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ABSTRACT

Noisy labels are inevitably presented in real-world datasets due to labeling er-
ror or visual content ambiguity. Existing methods generally approach the task of
noisy label learning (NLL) by either properly regularizing the model, or reweight-
ing clean/noisy labeled samples. While self-supervised learning (SSL) has been
applied to pre-train deep neural networks without label supervision, downstream
tasks like image classification still require clean labeled data. And, most SSL
strategies are performed at the instance level, without accessing its label. In
this paper, we propose set-level self-supervised learning (SLSSL), which per-
forms SSL at mini-batch levels with observed noisy labels. By corrupting the
labels of each training mini-batch, our SLSSL enforces the model to exhibit suf-
ficient robustness. Moreover, the proposed SLSSL can also be utilized for sample
reweighting technique. As a result, the proposed learning scheme can be applied
as an expectation-maximization (EM) algorithm during model training. Extensive
experiments on synthetic and real-world noisy label data confirm the effectiveness
of our framework.

1 INTRODUCTION

Deep learning has shown tremendous success in numerous computer vision and machine learning
tasks. However, collecting a large amount of precisely labeled data for training a deep neural net-
work (DNN) is typically time-consuming and labor-intensive. Moreover, in practice, real-world
datasets are usually annotated with noisy labels. In order to alleviate possible overfitting prob-
lems (Arpit et al., 2017; Zhang et al., 2017), noisy-label learning (NLL) has attracted the attention
from researchers in related fields (Frenay & Verleysen, 2014; Song et al., 2021).

Recent deep-learning based NLL approaches can be categorized into two groups (Song et al., 2021;
Karim et al., 2022). The first group focuses on loss correction (Patrini et al., 2017; Hendrycks et al.,
2018; Xia et al., 2019; Wang et al., 2020; Yao et al., 2020), which learns a class-wise noise transi-
tion matrix to counteract the noise effect during training, so that the predicted labels can be updated
accordingly. The second group of NLL works present various sample selection algorithms (Li et al.,
2020; Nishi et al., 2021; Karim et al., 2022), aiming at filtering out noisy samples. Once the noisy
labels are removed, semi-supervised learning techniques can be applied for training learning mod-
els. While promising performances have been reported, the above learning strategies rely on the
prediction of the derived noise transition matrix or instance weights, which require proper learning
and estimation using the training data and their noisy labels.

Instead of directly utilizing the noisy labels, self-supervised learning (SSL) has been recently ap-
plied to NLL tasks (Hendrycks et al., 2019; Ghosh & Lan, 2021; Yao et al., 2021; Ortego et al.,
2021). By properly designing pretext tasks, additional supervisory signal can be derived to improve
robustness of the model against label noise. However, existing SSL approaches design pretext tasks
by manipulating samples at the instance level, regardless of the correctness of its label. As for
instance-level pretext tasks (e.g., rotation prediction or contrastive-based instance discrimination),
they are expected to produce proper representations from unlabeled data; it is not clear whether such
techniques would result in robust representations when tackling the problem of noisy label learning
(NLL).

In this paper, we propose a novel unique SSL approach for NLL. More precisely, we present a set-
level self-supervised learning (SLSSL) strategy for training NLL models. As illustrated in Fig. 1,
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Figure 1: Illustration of our set-level self-supervised learning (SLSSL). Unlike instance-level SSL
approaches, our SLSSL augments an image set (e.g., mini-batch) by manipulating its labels. By
maximizing the agreement between the two augmented versions, our SLSSL results in learning
models which are robust to noisily-labeled data.

given a set (mini-batch) of training samples, our SLSSL augments noisly labeled data by corrupting
a portion of its labels for updating the DNN through a single-step optimization, while the updated
model is enforced to maximize the performance agreement between different augmentation versions.
As detailed later in Sect. 3, our SLSSL objective is formed to estimate the class-wise noise transition
matrix, allowing us to enhance the robustness of the learned model. In addition, we show that
the proposed SLSSL can be utilized to reweight samples for sample selection purpose. Unlike
existing works that perform sample selection by assuming that instances with small losses are with
clean labels, our SLSSL learns to assign larger weights to those resulting in significant performance
degradation during label corruption, identifying the data with clean labels accordingly. Finally, we
demonstrate that our SLSSL can be realized in an expectation-maximization (EM) like algorithm,
with E-steps focusing on training model with noisy labeled data, and M-steps identifying clean data
samples for training. As verified in our experiments, this alternating training strategy further boosts
the performance of our framework.

The contributions of this paper are highlighted below:

• We propose set-level self-supervised learning (SLSSL) to tackle noisy-label learning (NLL)
tasks, which augment image sets and enforce the model to be robust to noisy labels.

• By systematically corrupting the labels during training and enforcing prediction consis-
tency between associated models, our SLSSL can be applied to estimate the noise transition
matrix, which introduces sufficient robustness to the learned model against noisy labels.

• Our SLSSL can be further utilized to identify the label quality of each training sample, and
thus sample selection for NLL can be performed accordingly.

• Our proposed learning strategy can be further viewed as an EM-like algorithm, which al-
ternates between model training and sample reweighting for improved NLL.

