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Abstract
Enzymes, with their specific catalyzed reactions, are necessary for all aspects of life,
enabling diverse biological processes and adaptations. Predicting enzyme functions
is essential for understanding biological pathways, guiding drug development,
enhancing bioproduct yields, and facilitating evolutionary studies. Addressing the
inherent complexities, we introduce a new approach to annotating enzymes based
on their catalyzed reactions. This method provides detailed insights into specific
reactions and is adaptable to newly discovered reactions, diverging from traditional
classifications by protein family or expert-derived reaction classes. We employ
machine learning algorithms to analyze enzyme reaction datasets, delivering a
much more refined view on the functionality of enzymes. Our evaluation leverages
the largest enzyme-reaction dataset to date, derived from the SwissProt and Rhea
databases with entries up to January 8, 2024. We frame the enzyme-reaction
prediction as a retrieval problem, aiming to rank enzymes by their catalytic ability
for specific reactions. With our model, we can recruit proteins for novel reactions
and predict reactions in novel proteins, facilitating enzyme discovery and function
annotation (https://github.com/WillHua127/ReactZyme).

1 Introduction
Enzymes, as catalysts of biological systems, are the workhorses of various biological functions
[35, 52, 13] (Fig. 1a). They accelerate and regulate nearly all chemical processes and metabolic
pathways in organisms, from simple bacteria to complex mammals [53, 18]. The ability to understand
and manipulate enzyme functions is fundamental to numerous scientific and industrial fields, including
biosynthesis, where enzymes help to produce complex organic molecules [16, 42], and synthetic
biology, where they are engineered to create novel biological pathways [19, 34, 24]. Furthermore,
they can break down pollutants, thus playing a significant role in bio-remediation efforts [57, 75].
In the realm of protein evolution, examining enzyme functions across the tree of life enhances our
understanding of the evolutionary processes that sculpt metabolic networks and enable organisms to
adapt to their environments [31, 20, 11, 54]. As such, gaining insights into enzyme function is not
merely an academic pursuit in life sciences but a necessity for practical applications in medicine,
agriculture, and environmental management.

The current methodologies for enzyme annotation primarily rely on established databases and
classifications such as KEGG Orthology (KO), Enzyme Commission (EC) numbers, and Gene
Ontology (GO) annotations, each with its specific focus and methodology [65] (Fig. 1b). For instance,
the EC system categorizes enzymes based on the chemical reactions they catalyze, providing a
hierarchical numerical classification [4]. KO links gene products to their functional orthologs across
different species [48], whereas GO offers a broader ontology for describing the roles of genes and
proteins in any organism [12].
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Figure 1: Overview of the enzyme-reaction prediction task. (a) Illustration of the enzymatic reaction
process: substrate binds to the enzyme; formation of the enzyme-substrate complex; release of the
product, leaving the enzyme for another catalytic cycle. (b) Current methods for enzyme reaction
prediction: Search for annotated enzymes (e.g. sequence-based BLAST [2], structure-based FoldSeek
[67]); prediction of EC/GO annotation (e.g. CLEAN [77]); enzyme-reaction prediction (ReactZyme).
Despite their widespread use, these systems have notable limitations. The EC classification, while
widely used, sometimes groups vastly different enzymes under the same category or subdivides
similar ones excessively, based on the substrates they interact with—leading to ambiguities in enzyme
function characterization. GO annotations, although comprehensive, frequently lack specificity in
defining enzyme functions and suffer from an underdeveloped database structure. Similarly, KO tends
to categorize based on gene or protein families rather than specific functions, potentially assigning
different identifiers to proteins with identical functions [15, 50].

Given these challenges, we propose a novel benchmark and a new enzyme-reaction dataset to learn
enzymes more accurately by focusing on their catalyzed reactions directly rather than solely on gene
family or human-assigned function types. The ReactZyme codes and dataset can be found on https:
//github.com/WillHua127/ReactZyme & https://zenodo.org/records/13635807. Our
approach also leverages machine learning techniques—graph representation learning and protein
language models—to analyze enzyme reaction data, providing a more nuanced understanding of
enzyme functionality. This method aims to overcome the limitations of current annotation systems by
offering a clearer, more consistent categorization of enzymes based on their biochemical roles, which
could significantly enhance both academic research and industrial applications in enzyme technology.
To this end, we summarize our ReactZyme enzyme-reaction dataset in Section 3 and the approach
in Section 4 with a method visualization in Fig. 2, and introduce and the retrieval challenge and
experiments in Section 5.

2 Related Work
Protein Function Annotation. Protein function annotation is a foundational task in bioinformatics,
typically utilizing databases like Gene Ontology (GO), Enzyme Commission (EC) numbers, and
KEGG Orthology (KO) annotations [12, 4, 48]. Traditional methods such as BLAST, PSI-BLAST,
and eggNOG rely on sequence alignments and similarities to infer function [3, 2, 29]. Recently, deep
learning has introduced innovative approaches for protein function prediction [56, 39, 8]. There are 2
types of protein function prediction model, one uses only protein sequence as their input, while the
other also uses experimentally-determined or predicted protein structure as input. Generally, these
methods typically predict EC or GO information to approximate protein functions, distinct from
describing the exact catalysed reaction.

Protein-Ligand Interaction Prediction. Protein-ligand interaction prediction is another related
area, with numerous models designed to identify potential bindings between proteins and ligands
[10, 25, 73]. Most existing models, such as those for drug-target interaction (DTI), focus on stable
bindings critical for therapeutic efficacy [72, 14], which differs from substrate-enzyme interactions
where binding does not necessarily result in catalysis. Some models have also tackled the specific
challenge of enzyme-substrate prediction, including the ESP model [37, 38]. This area differs from
drug-target interactions, underscoring the unique dynamics of enzyme-substrate relationships where
the interaction may not always lead to stable binding.

Protein-Ligand Structure Prediction. The protein-ligand structure prediction task, also referred
to as ligand docking, has evolved with new methodologies emerging [14, 80, 1, 26]. Traditional
docking methods like Vina [63], Gold [70], and Glide [17] have been complemented by deep learning
approaches such as EquiBind [60], TankBind [43], E3Bind [81], UniMol [83], and DiffDock [14].
Moreover, recent advances in protein-ligand structure prediction, such as AlphaFold 3 [1], RFAA
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[36], and Umol [9], provide detailed structural models of protein-ligand complexes, but they do not
specifically address the functional interactions between enzymes and substrates. These methods are
crucial for structure-based models but offer limited insight into the functional dynamics essential for
understanding enzyme activity.

Graph Representation Learning for Bioinformatics. Graph representation learning emerges as a
potent strategy for representing and learning about proteins and molecules, focusing on structured,
non-Euclidean data [58, 47, 45, 46, 28, 44]. In this context, proteins and molecules can be effectively
modeled as 2D graphs or 3D point clouds, where nodes correspond to individual atoms or residues,
and edges represent interactions between them [21, 82, 27, 78]. Indeed, representing proteins and
molecules as graphs or point clouds offers a valuable approach for gaining insights into and learning
the fundamental geometric and chemical mechanisms governing protein-ligand interactions. This
representation allows for a more comprehensive exploration of the intricate relationships and structural
features within protein-ligand structures [64, 30, 79].

3 ReactZyme Dataset
3.1 Dataset
Overview. Our study utilizes a comprehensive dataset compiled from the SwissProt and Rhea
databases [7, 5]. SwissProt, a curated subset of the UniProt database, has been selected for its
high-quality, human-derived functional annotations of protein sequences. This section of UniProt is
particularly valuable for its expert-reviewed entries, which ensure reliable and accurate functional
data, making it ideal for our analysis. Rhea is employed for its precise mapping from enzymes to
specific catalyzed functions, offering detailed descriptions of biochemical reactions. The ReactZyme
dataset can be downloaded via https://zenodo.org/records/11494913.

Data Collection. The SwissProt and Rhea dataset are downloaded on January 8, 2024, and includes
data entries up to this date, providing the most recent and comprehensive data available for our study.
We selectively exclude water molecules and unspecific functional groups that could mask the true
molecular structures. Conversely, we keep metal ions, gas molecules, and other small molecules
because of their potential to bind to proteins, a characteristic that presents a valuable learning feature
for our model. To this end, the total dataset comprises 178, 463 positive enzyme-reaction pairs,
including 178, 327 unique enzymes and 7, 726 unique reactions.

Table 1: Comparison of ESP, EnzymeMap, and ReactZyme
Dataset #Pair #Enzyme #Molecule/Reaction Substrate Info Product Info Reaction Info Atom-Mapping
ESP 18, 351 12, 156 1, 379 ! % % %

EnzymeMap 46, 356 12, 749 16, 776 ! ! ! !

ReactZyme 178, 463 178, 327 7, 726 ! ! ! %

Compare to Other Datasets. There are two datasets related to the enzyme-reaction prediction task.
The first one is from ESP [37], which used GO annotation database for UniProt dataset, lay emphasis
on the substrate binding to the enzyme. The ESP dataset contains 18, 351 enzyme-substrate pairs
with experimental evidence for substrate binding, contains 12, 156 unique enzymes and 1, 379 unique
molecules. The other dataset is from EnzymeMap [23], which used as training set in CLIPZyme [51].
EnzymeMap is a high-quality dataset of atom mapped and balanced enzymatic reaction, with enzyme
information from BRENDA [59]. This dataset contains 46, 356 enzyme-driven reactions, including
16, 776 distinct reactions and 12, 749 enzymes. A comparison is illustrated in Table 1.

ReactZyme Limitation. While ReactZyme has the advantage of containing significantly more data
than both ESP and EnzymeMap, it has some limitations. Notably, it lacks atom-mapping data, and
the number of reactions is smaller than in EnzymeMap. This reduction in reaction count is because
some reactions in ReactZyme are represented using functional groups rather than the full substrate.
Futhermore, ReactZyme may not include sufficient coverage of the entirety of space of proteins and
reactions in practical use. ReactZyme can be developed further for more practical interest in enzyme
and substrate design.

3.2 Data Split
We provide three dataset splits based on time, enzyme similarity, and reaction similarity. For each
data split, 10% of the training data are randomly sampled for validation.

Time Split. The first data-split method is based on a specific date. We split the training and test
samples by selecting enzyme-reaction pairs before 2010-12-31, for training and pairs after this date
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for testing. This results in 166, 175 training pairs and 12, 287 test pairs, approximately a 93%/7%
training/test ratio. The training samples include 166, 084 unique enzymes and 7, 726 unique reactions,
while the test samples include 12, 277 unique enzymes and 2, 634 unique reactions.

Enzyme Similarity. The second data-split method is based on enzyme similarity. We ensure that
enzymes in the training set do not appear in the test set, using the Levenshtein distance [6] for
sequence-based protein sequence comparison, ensuring at least 60% sequence difference between
training and test set enzymes. This results in 169, 724 training pairs and 8, 739 test pairs, approxi-
mately a 95%/5% training/test ratio. The training samples include 169, 596 unique enzymes and
7, 726 unique reactions, while the test samples include 8, 734 unique unseen enzymes and 1, 573
unique reactions.

Reaction Similarity. The third data-split method is based on reaction similarity, calculated by the
Needleman-Wunsch algorithm on SMILES. We ensure that reactions in the training set do not appear
in the test set. This results in 163, 771 training pairs and 14, 692 test pairs, approximately a 91%/9%
training/test ratio. The training samples include 163, 651 unique enzymes and 7, 340 unique reactions,
while the test samples include 14, 688 unique enzymes and 386 unique unseen reactions.

Negative Sample. A common method involves designating all enzymes within a training set that
are not annotated for catalyzing a specific reaction as negative samples [51]. Nevertheless, given
the extensive size of our dataset, we opt for a strategy centered on enzyme and reaction similarity
to construct negative samples. Specifically, for each verified positive enzyme-reaction pair, we
identify the top-k enzymes that closely resemble the positive enzyme but do not have annotations for
catalyzing the reaction, using them as negative samples. Similarly, we select the top-k reactions that
are similar to the positive reaction but are not catalyzed by the positive enzyme, to serve as additional
negative samples (k=1000). This method effectively narrows down the size of negative samples
while retaining those of significance for both training and testing purposes. Despite our approach,
the construction of negative samples still presents an unresolved challenge, remaining as an open
question for future development.

