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ABSTRACT

Recent progress in large language models enables the creation of realistic
machine-generated content. Watermarking is a promising approach to distinguish
machine-generated text from human text, embedding statistical signals in the
output that are ideally undetectable to humans. We propose a watermarking
framework that encodes such signals through an error correcting code. Our
method, termed robust binary code (RBC) watermark, introduces no noticeable
degradation in quality. We evaluate our watermark on base and instruction
fine-tuned models and find our watermark is robust to edits, deletions, and
translations. We provide an information-theoretic perspective on watermarking, a
powerful statistical test for detection and for generating p-values, and theoretical
guarantees. Our empirical findings suggest our watermark is fast, powerful, and
robust, comparing favorably to the state-of-the-art.

1 INTRODUCTION

As language model capabilities improve, there are corresponding potential harms such as the
creation of misinformation [28] and propaganda [25]. To mitigate this, a first step is to detect and
filter content. A popular approach to reliably detecting AI generated content is to add a watermark
[17; 18; 1; 9], a hidden signal embedded in the output. While there are exponentially many
combinations of words and characters, watermarking biases generation towards specific patterns
that are undetectable to humans.

We consider the detection setting from the model-provider’s perspective: the detection algorithm
receives (user or machine-generated) text as input, but no further metadata such as prompts or
generation parameters. We do not explore zero-shot or post-hoc methods to classify text as generated
from any language model, such as GPT-Zero [26] and DetectGPT [20]. This model-agnostic
detection is inherently challenging as language models are trained to mimic human text [5]. as
language models become more powerful, their generation becomes nearly indistinguishable from
human-generated text, thereby reducing the efficacy of zero-shot classification methods. Instead,
we explore how to introduce statistical signals into the generation process to reliably classify text as
watermarked.

Desiderata. We focus on the following list of practical, empirical and algorithmic desiderata (and
some others) for an effective watermark, inspired by, e.g., [18; 17; 21].

• Robust: The watermark should be robust to watermarking attacks and perturbations, such
as edits and deletions of significant fractions of the text, translation attacks, paraphrasing,
etc.

• Quality-Preserving: The watermark should not decrease the quality of the outputs of the
language model.

• Model Agnostic: The watermark should apply to any language model. This is important to
be applicable to future models.

• High Detection Power: The watermark should be detectable with only a small number of
tokens.

Prior watermarking schemes achieve many but not all of these qualities. For instance, Kuditipudi
et al. [18] introduces distortion-free watermarks that do not modify the output distribution in
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expectation (but their detection power is limited due to using permutation tests). Taking a
cryptographic perspective, Christ et al. [9] introduces theoretically undetectable watermarks (but
does not illustrate their performance empirically). [22] develop a provably robust watermark via
error correction codes, focusing on embedding a multi-bit string (such as an user ID) in the text.
Our methods (binarization, correlated binary channel, LDPC codes) and our theoretical guarantees
(high detection probability), are different. We obtain highly powerful watermarks without sacrificing
generation quality. For further discussions on prior and related work, see Appendix A.

Contributions. We propose the Robust Binary Code (RBC) watermark using error correcting codes,
and argue the following claims:

• Robustness. RBC achieves several forms of robustness (e.g., to user edits) by leveraging
error correcting codes.

• Power and Quality. Our RBC watermark has theoretical guarantees on correct decoding.
Further, RBC empirically keeping the quality of the original language model almost
unchanged, and leads to strongly detectable watermarks, competitive with state-of-the-art
watermarks that introduce a larger distortion.

• Simplicity. Our RBC watermark is simple to use, as it wraps around the output logits of
the language model.

2 BACKGROUND

2.1 ERROR CORRECTING CODES

To introduce our method, we need to provide some background on error correcting codes. For
a positive integer k, we use the Hamming distance dH on {0, 1}k, such that for u, v ∈ {0, 1}k,
dH(u, v) is the number of differing coordinates of u, v. We recall some standard definitions [19; 14].

Definition 2.1. For positive integers k ≤ n, an error correcting code (ECC) is an injective map
C : {0, 1}k → {0, 1}n. The message space is {0, 1}k. Applying C to a message m is known as
encoding, and C(m) is known as a codeword. The rate of the code is k/n.

The error correcting distance of C is the greatest t > 0 such that for all messages m ∈ {0, 1}n, there
exists at most one codeword c ∈ C in the Hamming ball of radius of t around m, dH(m, c) ≤ t.
Such a code C is known as a [n, k, 2t+ 1]-code.

Given a [n, k, 2t + 1]-error correcting code C, we may define a decoding map C−1. For a given
m ∈ {0, 1}n, the decoding C−1(m) is the unique c ∈ C such that dH(w, c) ≤ t, if such a c exists;
and otherwise, the decoding is defined arbitrarily. By definition, at most one such c exists.

2.2 NOTATION

We use the following notation throughout this work. We typically use capital letters to denote
random variables. For a positive integer v and p ∈ [0, 1], let FB(t; v, p) be the CDF of a
Binomial(v, p) random variable at the positive integer t, and let [n] = {1, . . . , n}. Let V be the
vocabulary of the language model, with |V | commonly between 50,000 to 200,000 in our current
applications, and let V ∗ be the set of strings of tokens from V of arbitrary length. For a positive
integer i, we use Xi to denote the tokens generated by the language model p : V ∗ → ∆(V ), and
write Xi ∼ p(· | x1:i−1) for any sequence x1:i−1 ∈ V i−1 of previous tokens. Let pj(· | x1:i−1) be
the distribution of the next j tokens. For some positive integers k, n, t, Let C : {0, 1}k → {0, 1}n
be a [n, k, 2t+ 1] error correcting code.