2 RELATED WORKS

Loss Correction for NLL A number of NLL works (Goldberger & Ben-Reuven, 2017; Patrini
et al., 2017; Hendrycks et al., 2018; Xia et al., 2019; Wang et al., 2020; Yao et al., 2020; Zhu
et al., 2022) focus on estimating the class-wise noise transition matrix of noisy training data, which
describes the relationships between noisy labels and their ground-truth ones and thus can be applied
to refine the predicted outputs accordingly. It is shown in (Patrini et al., 2017) that minimizing
such corrected loss toward noisy labels is equivalent to optimizing the DNN toward the ground-
truth labels. However, despite of their theoretical foundation, how to accurately estimate the noise
transition matrix remains a challenging problem, especially when no clean training/validation sets
are available.
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Figure 2: Illustration of our set-level self-supervised learning (SLSSL). Given a training mini-batch
S, we first augment it by corrupting its labels and then obtain the augmented model parameter θ′. We
then enforce the consistency between the outputs from f(·; θ′) and that from the weight-averaged
model f(·; θ∗) to encourage model robustness against label noise.

Sample Selection for NLL Selecting clean training samples according to their label confidences
is another alternative for solving NLL tasks. In co-training based approaches (Malach & Shalev-
Shwartz, 2017; Jiang et al., 2018; Han et al., 2018; Yu et al., 2019; Wei et al., 2020), two DNNs
are trained in a collaborative manner, with each model being trained using clean samples selected
by its peer model. More recently, (Li et al., 2020; Nishi et al., 2021; Karim et al., 2022; Wang
et al., 2021) treat the selected clean and noisy samples as labeled and unlabeled data, respectively.
They then leverage state-of-the-art semi-supervised learning techniques for training the learning
models. While achieving promising results, most of the above methods perform sample selection
based on the assumption that samples with small classification losses are with high probabilities
for the assigned labels. This might not always holds for hard samples with correct samples to be
recognized.

Self-Supervised Learning for NLL Self-supervised learning (SSL) has been recently considered
for approaching NLL tasks (Hendrycks et al., 2019; Ghosh & Lan, 2021; Yao et al., 2021; Ortego
et al., 2021). Most existing works adapt pretext tasks that are designed for SSL on unlabeled data,
such as predicting image rotations or contrastive-based instance discrimination, without utilizing
the structural information contained in noisy labels for advanced self-supervisory signals for NLL.
Recently, (Li et al., 2019) propose Meta-Learning based Noise-Tolerant (MLNT) training, in which
the noisy labels are further corrupted multiple times, and a consistency constraint is designed to
regularize the model toward robustness under such label corruptions. This consistency constraint
can be regarded as a self-supervisory signal that takes noisy labels into account. However, as MLNT
chooses to corrupt labels randomly, the pretext task is limited to model regularization, not able to
identify data with noisy labels as sample selection methods do. As introduced in the next section,
our proposed strategy can be applied for improving model robustness and estimating label confi-
dence (i.e., sample reweighting), and our experimental results would verify the effectiveness and
applicability of our approach.

3 PROPOSED METHOD

3.1 PROBLEM DEFINITION

Suppose that we are given a training set D = {(xn, ỹn)}, with xn denoting the n-th image from the
image space X , and ỹn ∈ {1, 2, ..., C} as the associated (noisy) class label, which may not be nec-
essarily consistent with its ground-truth label yn. Let f(·; θ) denote the NLL model parameterized
by θ. Our goal is to derive a robust NLL model θ∗, which is derived by self-ensemble of θ using
exponential moving average (EMA): θ∗ ← αθ∗ + (1− α)θ, with the hyperparameter α controlling
the update speed. With model θ∗ obtained, classification of test data can be performed accordingly.

3.2 SET-LEVEL SELF-SUPERVISED LEARNING (SLSSL)

Given a set of training samples (i.e., a mini-batch) denoted by S = {(xn, ỹn)}Nn=1 with size N ,
we propose to augment it by randomly selecting two classes i ̸= j from {1, 2, ..., C}, followed by
relabeling all the samples from label i using label j, as illustrated in Fig. 2. This label-corrupted
mini-batch is thus denoted by S′ = {(xn, ỹ

′
n)}Nn=1, where
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Figure 3: SLSSL for model training. Given a noisy dataset D, we apply SLSSL with self-supervised
consistency loss LSSL for learning robust models. The observed consistency statistics are further
translated into the noise transition matrix, which refines classification prediciton accordingly.

ỹ′n =

{
j, if ỹn = i;

ỹn, otherwise.
(1)

We apply each augmented S′ to update the model θ by a single-step gradient descent using the
cross-entropy classification loss. That is, we obtain θ′ by:

θ′ = θ − η∇θ

N∑
n=1

ℓCE (f (xn; θ) , ỹ
′
n) , (2)

where η represents the learning rate used in such temporary updates, and ℓCE denotes the cross
entropy loss.

By repeating the above procedure M times, we obtain M different models from different label
corruptions of the same mini-batch, i.e., we observe {θ′m}Mm=1, each corresponding to a specific
label corruption between labels (i, j). This set of augmented models {θ′m}Mm=1 would guide the
learning of θ and θ∗ in terms of both model training and sample reweighting, as we detail in Sect. 3.3
and Sect. 3.4, respectively.