4 ReactZyme Approach
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Figure 2: Our methodology begins with the computation of conformations for structural insights
from given reactions. Similarly, for enzymes, we employ AlphaFold to obtain their structures. Then,
molecule encoders are used to transcribe 2D molecular graphs alongside their 3D geometry. For the
initialization of enzyme features, protein language models are employed. The substrates and products
are refined through cross-attention and then merged to form a single reaction representation. Enzyme
features are further refined using an equivariant-GNN. These enzyme embeddings, along with reaction
embeddings, are processed through an encoder-decoder to establish pair-wise relationships. And, a
probability matrix between enzymes and reactions is computed to facilitate retrieval.

We conceptualize the prediction of enzyme-substrate/product as a retrieval task, where it seeks to
rank a given list of enzyme proteins according to their catalytic efficacy for a specified chemical
reaction [51]. The overarching goal is to understand the intricate interactions between enzymes and
chemical reactions. To this end, we formulate strategies for the representation of the reactions and
proteins to enhance the generalization capabilities of machine learning models in the retrieval task.
More specifically, we highlight the development of representation methods that capture structural
and functional subtleties of enzymes and reactions, which play a central role in predicting enzyme-
substrate compatibility and catalytic potential. Our approach is visualized in Fig. 2.
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4.1 Multi-View Reaction Representation
In representing the substrate and product of catalytic reactions, we employ both string and graph
representations to capture the transition from substrates to products. Diverging from the previous
enzyme datasets, such as CLEAN [77] and CLIPZyme [51], our dataset uniquely offers a combination
of graph and geometric data representations. This allows the structural and functional information
that is inherent in reactions to be captured in a more fine-grained manner, hence portraying a rich and
informative description of the catalytic processes.

SMILES. Following CLEAN [77] and CLIPZyme [51], we continue to use SMILES [71] for
representing substrates and products. This method is highly useful for its simplicity and ease of
interpretation. Such representation concisely shows the substrate-to-product conversion process
and uses some linear notation, which is particularly adept at conveying structural changes in a
straightforward manner.

Graph and Conformation. Graph representation for substrates and products can capture the
structural and functional information that is not typically included in string representations [33, 40, 74].
In these graphs, atoms are represented as nodes, while bonds are viewed as edges. Formally,
consider a molecular graph denoted as G = (V, E), V ∈ RN×dv represents atom (node) features
with each vi ∈ V denotes one-hot encoded atom type, and E ∈ RN×N×de represents edge (bond)
features with each eij ∈ E denotes one-hot encoded bond type and connectivity. In addition to
the graph representations for reactions, we use molecular conformations to incorporate geometric
information. Formally, consider a molecular conformation denoted as G = (V, E ,X ), X ∈ RN×3

denotes additional geometric features, specifically atom positions. These conformations are computed
through molecular force field optimization [62].

Once obtaining the graph representations Gs = (Vs, Es,Xs),Gp = (Vp, Ep,Xp) for substrates and
products, respectively, we proceed to compute reaction embeddings. Consider a graph neural network
denoted as ϕ, we first use it to separately encode the graph representations as

V̂s, Ês = ϕ(Vs, Es,Xs), V̂s ∈ RNs×d′
v , Ês ∈ RNs×Ns×d′

e , (1)

V̂p, Êp = ϕ(Vp, Ep,Xp), V̂p ∈ RNp×d′
v , Êp ∈ RNp×Np×d′

e , (2)

where V̂, Ê denotes the updated node and edge representations, respectively. It then becomes
challenging to formulate ‘transitions’ between substrates and products. One method to address this
challenge is by constructing a pseudo-transition state graph denoted Gt = (Vt, Et), by adding the
bond features for edges connecting the same pairs of nodes in the reactants and the products. Then the
graph neural network ϕ can be used to update the transition graphs, and final reaction embedding can
be computed by taking the aggreagted node features, as r = Aggregate(V̂t) ∈ Rdr . The concept of
creating a pseudo-transition state graph is adopted in CLIPZyme [51].

However, we take a more direct approach by computing cross-attention between substrates and
products to formulate the ‘transitions’, as follows:

V̄s = softmax
(

(V̂sW
s
Q )(V̂pW

s
K )T√

dr

)
(V̂pW

s
V) ∈ RNs×d, V̄p = softmax

(
(V̂pW

p
Q )(V̂sW

p
K )T

√
dr

)
(V̂sW

p
V) ∈ RNp×dr . (3)

In here, the ‘transitions’ are learned through an attention mechanism that considers the pairwise
relationships between atoms in substrates and atoms in products, and the edge features Ês, Êp can
be additionally used as attention biases in transformers [69]. And the final reaction embedding is
computed by taking the average of node features, as r = Mean([V̄s, V̄p]) ∈ Rdr . In practice, for
the choice of graph neural networks to process the structural information of substrate and product
graphs G = (V, E), we choose to use Molecule Attention Transformer-2D (MAT-2D) [49] and
UniMol-2D [83]; and with additional geometric features G = (V, E ,X ), we choose to use MAT-3D
and UniMol-3D.

4.2 Enzyme Representation
When representing enzymes involved in catalytic reactions, we draw upon advancements in both
protein structures and protein language models. This approach shares similarities with CLIPZyme
[51], where we utilize a equivariant graph neural network to leverage information of protein structures.
However, we are different in the additional use of a structure-based protein language model, where
the protein embeddings are computed based on structure-aware sequence tokens.
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Protein Language Model Initialization. Each protein is represented as a residue-level point cloud
in Euclidean space, denoted as Ge = (Ve,Xe,Se), where Se represents the protein sequence and
Ve ∈ RNe×de represents residue features. Each residue vi ∈ Ve can be initialized either with a
one-hot encoded residue type or using embeddings from a protein language model (PLM). The protein
structure is denoted as Xe ∈ RNe×3, which can be initialized using AlphaFold [32] or by searching
against the AlphaFold database [68]. In practice, we use two protein language models, one using
vanilla residue sequences and another using structure-aware residue sequences. The first PLM is the
ESM model [41], which results in node features for each protein as VESM

e ∈ RNe×1280. To enhance
our understanding of protein behavior, we employ a second structure-based protein language model
called SaProt [61], which differs from ESM by taking structure-aware sequence tokens rather than
vanilla sequence tokens. It is achieved this by first aligning the protein structures using FoldSeek
[66]. The updated protein sequence after FoldSeek alignment is denoted as Ŝe, representing the
structure-aware protein sequence. And SaProt computes structure-aware residue features, resulting
in node features for each protein as VSaP

e ∈ RNe×1280.

The final protein embedding is computed by taking the average of node features as, eESM =
Mean(VESM

e ) ∈ R1280 and eSaP = Mean(VSaP
e ) ∈ R1280.

GNN Encoding. In addition to these embeddings, we utilize an equivariant graph neural network
to encode the protein graphs GESM

e = (VESM
e ,Xe,Se) and GSaP

e = (VSaP
e ,Xe,Se). We employ the

Frame Averaging Neural Network (FANN), denoted as ψ, to learn SE(3)-invariant node features
[55]. This approach possesses the effectiveness and efficiency advantage when dealing with large
graphs. The frame averaging operation is achieved by first projecting the protein structure Xe

onto a set of eight frames Ue ∈ F(Xe). These frames are constructed using Principal Component
Analysis (PCA). Suppose u1,u2,u3 denote the three principal components of a covariance matrix
Σe = (Xe − µe)

T (Xe − µe), where µe denotes the Center-of-Mass of Xe. The frame set F(Xe)
is defined as F(Xe) = {±u1,±u2,±u3}. Then the frame averaging operation computes SE(3)-
invariant node features V̂e, as follows:

V̂e =
1

|F(Xe)|
∑

Ue∈F(Xe)

ψ(Ve, (Xe − µe)Ue) ∈ RNe×1280. (4)

And the final GNN-encoded protein embedding is computed by taking the average of node features
as, eSE3

ESM = Mean(V̂ESM
e ) ∈ R1280 and eSE3

SaP = Mean(V̂SaP
e ) ∈ R1280.

4.3 Enzyme-Reaction Prediction

Once we have the reaction and enzyme embeddings r, e, designing models to learn the interactions
between enzymes and reactions becomes quite flexible. While approaches like Transformer and
attention mechanisms can be used to learn pairwise relationships from positive and negative enzyme-
reaction pairs [69, 49], or Bidirectional Recurrent Neural Network (Bi-RNN) can capture enzyme-
reaction interactions sequentially [76, 22], we take a more direct approach by employing an MLP
network. Consider the input reaction embedding of dimension dr, the reaction encoder is a 4-layer
Multi-Layer Perceptron (MLP) as:

zr = ReactionEnc(r) =W4(SiLU3(LN3(W3(SiLU2(LN2(W2(SiLU1(LN1(W1r +B1))) +B2))) +B3))) +B4 ∈ R256,

(5)
where W1 ∈ Rdr×512, B1 ∈ R512,W2 ∈ R512×256, B2 ∈ R256,W3,W4 ∈ R256×256, B3, B4 ∈
R256. The enzyme encoder, denoted as EnzymeEnc, has a similar architecture, with only modification
in the first-layer MLP as W1 ∈ R1280×512, B1 ∈ R512. And the encoded reaction and enzyme
representations have the dimension of 256, as zr, ze ∈ R256.

The decoder network is a 4-layer MLP that takes the encoded enzyme-reaction pair and computes the
prediction score:

y = Decoder(zr, ze) =W4(W3(SiLU(W2(SiLU(W1([zr, ze]) +B1)) +B2)) +B3)) ∈ R, (6)

where W1 ∈ R512×256, B1 ∈ R256,W2 ∈ R256×128, B2 ∈ R128,W3 ∈ R128×64, B3 ∈ R64,W4 ∈
R64×1. In Appendix C, we further compare the simple MLP-decoder network with Transformer-
and Bi-RNN-decoder networks (in Tables 9, 10, and 11), showing their retrieval performance.
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5 Benchmarking on ReactZyme Dataset

5.1 Primary Empirical Evaluation

Baseline Overview. We summarize the baseline models used for the enzyme-reaction retrieval task.
For reaction representation, we employ Molecule Attention Transformer-2D (MAT-2D) [49], and
UniMol-2D [83] for 2D molecular graphs, as well as MAT-3D and UniMol-3D for 3D molecular
conformations. For enzyme representation, we employ ESM [41] and a structure-aware protein
language model, SaProt [61]. Additionally, we use an equivariant graph neural network (FANN [55])
to enhance residue-level representations.

Metrics. In the evaluation of the enzyme-reaction retrieval task, we use several metrics: Top-k
Accuracy, Top-k Accuracy-N, Mean Rank, and Mean Reciprocal Rank (MRR). (1) Top-k
Accuracy quantifies the proportion of instances where the correct enzyme (or reaction) is ranked
within the model’s top-k predictions, irrespective of its exact position. (2) Top-k Accuracy-N
refines this by assessing the frequency at which the correct enzyme (or reaction) is not only within the
top-k predictions but also occupies the precise rank specified by N within this subset. For instance,
with k=1, the correct enzyme must be the model’s foremost prediction. (3) Mean Rank calculates
the average position of the correct enzyme in the retrieval list, with lower values indicating better
performance. (4) MRR evaluates how quickly the correct enzyme is retrieved by averaging the recip-
rocal ranks of the first correct enzyme across all reactions, ranging from 0 to 1, with higher values
indicating better performance. More details and implementations can be found in Appendix A.

Table 2: Average results of baseline models of time-based split. Top results are highlighted in green,
orange, and purple, respectively.