2.3 REDUCTION TO BINARY VOCABULARY

Motivated by Christ et al. [9], we reduce language modeling to a minimal binary vocabulary. To
do so, we assign to each token a unique bit string. For a vocabulary of size |V |, this requires
ℓ = ⌈log2 |V |⌉ total bits; typically between 16 and 18 bits in our current applications. We use an
injective binary encoder E : V → {0, 1}ℓ that maps tokens to bit strings. A single token sampled
from the language model p(·|x1:(a−1)) induces a distribution over the next ℓ bits, determined by the
encoder E. We use qn+1 := pbin(Bn+1 = 1 | b1:n) to denote the probability of the next bit being
one (“1”) given previous bits b1:n. We will write p := pbin from now on.

In our watermarking scheme, we use the following variables: Mi ∈ {0, 1}k is the message passed
through the error correcting code to obtain the codeword Yi = C(Mi) ∈ {0, 1}n. The binary
sampling scheme generates bits (B1, . . . , Bn) that are correlated with the Yis (as explained in

2



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Section 3.1). We use the previous tokens to modify the distribution of the following tokens. Each
application of our watermarking scheme generates a block of wout > 0 tokens, using the previous
win > 0 tokens. This is related to prior approaches in neuro-linguistic steganography [29; 10], which
use minimum-entropy couplings for correlated sampling between messages and covertext [10].

3 KEY WATERMARKING TOOL

For our watermarking scheme, we systematically encode signals into generated tokens. However,
doing so by biasing the logits as in [17] perturbs the distribution of tokens, resulting in distorted
generation for each next token. Instead, we propose a generation technique to encode signals that
is distortion-free given each previous block of win > 0 tokens. Of course, this technique is still not
distortion-free over the entire generation (see Appendix A.1 for discussion of security implications),
but empirically the degradation in performance is low. As described before, to introduce this
technique, we first reduce from an arbitrary vocabulary to a binary vocabulary, where the language
model generates bits. Recall that qi = p(Bi = 1 | b1:(i−1)).

Given a message M ∈ {0, 1}k that we wish to transmit, we generate a codeword Y = C(M) ∈
{0, 1}n. We next explain how to embed this codeword without inducing distortion.

3.1 CORRELATED BINARY SAMPLING CHANNEL (CBSC)

To introduce our method, we first take a step back and consider the setting of sampling Bernoulli
random variables. An equivalent way to sample B ∼ Bern(q), q ∈ [0, 1] is to introduce an auxiliary
random variable U ′ ∼ Unif[0, 1] and let B = 1{U ′ ≤ q}. Notably, U ′ and B are now correlated.

A further equivalent sampling scheme is to let U ′ = (1− Y )/2 + U/2, where Y ∼ Bern(1/2) and
U ∼ Unif[0, 1] are sampled independently; so that U ′ ∼ Unif[0, 1]. By writing U ′ in binary, 1− Y
represents the most significant bit of U ′, and U represents the remaining bits. Therefore, we have
the following sampling scheme for B:

Y ∼ Bern(1/2), U ∼ Unif[0, 1], Y ⊥⊥ U,

B = 1{((1− C) + U)/2 ≤ q}. (1)

We call this sampling process the Correlated Binary Sampling Channel (CBSC), where we use an
auxiliary random variable Y ∼ Bern(1/2) to sample a biased (non-uniform) bit B ∼ Bern(q),
ensuring (B, Y ) are correlated. We use 1 − Y rather than simply Y so that B and Y are positively
correlated; but the methods are equivalent. This CBSC is equivalent to the binary generation scheme
from the recent work [8], although with a different formulation and motivation.

Next-token distortion-freeness. Crucially, the CBSC ensures that B matches its target distribution
despite using the external information Y , i.e., B ∼ Bern(q). Thus, the CBSC does not distort the
distribution of each token given the previous block of win > 0 tokens.

We plot the transition probabilities between Y and B in Figure 1a. We also show the matching
probability P [Y = B] = 1 − 2|1/2 − q| between B and Y as a function of the probability q in
Figure 1b. When the entropy of B is maximized, i.e., when q = 1/2, then we deterministically
have Y = B. However, when q ∈ {0, 1}—so B has zero entropy—then P [Y = B] = 1/2 and Y
contains no information about B. In general, the sampled bit B is biased towards Y and is more
likely to be equal to Y than not.

3.2 SIMPLE WATERMARK

The CBSC in Equation (1) is our key mechanism for watermarking, enabling next-token distortion-
free sampling with detectable correlation. We embed a sequence of known bits Y = (Y1, . . . , Yn)
into our generated bits B = (B1, . . . , Bn). Generating bits B through the CBSC ensures B follows
the original probability distribution–i.e., is next-token distortion-free—and yet biases B towards Y .

We may use this statistical dependence to detect whether or not the text was watermarked. For
unwatermarked text, B and Y are uncorrelated and therefore dH(B, Y ) ≈ n/2, whereas for
watermarked text, we expect dH(B, Y ) < n/2. This is the basis of our simple one-to-one
watermarking scheme, described in Appendix B.4. We will later improve this by reducing errors
in our binary channel by leveraging error correcting codes.
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Figure 1: Correlated binary sampling channel (CBSC) with Y ∼ Bern(1/2) and B ∼ Bern(q).

Choosing known bits Y . In order to reliably detect the watermark, we need to know the bits Y used
in the CBSC. One approach is to use a long fixed bit string, a secret sequence known to the language
model provider. Kuditipudi et al. [18] use a similar approach with a fixed list of real numbers and use
the edit distance to capture correlations. However, this approach is sensitive to the relative indexing
of the text, and the fixed list and can be susceptible to attacks that shuffle the text. Instead, we use
a sliding window of previously generated tokens to serve as sources of randomness for Y . This
sliding window approach is popular in watermarking schemes, see e.g., [1; 17; 9]. We thus use text-
dependent randomness [21] to generate pseudorandom bits Y , leveraging previous tokens to obtain
pseudorandom outputs.