3.3 SET-LEVEL SSL FOR MODEL TRAINING

Enforcing model robustness against label corruption To make our NLL model θ (and hence
θ∗) robust against noisy labeling, we enforce each augmented model {θ′m}Mm=1 to give consistent
prediction outputs on the same input xn, which should be close to the output predicted by θ∗. As
depicted in Fig. 2, we derive each θ′m by updating θ on a mini-batch with two classes i and j
being corrupted (say, i represents bird and j represents airplane), the predictions of f(·; θ′m) for the
remaining classes (e.g., cars) are not expected to be altered by this label corruption. In other words,
prediction outputs for classes other than i and j are expected to be invariant to the above corruption.
To achieve this objective, we modify the widely-used Kullback-Leibler (KL) divergence to define
our SSL objective as follows:

LSSL =
1

MN

M∑
m=1

N∑
n=1

Du
KL(f(xn; θ

∗) ∥ f(xn; θ
′
m)), (3)

where Du
KL represents the KL divergence computed by excluding the class dimensions i and j,

which are corrupted for obtaining θ′m, i.e.,

Du
KL(f(xn; θ

∗) ∥ f(xn; θ
′
m)) =

∑
c̸=i,j

fc(xn; θ
∗) log(fc(xn; θ

∗)/fc(xn; θ
′
m)). (4)

By optimizing the SSL loss defined in equation 3, the models f(·; θ) and f(·; θ∗) would be encour-
aged to be robust to label corruption, and hence the learned model would be expected to generalize
to test set data.
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Estimating noise transition matrix for NLL While the above SSL strategy can be viewed as a
model regularization technique, previous works like (Patrini et al., 2017; Hendrycks et al., 2018; Xia
et al., 2019; Wang et al., 2020; Yao et al., 2020) further deal with NLL by estimating a class-wise
C-by-C noise transition matrix T for refining the classificaiton outputs.

To be more specific, this transition matrix specifies the relationships between noisy labels {ỹn} and
ground-truth labels {yn}, with the (i, j)-th entry defined by Tij = P (ỹn = j|yn = i), i.e., the
probability of a sample with ground-truth label i being mislabelled to label j. By estimating T and
multiplying it with the class prediction output, losses calculated for classes with corrupted labels
will be suppressed. In other words, by introducing such a transition matrix in to NLL models, the
final prediction output will be encouraged to be aligned with the ground-truth label.

Unfortunately, estimating the above noise transition matrix T is a challenging task, especially when
no clean training/validation sets are available (as the setting of our work). We now explain how we
solve this task using the above set-level SSL strategy. Suppose that θ′m is derived by updating θ on
a mini-batch with classes (i, j) being corrupted, as described in Sect. 3.2. Intuitively, if the samples
with true class i in the training dataset have a larger portion being mislabeled as j (say, i represents
bird and j denotes airplane), the model θ (and hence θ∗) trained on this dataset would have biased
performance towards these two categories. Thus, the performance of θ′m would be less sensitive to
label corruption between these two classes. On the other hand, for the case where i and j are less
likely to be confused (say, i represents bird and j represents truck), the associated θ′m would be
expected to exhibit larger performance deviation.

With the aforementioned observation and property, we propose to estimate T by measuring the
deviation between θ′m and θ∗. Specifically, we adapt the standard KL divergence as:

DKL(f(xn; θ
∗) ∥ f(xn; θ

′
m)) =

C∑
c=1

fc(xn; θ
∗) log(fc(xn; θ

∗)/fc(xn; θ
′
m)). (5)

To estimate the (i, j)-th entry Tij , we collect all θ′m’s that are derived by corrupting (i, j) across
multiple mini-batches, and compute the inverse of the average KL divergence as:

Qi,j = E(i,j) [DKL(f(xn; θ
∗) ∥ f(xn; θ

′
m))]

−τ
, (6)

where E(i,j) indicates that the average is computed over all θ′m’s derived by corrupting (i, j), and τ

is a sharpening parameter. We then normalize Qi,j to obtain T̂ij = Qi,j/
∑C

c=1 Qi,c.

From the above objective and derivation, we are able to estimate T in a per-epoch basis. We can
update the matrix via EMA: let T̂e denotes the matrix estimated within each epoch, and we update
it by T̂ = βT̂ + (1 − β)T̂e, with β ∈ [0, 1] controlling the update speed. As illustrated in Fig. 3,
we follow forward loss correction methods (Patrini et al., 2017; Wang et al., 2020) and transform
the model prediction output f(xn; θ) by multiplying it with T̂ . This transformed prediction thus
is applied for calculating the cross-entropy loss with respect to the noisy labels {ỹn}. And, the
corrected version of cross-entropy loss can then be expressed as follows:

LCE ≜ − 1

N

N∑
n=1

ỹn · log(T̂ ⊺f(xn; θ)), (7)

where the superscript ⊺ means matrix transpose. Finally, the total loss for model training is derived
by combining LSSL in equation 3 and LCE in equation 7.

