024), or directly approximating the measure from hidden states of the language model (Kossen
et al., 2024). Also, there is a body of work that builds upon the concept of Predictive Entropy
(Malinin & Gales, 2021), for instance by considering a weighting factor for individual token and
sequence likelihoods to account for the importance on a semantic level (Duan et al., 2023; Bakman
et al., 2024).

There is also work on uncertainty estimation in NLG that is not grounded in proper scoring rules.
For instance, several approaches leverage the language model itself to directly predict uncertainty,
whether through numerical estimates or verbal explanations (Mielke et al., 2022; Lin et al., 2022;
Kadavath et al., 2022; Cohen et al., 2023a; Ganguli et al., 2023; Ren et al., 2023; Tian et al., 2023).
Cohen et al. (2023b) employ cross-examination, where one language model generates an output
sequence and another model acts as an examiner to assess uncertainty. Zhou et al. (2023) explore the
behavior of language models when expressing their uncertainty, providing insights into how models
articulate confidence in their predictions. Also, Manakul et al. (2023) propose using sampled output
sequences as input for another language model to assess uncertainty, offering a unique perspective on
sequence evaluation. Additionally, Xiao et al. (2022) provide an empirical analysis of how factors
such as model architecture and training data influence uncertainty estimates. Finally, conformal
prediction (Quach et al., 2023) offers another approach by calibrating a stopping rule for output
sequence generation, providing a statistical framework for uncertainty estimation.

4 EXPERIMENTS

We aligned the evaluation of uncertainty estimation methods with related work by focusing on free-
form question-answering tasks (Kuhn et al., 2023; Duan et al., 2023; Bakman et al., 2024; Nikitin
et al., 2024; Aichberger et al., 2024; Kossen et al., 2024). While Farquhar et al. (2024) additionally
concerns experiments with paragraph-length generations, their approach involves breaking down the
entire paragraph into factual claims and reconstructing corresponding questions. Since the perfor-
mance is expected to correlate with the performance on free-form question answering, we decided
to focus specifically on free-form question answering tasks for a more direct assessment and less
ambiguity in the evaluation.

Datasets. We evaluated uncertainty estimation methods on three different datasets. We used the
over 3,000 test instances from TriviaQA (Joshi et al., 2017) concerning trivia questions, the over
300 test instances from SVAMP (Patel et al., 2021) concerning elementary-level math problems, and
the over 3,600 test instances from NQ-Open (Lee et al., 2019) to assess natural questions aggre-
gated from Google Search. Each dataset was utilized for two distinct tasks: (1) generating concise
answers in the form of short phrases, and (2) producing more detailed answers in the form of full
sentences (Farquhar et al., 2024). The resulting six tasks span a broad range of scenarios, ensuring
a comprehensive evaluation of the uncertainty estimation methods.

Models. We conducted our evaluations on six distinct language models across different architec-
tures, sizes, and training stages. Specifically, we used the Transformer-based model series Llama-3.1
(Vaswani et al., 2017; Dubey et al., 2024) and the state-space model series Falcon Mamba (Gu &
Dao, 2024; Zuo et al., 2024), representing two prominent language model paradigms. To assess the
effect of training stage model scale on uncertainty estimation in NLG, we considered pre-trained
(PT) and instruction-tuned (IT) language models with 7, 8, and 70 billion parameters, together cov-
ering a wide spectrum of model characteristics.

Baselines. We compare our method against the commonly used uncertainty measures based on
the logarithmic score as of Eq. (5) and Eq. (6). These include Predictive Entropy (PE), length-
normalized Predictive Entropy (LN-PE) (Malinin & Gales, 2021), Semantic Entropy (SE), length-
normalized Semantic Entropy (LN-SE), and Discrete Semantic Entropy (D-SE) (Kuhn et al., 2023;
Farquhar et al., 2024). For a given output sequence y′, the length-normalized variants consider p̄(y′ |
x,w) instead of p(y′ | x,w) to compute the uncertainty estimates. The discrete variant of Semantic