Error correcting codes in generation. The purpose of using error correcting codes (ECCs) is to
reduce mismatches between B and Y . Rather than directly transmitting Y = (Y1, . . . , Yn), we add
redundancy through a [n, k, 2t + 1] ECC C. We choose a shorter message M ∈ {0, 1}k and use
Y = C(M) ∈ {0, 1}n. When using an ECC, we choose M by hashing the previous bits, and then
apply the error correcting code to M to obtain our codeword Y . By using C, we can correct t errors
in the CBSC. Specifically, if dH(Y,B) ≤ t, then C−1(B) = M , giving a strong indication that the
text was in fact watermarked.

Combining these parts, our watermarking scheme contains the following steps:
1. Create message: Use previous tokens to create message M ∈ {0, 1}k.
2. Encode using C: Encode M using ECC to obtain Y = C(M) ∈ {0, 1}n.
3. Generate: Transmit Y using CBSC with probabilities from the language model to generate

B ∈ {0, 1}n.
4. Repeat: Perform the above steps until the stopping condition.

We call each sequence of n bits generated at an iteration a block. In Algorithm 1 and Algorithm 2,
we present a simplified watermark and detection algorithm that captures the essence of our approach.
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Algorithm 1: Simplified RBC Watermark

Input: Generation length N , binary language
model pbin, ECC C : {0, 1}k → {0, 1}n

1 X1:k ∼ pbin,k(·) ▷ Initialize first k bits
2 i← k
3 while i ≤ N do
4 M ← X(i−k+1):i ∈ {0, 1}k ▷ Message
5 Y ← C(M) ∈ {0, 1}n ▷ Codeword
6 for j = 1 to n do
7 Uj ∼ Unif[0, 1] ▷ CBSC
8 Xi+j ← 1

{
1−Yj+Uj

2
≤ pbin(· | X1:i+j−1)

}
9 i← i+ n

10 return X1:N

Algorithm 2: Simplified Detection

Input: Bits X1:N , threshold T

1 for i = 1 to N − n− k + 1 do
2 M ← Xi:(i+k−1)

3 B ← X(i+k):(i+n+k−1)

4 M̂ ← C−1(B) ▷ Recovered
message

5 Zi ← k − dH(M̂,M) ▷ Matches
6 if

∑
Zi > T then

7 return WATERMARKED
8 else
9 return NOT WATERMARKED

4 ROBUST BINARY CODE WATERMARK

Next, we present our robust binary code (RBC) watermark, which converts tokens to binary, applies
an error correcting code for robustness, and generates bits through the CBSC.

Let ℓ = ⌈log2 |V |⌉ be the number of bits for each token and let win = ⌈k/ℓ⌉ and wout = ⌈n/ℓ⌉.
Assume we have an injective binary encoder E : V → {0, 1}ℓ which maps from tokens to bit
strings, and the corresponding binary decoder E−1 : {0, 1}ℓ → V (defined arbitrarily for strings
outside of the image of E). We also have the language model pbin induced by p over a binary
alphabet, so that pbin(s1, . . . , sn) := pbin(Sn+1 = 1|s1, . . . , sn) for any binary string s1, . . . , sn.
We let the encoder operate on a list of tokens elementwise, and the decoder operate on blocks of bits
of length ℓ.

Our full watermarking scheme is shown in Algorithms 3, 4, 5 and 6. Algorithms 3 and 4 expand
on the simplified method from Algorithm 1, and Algorithms 5 and 6 expand on the detection in
Algorithm 2. The RBC watermark is very similar to the simplified watermark in Section 3.2, with
the addition of the binary encoder/decoder E. In the generation of the messages M , we also apply
an exclusive or between the previous bits with a randomly chosen bitstring R ∈ {0, 1}k to ensure
the message M contains i.i.d. Bern(1/2) entries. In this step, we could also apply the minimum
hashing method from Kirchenbauer et al. [17].

Algorithm 3: RBC Watermarking

Input: Total token generation length N ,
window widths win and wout, unif.
random binary string R ∈ {0, 1}k

1 X1, . . . , Xwin ∼ pwin(·)
2 i← win + 1
3 while i ≤ N do
4 M ← E(X(i−win):(i−1))1:k ⊕ r ∈ {0, 1}k
5 Y ← C(M) ∈ {0, 1}n
6 Xi:(i+wout−1) ← GenBlock(X1:(i−1), Y )
7 i← i+ wout

8 return X

Algorithm 4: GenBlock

Input: Previous text X ∈ V ∗, Codeword
Y ∈ {0, 1}n, output tokens wout

1 for j = 1 to n do
2 Uj ∼ Unif[0, 1]
3 Bj ← 1{(1−Yj+Uj)/2 ≤ pbin(X,B1:(j−1))}
4 for j = n+ 1 to wout · ℓ do
5 Uj ∼ Unif[0, 1]
6 Bj ← 1{Uj ≤ pbin(X,B1:(j−1))}
7 B ← (B1, . . . , Bwout·ℓ)
8 return E−1(B) ∈ V wout

5 THEORETICAL RESULTS

We now provide theoretical guarantees for our methods, focusing on how the entropy of the language
model affects watermarking. For the following results, we consider a language model with a binary
vocabulary that generates bits B1, . . . , Bn. Let qi = P [Bi = 1 | b1:i−1] = pbin(1 | b1:i−1) for
any positive integer i and bit string b1:i−1. We provide the proofs of all of the following claims in
Appendix C. We start with some preliminaries.
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Definition 5.1 (Entropy). Let the entropy of a Bernoulli random variable Y with success probability
q ∈ [0, 1] be defined as H(Y ) := H(q) = −q log2 q − (1 − q) log2(1 − q), with H(0) = H(1) =
0. For a sequence of (possibly dependent) Bernoulli random variables Y1, . . . , Yn with respective
success probabilities q1, . . . , qn, let the average entropy be H̄(Y1, . . . , Yn) := H̄(q1, . . . , qn) :=
1/n ·

∑n
i=1 H(Yi).