3.4 SET-LEVEL SSL FOR SAMPLE REWEIGHTING

As discussed in Sect. 2, another group of NLL works choose to reweight training samples based on
their labeling confidence for training the learning model. We now explain how our SLSSL can also
be utilized for sample reweighting as well.
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Figure 4: SLSSL for sample reweighting. Given a mini-batch S, we derive θ′0(w) and θ′(w) using
S and its label-corrupted version S′, respectively. Note that large deviation between θ and θ′(w)
would be observed, if such corruption is applied to clean data (when comparing to deviation between
θ and θ′0(w)). This learning strategy allows us to increase the weights for clean training samples (and
vice versa). See Sect. 3.4 for details.

As illustrated in Fig. 4, suppose that we are given a mini-batch of training samples S =
{(xn, ỹn, wn)}Nn=1, where wn denotes the weight of the n-th sample (xn, ỹn). For sample reweight-
ing, we keep the model parameter θ fixed and only update the sample weights {wn}. Recall that the
estimated noise transition matrix T̂ can be applied for transforming the model prediction in NLL.
Intuitively, T̂ should be close to an identity matrix if most of the samples are correctly labeled (that
is, correctly-labeled samples are assigned with larger weights than those of noisily-labeled ones). In
other words, the optimal weights in S should make T̂ij close to 0 for i ̸= j (i.e., the off-diagonal
entries) and 1 for i = j (i.e., the diagonal entries).

To achieve this, we first use S to estimate the noise transition matrix as described in Sect. 3.3
with {wn} included in the estimation process, and then optimize {wn} based on the estimation
results. Specifically, we follow the SLSSL procedure in Sect. 3.2 to create an augmented model set
{θ′m(w)}Mm=1, with each θ′m(w) derived by updating θ using the weighted version of equation 2:

θ′m(w) = θ − η∇θ

N∑
n=1

wnℓCE (f (xn; θ) , ỹ
′
n) , (8)

where w denotes the collection of sample weights {wn} within the mini-batch, and ỹ′n is obtained
by corrupting a label pair i ̸= j using equation 1. To estimate T̂ , we follow Sect. 3.3 and compute
the deviation between θ′m(w) and θ by calculating the standard KL divergence DKL(θ ∥ θ′m(w))
using equation 5. Since θ′m(w) is derived by corrupting a label pair i ̸= j, this deviation thus corre-
sponds to the off-diagonal entry T̂ij . We further let θ′0(w) denote the model derived by updating θ
through a single-step gradient descent based on the original mini-batch S (without label corruption),
and we also compute its deviation from θ (denoted by DKL(θ ∥ θ′0(w))) to represent all diagonal
entries of T̂ . Since we estimate T̂ by taking inverse of the above deviations, for T̂ to be close to iden-
tity, DKL(θ ∥ θ′m(w)) should be much larger than DKL(θ ∥ θ′0(w)). Thus, our sample reweighting
(RW) loss can be defined in the following contrastive form as:

LRW =
DKL(θ ∥ θ′0(w))∑M

m=1 DKL(θ ∥ θ′m(w))
. (9)

It can be seen that, the denominator in LRW describes the performance deviations between the
original model and their augmented versions derived by multiple label corruptions. For a mini-
batch with more clean samples, such label corruptions would lead to larger deviations, as compared
to the case without label corruption (i.e., the numerator). We thus propose to minimize LRW for
sample reweighting. In other words, samples leading to higher performance deviations from label
corruptions are thus assigned with larger confidences/weights. This serves as our sample reweighting
strategy based on SLSSL.
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Table 1: Classification accuracy (%) on CIFAR-10 across different noisy labeling schemes with
NLL methods based on a single learning model.

Method No noise Sym 50% Sym 70% Asym 30% Asym 40%
Baseline (cross-entropy) 92.53±0.07 79.87±0.29 70.93±0.38 86.17±0.17 83.95±0.36
F-correction (Patrini et al., 2017) 92.63±0.12 81.22±0.04 73.74±0.46 88.28±0.23 87.45±0.24
MLNT (Li et al., 2019) 93.76±0.03 87.18±0.11 80.76±0.29 91.84±0.28 89.57±0.12
Our SLSSL (E-step only) 93.86±0.08 89.11±0.08 81.22±0.42 92.67±0.06 91.12±0.10
Our SLSSL (EM) 94.17±0.02 90.13±0.16 83.91±0.30 92.94±0.16 91.78±0.12

3.5 SLSSL AS AN EM-LIKE ALGORITHM

It is worth noting that, we can further integrate the proposed model training (Sect. 3.3) and sample
reweighting (Sect. 3.4) schemes as an EM-like algorithm for NLL. To be more specific, the E-step
focuses on model training with sample weights being fixed, while the M-steps aims to reweight
training samples with the derived model. In practice, we first randomly initialize θ and train it from
scratch by optimizing LSSL in equation 3 and LCE in equation 7 on the unweighted training dataset
(wn = 1 for all n). After obtaining the best model through validation (usually the weight-averaged
model θ∗), we then fix its parameters and utilize it to optimize all w by optimizing equation 9.
The updated sample weights are then applied in the model training again. As confirmed by our
experiment, this alternative optimization strategy would further boost the NLL performance.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Datasets We conduct experiments on the datasets of CIFAR-10 (Krizhevsky & Hinton, 2009),
CIFAR-10N (Wei et al., 2022), and Clothing1M (Xiao et al., 2015). The CIFAR-10 dataset contains
50K training images and 10K test images from 10 categories. We follow (Li et al., 2019; 2020) to
corrupt the training labels by two types of noise: symmetric and asymmetric. For symmetric noise,
each sample has a fixed probability to be labeled uniformly into other classes. For asymmetric noise,
5 transition patterns (bird→ airplane, cat↔ dog, etc.) are proposed to simulate the class-dependent
noise. Fig. 5(a) shows the transition matrix used to construct a noisy CIFAR-10 dataset with 40%
asymmetric noise. CIFAR-10N is extended CIFAR-10, with each training image containing three
human-annotated labels (denoted as Random-i, i ∈ {1, 2, 3}). The three noisy labels for each image
are further aggregated by majority voting (denoted as Aggregate) and randomly picking one wrong
label if any (denoted as Worst). Clothing1M consists of 1M training images from 14 categories of
clothes. The labels are extracted from the surrounding texts of images and are thus practically noisy.
We use the 14K clean validation set and the 10K test set.