(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).
Time/enzyme-reaction GNN Encoding Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5004 0.3336 0.2502 0.2002 0.1001 0.0500 1.0004 0.9998
MAT-2D + ESM % 0.3246 0.4526 0.5255 0.5700 0.6044 0.7079 0.7972 0.3246 0.2263 0.1752 0.1425 0.1209 0.0708 0.0399 40.4756 0.4549
MAT-2D + SaProt % 0.2073 0.2945 0.3408 0.3678 0.4020 0.5004 0.6120 0.2073 0.1472 0.1136 0.0937 0.0804 0.0499 0.0306 75.3546 0.2898
UniMol-2D + ESM % 0.2827 0.4024 0.4335 0.4889 0.5210 0.6508 0.7612 0.2827 0.2012 0.1443 0.1221 0.1041 0.0651 0.0380 53.4261 0.4011
UniMol-2D + SaProt % 0.1957 0.2863 0.3066 0.3622 0.3855 0.4380 0.6021 0.1957 0.1431 0.1022 0.0905 0.0771 0.0438 0.0301 79.8460 0.2788
UniMol-2D + ESM ! 0.2948 0.4494 0.5067 0.5252 0.5866 0.6912 0.7831 0.2948 0.2247 0.1689 0.1313 0.1173 0.0691 0.0391 45.0611 0.4289
UniMol-2D + SaProt ! 0.2512 0.3635 0.4052 0.4336 0.4329 0.6474 0.6879 0.2512 0.1818 0.1351 0.1084 0.0866 0.0647 0.0344 63.1455 0.3176
MAT-3D + ESM % 0.2858 0.4005 0.4344 0.4852 0.4955 0.6548 0.7405 0.2858 0.2001 0.1448 0.1213 0.0991 0.6550 0.0371 60.3628 0.4041
MAT-3D + SaProt % 0.1210 0.1768 0.2084 0.2226 0.2265 0.3108 0.4015 0.1210 0.0884 0.0695 0.5565 0.0453 0.0311 0.0201 150.0301 0.1862
UniMol-3D + ESM % 0.2905 0.4007 0.4563 0.4984 0.5365 0.6586 0.7639 0.2905 0.2004 0.1522 0.1247 0.1074 0.0659 0.0382 46.0553 0.4104
UniMol-3D + SaProt % 0.0916 0.1328 0.1650 0.1908 0.2134 0.2923 0.3882 0.0916 0.0664 0.0550 0.0477 0.0426 0.0292 0.0194 168.8244 0.1591
UniMol-3D + ESM ! 0.3588 0.5158 0.5919 0.6044 0.6545 0.7815 0.8126 0.3588 0.2579 0.1973 0.1511 0.1309 0.0781 0.0406 32.7443 0.4952
UniMol-3D + SaProt ! 0.2508 0.3528 0.3995 0.4016 0.4075 0.5448 0.6421 0.2508 0.1764 0.1331 0.1004 0.0815 0.0546 0.0321 59.8345 0.3453

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Time/reaction-enzyme GNN Encoding Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7775 0.6377 0.5420 0.4718 0.2895 0.1677 2.8324 0.7497
MAT-2D + ESM % 0.2175 0.2733 0.3144 0.3493 0.3815 0.4924 0.6033 0.2175 0.2001 0.1817 0.1688 0.1570 0.1206 0.0871 165.3066 0.1789
MAT-2D + SaProt % 0.1260 0.1537 0.1791 0.1943 0.2153 0.2921 0.3778 0.1260 0.1126 0.1035 0.0943 0.0886 0.0716 0.0546 281.2419 0.0981
UniMol-2D + ESM % 0.1435 0.1773 0.1977 0.2239 0.2299 0.3554 0.4367 0.1435 0.1299 0.1143 0.1087 0.0946 0.0871 0.0631 270.9385 0.1233
UniMol-2D + SaProt % 0.0912 0.1194 0.1342 0.1444 0.1494 0.2252 0.3488 0.0912 0.0875 0.0776 0.0701 0.0615 0.0552 0.0504 536.5624 0.0805
UniMol-2D + ESM ! 0.1486 0.1788 0.2092 0.2250 0.2294 0.3529 0.4865 0.1486 0.1310 0.1209 0.1092 0.0944 0.0865 0.0703 254.1982 0.1257
UniMol-2D + SaProt ! 0.0988 0.1284 0.1458 0.1572 0.1587 0.2273 0.3536 0.0988 0.0941 0.0843 0.0763 0.0653 0.0557 0.0511 504.2854 0.0934
MAT-3D + ESM % 0.2281 0.3041 0.3518 0.3945 0.4240 0.5502 0.5879 0.2281 0.2097 0.1933 0.1818 0.1703 0.1393 0.0852 152.1328 0.1931
MAT-3D + SaProt % 0.1037 0.1372 0.1629 0.1738 0.1800 0.2603 0.3671 0.1037 0.0946 0.0895 0.0801 0.0723 0.0659 0.0532 411.5762 0.1056
UniMol-3D + ESM % 0.1678 0.2240 0.2631 0.2938 0.3155 0.3960 0.5011 0.1678 0.1543 0.1443 0.1349 0.1267 0.1002 0.0748 177.4881 0.1400
UniMol-3D + SaProt % 0.0558 0.0721 0.0815 0.0883 0.0979 0.1359 0.1918 0.0558 0.0497 0.0448 0.0407 0.0393 0.0344 0.0278 700.9714 0.0538
UniMol-3D + ESM ! 0.2045 0.2835 0.3398 0.3722 0.3792 0.4475 0.5168 0.2045 0.1955 0.1867 0.1715 0.1523 0.1133 0.0749 167.5862 0.1628
UniMol-3D + SaProt ! 0.1331 0.1750 0.1886 0.1979 0.2044 0.3365 0.4119 0.1331 0.1207 0.1036 0.0912 0.0821 0.0852 0.0597 322.5755 0.1122

Results. We present the average results of baseline models for time-based, enzyme similarity-based,
and reaction similarity-based splits in Tables 2, 3, and 4, respectively. The top-performing results
are highlighted in green, orange, and purple for each split type. In Table 2(a), ranking reactions for
each enzyme, the vanilla ESM with 2D molecular graphs (MAT-2D + ESM) achieves 32.46% top-1
accuracy, 40.47 mean rank and 0.455 MRR. These results improve with molecular conformations
and enzyme structure augmentation (UniMol-3D + ESM + GNN Encoding). For enzyme ranking
per reaction (Table 2(b)), MAT-2D + ESM, MAT-2D + ESM) achieves 21.75% top-1 accuracy, 165.31
mean rank, and 0.179 MRR, with slight improvements using molecular conformations (MAT-3D +
ESM). Similar improvements are seen in the enzyme similarity-based split. In Table 3(a), MAT-2D +
SaProt achieves achieves 66.91% top-1 accuracy, 5.44 mean rank and 0.773 MRR, which further
improves with molecular conformations (UniMol-3D + ESM). In Table 3(b), MAT-2D + SaProt
achieves 39.99% top-1 accuracy, 23.59 mean rank, and 0.288 MRR. With molecular conformations
(UniMol-3D + ESM), accuracy and MRR improve slightly, though the mean rank drops. Reaction
similarity-based splits pose significant challenges, especially for unseen reactions. In Table 4(a),
MAT-2D + ESM achieves 9.41% top-1 accuracy, 39.91 mean rank and 0.200 MRR. Adding molecular
conformations and enzyme structure augmentation (UniMol-3D + ESM + GNN Encoding) yields
minimal improvement. Conversely, in Table 4(b), MAT-2D + ESM alone is sufficient.
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Table 3: Average results of baseline models of enzyme-similarity-based split. Top results are
highlighted in green, orange, and purple, respectively.

(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).
Enzyme/enzyme-reaction GNN Encoding Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM % 0.5987 0.7737 0.8311 0.8650 0.8759 0.9328 0.9572 0.5987 0.3864 0.2777 0.2160 0.1774 0.0939 0.0485 5.3021 0.7280
MAT-2D + SaProt % 0.6691 0.8104 0.8557 0.8862 0.8893 0.9358 0.9553 0.6691 0.4047 0.2859 0.2213 0.1801 0.0942 0.0484 5.4356 0.7733
UniMol-2D + ESM % 0.6077 0.7769 0.7969 0.8674 0.8759 0.9338 0.9533 0.6077 0.3880 0.2663 0.2166 0.1774 0.0940 0.0483 7.0311 0.7349
UniMol-2D + SaProt % 0.5717 0.7230 0.7429 0.7282 0.8357 0.8891 0.9474 0.5717 0.3612 0.2483 0.1818 0.1693 0.0895 0.0480 15.2646 0.6912
UniMol-2D + ESM ! 0.6256 0.7966 0.8347 0.8766 0.8749 0.9348 0.9493 0.6256 0.3978 0.2789 0.2189 0.1772 0.0941 0.0481 7.0024 0.7491
UniMol-2D + SaProt ! 0.6038 0.7690 0.8203 0.8054 0.8695 0.9338 0.9375 0.6038 0.3841 0.2741 0.2011 0.1761 0.0940 0.0475 7.0746 0.7346
MAT-3D + ESM % 0.4544 0.6141 0.6139 0.6154 0.6408 0.8573 0.9118 0.4544 0.3070 0.2053 0.1536 0.1300 0.0863 0.0462 30.8473 0.5093
MAT-3D + SaProt % 0.5539 0.7116 0.6712 0.7106 0.6904 0.8821 0.9296 0.5539 0.3555 0.2244 0.1774 0.1400 0.0888 0.0471 15.3962 0.6735
UniMol-3D + ESM % 0.7267 0.8366 0.8758 0.9002 0.9062 0.9487 0.9632 0.7267 0.4177 0.2926 0.2248 0.1835 0.0955 0.0488 4.5799 0.8112
UniMol-3D + SaProt % 0.5998 0.7592 0.8164 0.8522 0.8665 0.9229 0.9454 0.5998 0.3792 0.2728 0.2128 0.1755 0.0929 0.0479 7.4701 0.7226
UniMol-3D + ESM ! 0.7111 0.8273 0.8668 0.8798 0.9017 0.9547 0.9592 0.7111 0.4131 0.2896 0.2197 0.1826 0.0961 0.0486 4.8395 0.8023
UniMol-3D + SaProt ! 0.6328 0.8002 0.8077 0.8790 0.8853 0.9348 0.9513 0.6328 0.3996 0.2699 0.2195 0.1793 0.0941 0.0482 6.9597 0.7457

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Enzyme/reaction-enzyme GNN Encoding Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM % 0.3624 0.4545 0.5190 0.5697 0.6091 0.7225 0.7986 0.3624 0.3423 0.3229 0.3091 0.2961 0.2444 0.1820 22.5053 0.2586
MAT-2D + SaProt % 0.3999 0.4921 0.5624 0.6143 0.6455 0.7583 0.8390 0.3999 0.3706 0.3499 0.3333 0.3138 0.2565 0.1912 23.5890 0.2883
UniMol-2D + ESM % 0.3435 0.4392 0.4922 0.5409 0.5701 0.7007 0.7530 0.3435 0.3308 0.3062 0.2935 0.2771 0.2370 0.1716 25.4892 0.2512
UniMol-2D + SaProt % 0.3049 0.3892 0.4431 0.4924 0.5273 0.6347 0.6872 0.3049 0.2931 0.2757 0.2672 0.2563 0.2147 0.1566 30.5631 0.2245
UniMol-2D + ESM ! 0.3584 0.4504 0.5068 0.5573 0.5892 0.7338 0.7543 0.3584 0.3392 0.3153 0.3024 0.2864 0.2482 0.1719 25.0362 0.2674
UniMol-2D + SaProt ! 0.3534 0.4471 0.4862 0.5216 0.5713 0.7051 0.7640 0.3534 0.3367 0.3025 0.2830 0.2777 0.2385 0.1741 25.1678 0.2635
MAT-3D + ESM % 0.3827 0.4837 0.5327 0.5791 0.6373 0.7089 0.8048 0.3827 0.3643 0.3314 0.3142 0.3098 0.2398 0.1834 26.4117 0.2841
MAT-3D + SaProt % 0.3751 0.4184 0.4578 0.5031 0.5493 0.6572 0.7394 0.3751 0.3151 0.2848 0.2730 0.2670 0.2223 0.1685 24.5678 0.2763
UniMol-3D + ESM % 0.4088 0.5246 0.5987 0.6480 0.6892 0.7953 0.8666 0.4088 0.3951 0.3725 0.3516 0.3350 0.2690 0.1975 24.2505 0.2930
UniMol-3D + SaProt % 0.3477 0.4427 0.5082 0.5522 0.5458 0.6980 0.7762 0.3477 0.3334 0.3162 0.2996 0.2653 0.2361 0.1769 34.9487 0.2562
UniMol-3D + ESM ! 0.3928 0.4910 0.5515 0.6113 0.6612 0.7628 0.8324 0.3928 0.3698 0.3431 0.3317 0.3214 0.2580 0.1897 23.8241 0.2837
UniMol-3D + SaProt ! 0.3655 0.4706 0.5187 0.5682 0.6161 0.7376 0.7552 0.3655 0.3544 0.3227 0.3083 0.2995 0.2495 0.1721 22.8901 0.2633

Table 4: Average results of baseline models of reaction-similarity-based split. Top results are
highlighted in green, orange, and purple, respectively.