6
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Table 1: Average AUROC across TriviaQA, SVAMP and NQ datasets, using uncertainty estimates
of different measures to distinguish between correct and incorrect answers. Varying model architec-
tures (transformer, state-space), model sizes (7B, 8B, 70B), and model stages (PT, IT) are consid-
ered for generating answers. The reference answer is generated using greedy decoding, either as a
whole sentence (long) or a short phrase (short). The reference answer’s correctness is assessed by
checking if the F1 score of the commonly used SQuAD metric exceeds 0.5 (F1) or if the LLM-as-a-
judge considers it as correct (LLM). Predictive Entropy (PE), length-normalized Predictive Entropy
(LN-PE), Semantic Entropy (SE), length-normalized Semantic Entropy (LN-SE), and discrete Se-
mantic Entropy (D-SE) use 10 output sequences to assign an uncertainty estimate, each generated
via multinomial sampling. NLL solely uses the reference answer to assign an uncertainty estimate.

Uncertainty measure based score Logarithmic Zero-One
Model Gen. Metric PE LN-PE SE LN-SE D-SE NLL

Tr
an

sf
or

m
er

8B

PT
short F1 .776 .795 .775 .793 .804 .824
short LLM .698 .714 .690 .706 .719 .726
long LLM .562 .555 .545 .553 .600 .649

IT
short F1 .772 .801 .805 .814 .806 .838
short LLM .676 .697 .704 .709 .694 .722
long LLM .551 .548 .599 .601 .609 .615

70B

PT
short F1 .775 .790 .793 .803 .791 .820
short LLM .693 .709 .718 .722 .715 .723
long LLM .552 .534 .558 .569 .571 .649

IT
short F1 .748 .781 .790 .799 .783 .792
short LLM .681 .698 .703 .709 .699 .699
long LLM .555 .557 .568 .595 .600 .562

St
at

e-
Sp

ac
e

7B

PT
short F1 .811 .815 .809 .822 .828 .843
short LLM .705 .711 .701 .711 .716 .728
long LLM .567 .597 .574 .611 .624 .612

IT
short F1 .793 .814 .797 .816 .829 .838
short LLM .690 .701 .689 .699 .711 .719
long LLM .588 .587 .597 .618 .629 .615

Entropy entirely disregards the output sequence likelihood and only considers the proportion of
output sequences that belong to the same semantic cluster (Farquhar et al., 2024).

Evaluation. Effective uncertainty measures should accurately reflect the reliability of answers gen-
erated by the language model. Higher uncertainty more likely leads to incorrect generations. Thus,
to evaluate the performance of an uncertainty estimator, we assess how well it correlates with the
correctness of the language model’s answers; correct answers should be assigned a lower uncertainty
estimator than incorrect answers. To determine whether an answer is correct, it has to be compared
to the respective ground truth answer. To do so, we check if the F1 score of the commonly used
SQuAD metric exceeds 0.5 (Rajpurkar et al., 2016). Although there are some limitations to using
such a simple metric, it has relatively small errors in standard data sets and, therefore, remains widely
used in practice However, this metric is only applicable for short-phrase generations that align with
the ground truth answer. Therefore, we additionally employ Llama-3.1 with 70 billion parameters
(Dubey et al., 2024) as an LLM-as-a-judge to assess the correctness of both short-phrase and full-
sentence generations. Subsequently, to measure the correlation between incorrectness of answers
and the respective uncertainty estimates, we use the Area Under the Receiver Operating Character-
istic (AUROC). Higher AUROC values indicate better performance of the uncertainty estimator, as
it reflects a stronger alignment between the correctness of the language model’s answers and their
respective uncertainty estimates. Overall, this evaluation process follows established methodologies
for assessing the performance of uncertainty measures in NLG (Kuhn et al., 2023; Duan et al., 2023;
Bakman et al., 2024; Farquhar et al., 2024; Nikitin et al., 2024; Aichberger et al., 2024; Kossen et al.,
2024).
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Figure 1: Average AUROC for the TriviaQA dataset, using the Llama-3.1-8B model to generate
short phrase answers. The reference answer is generated using multinomial sampling (MS) with
different temperature values (t), Greedy decoding (GD), and beam search (BS) with a different
number of beams.