Implementation details For both CIFAR-10 and CIFAR-10N, we follow DivideMix (Li et al.,
2020) to adopt a Pre-Act ResNet-18 network (He et al., 2016) (and its hyperparameters). We
also integrate our SLSSL sample reweighting scheme (i.e., the M-step in Sect. 3.4) into the co-
dividing step of DivideMix for evaluation. For Clothing1M, we again follow DivideMix and use
an ImageNet-pretrained ResNet-50 network. To compare with recent state-of-the-art methods, we
reproduce the experiment results for DivideMix on all the three datasets, as well as Forward Loss
Correction (F-correction) (Patrini et al., 2017) and MLNT (Li et al., 2019) on CIFAR-10. Please
refer to Appendix A for the more details.

4.2 QUANTITATIVE RESULTS

Comparisons with single-model approaches We first compare the proposed SLSSL with single-
model NLL approaches using the same Pre-Act ResNet-32 backbone, including F-correction (Pa-
trini et al., 2017) and MLNT (Li et al., 2019). The performances are summarized in Table 1. Here,
we follow the same procedure in MLNT to generate symmetric and asymmetric noisy labels from
CIFAR-10, and report the mean and standard error values of test accuracy across 3 runs. As can be
seen from the table, with SLSSL-based model training along (i.e., E-step in Sect. 3.3), our frame-
work achieved significant performance improvement across all noise ratios. By further applying
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Table 2: Classification accuracy (%) on CIFAR-10 across different noisy labeling schemes with
NLL methods adopting dual models (i.e., co-training based approaches).

Noise type Sym Asym MeanMethod/Noise rate 20% 50% 80% 90% 40%

DivideMix (Li et al., 2020) Best 96.1 94.6 93.2 76.0 93.4 90.66
Last 95.7 94.4 92.9 75.4 92.1 90.10

DM-AugDesc (Nishi et al., 2021) Best 96.3 95.6 93.7 35.3 94.4 83.06
Last 96.2 95.4 93.6 10.0 94.1 77.86

SLSSL (E-step only, single-model) Best 93.5 90.3 76.4 57.3 92.3 81.96
Last 93.1 90.1 76.1 57.0 91.8 81.62

SLSSL (EM single-model) Best 95.8 94.4 93.2 67.0 93.1 88.70
Last 95.2 94.0 92.8 61.5 92.4 87.18

SLSSL (EM dual-model) Best 96.3 95.0 93.4 77.5 94.2 91.28
Last 96.2 94.8 93.2 76.7 93.9 90.96

Table 3: Classification accuracy (%) on CIFAR-10N with different human-labeling schemes.
Method/Noise type Aggregate Random-1 Random-2 Random-3 Worst Mean

DivideMix (Li et al., 2020) Best 95.2 95.5 95.5 95.5 93.0 94.94
Last 95.0 95.1 95.2 95.2 92.6 94.62

Our SLSSL Best 95.7 95.5 95.8 95.3 93.3 95.12
Last 95.6 95.3 95.5 95.1 93.1 94.92

sample reweighting (i.e., M-step in Sect. 3.4), the performances were further improved by a large
margin, which confirms the effectiveness of our proposed SLSSL as a sample reweighting strategy.

Comparisons with state-of-the-art dual-model approaches Next, we compare the performance
of SLSSL with recent state-of-the-art methods utilizing two networks in the co-training fashion,
including DivideMix (Li et al., 2020), and DM-AugDesc (Nishi et al., 2021). Table 2 lists the
performance comparisons on the synthetic noisy datasets generated from CIFAR-10. Following
DivideMix and DM-AugDesc, we report both the best test accuracy across all training epochs, and
the average test accuracy over the last 10 epochs. As can be seen from the table, our frameworks
performed favorably against state-of-the-art methods, including DivideMix on which we apply our
SLSSL. It is worth noting that, DM-AugDesc also adapted DivideMix and focused on searching for
the best augmentation strategies for NLL. On the other hand, we only apply standard augmentation
techniques such as random cropping and horizontal flipping in our experiments.

Table 3 lists the performance comparisons between SLSSL and DivideMix (Li et al., 2020) on the
CIFAR-10N dataset. It can be seen that our method outperformed DivideMix on this challenging
human-annotated dataset. Table 4 further presents results on the Clothing1M dataset, which con-
firms the effectiveness of our proposed SLSSL over state-of-the-art methods.