(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).
Reaction/enzyme-reaction GNN Encoding Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5000 0.3334 0.2500 0.2000 0.1000 0.0500 1.0000 1.0000
MAT-2D + ESM % 0.0914 0.1604 0.2471 0.2694 0.2968 0.4373 0.5908 0.0914 0.0807 0.0744 0.0677 0.0596 0.0438 0.0296 39.9146 0.2005
MAT-2D + SaProt % 0.0963 0.1459 0.2477 0.2690 0.3018 0.4123 0.5070 0.0963 0.0734 0.0746 0.0676 0.0606 0.0413 0.0254 72.0597 0.1936
UniMol-2D + ESM % 0.0949 0.1435 0.2165 0.2261 0.2694 0.4363 0.4232 0.0949 0.0722 0.0652 0.0568 0.0541 0.0437 0.0212 65.2719 0.1865
UniMol-2D + SaProt % 0.0944 0.1469 0.2401 0.2344 0.2754 0.4143 0.4571 0.0944 0.0739 0.0723 0.0589 0.0553 0.0415 0.0229 59.7940 0.1956
UniMol-2D + ESM ! 0.0929 0.1425 0.2288 0.2332 0.2610 0.4313 0.4271 0.0929 0.0717 0.0689 0.0586 0.0524 0.0432 0.0214 72.7932 0.1810
UniMol-2D + SaProt ! 0.0926 0.1423 0.2248 0.2344 0.2699 0.4343 0.5309 0.0926 0.0716 0.0677 0.0589 0.0542 0.0435 0.0266 89.8456 0.1857
MAT-3D + ESM % 0.0930 0.1528 0.2365 0.2173 0.2595 0.4203 0.4431 0.0930 0.0769 0.0712 0.0546 0.0521 0.0421 0.0222 81.3234 0.1893
MAT-3D + SaProt % 0.0915 0.1491 0.2265 0.2217 0.2565 0.4293 0.5269 0.0915 0.0750 0.0682 0.0557 0.0515 0.0430 0.0264 94.9242 0.1804
UniMol-3D + ESM % 0.0912 0.1495 0.2321 0.2177 0.2580 0.4213 0.4571 0.0912 0.0752 0.0699 0.0547 0.0518 0.0422 0.0229 92.2778 0.1856
UniMol-3D + SaProt % 0.1085 0.1638 0.2112 0.2257 0.2699 0.4034 0.5429 0.1085 0.0824 0.0636 0.0567 0.0542 0.0404 0.0272 42.3597 0.1988
UniMol-3D + ESM ! 0.1104 0.1691 0.2368 0.2742 0.3023 0.4573 0.5669 0.1104 0.0851 0.0713 0.0689 0.0607 0.0458 0.0284 38.9685 0.2011
UniMol-3D + SaProt ! 0.0962 0.1592 0.2265 0.2285 0.2545 0.4024 0.5289 0.0962 0.0801 0.0682 0.0574 0.0511 0.0403 0.0265 50.9663 0.1972

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Reaction/reaction-enzyme GNN Encoding Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7811 0.6649 0.5926 0.5389 0.3870 0.2711 19.5272 0.6715
MAT-2D + ESM % 0.1347 0.1622 0.1812 0.1835 0.2000 0.2326 0.2753 0.1347 0.1269 0.1218 0.1095 0.1083 0.0902 0.0749 529.4258 0.1341
MAT-2D + SaProt % 0.0933 0.1159 0.1344 0.1495 0.1627 0.2213 0.2561 0.0933 0.0907 0.0903 0.0892 0.0881 0.0858 0.0697 504.8481 0.1076
UniMol-2D + ESM % 0.0931 0.1077 0.1222 0.1272 0.1321 0.1769 0.1863 0.0931 0.0843 0.0821 0.0759 0.0715 0.0686 0.0507 550.0562 0.0946
UniMol-2D + SaProt % 0.0910 0.1048 0.1195 0.1285 0.1380 0.1818 0.2345 0.0910 0.0820 0.0803 0.0767 0.0747 0.0705 0.0638 567.8300 0.0989
UniMol-2D + ESM ! 0.1033 0.1158 0.1274 0.1411 0.1502 0.2076 0.2547 0.1033 0.0906 0.0856 0.0842 0.0813 0.0805 0.0693 590.4462 0.0928
UniMol-2D + SaProt ! 0.0905 0.1075 0.1196 0.1277 0.1339 0.1813 0.2407 0.0905 0.0841 0.0804 0.0762 0.0725 0.0703 0.0655 549.8296 0.0961
MAT-3D + ESM % 0.1269 0.1390 0.1735 0.1867 0.1962 0.2251 0.2712 0.1269 0.1088 0.1166 0.1114 0.1062 0.0873 0.0738 532.6187 0.1184
MAT-3D + SaProt % 0.0909 0.1049 0.1192 0.1285 0.1407 0.1849 0.2528 0.0909 0.0821 0.0801 0.0767 0.0762 0.0717 0.0688 539.1481 0.1044
UniMol-3D + ESM % 0.0924 0.1063 0.1208 0.1277 0.1332 0.1790 0.2172 0.0924 0.0832 0.0812 0.0762 0.0721 0.0694 0.0591 548.3340 0.0943
UniMol-3D + SaProt % 0.0933 0.1274 0.1478 0.1617 0.1703 0.2130 0.2613 0.0933 0.0997 0.0993 0.0965 0.0922 0.0826 0.0711 493.1189 0.0962
UniMol-3D + ESM ! 0.1244 0.1573 0.1735 0.1867 0.2058 0.2440 0.2848 0.1244 0.1231 0.1166 0.1114 0.1114 0.0946 0.0775 559.1225 0.1129
UniMol-3D + SaProt ! 0.0917 0.1100 0.1219 0.1312 0.1418 0.1847 0.2234 0.0917 0.0861 0.0819 0.0783 0.0768 0.0716 0.0608 552.4546 0.1051

Summary. It is evident that the tasks associated with the time-based and enzyme similarity-based
splits are less challenging than the reaction similarity-based split. This is reflected by higher top-k
accuracy, improved mean rank, and a greater Mean Reciprocal Rank (MRR), indicating in-
creased confidence. The likely reason is that the training set for the time-based and enzyme similarity-
based splits includes all reactions, whereas the test set for the reaction similarity-based split contains
numerous unseen reactions. This makes the task significantly more demanding, yet it provides an
excellent opportunity to evaluate the generalization capabilities of prediction models. Deep learning
models employing 2D and 3D graph representations for reactions and enzymes prove effective in
learning enzyme-reaction interactions, which are crucial for accurate enzyme-reaction prediction.
Vanilla models such as ESM, when reactions augmented with MAT-2D and UniMol-2D, have shown
promising results. These outcomes can be further enhanced by incorporating molecular conformation
data (MAT-3D and UniMol-3D). Additionally, the use of an equivariant model (GNN Encoding) to
represent enzyme structures has led to further improvements in prediction accuracy. This suggests
that structural information plays a significant role in enzyme-reaction prediction tasks, a finding that
was not observed in previous EC classification tasks. These methods prioritize enzyme functionality
over mere gene family classification or human-assigned reaction categories.
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5.2 Classic Annotation Method – BLAST
Method. To predict the reaction of an enzyme using BLAST, we employ BLASTp with default
parameters. The training set sequences are used as the target database, while the test set sequences
serve as the query. We use the following commands:

Bash Command→ bash makeblastdb -in train.fasta -dbtype prot parse_seqids -out train_db blastp
-query test.fasta -db train_db -outfmt “6 qseqid sseqid pident length mismatch gapopen qstart qend
sstart send evalue bitscore” -out results.tsv

If BLASTp finds a match between the test set and training set sequences, we set the corresponding
value to 1, indicating that the sequences likely share the same reaction. If there is no match found,
the value is set to 0, indicating no predicted reaction match.

For reaction-based sequence searches, where the reaction is known in the training set, we use the
training set sequences as the query to search against the test set, applying the same criteria for setting
the values.

Results. We compare the average neural network and BLAST results for time-, enzyme similarity-,
and reaction similarity-based splits in Tables 5, 6, and 7, respectively. We highlight best performing
models and use different colors distinguish between Top-k Accuracy, Mean Rank, and MRR.

Table 5: Comparisons between Neural Nets and BLAST on time-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Time/enzyme-reaction NNs? Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5004 0.3336 0.2502 0.2002 0.1001 0.0500 1.0004 0.9998
MAT-2D + ESM MLP 0.3246 0.4526 0.5255 0.5700 0.6044 0.7079 0.7972 0.3246 0.2263 0.1752 0.1425 0.1209 0.0708 0.0399 40.4756 0.4549
MAT-2D + ESM Transformer 0.3637 0.5064 0.5720 0.6223, 0.6630 0.7617 0.8373 0.3637 0.2532, 0.1907 0.1556 0.1326 0.0762 0.0419 46.6605 0.4994
MAT-2D + ESM Bi-RNN 0.3911 0.5542 0.6170 0.6555 0.6875 0.7847 0.8559 0.3911 0.2771 0.2057 0.1639 0.1375 0.0785 0.0428 35.2791 0.5303
UniMol-3D + ESM MLP 0.2905 0.4007 0.4563 0.4984 0.5365 0.6586 0.7639 0.2905 0.2004 0.1522 0.1247 0.1074 0.0659 0.0382 46.0553 0.4104
UniMol-3D + ESM Transformer 0.3526 0.4934 0.5579 0.6089 0.6433 0.7328 0.8166 0.3526 0.2467 0.1860 0.1523 0.1287 0.0733 0.0409 38.1074 0.4854
UniMol-3D + ESM Bi-RNN 0.3543 0.5112 0.5820 0.6250 0.6563 0.7480 0.8259 0.3543 0.2556 0.1940 0.1563 0.1313 0.0748 0.0413 34.6103 0.4946
BLAST % 0.3581 0.2683 0.2150 0.1787 0.1530 0.0876 0.0464 0.3581 0.5366 0.6448 0.7146 0.7644 0.8758 0.9282 39.2472 0.5309

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Time/reaction-enzyme NNs? Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7775 0.6377 0.5420 0.4718 0.2895 0.1677 2.8324 0.7497
MAT-2D + ESM MLP 0.2175 0.2733 0.3144 0.3493 0.3815 0.4924 0.6033 0.2175 0.2001 0.1817 0.1688 0.1570 0.1206 0.0871 165.3066 0.1789
MAT-2D + ESM Transformer 0.2418 0.3106 0.3493 0.3842 0.4062 0.5095 0.6257 0.2418 0.2202 0.2001 0.1844 0.1679 0.1270 0.0916 151.1532 0.2003
MAT-2D + ESM Bi-RNN 0.2650 0.3470 0.3994 0.4355 0.4704 0.5854 0.6940 0.2650 0.2399 0.2202 0.2030 0.1892 0.1451 0.1028 149.2686 ß0.2267
UniMol-3D + ESM MLP 0.1678 0.2240 0.2631 0.2938 0.3155 0.3960 0.5011 0.1678 0.1543 0.1443 0.1349 0.1267 0.1002 0.0748 177.4881 0.1400
UniMol-3D + ESM Transformer 0.2418 0.3159 0.3656 0.3956 0.4282 0.5289 0.6439 0.2418 0.2225 0.2053 0.1875 0.1751 0.1336 0.0953 235.3835 0.2066
UniMol-3D + ESM Bi-RNN 0.2540 0.3261 0.3747 0.4024 0.4324 0.5330 0.6481 0.2540 0.2270 0.2065 0.1875 0.1731 0.1323 0.0949 138.5832 0.2113
BLAST % 0.1925 0.1803 0.1689 0.1589 0.1503 0.1210 0.0913 0.1925 0.2957 0.3694 0.4260 0.4727 0.6090 0.7525 459.3484 0.2115