Analysis of results. Tab. 1 summarizes the performance of uncertainty measures across six differ-
ent language models and six different tasks. Our proposed measure (NLL) largely outperforms cur-
rent state-of-the-art uncertainty measures, particularly in tasks that involve generating short phrases.
This suggests that our measure is highly effective when focusing on the critical part of the out-
put sequence that contains the actual answer to a question. In practical scenarios, the reliability
of the specific answer is often more relevant than the uncertainty of the entire generated sentence.
Thus, our measure provides targeted and computationally efficient uncertainty estimates, delivering
enhanced performance where it is most critical, especially in real-world applications.

Approximating the most likely output sequence. Figure 1 illustrates the performance of our un-
certainty measure when considering different inference techniques for generating answers. The
reference answer, generated via beam search with a size of 20, is used to assess correctness, as it
provides the best approximation of the most likely answer generated by the language model. Since
the baselines are evaluated on output sequences generated using their optimal hyperparameter set-
tings, their performance remains consistent. The results show that as the approximation to the most
likely answer improves, so does the performance of our measure. However, while multinomial sam-
pling significantly degrades the performance of our uncertainty measure, greedy decoding achieves
performance comparable to more precise methods, such as beam search, reinforcing its validity as
an effective approximation of the most likely output sequence.

Further experimental results and insights into the behavior of the uncertainty estimators can be found
in Sec. A and Sec. B in the appendix.

5 CONCLUSION

We introduced a computationally efficient, theoretically grounded uncertainty measure, the negative
log-likelihood of the most likely output sequence under a given language model. This measure is
motivated by the general notion of proper scoring rules, providing a theoretically justified measure
that is well aligned with the practical usage of LLMs. The experiments show that our measure per-
forms extremely well with just a single generated output sequence, compared to previous measures
that require multiple costly sequences to estimate the uncertainty. As a result, our approach repre-
sents a significant advance toward providing reliable uncertainty estimates that can be effectively
applied at scale.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Although our proposed measure effectively captures uncertainty, it currently does not consider the
semantics of the generated output sequence. Future work should investigate how it could be extended
to also account for semantic meaning, to further enrich the uncertainty estimator while preserving
its computational efficiency.. Furthermore, all measures based on proper scoring rules depend on
heuristics such as length normalization to deal with varying sequence lengths (Malinin & Gales,
2021; Duan et al., 2023; Bakman et al., 2024). Investigating theoretically justified means to account
for these varying generation characteristics is another promising direction for future work. While
there remain opportunities for refinement, our proposed measure establishes a solid foundation for
reliable and scalable uncertainty estimation in NLG.

ETHICS AND REPRODUCIBILITY STATEMENT

We acknowledge that language models can generate biased or harmful content if not properly man-
aged. While our uncertainty estimation method enhances reliability, we encourage the responsible
use of our approach in conjunction with bias mitigation and content moderation techniques.

We have made concerted efforts to ensure the reproducibility of our results. We report the raw av-
erage scores across held-out test datasets without standard error, as the distributional characteristics
are more reflective of the models and datasets selected than the uncertainty estimation method it-
self. Theoretical derivations are provided in Sec. 2. All datasets are publicly available, and standard
benchmarks are utilized to facilitate replication. The source code for reproducing all experiments
will be made available upon publication.
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A COMPARISION OF ESTIMATORS

In this section we want to empirically investigate the performance of estimators for the predictive
entropy H(p(y | x)) (Eq. (5)) and the maximum likelihood 1−maxy p(y | x) (Eq. (8)). Therefore,
we consider a synthetic experiment with the following setup. We are given a space of possible
outcomes V with |V| = {10, 100}. The task is to predict a sequence y = (y1, ...yT ) ∈ YT where y ∈
V and T is 2, 3, or 4. Predictive distributions p(y | x) =

∏T
t=1 p(yt | y<t,x) are not represented

by a neural network, but randomly sampled (but fixed per run) according to a Dirichlet distribution
Dir({α1, ..., α|V|}). The alpha parameters of the Dirichlet distribution are specified to yield typical
predictive distributions as encountered in language models that follow a power law. For |V| = 10 we
have α1,2 = 10 and α3−10 = 0.2. For |V| = 100 we have α1,2 = 10, α3−6 = 1 and α7−100 = 0.2.
Note that the order of alpha values is randomly shuffled before drawing each predictive distribution.
Representative predictive distributions sampled from this Dirichlet distribution are shown in the
leftmost subfigures in Fig. 2 and Fig. 3.