4.3 VISUALIZATION AND ANALYSIS

Noise transition matrix for NLL We show the noise transition matrix T̂ estimated based on
Sec. 3.3 on the CIFAR-10 dataset with 40% asymmetric noise. We first trained a model by applying
our E-step for 100 epochs, and then conducted the M-step for 20 epochs to assign weights for all
training samples. Based on the sample weights, we then trained our model again using E-step for
100 epochs. As can be seen from Fig. 5(b), the noise transition matrix estimated after the first E-step
is fairly close to the ground-truth showed in Fig. 5(a). In Fig. 5(c), on the other hand, the estimated
noise transition matrix becomes much closer to an identity matrix after a complete E-M-E cycle,
indicating the effectiveness of our M-step in assigning sample weights.

Reweighted samples Finally, we show the sample weights optimized based on our SLSSL at the
end of three successive M-steps on CIFAR-10 with 40% asymmetric noise. As can be seen from
Fig. 6, as the optimization progresses, the sample weights of clean and noisy samples become in-
creasingly separable (with AUC scores reported in the figure). This further confirms the effectiveness
of our SLSSL for sample reweighting in NLL.
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Table 4: Classification accuracy (%) on Clothing1M. Note that DM-AugDesc (Nishi et al., 2021)
is designed to search for best augmentation techniques for NLL, while we simply perform random
cropping and flipping in SLSSL.

Method Test Accuracy
Cross-Entropy 69.21
F-correction (Patrini et al., 2017) 69.84
MLC (Wang et al., 2020) 71.06
MLNT (Li et al., 2019) 73.47
T-Revision (Li et al., 2020) 74.18
DivideMix (Li et al., 2020) 74.76
DM-AugDesc (Nishi et al., 2021) 75.11
Jo-SRC (Yao et al., 2021) 75.93
DivideMix (reproduced) 74.34
Our SLSSL 74.51

Figure 5: (a) The ground-truth transition matrix for constructing the noisy label dataset with 40%
asymmetric noise from CIFAR-10; (b) our estimated matrix after the first E-step, which is close
to the ground truth; (c) our estimated matrix after a complete E-M-E cycle (which is close to the
identity matrix, implying that our SLSSL assigns proper sample weights for cleaning the training
data).

Figure 6: Empirical distributions of sample weights derived at the end of three consecutive M-steps
(from (a)-(c)) for CIFAR-10 with 40% asymmetric noise. Note that AUC scores are shown in each
sub-figure, quantitatively verifying our separation between clean and noisy labeled data.

5 CONCLUSION

In this paper, we proposed set-level self-supervised learning (SLSSL) to address noisy label learning
(NLL) tasks. SLSSL performs self-supervised learning at mini-batch levels without prior knowledge
on noisy label distribution. By corrupting the labels of each training mini-batch and applying cor-
responding consistency constraints, our SLSSL enforces the model to exhibit sufficient robustness
toward labeling noise. Moreover, the proposed SLSSL can also be utilized for sample reweight-
ing technique based on a novel high-impact principle. Finally, we demonstrate that the proposed
learning scheme can be viewed as an expectation-maximization (EM) algorithm for training NLL
models. With experiments conducted on synthetic (CIFAR-10) and real-world (CIFAR-10N and
Clothing1M) noisy label data, the effectiveness of our proposed SLSSL can be sucessfully verified.
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A IMPLEMENTATION DETAILS

Single-model experiment on CIFAR-10 For CIFAR-10, we follow previous works (Tanaka et al.,
2018; Li et al., 2019) and split the 50K training samples into 45K training and 5K validation sub-
sets. We then introduce symmetric or asymmetric label noise to the training subset as described in
Sec. 4.1. All models are trained on the noisy training subset, with hyperparameters being chosen
based on the model performance on the clean validation subset. After hyperparameter tuning, we
then introduce label noises to all 50K training samples and rerun all experiments for comparison.

We develop our SLSSL algorithm based on the implementation of MLNT1 (Li et al., 2019), which
adopts a Pre-Act ResNet-32 network. We follow most of the hyperparameters from MLNT, and train
the model for 300 epochs using SGD with an initial learning rate 0.02 (divided by 2 after every 50
epochs), a momentum of 0.9, a weight decay of 0.0005, and a batch size of 128. The learning rate
η used for obtaining the augmented models is set to 0.1 in equation 2. For our SLSSL framework
with both E and M steps, we set η = 0.001 in equation 8, and conduct the M-step for 5 iterations (3
M-step epochs per iteration) at every 50 E-step model training epochs: {50, 100, 150, 200, 250}.
As for other single-model methods, we simply train the model for 300 epochs using standard cross-
entropy classification loss as the Baseline, and add the ground-truth noise transition matrix for F-
correction (Patrini et al., 2017). The MLNT results are reproduced by directly using their imple-
mentation.

Dual-Model co-training for CIFAR-10 and CIFAR-10N We follow the same principle from the
above single-model experiment on CIFAR-10 for hyperparameter tuning, and directly apply the best
set of hyperparameters for the 40% asymmetric noisy dataset to CIFAR-10N.