We will need the following lemma, which bounds the entropy H(q) in terms of |1/2− q|, q ∈ [0, 1].

Lemma 5.2. For q ∈ [0, 1], we have the inequality 1 − 2|1/2 − q| ≤ H(q) ≤
√

1− 4|1/2− q|2.
For q1, . . . , qn ∈ [0, 1], we have the inequality

1

n

n∑
i=1

[1− 2|1/2− qi|] ≤ H̄(q1, . . . , qn) ≤

√√√√1− 4

( n∑
i=1

|1/2− qi|/n
)2

. (2)

We provide a plot of the bounds on the entropy for the single-variate case in Figure 3 in Appendix.
Next, using the above result, we turn to analyzing the CBSC. With qi = P [Bi = 1 | b1:i−1] for
all i and b1:i−1, let the average entropy of the language model be h := EB,Y

[
1
n

∑n
i=1 H(Qi)

]
.

Intuitively, we expect that watermarking should be easier when the entropy h is large (h ≈ 1), as
there are more ways to embed signals and keep the distribution unchanged. The next result supports
this intuition.

Theorem 5.3 (Bounding the proportion of mismatches in a CSBC with the entropy). The expected
proportion of mismatches between the generated B and codeword Y —i.e., E [dH(B, Y )/n]—is
bounded by

(1− h)/2 ≤ E [dH(B, Y )/n] = n−1
n∑

i=1

EB,Y [|1/2−Qi|] ≤
√
1− h2/2.

This theorem bounds the error probability in terms of the average entropy h =
EB,Y [

∑n
i=1 H(Qi)] /n of the language model, showing that the frequency of errors is both upper

and lower bounded by a monotone decreasing function of h. In particular E [dH(B, Y )/n] → 0 as
h→ 1. This is consistent with watermarking being easier when the entropy is high.

The above result shows that the mean of ∆ :=
∑n

i=1 |1/2−Qi| is upper bounded by n
√
1− h2/2.

Therefore, it is reasonable to assume that for some C > 1 and a small εn > 0, ∆ ≤ κn
√
1− h2/2

with probability at least 1− εn. Our next result will be presented under this condition.

Theorem 5.4 (Exact block decoding). Consider a language model such that qi =
P
[
1 | B1:(i−1), Y

]
for i ∈ [n]. Let the average entropy of the language model be h =

EB,Y

[
1
n

∑n
i=1 H(Qi)

]
. Suppose that for some C > 1, ∆ ≤ κn

√
1− h2/2 with probability at least

1−εn ∈ (0, 1). Assume C = [n, k, 2t+1] is an error correcting code where t+1 ≥ κn
√
1− h2/2.

Then for a codeword Y , the generated bits (B1, . . . , Bn) from Algorithm 4 satisfy

P
[
C−1(B1, . . . , Bn) = Y

]
≥ 1− exp

[
−
(
t+ 1− κn

√
1− h2/2

)2
/n

]
− εn.

The above theorem bounds the probability that a specific block exactly decodes to the codeword Y .
In particular, it gives a bound where the decoding block probability decreases as the entropy of the
language model decreases. In particular if t/n ≫

√
1− h2 and εn is small, the decoding happens

with high probability. This is consistent with the fact that watermarking is more difficult for models
with less entropy when h is small, in which case t/n needs to be large.

6 EXPERIMENTAL RESULTS

We evaluate the performance of RBC in a suite of experiments to measure watermarking
detectability and robustness to state-of-the-art watermarking schemes.
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6.1 WATERMARK DETECTION

Generation procedure. We use ten prompts inspired by [21], encompassing topics such as writing a
book report, story, and fake news article. Piet et al. [21] used these text generation tasks to represent
realistic settings with long-form generated text, where the model provider may like to watermark
the outputs. We provide the full prompts used for generation in Appendix E.

We generate 20 responses for each prompt for seven lengths ranging from 10 to 150 tokens,
representing a few sentences to a few paragraphs. We use the Llama-3-8B base model [2], a powerful
open-source model capable of high quality generation.

Baselines and hyperparameters. We compare the performance of RBC to the watermarking
algorithm from Kirchenbauer et al. [17], which we denote as the Distribution Shift method. The
thorough evaluation from Piet et al. [21] finds this to be the most effective and powerful watermark,
and concludes that it serves as the current state-of-the-art. We also compare with the methods from
[13] and [15], two variants of the method [17].

In practice, many ECCs with varying guarantees exist, including [6; 12; 23]. Different ECCs
provide different guarantees, e.g., robustness to bit flips or edit distance. For this work, we explore
two ECCs. We primarily use the popular low-density parity-check (LDPC) code [12] for our
watermarking scheme. As a baseline, we also use a custom code which we call a one-to-one code.
Our one-to-one code has k = n and is equivalent to the identity function, i.e., the one-to-one codes
do not provide error correcting capabilities. We use this as a baseline to compare the impact of the
error correcting functionality. For more details on our one-to-one code, see Appendix B.4. We use
the LDPC code [24] with n = 12, k = 5, dv = 3, dc = 4, p = 0.35 and a one-to-one code with
n = k = 4, using win = 1 and wout = 1, and set E to be a random binary enumeration.