Table 6: Comparisons between Neural Nets and BLAST on enzyme-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Sequence/enzyme-reaction NNs? Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM MLP 0.5987 0.7737 0.8311 0.8650 0.8759 0.9328 0.9572 0.5987 0.3864 0.2777 0.2160 0.1774 0.0939 0.0485 5.3021 0.7280
MAT-2D + ESM Transformer 0.8133 0.9079 0.9390 0.9544 0.9629 0.9808 0.9880 0.8133 0.4540 0.3131 0.2387 0.1926 0.0981 0.0494 3.4248 0.8797
MAT-2D + ESM Bi-RNN 0.8151 0.9260 0.9532 0.9629 0.9713 0.9850 0.9913 0.8151 0.4632 0.3179 0.2408 0.1943 0.0986 0.0496 2.7051 0.8861
UniMol-3D + ESM MLP 0.7267 0.8366 0.8758 0.9002 0.9062 0.9487 0.9632 0.7267 0.4177 0.2926 0.2248 0.1835 0.0955 0.0488 4.5799 0.8112
UniMol-3D + ESM Transformer 0.7989 0.9085 0.9353 0.9487 0.9575 0.9760 0.9875 0.7989 0.4544 0.3118 0.2373 0.1916 0.0976 0.0494 3.9671 0.8712
UniMol-3D + ESM Bi-RNN 0.8114 0.9014 0.9287 0.9413 0.9503 0.9731 0.9851 0.8114 0.4507 0.3096 0.2354 0.1901 0.0973 0.0493 3.5925 0.8747
BLAST % 0.3331 0.2301 0.1876 0.1633 0.1470 0.0940 0.0495 0.3331 0.4603 0.5626 0.6530 0.7347 0.9394 0.9902 7.0781 0.5022

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Sequence/enzyme-reaction NNs? Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM MLP 0.3624 0.4545 0.5190 0.5697 0.6091 0.7225 0.7986 0.3624 0.3423 0.3229 0.3091 0.2961 0.2444 0.1820 22.5053 0.2586
MAT-2D + ESM Transformer 0.5594 0.6675 0.7254 0.7756 0.8042 0.8887 0.9460 0.5594 0.5051 0.4615 0.4293 0.3997 0.3053 0.2149 10.3768 0.4247
MAT-2D + ESM Bi-RNN 0.5887 0.7120 0.7756 0.8252 0.8551 0.9193 0.9669 0.5887 0.5318 0.4804 0.4447 0.4135 0.3110 0.2177 9.7913 0.4562
UniMol-3D + ESM MLP 0.4088 0.5246 0.5987 0.6480 0.6892 0.7953 0.8666 0.4088 0.3951 0.3725 0.3516 0.3350 0.2690 0.1975 24.2505 0.2930
UniMol-3D + ESM Transformer 0.5524 0.6573 0.7228 0.7591 0.7839 0.8773, 0.9358 0.5524 0.4955 0.4537 0.4201 0.3933 0.3051 0.2138 15.2621 0.4099
UniMol-3D + ESM Bi-RNN 0.5086 0.6217 0.6904 0.7470 0.7832 0.8697 0.9243 0.5086 0.4727 0.4376 0.4094 0.3851 0.3001 0.2117 14.7945 0.3869
BLAST % 0.2142 0.1914 0.1780 0.1626 0.1523 0.1240 0.0968 0.2142 0.3547 0.4577 0.5296 0.5938 0.7750 0.9078 88.8563 0.2667

Table 7: Comparisons between Neural Nets and BLAST on reaction-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Reaction/enzyme-reaction NNs? Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM MLP 0.0914 0.1604 0.2471 0.2694 0.2968 0.4374 0.5908 0.0914 0.0807 0.0744 0.0677 0.0596 0.0438 0.0296 39.9146 0.2005
MAT-2D + ESM Transformer 0.1149 0.1637 0.2080 0.2414 0.2708 0.3834 0.4589 0.1149 0.0818 0.0694 0.0604 0.0542 0.0384 0.0229 105.9301 0.1940
MAT-2D + ESM Bi-RNN 0.1181 0.2179 0.2787 0.3274 0.3664 0.4897 0.6068 0.1181 0.1090 0.0929 0.0819 0.0733 0.0490 0.0303 41.3776 0.2399
UniMol-3D + ESM MLP 0.0912 0.1495 0.2321 0.2177 0.2580 0.4213 0.4571 0.0912 0.0752 0.0699 0.0547 0.0518 0.0422 0.0229 92.2778 0.1856
UniMol-3D + ESM Transformer 0.1351 0.1966 0.2367 0.2644 0.2874 0.3931 0.5212 0.1351 0.0983 0.0789 0.0661 0.0575 0.0393 0.0261 41.2327 0.2228
UniMol-3D + ESM Bi-RNN 0.1085 0.1543 0.1836 0.2177 0.2603 0.4077 0.5594 0.1085 0.0771 0.0612 0.0544 0.0521 0.0408 0.0280 41.3069 0.1969
BLAST % 0.0020 0.0025 0.0024 0.0025 0.0026 0.0026 0.0027 0.0020 0.0049 0.0073 0.0101 0.0131 0.0259 0.0536 193.6353 0.0167

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Reaction/enzyme-reaction NNs? Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM MLP 0.1347 0.1622 0.1812 0.1835 0.2000 0.2326 0.2753 0.1347 0.1269 0.1218 0.1095 0.1083 0.0902 0.0749 529.4258 0.1341
MAT-2D + ESM Transformer 0.1788 0.2746 0.3187 0.3523 0.3808 0.5026 0.5933 0.1788 0.1632 0.1528 0.1477 0.1409 0.1174 0.0898 855.3036 0.1790
MAT-2D + ESM Bi-RNN 0.1710 0.2254 0.2694 0.3187 0.3549 0.4741 0.5855 0.1710 0.1464 0.1382 0.1367 0.1290 0.1145 0.0870 529.3677 0.1696
UniMol-3D + ESM MLP 0.0924 0.1063 0.1208 0.1277 0.1332 0.1790 0.2172 0.0924 0.0832 0.0812 0.0762 0.0721 0.0694 0.0591 548.3340 0.0943
UniMol-3D + ESM Transformer 0.1218 0.1813 0.2254 0.2591 0.2876 0.3653 0.4767 0.1218 0.1192 0.1166 0.1120 0.1062 0.0946 0.0834 543.2014 0.1204
UniMol-3D + ESM Bi-RNN 0.1244 0.1813 0.2150 0.2383 0.2565 0.3990 0.4948 0.1244 0.1231 0.1166 0.1101 0.1036 0.0951 0.0790 545.8586, 0.1206
BLAST % 0.0000 0.0013 0.0009 0.0019 0.0016 0.0031 0.0025 0.0000 0.0026 0.0026 0.0078 0.0078 0.0285 0.0363 7274.5166 0.0005

Analysis. In the time-based split, we observe that the performance of Neural Networks and BLAST
are quite similar in terms of Top-k Accuracy, Mean Rank, and MRR. The comparable performance
of BLAST may be attributed to the presence of some enzyme and reaction sequences in the training
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set that reappear in the test set, or to similar enzyme and reaction clusters. However, in the enzyme-
similarity-based split, BLAST falls significantly short of the results achieved by Neural Networks.
This disparity arises because many test enzyme sequences are either unseen or substantially different
from those in the training set.

In the reaction-similarity-based split, BLAST exhibits nearly 0% top-k accuracy, along with extremely
high mean ranks and low MRRs. This outcome suggests that BLAST’s predictions are almost random
guesses, indicating that the model does not effectively leverage the enzyme-reaction pairs from the
training data. In contrast, Neural Networks still excel in identifying the underlying patterns necessary
for accurate enzyme and reaction retrieval. Overall, Neural Networks outperform the classical BLAST
annotation method, highlighting their potential to advance enzyme-reaction prediction tasks.

5.3 Potential Strategy Table 8: Average accuracy and AUROC of baseline models for
enzyme-reaction prediction. Top results are highlighted in green,
orange, and purple, respectively.

Acc & ROC Time Enzyme Reaction
Model GNN Encoding Acc ROC Acc ROC Acc ROC
MAT-2D + ESM % 0.9904 0.8635 0.9897 0.8793 0.9715 0.5914
MAT-2D + SaProt % 0.9734 0.8327 0.9880 0.8533 0.9719 0.5780
UniMol-2D + ESM % 0.9837 0.8595 0.9837 0.8727 0.9683 0.5899
UniMol-2D + SaProt % 0.9636 0.8268 0.9784 0.8498 0.9727 0.6019
UniMol-2D + ESM ! 0.9708 0.8460 0.9846 0.8787 0.9723 0.5691
UniMol-2D + SaProt ! 0.9765 0.8464 0.9850 0.8617 0.9751 0.5823
MAT-3D + ESM % 0.9871 0.8630 0.9836 0.8617 0.9743 0.6041
MAT-3D + SaProt % 0.9664 0.8271 0.9707 0.8520 0.9718 0.5884
UniMol-3D + ESM % 0.9802 0.8552 0.9901 0.8807 0.9729 0.6091
UniMol-3D + SaProt % 0.9751 0.8490 0.9737 0.8538 0.9732 0.5907
UniMol-3D + ESM ! 0.9903 0.8747 0.9879 0.8801 0.9821 0.6285
UniMol-3D + SaProt ! 0.9843 0.8585 0.9828 0.8622 0.9786 0.5970

In Table 8, we report the accu-
racy and AUROC of prediction
models on positive and negative
samples for enzyme-reaction pre-
diction. While these metrics are
secondary to the retrieval results
discussed in Section 5.1, a strong
correlation is evident between
the retrieval performance and the
ROC scores. Notably, the ROC
scores for the reaction similarity-
based split are lower compared to
those for the time- and enzyme
similarity-based splits. This pattern is similar in the retrieval results, underscoring the heightened
difficulty of the reaction similarity-based task.

5.4 Further Evaluation
We present further experiments in the Appendices for deeper evaluation and comparison. In Ap-
pendix C, we compare MLP, Transformer, and Bi-RNN decoder networks. Given the presence of
annotated negative samples, we explore a contrastive learning approach in Appendix D. We also
compare to the CLIPZyme pseudo-graph approach in Appendix E. And for a better description of
chemical environment of reactants and product, we compare with fingerprint features in Appendix F.

6 Conclusion
In this paper, we introduce ReactZyme, a new benchmark for enzyme-reaction prediction. Unlike
previous methods that rely on protein sequence or structure similarity or provide EC/GO annotations
to predict reaction, our approach directly evaluates the mapping between enzymes and their catalyzed
reactions. These enzyme-reaction prediction methods are able to handle protein with novel reactions
and to discover proteins that catalyze unreported reactions. We evaluate the performance of several
baselines on the ReactZyme. While the baselines demonstrate competitive results on time- and
enzyme-similarity-based splits, the reaction-similarity-based split remains particularly challenging.
This difficulty may arise from the presence of many unseen reactions in the test set of the reaction-
similarity-based split. One potential avenue for improvement is to explore contrastive learning
techniques to address this challenge. However, we acknowledge that this remains an open problem
for researchers in our community to tackle.

The ReactZyme benchmark facilitates the evaluation of models working with protein and molecule
representations, which requires a comprehensive understanding in both modalities. Models demon-
strating high performance in enzyme-reaction prediction can be further leveraged for protein function
prediction and enzyme discovery. This includes identifying key enzymes in biosynthesis and dis-
covering potent enzymes for degrading emerging pollutants, for these reactions that have not been
previously found in enzymes.
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A Metrics

The code for evaluation follows:
1 import torch
2

3 def enzyme_reaction_evaluation(logits , labels):
4 # logits =(n_enzyme , n_reaction); labels =(n_enzyme , n_reaction)
5

6 #compute argsort according to logits values
7 asrt = torch.argsort(logits , dim=1, descending=True , stable=True)
8 # if all zeros , randomly permute
9 if (logits == 0).all(dim=-1).sum():

10 rand_perm = torch.stack([ torch.randperm(logits.size (1)) for _
in range(logits.size (0))])

11 indices = torch.where (( logits == 0).all(dim=-1) == 1)[0]
12 asrt[indices] = rand_perm[indices]
13

14 ranking = torch.empty(logits.shape[0], logits.shape[1], dtype =
torch.long).scatter_ (1, asrt , torch.arange(logits.shape [1]).
repeat(logits.shape[0], 1))

15 ranking = (ranking + 1).to(labels.device)
16

17 #compute mean rank
18 mean_rank = (ranking * labels.float()).sum(dim=-1) / (labels.sum(

dim=-1))
19 mean_rank = mean_rank.mean(dim =0)
20

21 #compute mrr
22 mrr = (1.0 / ranking * labels.float()).sum(dim=-1) / (labels.sum(

dim=-1)) # (num_seq)
23 mrr = mrr.mean(dim =0)
24

25 top_accs = []
26 top_accs_n = []
27 for k in [1, 2, 3, 4, 5, 10, 20, 50]:
28 #compute top -k acc
29 top_acc = ((( ranking <= k) * labels.float()).sum(dim=-1) > 0).

float()
30 top_acc = top_acc.mean(dim=0)
31 top_accs.append(top_acc)
32

33 #compute top -k acc -n
34 top_acc_n = (( ranking <= k) * labels.float ()).sum(dim=-1) / k
35 top_acc_n = top_acc_n.mean(dim =0)
36 top_accs_n.append(top_acc_n)
37

38 return top_accs [0], top_accs [1], top_accs [2], top_accs [3],
top_accs [4], top_accs [5], top_accs [6], top_accs [7], top_accs_n [0],
top_accs_n [1], top_accs_n [2], top_accs_n [3], top_accs_n [4],

top_accs_n [5], top_accs_n [6], top_accs_n [7], mean_rank , mrr
Listing 1: Pytorch Implementation for Enzyme-Reaction Prediction.