The experiments investigate the quality of the estimators depending on the number of samples
{yn}Nn=1. This is possible because it is possible to calculate the ground truth values for both the
entropy and the maximum likelihood sequence for this small synthetic example by exhaustive enu-
meration. We average over 1,000 runs, meaning that the predictive distributions are redrawn accord-
ing to the respective Dirichlet distribution. This corresponds to evaluating uncertainty for different
input sequences x for language models.

Entropy estimation. The results are shown in Fig. 2. We observe that the variance of estimators
increases for larger vocabulary sizes |V| and sequence lengths T . Furthermore, lower temperatures
decrease the variance of the estimator at the cost of introducing bias.

Maximum Likelihood. The results are shown in Fig. 3. We observe that low-temperature multi-
nomial sampling and beam search find the maximum log-likelihood with a low number of samples
with high probability. Greedy decoding (beam size = 1) finds the maximum for all settings except
the hardest (∥V| = 100, T = 4), where it takes a beam size of 2 to find it.

B DETAILED RESULTS

In this section, we provide detailed results to complement the main results presented in Tab. 1.

The main results used greedy decoding (beam search of size 1) to estimate the maximum likeli-
hood (zero-one score based measure) and 10 samples to estimate entropies (logarithmic score based
measures). For each dataset, we performed a hyperparameter search on held-out instances to deter-
mine the best performing temperature t ∈ {0.5, 1.0, 1.5} for sampling output sequences used for the
logarithmic score based measures.

We look into how much the maximum likelihood benefits from additional samples by increasing the
beam with to 5. The results are given in Tab. 2, showing that our measure continues to improve for
a larger number of beams, thus better estimates of the maximum likelihood sequence. Furthermore,
we provide detailed results for individual datasets in Tab. 3, complimenting the results presented in
the main paper (c.f. Tab. 1).

The AUROC is considered as a primary performance measure throughout the paper. We additionally
consider the average rejection accuracy, i.e. the accuracy of model predictions when allowing to
reject a certain budget of predictions based on the uncertainty estimate. Thus, predictions are only
evaluated for the 80% most certain predictions. Results are given in Tab. 4, again with greedy
decoding for our measure based on the zero-one score. The results show, that our measure is very
competitive across all settings, despite its simplicity and efficiency.
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Figure 2: Estimator of Predictive Entropy. Results for different vocabulary sizes (rows) and se-
quence lengths (columns). The two leftmost subfigures show exemplary predictive distributions
p(yt | y<t,x). We estimate the entropy using N samples by means of Eq. (5). Lines denote the
average over runs, while shades denote one standard deviation. We compare multinomial sampling
(MS) for two commonly used temperatures. The experiments show that temperature decreases vari-
ance but introduces bias.
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Figure 3: Estimator of maximum likelihood. Results for different vocabulary sizes (rows) and
sequence lengths (columns). The two leftmost subfigures show exemplary predictive distributions
p(yt | y<t,x). We estimate the maximum likelihood using the maximum over N sampled obtained
by beam search or multinomial sampling (MS) with different temperatures. Lines denote the median,
shades signify the possible values between the 5 and 95 percent quantile. Even with a very low
number of samples, low-temperature multinomial sampling (MS) and beam search are able to find
the maximum with high probability.
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Table 2: Average AUROC across TriviaQA, SVAMP, and NQ datasets, using uncertainty estimates
of different measures as a score to distinguish between correct and incorrect answers. Varying
model architectures (transformer, state-space), model sizes (7B, 8B, 70B), and model stages (PT,
IT) are considered for generating answers. The reference answer is generated using beam search
with 5 beams, either as a whole sentence (long) or a short phrase (short). The correctness of the
reference answer is assessed by checking if the F1 score of the commonly used SQuAD metric
exceeds 0.5 (F1) or the Llama-3.1-70B model considers it as correct (LLM). Predictive Entropy
(PE), length-normalized Predictive Entropy (LN-PE), Semantic Entropy (SE), length-normalized
Semantic Entropy (LN-SE), and discrete Semantic Entropy (D-SE) use 10 output sequences to assign
an uncertainty estimate, each generated via multinomial sampling. NLL solely uses the reference
answer to assign an uncertainty estimate.