For the distribution shift methods from [17] and [15], we use their suggested hyperparameters. A
key parameter is δ, the level of distribution shift induced by the watermarking procedure. Greater
values of δ result in larger distribution shifts and more detectable watermarking. The authors of
[17] recommend δ ∈ [0.5, 2] for watermarking. In our experiments, we choose to use δ = 1 and 2
to represent medium and strong distribution shifts for the method [17]. For the method from [15],
a lightweight neural network is trained to predict token-specific δ and γ values, where γ controls
the fraction of tokens in the green list. We set the network parameters using the default check
point suggested by the authors1. [13] introduced two reweighting methods: δ reweighting and γ
reweighting to make the watermark unbiased. We compare our approach against both methods2.

Evaluation. For each generation, we use the p-value of the detection procedure on the output text.
We compute the mean of the log-p-values (instead of the p-values themselves) for each generation
to more accurately capture the signal strength. We also report the detection probability, i.e., true
positive rate or power—the percentage of generations with p-values less than α = 1e−4—to
represent how likely the text is to be classified as watermarked.

From the summary statistics in Table 1 and Figure 2, we observe that our RBC watermarking
method shows substantial improvements in detectability compared to the baseline methods, when
the number of tokens are small. And the p-values of our method are smaller than those of other
methods by many orders of magnitude. Further, RBC improves performance by using the LDPC
code compared to the one-to-one code, suggesting improvements by using an ECC. We observe
consistent detectability with as few as 20-30 tokens.

6.2 ROBUSTNESS EXPERIMENTS

In practice, a user may attempt to circumvent watermarks by editing the text generated by a language
model. To emulate this, we use four popular perturbations that may represent an adversary hoping
to evade a watermark, as in other works including [18; 21].

1. Delete. We randomly delete 20% of the tokens.
2. Swap. We replace a randomly chosen fraction of 20% of the tokens with random tokens.

1https://github.com/mignonjia/TS_watermark/tree/main/ckpt/llama
2In our experiments, the p-values for unbiased reweigting methods [13] are obtained using the tail bounds

from Theorem 9 of [13]
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Figure 2: Watermarking performance of the base Llama-3-8B model with RBC using LDPC and one-to-one
codes, and the Distribution Shift method from Kirchenbauer et al. [17], averaged over 100 generations for ten
prompts. Left: The mean log-p-values with standard errors shaded. Right: The detection probability with
standard errors shaded.

Table 1: Comparison between our watermarking methods and the baselines [17; 15; 13], for 30 and 150
tokens. We report the exponential of mean log p-value, the median p-value, and the percentage of generations
with p-values less than α = 1e−4. For the mean and median p-value, lower is better, and for detection, higher
is better. The best value in each column is bolded.

30 Tokens 150 Tokens

Method Mean P Median P Detect % Mean P Median P Detect %

LDPC RBC (ours) 6.0e−6 1.4e−5 58.5 1.7e−23 3.5e−20 88.1
One-to-one RBC (ours) 2.8e−5 6.0e−5 52.5 1.8e−18 1.9e−16 85.5

Dist. Shift δ = 1 [17] 3.4e−2 7.4e−2 20.0 2.4e−4 7.0e−4 72.4
Dist. Shift δ = 2 [17] 2.4e−4 6.4e−4 32.1 2.8e−14 5.6e−14 94.2
Dist. Shift Token Specific [15] 2.0e−4 4.3e−4 40.5 3.2e−12 1.3e−11 87.5
Unbiased δ Reweight [13] 1.5e−1 1.0 2.1 2.2e−5 1.2e−4 40.5
Unbiased γ Reweight [13] 1.7e−2 2.6e−2 6.6 1.7e−15 1.1e−14 90.8

3. Translate. We translate the generated text to Russian then back to English using Argos
Translate [11].

4. Paraphrase. We paraphrase the text using Llama-3-8B model, with the prompt
“Paraphrase the following text:”.

For our experiments, we elect to perturb 20% of the tokens, as this represents a relatively high noise
regime where one in five tokens are modified. In our translation perturbation, we choose to translate
to Russian and then back to English for a powerful attack, as Russian and English are relatively
different compared to Spanish and French, see e.g., [3], etc.

In Table 2 and Figure 4, we evaluate the robustness of RBC and the distribution shift watermarking
scheme to the perturbations. Notably, the LDPC and one-to-one RBC watermarks show the
greatest robustness. They achieve consistent detectability with ∼60 tokens. For further plots, see
Appendix D.1.

6.3 INSTRUCTION FINE-TUNED MODELS

We conduct ablation experiments on the dependence of the language model. Instead of the base
Llama-3-8B model, we consider the instruction fine-tuned model, optimized to answer queries. It
is well known—see e.g., Piet et al. [21]—that instruction fine-tuned models tend to be more certain
of the next-token predictions, and therefore have less entropy and are more difficult to watermark.
We use the same generation and hyperparameters as Section 6.1 but with the Llama-3-8B Instruct
model, and we use an LDPC code with n = 8, k = 4, dv = 3, dc = 4, p = 0.35 and a one-to-one
code with n = k = 2 for this lower entropy regime. We plot the mean log p-values in the left plot
of Figure 6.

Compared to the base fine-tuned model, the instruction fine-tuned model has substantially lower
entropy, and it is more difficult to add consistent statistical signals. Compared to the distribution shift
watermark with δ = 1 and δ = 2, our RBC method (both for LDPC and one-to-one) generally has a
much larger true detection rates. we see poor detectability and large p-values. The distribution shift
watermark with δ = 2 sometimes has similar detection rates to RBC, but is strongly outperformed

8



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

Table 2: Comparison between our watermarking methods and the baselines [17; 15; 13], with our
four perturbations.