We employ Top-k Accuracy, Top-k Accuracy-N, Mean Rank, and Mean Reciprocal Rank
(MRR) to evaluate the enzyme-reaction retrieval task.

Top-k Accuracy measures the percentage of cases where the correct enzyme (or reaction) is
included within the top-k predictions made by the model; and it does not necessarily have to be the
first prediction, as long as it is within the top-k. For Top-k Accuracy, the formula could be:

Top-k Accuracy =
Number of correct enzymes in top-k predictions

Total number of predictions

Top-k Accuracy-N measures how often the correct enzyme (or reaction) is not just within the top-k
predictions, but also at the correct rank within those top-k. For example, if k=1, then the correct

16



enzyme must be the model’s top prediction. For Top-k Accuracy-N, the formula might look like:

Top-k Accuracy-N =
Number of correct enzymes at correct rank in top-k predictions

Total number of predictions

Mean Rank calculates the average position of the correct enzyme in the retrieval list, with lower
values indicating better performance.

MRR evaluates how quickly the correct enzyme is retrieved by averaging the reciprocal ranks of the
first correct enzyme across all reactions, ranging from 0 to 1, with higher values indicating better
performance.

B Terminology of enzyme-reaction prediction, Enzyme-function prediction,
enzyme-substrate/product prediction, and enzyme annotation

The terms or the concepts of ‘enzyme reaction prediction’, ‘enzyme function prediction’, ‘enzyme
substrate/product prediction’, and ‘enzyme annotation’ may not be clearly delineated in the main
section. In here, we aim to explain and address these concerns. There are indeed different types of
annotations for enzyme, with function annotation being one of them. A reaction is part of the function,
as not all functions map directly to a reaction. An enzyme reaction includes multiple features, such as
substrate, product, and conditions (including the catalyst). This distinction helps clarify the various
concepts like enzyme reaction prediction, function prediction, and substrate/product prediction.

C Experiments on Transformer and Bi-RNN Networks

In Section 4, we choose to use an encoder-decoder network over directly employment of Transformer
or Bi-RNN. Here, we explain the intuition behind the use of the encoder-decocoder design over the
transformer-like architectures. The encoder network, at the low-hierarchical level, aims to learn
individual representations for enzymes and reactions, respectively. And the decoder network, at the
high-hierarchical level, aims to learn the contacts or the interactions between any enzyme-reaction
pair. Thus, in principle, the decoder could be any network that learns the interactions between
enzymes and reactions.

Results. In Section 4, we choose to use a MLP as the decoder network, here, we employ the
Transformer and Bi-RNN as the decoder network for further evaluation. We compare the average
results of baseline models by MLP, Transformer, Bi-RNN for time-based, enzyme similarity-based,
and reaction similarity-based splits in Tables 9, 10, and 11, respectively.

Table 9: Comparisons between MLP, Transformer, Bi-RNN on time-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Time/enzyme-reaction Decoder Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5004 0.3336 0.2502 0.2002 0.1001 0.0500 1.0004 0.9998
MAT-2D + ESM MLP 0.3246 0.4526 0.5255 0.5700 0.6044 0.7079 0.7972 0.3246 0.2263 0.1752 0.1425 0.1209 0.0708 0.0399 40.4756 0.4549
MAT-2D + ESM Transformer 0.3637 0.5064 0.5720 0.6223, 0.6630 0.7617 0.8373 0.3637 0.2532, 0.1907 0.1556 0.1326 0.0762 0.0419 46.6605 0.4994
MAT-2D + ESM Bi-RNN 0.3911 0.5542 0.6170 0.6555 0.6875 0.7847 0.8559 0.3911 0.2771 0.2057 0.1639 0.1375 0.0785 0.0428 35.2791 0.5303
UniMol-3D + ESM MLP 0.2905 0.4007 0.4563 0.4984 0.5365 0.6586 0.7639 0.2905 0.2004 0.1522 0.1247 0.1074 0.0659 0.0382 46.0553 0.4104
UniMol-3D + ESM Transformer 0.3526 0.4934 0.5579 0.6089 0.6433 0.7328 0.8166 0.3526 0.2467 0.1860 0.1523 0.1287 0.0733 0.0409 38.1074 0.4854
UniMol-3D + ESM Bi-RNN 0.3543 0.5112 0.5820 0.6250 0.6563 0.7480 0.8259 0.3543 0.2556 0.1940 0.1563 0.1313 0.0748 0.0413 34.6103 0.4946

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Time/reaction-enzyme Decoder Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7775 0.6377 0.5420 0.4718 0.2895 0.1677 2.8324 0.7497
MAT-2D + ESM MLP 0.2175 0.2733 0.3144 0.3493 0.3815 0.4924 0.6033 0.2175 0.2001 0.1817 0.1688 0.1570 0.1206 0.0871 165.3066 0.1789
MAT-2D + ESM Transformer 0.2418 0.3106 0.3493 0.3842 0.4062 0.5095 0.6257 0.2418 0.2202 0.2001 0.1844 0.1679 0.1270 0.0916 151.1532 0.2003
MAT-2D + ESM Bi-RNN 0.2650 0.3470 0.3994 0.4355 0.4704 0.5854 0.6940 0.2650 0.2399 0.2202 0.2030 0.1892 0.1451 0.1028 149.2686 0.2267
UniMol-3D + ESM MLP 0.1678 0.2240 0.2631 0.2938 0.3155 0.3960 0.5011 0.1678 0.1543 0.1443 0.1349 0.1267 0.1002 0.0748 177.4881 0.1400
UniMol-3D + ESM Transformer 0.2418 0.3159 0.3656 0.3956 0.4282 0.5289 0.6439 0.2418 0.2225 0.2053 0.1875 0.1751 0.1336 0.0953 235.3835 0.2066
UniMol-3D + ESM Bi-RNN 0.2540 0.3261 0.3747 0.4024 0.4324 0.5330 0.6481 0.2540 0.2270 0.2065 0.1875 0.1731 0.1323 0.0949 138.5832 0.2113

Analysis. We observe significant performance improvements when using Transformer and Bi-RNN
as the decoder networks. Specifically, Bi-RNN demonstrates superior performance on both time- and
enzyme-similarity-based splits, while Transformer also shows better and stronger performance
compared to the MLP decoder on these two splits. However, neither Transformer nor Bi-RNN provide
substantial improvements on the reaction similarity-based split, with any gains being incremental at
best. This suggests that, despite the significant advancements on the other two splits, the reaction-
based split remains extremely challenging and requires considerable effort to address. Given that
Transformer and Bi-RNN are designed to handle sequential and tokenized data, they are inherently
more powerful than MLP for this enzyme-substrate/product prediction task. A promising direction for
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Table 10: Comparisons between MLP, Transformer, Bi-RNN on enzyme-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Sequence/enzyme-reaction Decoder Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM MLP 0.5987 0.7737 0.8311 0.8650 0.8759 0.9328 0.9572 0.5987 0.3864 0.2777 0.2160 0.1774 0.0939 0.0485 5.3021 0.7280
MAT-2D + ESM Transformer 0.8133 0.9079 0.9390 0.9544 0.9629 0.9808 0.9880 0.8133 0.4540 0.3131 0.2387 0.1926 0.0981 0.0494 3.4248 0.8797
MAT-2D + ESM Bi-RNN 0.8151 0.9260 0.9532 0.9629 0.9713 0.9850 0.9913 0.8151 0.4632 0.3179 0.2408 0.1943 0.0986 0.0496 2.7051 0.8861
UniMol-3D + ESM MLP 0.7267 0.8366 0.8758 0.9002 0.9062 0.9487 0.9632 0.7267 0.4177 0.2926 0.2248 0.1835 0.0955 0.0488 4.5799 0.8112
UniMol-3D + ESM Transformer 0.7989 0.9085 0.9353 0.9487 0.9575 0.9760 0.9875 0.7989 0.4544 0.3118 0.2373 0.1916 0.0976 0.0494 3.9671 0.8712
UniMol-3D + ESM Bi-RNN 0.8114 0.9014 0.9287 0.9413 0.9503 0.9731 0.9851 0.8114 0.4507 0.3096 0.2354 0.1901 0.0973 0.0493 3.5925 0.8747

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Sequence/enzyme-reaction Decoder Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM MLP 0.3624 0.4545 0.5190 0.5697 0.6091 0.7225 0.7986 0.3624 0.3423 0.3229 0.3091 0.2961 0.2444 0.1820 22.5053 0.2586
MAT-2D + ESM Transformer 0.5594 0.6675 0.7254 0.7756 0.8042 0.8887 0.9460 0.5594 0.5051 0.4615 0.4293 0.3997 0.3053 0.2149 10.3768 0.4247
MAT-2D + ESM Bi-RNN 0.5887 0.7120 0.7756 0.8252 0.8551 0.9193 0.9669 0.5887 0.5318 0.4804 0.4447 0.4135 0.3110 0.2177 9.7913 0.4562
UniMol-3D + ESM MLP 0.4088 0.5246 0.5987 0.6480 0.6892 0.7953 0.8666 0.4088 0.3951 0.3725 0.3516 0.3350 0.2690 0.1975 24.2505 0.2930
UniMol-3D + ESM Transformer 0.5524 0.6573 0.7228 0.7591 0.7839 0.8773, 0.9358 0.5524 0.4955 0.4537 0.4201 0.3933 0.3051 0.2138 15.2621 0.4099
UniMol-3D + ESM Bi-RNN 0.5086 0.6217 0.6904 0.7470 0.7832 0.8697 0.9243 0.5086 0.4727 0.4376 0.4094 0.3851 0.3001 0.2117 14.7945 0.3869

Table 11: Comparisons between MLP, Transformer, Bi-RNN on reaction-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Reaction/enzyme-reaction Decoder Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM MLP 0.0914 0.1604 0.2471 0.2694 0.2968 0.4374 0.5908 0.0914 0.0807 0.0744 0.0677 0.0596 0.0438 0.0296 39.9146 0.2005
MAT-2D + ESM Transformer 0.1149 0.1637 0.2080 0.2414 0.2708 0.3834 0.4589 0.1149 0.0818 0.0694 0.0604 0.0542 0.0384 0.0229 105.9301 0.1940
MAT-2D + ESM Bi-RNN 0.1181 0.2179 0.2787 0.3274 0.3664 0.4897 0.6068 0.1181 0.1090 0.0929 0.0819 0.0733 0.0490 0.0303 41.3776 0.2399
UniMol-3D + ESM MLP 0.0912 0.1495 0.2321 0.2177 0.2580 0.4213 0.4571 0.0912 0.0752 0.0699 0.0547 0.0518 0.0422 0.0229 92.2778 0.1856
UniMol-3D + ESM Transformer 0.1351 0.1966 0.2367 0.2644 0.2874 0.3931 0.5212 0.1351 0.0983 0.0789 0.0661 0.0575 0.0393 0.0261 41.2327 0.2228
UniMol-3D + ESM Bi-RNN 0.1085 0.1543 0.1836 0.2177 0.2603 0.4077 0.5594 0.1085 0.0771 0.0612 0.0544 0.0521 0.0408 0.0280 41.3069 0.1969

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Reaction/enzyme-reaction Decoder Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM MLP 0.1347 0.1622 0.1812 0.1835 0.2000 0.2326 0.2753 0.1347 0.1269 0.1218 0.1095 0.1083 0.0902 0.0749 529.4258 0.1341
MAT-2D + ESM Transformer 0.1788 0.2746 0.3187 0.3523 0.3808 0.5026 0.5933 0.1788 0.1632 0.1528 0.1477 0.1409 0.1174 0.0898 855.3036 0.1790
MAT-2D + ESM Bi-RNN 0.1710 0.2254 0.2694 0.3187 0.3549 0.4741 0.5855 0.1710 0.1464 0.1382 0.1367 0.1290 0.1145 0.0870 529.3677 0.1696
UniMol-3D + ESM MLP 0.0924 0.1063 0.1208 0.1277 0.1332 0.1790 0.2172 0.0924 0.0832 0.0812 0.0762 0.0721 0.0694 0.0591 548.3340 0.0943
UniMol-3D + ESM Transformer 0.1218 0.1813 0.2254 0.2591 0.2876 0.3653 0.4767 0.1218 0.1192 0.1166 0.1120 0.1062 0.0946 0.0834 543.2014 0.1204
UniMol-3D + ESM Bi-RNN 0.1244 0.1813 0.2150 0.2383 0.2565 0.3990 0.4948 0.1244 0.1231 0.1166 0.1101 0.1036 0.0951 0.0790 545.8586, 0.1206

future work would be to design enzyme-reaction-specific Transformer or Bi-RNN models tailored
for this retrieval task.