Uncertainty measure based score Logarithmic Zero-One
Model Gen. Metric PE LN-PE SE LN-SE D-SE NLL

Tr
an

sf
or

m
er

8B

PT
short F1 .775 .791 .765 .787 .799 .822
short LLM .700 .712 .686 .704 .713 .726
long LLM .556 .540 .493 .520 .578 .591

IT
short F1 .778 .808 .805 .819 .811 .845
short LLM .682 .704 .706 .713 .698 .729
long LLM .535 .520 .584 .585 .586 .559

70B

PT
short F1 .788 .799 .796 .812 .798 .833
short LLM .700 .717 .719 .727 .718 .725
long LLM .540 .552 .489 .531 .552 .608

IT
short F1 .756 .786 .796 .806 .788 .800
short LLM .680 .697 .701 .707 .695 .707
long LLM .534 .533 .544 .569 .574 .534

St
at

e-
Sp

ac
e

7b

PT
short F1 .814 .818 .806 .823 .825 .846
short LLM .703 .709 .699 .711 .712 .719
long LLM .570 .595 .550 .609 .602 .563

IT
short F1 .799 .815 .794 .817 .828 .845
short LLM .699 .713 .694 .709 .720 .730
long LLM .574 .575 .582 .621 .607 .577
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Table 3: Average AUROC of individual datasets, using uncertainty estimates of different measures
as a score to distinguish between correct and incorrect answers.

Uncertainty measure based score Logarithmic Zero-One
D Model Gen. Metric PE LN-PE SE LN-SE D-SE NLL

Tr
iv

ia
Q

A

Tr
an

sf
or

m
er

8B

PT
short F1 .758 .778 .788 .798 .787 .810
short LLM .675 .694 .703 .704 .682 .722
long LLM .592 .604 .640 .631 .650 .704

IT
short F1 .735 .768 .790 .800 .777 .809
short LLM .660 .684 .708 .710 .680 .716
long LLM .603 .627 .678 .672 .670 .670

70B

PT
short F1 .707 .730 .741 .743 .702 .744
short LLM .650 .660 .696 .695 .656 .698
long LLM .538 .533 .625 .574 .563 .692

IT
short F1 .698 .714 .722 .726 .688 .722
short LLM .663 .675 .685 .679 .633 .701
long LLM .530 .553 .564 .571 .564 .543

St
at

e-
Sp

ac
e

7B

PT
short F1 .786 .793 .812 .818 .810 .832
short LLM .687 .697 .712 .714 .695 .724
long LLM .597 .653 .675 .680 .689 .705

PT
short F1 .780 .799 .810 .819 .811 .827
short LLM .696 .701 .714 .717 .703 .730
long LLM .645 .654 .688 .698 .692 .694

SV
A

M
P

Tr
an

sf
or

m
er

8B

PT
short F1 .847 .867 .865 .870 .868 .885
short LLM .779 .788 .753 .772 .791 .772
long LLM .575 .563 .519 .534 .601 .669

IT
short F1 .879 .903 .914 .912 .887 .931
short LLM .706 .725 .736 .731 .701 .753
long LLM .556 .524 .590 .608 .631 .662

70B

PT
short F1 .892 .906 .925 .929 .923 .936
short LLM .794 .817 .814 .815 .819 .799
long LLM .578 .554 .553 .579 .571 .665

IT
short F1 .830 .895 .915 .922 .915 .909
short LLM .703 .744 .734 .748 .762 .713
long LLM .601 .577 .613 .649 .663 .597