We integrate our SLSSL algorithm into the co-training phase of DivideMix (Li et al., 2020) based
their implementation2, and also follow most of their hyperparameters. We first train two Pre-Act
ResNet-18 networks separately for 10 epochs in the warm-up phase, and then enter the co-training
phase for the remaining 290 epochs. At the 150 epoch, we replace DivideMix’s GMM-based
reweighting procedure on the 2nd network by our SLSSL-based sample reweighting algorithm, and
conduct the M-step for 60 iterations (2 M-step epochs per iteration) at every 5 model training epochs:
{150, 155, ..., 295}. Based on the derived sample weights, we then follow standard DivideMix and
apply co-dividing, co-refinement, and co-guessing techniques to train the two networks.

Dual-Model co-training for Clothing1M For Clothing1M, we also follow DivideMix (Li et al.,
2020) and train our model on the 1M (noisy) training dataset, with hyperparameters being chosen
based on the 14K (clean) validation subset. Similar to CIFAR-10, we integrate our SLSSL algorithm
into the co-training phase of DivideMix. We start our SLSSL-based sample reweighting (i.e., the
M-step in Sect. 3.4) at epoch 70. Since only 32K samples are randomly selected per training epoch,
we conduct M-step for every epoch, and set the total epoch number in the co-training phase as 80.
The learning rate is set to 0.002, and decays with a factor of 10 after the epoch 40. All the rest
hyperparameters follow DivideMix.

Algorithm We provide the pseudo codes for our SLSSL in Algorithm 1 for model training ( 3.3;
E-step) and Algorithm 2 for sample reweighting ( 3.4; M-step). The two algorithms can be combined
as an EM-like iterative training strategy as described in Sect. 3.5.

B VISUALIZATION ON CIFAR-10

We provide additional training statistics to further validate the proposed methods. In Fig. 7(a), we
show the Area Under the Curve (AUC) for clean/noisy sample classification on CIFAR-10 with
40% asymmetric label noise in the single-model experiment. As can be seen, our M-step is able
to effectively identify clean/noisy samples across successive M-steps, even for bird samples with
40% samples being mislabeled as airplane, and for cat samples which could be heavily confused
with dog samples with 40% samples in each class being mislabeled as one another. In Fig. 7(b), we

1https://github.com/LiJunnan1992/MLNT
2https://github.com/LiJunnan1992/DivideMix
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Algorithm 1 SLSSL-E (model training in Sect. 3.3)
1: Input: Noisy training datasetD = {(xn, ỹn, wn)} (fixed {wn}), learning model θ, EMA model

θ∗, number of E-step epochs P , number of label corruption for each mini-batch M , estimated
noise transition matrix at the eth epoch T̂e, estimated noise transition matrix T̂ .

2: if first E-step then
3: Random initialize θ
4: Initialize EMA model θ∗ = θ
5: Initialize T̂ as identity
6: Initialize all sample weights wn = 1
7: end if
8: for e = 1 to P do
9: while not done do

10: Sample mini-batch S = {(xn, ỹn, wn)}Nn=1 from D
11: for m = 1 to M do
12: Randomly sample a class pair (i, j)
13: Obtain augmented set S′ = {(xn, ỹ

′
n, wn)}Nn=1 by corrupting (i, j) in S (Eq. 1)

14: Derive augmented model θ′m from θ by single-step gradient descent on S′ (Eq. 2)
15: Compute the KL divergence DKL between θ′m and θ∗ (Eq. 4)
16: end for
17: Compute set-level self-supervised loss LSSL (Eq. 3)
18: Update θ by minimizing LSSL

19: Compute classification loss LCE and then correct it using T̂ (Eq. 7)
20: Update θ by minimizing LCE

21: Aggregate DKL’s derived by corrupting (i, j) to estimate the (i, j)th entry of T̂e (Eq. 6)
22: end while
23: Update T̂ using EMA of T̂e

24: Update θ∗ using EMA of θ
25: end for

Algorithm 2 SLSSL-M (sample reweighting in Sect. 3.4)
1: Input: Noisy training dataset D = {(xn, ỹn, wn)}, learning model θ (fixed), number of M-step

epochs Q, number of label corruption for each mini-batch M .
2: for e = 1 to Q do
3: while not done do
4: Sample mini-batch S = {(xn, ỹn, wn)}Nn=1 from D
5: for m = 1 to M do
6: Randomly sample a class pair (i, j)
7: Obtain augmented set S′ = {(xn, ỹ

′
n, wn)}Nn=1 by corrupting (i, j) in S (Eq. 1)

8: Derive θ′m(w) from θ by weighted single-step gradient descent on S′ (Eq. 8)
9: Derive θ′0(w) from θ by weighted single-step gradient descent on S (Eq. 8)

10: end for
11: Compute the sample reweighting loss LRW (Eq. 9)
12: Update {wi}Ni=1 by minimizing LRW

13: end while
14: end for

show the training and testing accuracy values. As can be seen, the accuracy is improved after each
iteration of M-step at epochs 50 and above, further validating the effectiveness of our SLSSL-based
sample reweighting procedure.