D Experiments on Contrastive Learning

Results. In this section, we compare the average results of baseline models and the contrastive
learning approach for time-based, enzyme similarity-based, and reaction similarity-based splits in
Tables 12, 13, and 14, respectively. For enzyme-reaction prediction, contrastive learning can be
used to learn embeddings or representations of enzymes and reactions that are predictive of their
interactions. Positive pairs are optimized to have similar representations, while the negative pairs are
optimized to be distinct in the embedding space.

Table 12: Comparisons between baselines and contrastive learning on time-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Time/enzyme-reaction Contrastive Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5004 0.3336 0.2502 0.2002 0.1001 0.0500 1.0004 0.9998
MAT-2D + ESM % 0.3246 0.4526 0.5255 0.5700 0.6044 0.7079 0.7972 0.3246 0.2263 0.1752 0.1425 0.1209 0.0708 0.0399 40.4756 0.4549
MAT-2D + ESM ✓ 0.1684 0.2850 0.3674 0.4208 0.4648 0.5795 0.6766 0.1684 0.1425 0.1225 0.1052 0.0930 0.0580 0.0339 92.9282 0.3037
UniMol-3D + ESM % 0.2905 0.4007 0.4563 0.4984 0.5365 0.6586 0.7639 0.2905 0.2004 0.1522 0.1247 0.1074 0.0659 0.0382 46.0553 0.4104
UniMol-3D + ESM ✓ 0.1624 0.2787 0.3583 0.4041 0.439 0.5355 0.6341 0.1624 0.1393 0.1194 0.1010 0.0878 0.0536 0.0317 85.8957 0.2914

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Time/reaction-enzyme Contrastive Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7775 0.6377 0.5420 0.4718 0.2895 0.1677 2.8324 0.7497
MAT-2D + ESM % 0.2175 0.2733 0.3144 0.3493 0.3815 0.4924 0.6033 0.2175 0.2001 0.1817 0.1688 0.1570 0.1206 0.0871 165.3066 0.1789
MAT-2D + ESM ✓ 0.1203 0.1841 0.2251 0.2547 0.2828 0.3941 0.5133 0.1203 0.1175 0.1119 0.1051 0.1014 0.0852 0.0653 419.8292 0.1227
UniMol-3D + ESM % 0.1678 0.2240 0.2631 0.2938 0.3155 0.3960 0.5011 0.1678 0.1543 0.1443 0.1349 0.1267 0.1002 0.0748 177.4881 0.1400
UniMol-3D + ESM ✓ 0.0979 0.1420 0.1705 0.1963 0.2232 0.3162 0.4343 0.0979 0.0953 0.0899 0.0858 0.0838 0.0725 0.0580 435.4332 0.0932

Summary. For contrastive learning approach, an additional contrastive optimization goal is used
to make positive pairs similar and negative pairs distinct. However, we do not observe significant
improvements in performance using contrastive learning on our dataset. This suggests that while
contrastive learning can be a powerful tool, its impact on our specific task and dataset may be limited,
possibly due to the characteristics of our synthesized dataset or the dense method employed.
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Table 13: Comparisons between baselines and contrastive learning on enzyme-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Sequence/enzyme-reaction Contrastive Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM % 0.5987 0.7737 0.8311 0.8650 0.8759 0.9328 0.9572 0.5987 0.3864 0.2777 0.2160 0.1774 0.0939 0.0485 5.3021 0.7280
MAT-2D + ESM ✓ 0.6225 0.8218 0.8917 0.9204 0.9361 0.9639 0.9768 0.6225 0.4109 0.2973 0.2302 0.1873 0.0964 0.0489 6.427 0.7609
UniMol-3D + ESM % 0.7267 0.8366 0.8758 0.9002 0.9062 0.9487 0.9632 0.7267 0.4177 0.2926 0.2248 0.1835 0.0955 0.0488 4.5799 0.8112
UniMol-3D + ESM ✓ 0.3584 0.5287 0.6303 0.6951 0.7466 0.8516 0.9186 0.3584 0.2644 0.2101 0.1738 0.1494 0.0852 0.0459 11.1949 0.5248

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Sequence/reaction-enzyme Contrastive Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM % 0.3624 0.4545 0.5190 0.5697 0.6091 0.7225 0.7986 0.3624 0.3423 0.3229 0.3091 0.2961 0.2444 0.1820 22.5053 0.2586
MAT-2D + ESM ✓ 0.4031 0.5486 0.6351 0.6891 0.7235 0.8131 0.8843 0.4031 0.3662 0.3361 0.3160 0.2966 0.2353 0.1743 35.4688 0.3590
UniMol-3D + ESM % 0.4088 0.5246 0.5987 0.6480 0.6892 0.7953 0.8666 0.4088 0.3951 0.3725 0.3516 0.3350 0.2690 0.1975 24.2505 0.2930
UniMol-3D + ESM ✓ 0.1939 0.2848 0.3630 0.4209 0.4736 0.6249 0.7654 0.1939 0.1805 0.1742 0.1688 0.1652 0.1432 0.1159 67.6199 0.2035

Table 14: Comparisons between baselines and contrastive learning on reaction-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Reaction/enzyme-reaction Contrastive Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM % 0.0914 0.1604 0.2471 0.2694 0.2968 0.4374 0.5908 0.0914 0.0807 0.0744 0.0677 0.0596 0.0438 0.0296 39.9146 0.2005
MAT-2D + ESM ✓ 0.0197 0.0675 0.1043 0.1312 0.1712 0.2761 0.3915 0.0197 0.0338 0.0348 0.0328 0.0343 0.0276 0.0196 73.3916 0.1011
UniMol-3D + ESM % 0.0912 0.1495 0.2321 0.2177 0.2580 0.4213 0.4571 0.0912 0.0752 0.0699 0.0547 0.0518 0.0422 0.0229 92.2778 0.1856
UniMol-3D + ESM ✓ 0.0494 0.0611 0.0708 0.0828 0.0952 0.1632 0.2337 0.0494 0.0305 0.0236 0.0207 0.019 0.0163 0.0117 113.7547 0.0893

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Reaction/reaction-enzyme Contrastive Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM % 0.1347 0.1622 0.1812 0.1835 0.2000 0.2326 0.2753 0.1347 0.1269 0.1218 0.1095 0.1083 0.0902 0.0749 529.4258 0.1341
MAT-2D + ESM ✓ 0.0699 0.1192 0.1503 0.1736 0.1943 0.2617 0.3705 0.0699 0.0738 0.0682 0.0628 0.0596 0.0779 0.0399 1151.253 0.0899
UniMol-3D + ESM % 0.0924 0.1063 0.1208 0.1277 0.1332 0.1790 0.2172 0.0924 0.0832 0.0812 0.0762 0.0721 0.0694 0.0591 548.3340 0.0943
UniMol-3D + ESM ✓ 0.0699 0.1088 0.1373 0.158 0.1865 0.2513 0.3212 0.0699 0.0648 0.0596 0.0596 0.0606 0.0518 0.0459 1242.174 0.0699

E Experiments on Cross-Attention and Pseudo-graph for ‘Transition State’

In Section 4, we mention the concept of creating a pseudo-transition state graph for substrates and
products introduced in CLIPZyme [51], and we choose to use the cross-attention to describe the
transition state. Here, we further evaluate between the pseudo-graph approach in CLIPZyme [51] and
our cross-attention approach.

Results. We compare the average results of baseline models and the pseudo-graph of CLIPZyme
for time-based, enzyme similarity-based, and reaction similarity-based splits in Tables 15, 16, and
17, respectively. We observe there is significant performance increase in reaction similarity-based
split bu using the pseudo-graphs for transition states. However, the method does not improve the
performance or the improvements are incremental on time-based and enzyme-similarity-based splits
in comparison with cross-attention of the baseline models.

Table 15: Comparisons between baselines and CLIPZyme on time-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Time/enzyme-reaction Transition Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5004 0.3336 0.2502 0.2002 0.1001 0.0500 1.0004 0.9998
MAT-2D + ESM Attention 0.3246 0.4526 0.5255 0.5700 0.6044 0.7079 0.7972 0.3246 0.2263 0.1752 0.1425 0.1209 0.0708 0.0399 40.4756 0.4549
MAT-2D + ESM Pseudo-Graph 0.3041 0.4346 0.4991 0.5610 0.5993 0.6943 0.7840 0.3041 0.2173 0.1658 0.1399 0.1201 0.0695 0.0392 42.3645 0.4355
UniMol-3D + ESM Attention 0.2905 0.4007 0.4563 0.4984 0.5365 0.6586 0.7639 0.2905 0.2004 0.1522 0.1247 0.1074 0.0659 0.0382 46.0553 0.4104
UniMol-3D + ESM Pseudo-Graph 0.2631 0.3670 0.4189 0.4447 0.4534 0.6444 0.7516 0.2631 0.1835 0.1401 0.1112 0.0907 0.0645 0.0376 45.3637 0.3940

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Time/reaction-enzyme Transition Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7775 0.6377 0.5420 0.4718 0.2895 0.1677 2.8324 0.7497
MAT-2D + ESM Attention 0.2175 0.2733 0.3144 0.3493 0.3815 0.4924 0.6033 0.2175 0.2001 0.1817 0.1688 0.1570 0.1206 0.0871 165.3066 0.1789
MAT-2D + ESM Pseudo-Graph 0.1757 0.2445 0.3062 0.3075 0.3447 0.4555 0.5343 0.1757 0.1630 0.1532 0.1443 0.1312 0.1101 0.0756 173.3521 0.1678
UniMol-3D + ESM Attention 0.1678 0.2240 0.2631 0.2938 0.3155 0.3960 0.5011 0.1678 0.1543 0.1443 0.1349 0.1267 0.1002 0.0748 177.4881 0.1400
UniMol-3D + ESM Pseudo-Graph 0.1331 0.2034 0.2451 0.2822 0.2993 0.3554 0.4567 0.1331 0.1417 0.1250 0.1149 0.1033 0.0949 0.0740 186.4576 0.1313

Table 16: Comparisons between baselines and CLIPZyme on enzyme-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Sequence/enzyme-reaction Transition Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM Attention 0.5987 0.7737 0.8311 0.8650 0.8759 0.9328 0.9572 0.5987 0.3864 0.2777 0.2160 0.1774 0.0939 0.0485 5.3021 0.7280
MAT-2D + ESM Pseudo-Graph 0.5489 0.6851 0.7351 0.7970 0.7768 0.9290 0.9460 0.5489 0.3427 0.2451 0.1993 0.1554 0.0929 0.0473 8.3524 0.6971
UniMol-3D + ESM Attention 0.7267 0.8366 0.8758 0.9002 0.9062 0.9487 0.9632 0.7267 0.4177 0.2926 0.2248 0.1835 0.0955 0.0488 4.5799 0.8112
UniMol-3D + ESM Pseudo-Graph 0.7547 0.8706 0.9105 0.9642 0.9478 0.9679 0.9780 0.7547 0.4355 0.3036 0.2411 0.1896 0.0968 0.0489 3.9820 0.8546