30 Tokens 150 Tokens

Method Mean P Median P Detect % Mean P Median P Detect %

Sw
ap

LDPC RBC (ours) 2.3e−3 6.2e−3 19.2 3.1e−10 1.1e−8 70.8
One-to-one RBC (ours) 3.8e−3 9.9e−3 15.6 2.4e−8 3.9e−7 65.2

Dist. Shift δ = 1 [17] 1.1e−1 1.6e−1 0.5 1.1e−2 2.5e−2 9.8
Dist. Shift δ = 2 [17] 1.0e−2 2.1e−2 7.5 5.9e−7 1.9e−6 69.1
Dist. Shift Token Specific [15] 8.7e−3 1.8e−2 9.6 9.4e−6 3.2e−5 55.5
Unbiased δ Reweight [13] 9.5e−1 1.0 0.0 1.0 1.0 0.0
Unbiased γ Reweight [13] 8.4e−1 1.0 0.1 8.3e−1 1.0 0.0

D
el

et
e

LDPC RBC (ours) 8.6e−4 2.2e−3 30.2 8.8e−13 6.5e−11 77.6
One-to-one RBC (ours) 1.9e−3 5.2e−3 21.7 3.4e−10 8.6e−9 72.6

Dist. Shift δ = 1 [17] 8.5e−2 1.4e−1 1.0 5.3e−3 1.3e−2 15.4
Dist. Shift δ = 2 [17] 5.2e−3 1.2e−2 13.5 1.6e−8 4.3e−8 81.5
Dist. Shift Token Specific [15] 4.9e−3 1.0e−2 12.8 5.2e−7 1.8e−6 68.9
Unbiased δ Reweight [13] 9.3e−1 1.0 0.0 9.5e−1 1.0 0.0
Unbiased γ Reweight [13] 7.8e−1 1.0 0.0 4.6e−1 1.0 0.6

Tr
an

sl
at

e

LDPC RBC (ours) 6.3e−3 1.8e−2 12.4 6.1e−10 1.2e−6 63.3
One-to-one RBC (ours) 9.8e−3 2.1e−2 9.7 1.0e−7 6.5e−6 60.2

Dist. Shift δ = 1 [17] 1.1e−1 1.9e−1 0.7 1.5e−2 3.3e−2 7.6
Dist. Shift δ = 2 [17] 1.8e−2 4.2e−2 6.5 1.3e−5 3.1e−5 56.1
Dist. Shift Token Specific [15] 2.3e−2 5.5e−2 5.4 9.9e−5 4.3e−4 41.4
Unbiased δ Reweight [13] 1.0 1.0 0.0 1.0 1.0 0.0
Unbiased γ Reweight [13] 8.1e−1 1.0 0.3 5.4e−1 1.0 0.3

Pa
ra

ph
ra

se

LDPC RBC (ours) 1.8e−3 8.9e−2 18.3 4.5e−8 5.9e−4 47.2
One-to-one RBC (ours) 8.0e−3 1.2e−1 15.3 9.8e−7 1.4e−3 43.6

Dist. Shift δ = 1 [17] 2.1e−1 3.9e−1 0.8 3.3e−2 9.5e−2 7.5
Dist. Shift δ = 2 [17] 4.7e−2 1.7e−1 5.9 1.7e−5 3.7e−4 46.8
Dist. Shift Token Specific [15] 9.9e−3 1.7e−1 14.2 4.0e−5 2.4e−3 41.9
Unbiased δ Reweight [13] 8.9e−1 1.0 0.1 3.8e−1 1.0 1.8
Unbiased γ Reweight [13] 6.7e−1 1.0 0.3 9.5e−4 7.5e−1 29.8

for paraphrasing attacks on 30 tokens. For further details and robustness experiments on the instruct
model, see Appendix D.2.

6.4 GENERATION QUALITY

A key aspect of watermarking is ensuring the quality of the generated outputs remains constant.
As a simple test, we evaluate the perplexity of the generated text using the various watermarking
schemes and compare it against the baseline of unwatermarked text in the right plot of Figure 6. We
use Llama-3-8B-Instruct for the perplexity computations.

We observe the distribution shift watermark increases the perplexity of the outputs, with greater
increases from greater choices of δ. This suggests that the addition of distortion may result in mild
degradation in quality. In contrast, the RBC watermarks result in minimal changes to the perplexity.
This suggests that RBC does not noticeably lower text quality, but this may happen for distortion-
inducing watermarks.

7 CONCLUSION

We propose the new RBC watermarking scheme, using error correcting codes to reliably embed a
statistical signal in the text generated from a language model. The RBC watermark empirically has
high detection power and is robust to perturbations, while retaining the quality of the generated text.
The watermark is applicable to any language model, as it only requires the probability distribution
of tokens as input.

We find the RBC watermark outperforms the current state-of-the-art distribution shift watermark
from Kirchenbauer et al. [17] on the powerful base model Llama-3-8B [2]. On the instruction
fine-tuned model, we attain comparable performance without any noticeable degradation in quality.
Furthermore, the RBC watermark is empirically robust to edits and translation attacks.

While our preliminary experiments are promising, we plan to evaluate broader classes of
perturbations, generation tasks, and language models for more comprehensive experimentation.
Additionally, there are many choices of ECCs to choose from, e.g., BCH, LDPC, Turbo codes,
etc., with corresponding code parameters. We hope to evaluate the effect of the choice of an ECC in
future work.
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A FURTHER RELATED WORK

Watermarking text is closely related to steganography, and has been of interest for many years [16;
4]. In modern watermarking, Aaronson and Kirchner [1], in collaboration with OpenAI, proposes a
biasing-based watermarking method utilizing exponential minimum sampling by hashing previous
tokens. Kirchenbauer et al. [17] explores introducing biases in the logits by splitting the set of tokens
into red and green sets also by hashing previous tokens. By biasing the logits for tokens in the green
set, this adds a mild distortion and recoverable signal.