St
at

e-
Sp

ac
e

7B

PT
short F1 .882 .893 .874 .883 .889 .914
short LLM .752 .757 .730 .738 .757 .776
long LLM .536 .585 .534 .602 .612 .579

IT
short F1 .843 .891 .854 .876 .892 .905
short LLM .706 .730 .704 .709 .737 .744
long LLM .577 .586 .578 .616 .639 .613

N
Q

Tr
an

sf
or

m
er

8B

PT
short F1 .725 .739 .673 .710 .758 .776
short LLM .639 .661 .615 .641 .683 .683
long LLM .517 .498 .478 .495 .550 .573

IT
short F1 .702 .732 .711 .731 .756 .774
short LLM .662 .682 .669 .685 .700 .697
long LLM .494 .491 .530 .524 .527 .514

70B

PT
short F1 .727 .733 .711 .737 .748 .779
short LLM .634 .649 .642 .657 .671 .672
long LLM .538 .514 .494 .553 .580 .589

IT
short F1 .718 .734 .734 .748 .746 .743
short LLM .676 .674 .689 .698 .702 .681
long LLM .535 .540 .526 .566 .574 .545

St
at

e-
Sp

ac
e

7B

PT
short F1 .766 .758 .741 .765 .785 .782
short LLM .675 .680 .661 .681 .697 .683
long LLM .567 .553 .512 .551 .572 .554

IT
short F1 .755 .751 .727 .754 .783 .781
short LLM .669 .672 .648 .671 .692 .683
long LLM .541 .521 .526 .541 .554 .537
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Table 4: Average Rejection Accuracy (80%) across TriviaQA, SVAMP and NQ datasets, using
uncertainty estimates of different measures as a score to distinguish between correct and incorrect
answers. The reference answer is generated using greedy decoding, with the correctness being
assessed by checking if the F1 score of the commonly used SQuAD metric exceeds 0.5 (F1), the
pre-trained Llama-3.1-70B model considers it as correct (LLM), or the instruction-tuned Llama-3.1-
70B-Instruct model considers it as correct (LLM-Instruct).

Uncertainty measure based score Logarithmic Zero-One
Model Gen. Metric PE LN-PE SE LN-SE D-SE NLL

Tr
an

sf
or

m
er

8b

PT
short

F1 .661 .672 .651 .643 .655 .681
LLM .774 .782 .767 .766 .765 .778

LLM-Instruct .704 .721 .693 .688 .702 .723

long
LLM .596 .590 .598 .592 .590 .619

LLM-Instruct .667 .684 .632 .643 .644 .686

IT
short

F1 .668 .684 .680 .673 .687 .702
LLM .775 .781 .779 .775 .778 .788

LLM-Instruct .723 .742 .732 .726 .743 .751

long
LLM .628 .630 .651 .644 .653 .652

LLM-Instruct .713 .724 .705 .713 .727 .734

70b

PT
short

F1 .818 .827 .822 .827 .829 .836
LLM .844 .852 .846 .847 .851 .855

LLM-Instruct .867 .875 .876 .881 .885 .881

long
LLM .704 .699 .719 .707 .705 .724

LLM-Instruct .789 .795 .776 .781 .788 .812

IT
short

F1 .795 .813 .814 .809 .819 .823
LLM .836 .842 .842 .837 .844 .845

LLM-Instruct .850 .867 .866 .865 .874 .870

long
LLM .706 .706 .712 .715 .721 .715

LLM-Instruct .855 .850 .827 .842 .861 .851

St
at

e-
Sp

ac
e

7b

PT
short

F1 .598 .596 .585 .579 .583 .612
LLM .729 .737 .723 .721 .733 .742

LLM-Instruct .638 .640 .626 .621 .632 .651

long
LLM .613 .627 .612 .624 .620 .623

LLM-Instruct .606 .611 .601 .611 .618 .633

IT
short

F1 .592 .603 .588 .581 .589 .615
LLM .737 .742 .730 .726 .740 .744

LLM-Instruct .632 .646 .625 .619 .637 .653

long
LLM .611 .617 .618 .612 .625 .625

LLM-Instruct .643 .652 .628 .628 .654 .658
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