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Sequence/reaction-enzyme Transition Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM Attention 0.3624 0.4545 0.5190 0.5697 0.6091 0.7225 0.7986 0.3624 0.3423 0.3229 0.3091 0.2961 0.2444 0.1820 22.5053 0.2586
MAT-2D + ESM Pseudo-Graph 0.3337 0.4371 0.4835 0.5352 0.6077 0.6514 0.7687 0.3337 0.3245 0.3094 0.2971 0.2844 0.2235 0.1811 30.4196 0.2038
UniMol-3D + ESM Attention 0.4088 0.5246 0.5987 0.6480 0.6892 0.7953 0.8666 0.4088 0.3951 0.3725 0.3516 0.3350 0.2690 0.1975 24.2505 0.2930
UniMol-3D + ESM Pseudo-Graph 0.3570 0.4835 0.5647 0.6146 0.6371 0.7552 0.8431 0.3570 0.3478 0.3212 0.3196 0.2885 0.2577 0.1834 25.5786 0.2828
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Table 17: Comparisons between baselines and CLIPZyme on reaction-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Reaction/enzyme-reaction Transition Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM Attention 0.0914 0.1604 0.2471 0.2694 0.2968 0.4374 0.5908 0.0914 0.0807 0.0744 0.0677 0.0596 0.0438 0.0296 39.9146 0.2005
MAT-2D + ESM Pseudo-Graph 0.1235 0.2281 0.2912 0.3415 0.3064 0.5719 0.6000 0.1235 0.1146 0.0971 0.0854 0.0613 0.0572 0.0300 35.6457 0.2201
UniMol-3D + ESM Attention 0.0912 0.1495 0.2321 0.2177 0.2580 0.4213 0.4571 0.0912 0.0752 0.0699 0.0547 0.0518 0.0422 0.0229 92.2778 0.1856
UniMol-3D + ESM Pseudo-Graph 0.1305 0.2392 0.3093 0.3604 0.3420 0.5320 0.6220 0.1305 0.1196 0.1031 0.0901 0.0684 0.0532 0.0311 48.4672 0.1937

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Reaction/reaction-enzyme Transition Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM Attention 0.1347 0.1622 0.1812 0.1835 0.2000 0.2326 0.2753 0.1347 0.1269 0.1218 0.1095 0.1083 0.0902 0.0749 529.4258 0.1341
MAT-2D + ESM Pseudo-Graph 0.1457 0.1741 0.1905 0.1944 0.2173 0.2456 0.2893 0.1457 0.1291 0.1233 0.1156 0.1135 0.1001 0.0783 501.2071 0.1521
UniMol-3D + ESM Attention 0.0924 0.1063 0.1208 0.1277 0.1332 0.1790 0.2172 0.0924 0.0832 0.0812 0.0762 0.0721 0.0694 0.0591 548.3340 0.0943
UniMol-3D + ESM Pseudo-Graph 0.1298 0.1573 0.1799 0.1842 0.1993 0.2215 0.2544 0.1298 0.1225 0.1044 0.0921 0.0866 0.0830 0.0741 526.4793 0.1245

Analysis. The pseudo-graph approach may capture some hidden atomic-level transition pattern from
molecular substrates to molecular products. The approach captures the atom and bond similarities
and differences, learning more of the hidden patterns in catalytic reactions, therefore resulting in a
performance increase on reaction-similarity-based split. However, such hidden pattern may not be
important or significant when more reaction information are provided to us, thus no performance
increase or incremental change on time-based and enzyme-similarity-based splits.

F Experiments on Fingerprint Features

In addition to the use of one-hot encoded atomic and bond features, we study the encodings of using
fingerprints generated by RDKit to describe the chemical environments of reactants and products.

Results. We compare the average results of baseline models and the fingerprint features for time-
based, enzyme similarity-based, and reaction similarity-based splits in Tables 18, 19, and 20, respec-
tively.

Table 18: Comparisons between baselines and fingerprint features on time-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Time/enzyme-reaction Fingerprint Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5004 0.3336 0.2502 0.2002 0.1001 0.0500 1.0004 0.9998
MAT-2D + ESM % 0.3246 0.4526 0.5255 0.5700 0.6044 0.7079 0.7972 0.3246 0.2263 0.1752 0.1425 0.1209 0.0708 0.0399 40.4756 0.4549
UniMol-3D + ESM % 0.2905 0.4007 0.4563 0.4984 0.5365 0.6586 0.7639 0.2905 0.2004 0.1522 0.1247 0.1074 0.0659 0.0382 46.0553 0.4104
Fingerprint + ESM ✓ 0.2357 0.3470 0.3968 0.4215 0.4684 0.5439 0.7040 0.2357 0.1736 0.1323 0.1054 0.0937 0.0544 0.0352 89.5675 0.2984

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Time/reaction-enzyme Fingerprint Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7775 0.6377 0.5420 0.4718 0.2895 0.1677 2.8324 0.7497
MAT-2D + ESM % 0.2175 0.2733 0.3144 0.3493 0.3815 0.4924 0.6033 0.2175 0.2001 0.1817 0.1688 0.1570 0.1206 0.0871 165.3066 0.1789
UniMol-3D + ESM % 0.1678 0.2240 0.2631 0.2938 0.3155 0.3960 0.5011 0.1678 0.1543 0.1443 0.1349 0.1267 0.1002 0.0748 177.4881 0.1400
Fingerprint + ESM ✓ 0.1435 0.2017 0.2345 0.2656 0.2980 0.3547 0.4582 0.1435 0.1212 0.1147 0.1039 0.1031 0.0912 0.0734 200.4936 0.1166

Table 19: Comparisons between baselines and fingerprint features on enzyme-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Sequence/enzyme-reaction Fingerprint Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM % 0.5987 0.7737 0.8311 0.8650 0.8759 0.9328 0.9572 0.5987 0.3864 0.2777 0.2160 0.1774 0.0939 0.0485 5.3021 0.7280
UniMol-3D + ESM % 0.7267 0.8366 0.8758 0.9002 0.9062 0.9487 0.9632 0.7267 0.4177 0.2926 0.2248 0.1835 0.0955 0.0488 4.5799 0.8112
Fingerprint + ESM ✓ 0.5790 0.6507 0.7240 0.8230 0.7743 0.9169 0.8700 0.5790 0.3255 0.2414 0.2058 0.1549 0.0917 0.0435 12.4571 0.6393

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Sequence/reaction-enzyme Fingerprint Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM % 0.3624 0.4545 0.5190 0.5697 0.6091 0.7225 0.7986 0.3624 0.3423 0.3229 0.3091 0.2961 0.2444 0.1820 22.5053 0.2586
UniMol-3D + ESM % 0.4088 0.5246 0.5987 0.6480 0.6892 0.7953 0.8666 0.4088 0.3951 0.3725 0.3516 0.3350 0.2690 0.1975 24.2505 0.2930
Fingerprint + ESM ✓ 0.2545 0.3047 0.3569 0.4170 0.4686 0.5470 0.6987 0.2545 0.2436 0.2257 0.2038 0.2012 0.1847 0.1796 45.6897 0.2035

Analysis. We observe there is no significant performance increase when using fingerprint features
to describe the chemical environments on time- and enzyme-similarity-based splits. And there is
a slight improvement on reaction-similarity-based split. The experimental pattern is similar to the
observation in using pseudo-graphs for transition states. Using fingerprint features may be useful
when the reaction features play a more dense role in the prediction task; it helps capture some hidden
atomic-level information than the one-hot graph encoded features.
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Table 20: Comparisons between baselines and fingerprint features on reaction-similarity-based split.
(a) Given the enzyme, the list of candidate reactions is evaluated (#enzymes, #reactions).

Reaction/enzyme-reaction Fingerprint Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5003 0.3335 0.2501 0.2001 0.1001 0.0500 1.0003 0.9999
MAT-2D + ESM % 0.0914 0.1604 0.2471 0.2694 0.2968 0.4374 0.5908 0.0914 0.0807 0.0744 0.0677 0.0596 0.0438 0.0296 39.9146 0.2005
UniMol-3D + ESM % 0.0912 0.1495 0.2321 0.2177 0.2580 0.4213 0.4571 0.0912 0.0752 0.0699 0.0547 0.0518 0.0422 0.0229 92.2778 0.1856
Fingerprint + ESM ✓ 0.0935 0.1607 0.2270 0.2771 0.3004 0.4400 0.6000 0.0935 0.0804 0.0757 0.0693 0.0601 0.0440 0.0300 45.3825 0.1935

(b) Given the reaction, the list of candidate enzymes is evaluated (#reactions, #enzymes).
Reaction/reaction-enzyme Fingerprint Top1 Top2 Top3 Top4 Top5 Top10 Top20 Top1-N Top2-N Top3-N Top4-N Top5-N Top10-N Top20-N Mean Rank MRR
Data(Ground-truth) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7489 0.6209 0.5401 0.4833 0.3370 0.2263 3.2778 0.7321
MAT-2D + ESM % 0.1347 0.1622 0.1812 0.1835 0.2000 0.2326 0.2753 0.1347 0.1269 0.1218 0.1095 0.1083 0.0902 0.0749 529.4258 0.1341
UniMol-3D + ESM % 0.0924 0.1063 0.1208 0.1277 0.1332 0.1790 0.2172 0.0924 0.0832 0.0812 0.0762 0.0721 0.0694 0.0591 548.3340 0.0943
Fingerprint + ESM ✓ 0.1143 0.1346 0.1514 0.165 0.1774 0.1829 0.2325 0.1143 0.1047 0.1015 0.0987 0.0935 0.0851 0.0706 535.6742 0.1042

G No Significant Improvement with Molecular Conformations: An Intuitive
Explanation from 3Di Perspective

In our paper, we compared models like ESM (without structure) and SaProt (with structure), as well
as models with 2D or 3D molecular conformation information. The results showed inconsistent
performance when structural features were included in different tasks. We believe that this might
be because the fact that SaProt encodes only 3Di information, which lacks the detailed structural
features necessary to accurately model enzyme functional sites. For molecules, due to their smaller
sizes, the difference between 2D and 3D information might be minimal. This could explain the
limited performance gains observed in experiments.

Furthermore, it is important to consider the scale of the ReactZyme dataset in comparison to previous
studies. The dataset comprises more than 100,000 enzyme-substrate pairs, which is an order of
magnitude larger than the typical datasets used in similar studies (around 10,000 pairs). The increased
size and diversity of our dataset may dilute the impact of molecular conformation information on
the overall performance. While the incorporation of this information has resulted in only a modest
improvement, it remains a valuable aspect of our work.

Moreover, we recognize this as a current limitation and believe that there is potential for further
optimization in the utilization of molecular conformations and structural data. Future work could ex-
plore more sophisticated methods to leverage this information, potentially leading to more substantial
performance gains in enzyme-reaction prediction tasks.

H Further Dataset Statistics

In Section 3, we describe the enzyme-similarity split using the Levenshtein distance, ensuring
that enzymes in the training and test sets differ by at least 60% in sequence. While this approach
guarantees that the test set enzymes are distinct from those in the training set, it does not necessarily
ensure that the test set is representative or meaningfully distinct in terms of enzyme clustering. To
work on the concern, we apply MMseqs2 alignment to the test set enzyme sequences to analyze their
clustering patterns. The results show that 72.7% of the test enzymes have at least a 30% sequence
difference, 40.7% have at least a 50% sequence difference, and 14.5% have at least a 70% sequence
difference. These statistics suggest that while there is substantial diversity in the test set, additional
considerations may be necessary to ensure that it accurately reflects the broader enzyme landscape
rather than being skewed by unrepresentative outliers.

Similarly, we introduce the reaction-similarity split using the Needleman-Wunsch algorithm applied
to SMILES, ensuring that reactions in the test set are distinct and do not overlap with those in the
training set. We apply Needleman-Wunsch algorithm to the SMILES of test set reactions to analyze
their clustering patterns. The results show that 92.3% of the test enzymes have at least a 10% SMILES
difference, 60.9% have at least a 30% SMILES difference, and 14.5% have at least a 50% SMILES
difference. These results indicate a significant level of diversity in the test set reactions, although
additional considerations might be necessary to ensure the representativeness and typicality of the
test set in capturing the broader reaction space.
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addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [N/A] .
• [N/A] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[N/A] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Full experiments
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4 & 5
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [N/A]

Justification: NA

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Provided with code amnd dataset links for checking

Guidelines:

• The answer NA means that the paper does not include experiments.

23



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Full code access

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All discussed in Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Average experimental results

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Single A40 GPU

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Well confirmed
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Well discussed
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [N/A]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Full credits

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [N/A]

Justification: NA

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [N/A]

Justification: NA
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [N/A]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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