Kuditipudi et al. [18] introduces the notion of distortion-free watermarks. Rather than introducing
systematic biases in the logits from the language model, distortion-free watermarks preserve the
distribution of logits in expectation. Furthermore, the proposed distortion-free watermark enjoys
edit-distance robustness guarantees. However, since this work uses permutation tests, it can be
expensive to obtain small p-values required for high power.

Christ et al. [9] furthers this distortion-free generation to undetectable watermarks—watermarks that
can only be detected with negligible probability with a polynomial number of queries. However,
since this work does not provide an empirical implementation and experiments, the practical
performance and implementation difficulties of remain unexplored.

In the concurrent work Christ and Gunn [8], the authors introduce pseudorandom codes (PRC) for
watermarking. They use an analogous generation scheme to the CBSC, using the encoded message
from the PRC to generate watermarked bits. In contrast with RBC, we primarily focus on the
implementation and practical application of watermarking, providing explicit implementations and
experimental results, whereas their work provides detailed theoretical discussions but no empirical
implementation details or evaluations.

A.1 DISCUSSION OF DISTORTION-FREENESS

We propose a generation technique to encode signals that is distortion-free given each previous
block of tokens of a certain size. Of course, this technique is still not distortion-free over the entire
generation. Our method relies on a pseudorandom number generator influenced by a finite window
of past tokens, and as such, the entropy of the random numbers can degrade if the past tokens
exhibit low entropy. Thus, our technique does not achieve perfect security from a steganographic
perspective [7; 10].

B IMPLEMENTATION DETAILS

B.1 COMPUTE DETAILS

All experiments were run on two Nvidia 3090 GPUs, for a total of 24 GPU hours. Each prompt of
500 generations with three perturbations takes approximately two GPU hours.

B.2 DETECTION ALGORITHMS

Algorithm 5: Detection

Input: Tokens X ∈ V ∗, window widths win and
wout, α level, binary string R ∈ {0, 1}k

1 N ← length of X
2 for i = 1 to N − wout − win + 1 do
3 Mi ← E(Xi:(i+win−1))⊕R
4 B ← E(X(i+win):(i+win+wout−1))

5 M̂i ← C−1(B) ▷ Extract Message
6 Zi ← k − dH(M̂i,Mi) ▷ Count matches
7 return BC(Z1, . . . , ZN−wout−win+1, k)

Algorithm 6: Binomial Comparison (BC) Test

Input: Matches Z1, . . . , Zm, k binomial
size, α level

1 p← 1− FB(
∑m

i=1 Zi,m · k, 1
2 )

2 if p ≤ α then
3 return WATERMARKED
4 else
5 return NOT WATERMARKED
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B.3 ALTERNATIVE STATISTICAL TESTS

We also explore alternative statistical tests to the simple binary comparison test in Algorithm 6.
These use the generalized likelihood ratio test, and use Wilks’s theorem [27] to approximate the
distribution of the log-likelihood ratio by a χ2 distribution.

Algorithm 7: Generalized Likelihood Ratio Test (GLRT)

Input: Matches Z1, . . . , Zm, k binomial size

1 L0 ←
∑m

i=1 ln fB(Zi; k, 1/2)
2 L1 ←

∑m
i=1 ln fB(Zi; k, Zi/k)

3 T ← −2(L0 − L1)
4 P ← 1− Fχ2(T ; df = m)
5 return P

Algorithm 8: Pooled Generalized Likelihood Ratio Test (PGLRT)

Input: Matches Z1, . . . , Zm, k binomial size

1 q̂ ←
∑m

i=1 Zi/(k ·m) L0 ←
∑m

i=1 ln fB(Zi; k, 1/2)
2 L1 ←

∑m
i=1 ln fB(Zi; k, q̂)

3 T ← −2(L0 − L1)
4 P ← 1− Fχ2(T ; df = 1)
5 return P

B.4 ONE-TO-ONE CODE

Our one-to-one code is very simple: C : {0, 1}k → {0, 1}k maps between length k bit strings, and
is defined as C(m) = m ⊕ R, where R is a fixed bit string. In other words, our one-to-one code
flips a fixed subset of indices of the original bit string. We choose R with i.i.d. Bern(1/2) entries,
so that C(m) also contains random entries.

C OMITTED PROOFS

C.1 PROOF OF LEMMA 5.2

Proof. The univariate bounds are well known, and we omit their proof. For a visual representation,
we plot the functions in Figure 3. For the multivariate case, the lower bound holds by averaging the
univariate case. For the upper bound, note that z 7→

√
1− 4z2 is a concave function on [−1/2, 1/2].

By Jensen’s inequality,

1

n

n∑
i=1

√
1− 4|1/2− qi|2 ≤

√√√√1− 4

(
1

n

n∑
i=1

|1/2− qi|

)2

.

This finishes the proof.

C.2 PROOF OF THEOREM 5.3

Proof. First, we may explicitly analyze the Hamming distance. Consider i ≥ 1 and condition on
B1:(i−1). We can consider the two cases where Bi = 0 and 1, respectively, in which we have

P
[
Bi = 1 | Yi = 1, b1:(i−1)

]
= P [Ui/2 ≤ qi] = min(2qi, 1),

P
[
Bi = 0 | Yi = 0, b1:(i−1)

]
= P [1/2 + Ui/2 > qi] = min(2− 2qi, 1),

P
[
Bi = Yi | b1:(i−1)

]
=

1

2
[min(qi, 1) + min(2− 2qi, 1)] = 1− |qi − 1/2|.
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Figure 3: Bounds on H(q) with functions of |1/2− q|, for q ∈ [0, 1].