C ADDITIONAL EXPERIMENT RESULTS

CIFAR-10 and CIFAR-10N In Tables 2 and 4, results of DivideMix (Li et al., 2020) and DM-
AugDesc (Nishi et al., 2021) were directly copied from their papers (i.e., no standard deviation were
reported by neither works). Here, we further conduct additional runs with different random seeds for
our SLSSL and DivideMix on selected noisy settings from CIFAR-10 and CIFAR-10N. The results
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Figure 7: Evaluation on CIFAR-10 with 40% asymmetric label noise. (a) Area Under the Curve for
clean/noisy sample classification based on the sample weights {wn} obtained by our M-steps. The
X-axis indicates the accumulated M-step epochs over 5 iterations (3 M-step epochs per iteration)
at E-step epochs from 50 up to 250. Note that our M-step is shown to identify clean/noisy samples
across successive M-steps by assigning proper weights, improving both Net1 and Net2 in the co-
training process. (b) Training and testing accuracy values on the first network over all 300 training
epochs. The accuracy is improved after each iteration of M-step at epochs 50 and above.

Table 5: Classification accuracy (%) on CIFAR-10 across different noisy labeling schemes with
NLL methods adopting dual models (i.e., co-training based approaches). We report results over 3
independent runs.

CIFAR-10 CIFAR-10N
Method Asym 40% Aggregate

DivideMix (Li et al., 2020) (reproduced) Best 93.20±0.20 95.37±0.12
Last 93.25±0.15 95.10±0.08

Our SLSSL Best 94.20±0.10 95.73±0.12
Last 93.75±0.15 95.57±0.12

are listed in Table 5. Following the setting of DivideMix (Li et al., 2020), we report the best test
accuracy (Best) and the averaged test accuracy over the last 10 epochs (Last). From this table, it can
be seen that the improvements of our SLSSL over DivideMix were statistically significant.

CIFAR-100 To provide additional performance evaluation, we also add experiments on CIFAR-
100. We select two noise types (20% and 50% symmetric noise) and report results from a single run
using the same random seed to ensure the same noise setting between DivideMix and our SLSSL. As
can be seen from Table 6, our SLSSL again outperformed DivideMix and also MD-DYR-SH (Arazo
et al., 2019) on CIFAR-100.

D ADDITIONAL COMPARISONS

Compare to instance-level SSL approaches As discussed in Sect. 1, it is not clear whether
existing instance-level SSL techniques would result in robust representations when tackling the
NLL tasks. To make our discussions and comparisons more complete, we compare our method
to MOIT (Ortego et al., 2021), a recent instance-based SSL approach to NLL, on CIFAR-10. For
fair comparisons, we follow MOIT to adapt a single PreAct ResNet-18 network, and report the test
accuracy in the last training epoch. As can be seen fromTable 7, our SLSSL reached comparable
performance for asymetric noise at 40%, while outperformed MOIT with significant margins for
different symmetric noise levels.

Compare to recent related works SOP (Liu et al., 2022) proposes to model the label noise and
learn to separate it from the data by enforcing its sparsity, and serves as one of the most recent works
of NLL. However, as can be seen from Table 8, our SLSSL still performs favorably against SOP,
especially on the more challenging Clothing1M dataset.
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Table 6: Classification accuracy (%) on CIFAR-100 across different noisy labeling schemes with
NLL methods adopting dual models (i.e., co-training based approaches). For DivideMix(Li et al.,
2020) and our SLSSL, we report result from a single run using the same random seed.

Method Sym 20% Sym 50%

MD-DYR-SH (Arazo et al., 2019) (reported) Best 73.9 66.1
Last 73.4 65.4

DivideMix (Li et al., 2020) (reproduced) Best 77.50 74.20
Last 77.00 73.80

Our SLSSL Best 78.08 74.34
Last 77.83 73.95

Table 7: Classification accuracy (%) on CIFAR-10 across different noisy labeling schemes from
MOIT (Ortego et al., 2021) and our SLSSL.

Sym 20% Sym 80% Asym 40% Mean
MOIT (Ortego et al., 2021) (reported) 94.08 75.83 93.27 87.73
Our SLSSL 95.18 92.82 92.23 93.41

E LIMITATIONS

Since our proposed SLSSL can be viewed as a unique meta-learning scheme on existing NLL meth-
ods like DivideMix (Li et al., 2020), we expect longer computation time during training. However,
take CIFAR-10 for example, DivideMix took 15 hours to train using a single Nvidia TITAN-V GPU,
while the full version of our SLSSL (i.e., implemented as an EM algorithm) required 25 hours. It
can be seen that, the overall computation time of our SLSSL is still in the same order of that of
SOTAs like DivideMix.

Also, as noted in (Patrini et al., 2017; Hendrycks et al., 2018; Xia et al., 2019; Wang et al., 2020;
Yao et al., 2020), NLL methods based on class-wise noise transition matrix estimation share the
limitation that the number of classes for NLL would be reasonable (e.g., 100 in CIFAR-100). This
is to avoid the potential problem of estimating a large noise transition matrix. Sharing the concern
of the above works, this would also among the current limitation of our work.
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Table 8: Classification accuracy (%) on CIFAR-10N (Aggregate) and Clothing1M from SOP (Liu
et al., 2022) and our SLSSL.

CIFAR-10N (Aggregate) Clothing1M
SOP (Liu et al., 2022) (reported) 95.61 73.5
Our SLSSL 95.73 74.51
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