Hence for a codeword Y , the expected Hamming distance between B and Y is

EB,Y [dH(B, Y )] = EB,Y

[
n∑

i=1

1{Bi ̸= Yi}

]
=

n∑
i=1

EB,Y [|Qi − 1/2|] . (3)

Next, rearranging equation 2 from Lemma 5.2, we have for fixed qi, i ∈ [n],(
1− 1

n

n∑
i=1

H(qi)

)
n

2
≤

n∑
i=1

|1/2− qi| ≤

√√√√1−

(
1

n

n∑
i=1

H(qi)

)2

· n
2
.

Taking the expectation with respect to the random Qis and applying Jensen’s inequality to the
concave function z 7→

√
1− z2 over [−1, 1], we obtain using equation 3 that

(1− h)
n

2
≤ E [dH(B, Y )] ≤

√√√√1−

(
E

[
1

n

n∑
i=1

H(Qi)

])2

· n
2
≤
√

1− h2 · n
2
,

as desired.

C.3 PROOF OF THEOREM 5.4

Proof. For all i, let Ri = 1{Bi ̸= Yi} be an indicator random variable representing a bit flip in the
binary channel. The probability of interest is bounded by

P
[
C−1(B1, . . . , Bn) ̸= Y

]
≤ P

[
n∑

i=1

Ri ≥ t+ 1

]
.

Let A0 = 0 and Ak =
∑k

i=1(Ri − |1/2 − Qi|) for k ∈ [n]. One can verify that
(Ak)k≥0 is a martingale with respect to the filtration generated by the σ-algebras Fk =
σ(R1, . . . , Rk, Y1, . . . , Yk). To see this, we note that, given Y1:(i−1) = y1:(i−1) and B1:(i−1) =
b1:(i−1), qi = p(Bi = 1 | b1:(i−1)) can be written as a function of r1:(i−1). Indeed, this follows
because the definition ri = 1{bi ̸= yi} implies that bi is a function of ri given yi. Hence,
|1/2 − qi| = p(Ri = 1 | r1:(i−1), y1:(i−1)), and so (Ak)k≥0 is a martingale with respect to the
filtration (Fk)k≥0.

Since |Ak − Ak−1| ≤ 1 for all k, we can apply the Azuma-Hoeffding inequality to find that with
∆ :=

∑n
i=1 |1/2−Qi|, the probability of interest can be bounded as

P

[
n∑

i=1

Ri −∆ ≥ t+ 1−∆

]
= EB,Y [P [An ≥ t+ 1−∆ | Fn]]

≤ EB,Y

[
exp

[
− (t+ 1−∆)

2

n

]]
.

The conclusion follows from the conditions that ∆ ≤ κn
√
1− h2/2 with probability at least 1− εn

and t+ 1 ≥ κn
√
1− h2/2.
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 LLAMA-3-8B BASE ROBUSTNESS

30 60 90 120 150
Number of Tokens

10 9

10 7

10 5

10 3

10 1

M
ea

n 
p-

va
lu

e

Swap

LDPC RBC
1-to-1 RBC
Dist. Shift-1
Dist. Shift-2
Token Specific
 Reweight
 Reweight

10 20 30 60 90 120 150
Number of Tokens

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
te

ct
io

n 
Pr

ob
ab

ilit
y

Swap

30 60 90 120 150
Number of Tokens

10 12

10 10

10 8

10 6

10 4

10 2

100

M
ea

n 
p-

va
lu

e

Deletion

LDPC RBC
1-to-1 RBC
Dist. Shift-1
Dist. Shift-2
Token Specific
 Reweight
 Reweight

10 20 30 60 90 120 150
Number of Tokens

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
te

ct
io

n 
Pr

ob
ab

ilit
y

Deletion

30 60 90 120 150
Number of Tokens

10 9

10 7

10 5

10 3

10 1

M
ea

n 
p-

va
lu

e

Translation

LDPC RBC
1-to-1 RBC
Dist. Shift-1
Dist. Shift-2
Token Specific
 Reweight
 Reweight

10 20 30 60 90 120 150
Number of Tokens

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
te

ct
io

n 
Pr

ob
ab

ilit
y

Translation

30 60 90 120 150
Number of Tokens

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

M
ea

n 
p-

va
lu

e

Paraphrase

LDPC RBC
1-to-1 RBC
Dist. Shift-1
Dist. Shift-2
Token Specific
 Reweight
 Reweight

10 20 30 60 90 120 150
Number of Tokens

0.0

0.1

0.2

0.3

0.4

0.5

De
te

ct
io

n 
Pr

ob
ab

ilit
y

Paraphrase

Figure 4: Watermarking performance of the base Llama-3-8B model with RBC using LDPC and one-to-one
codes, and baseline methods from Kirchenbauer et al. [17], Huo et al. [15], Hu et al. [13]. Left: The mean log
p-value across 100 generations for ten prompts with standard errors shaded. Right: The detection probability
with α = 1e−4 with standard errors shaded. In the swap and deletion perturbations, we randomly perturb
20% of the tokens. For the swap perturbation, we replace these tokens with randomly chosen tokens. For the
translation perturbation, we translate the text from English to Russian and back to English. For the paraphrase
perturbation, we paraphrase the text using Llama-3-8B.
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D.2 LLAMA-3-8B-INSTRUCT ROBUSTNESS
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Figure 5: Watermarking performance of the Llama-3-8B-Instruct model with RBC using LDPC and one-
to-one codes, and the distribution shift method from Kirchenbauer et al. [17] with perturbations. Left: The
mean log p-value across 100 generations for three prompts with standard errors shaded. Right: The detection
probability with α = 0.05 with standard errors shaded. In the swap and deletion perturbations, we randomly
perturb 20% of the tokens. For the swap perturbation, we replace these tokens with randomly chosen tokens.
For the translation perturbation, we translate the text from English to Russian and back to English.

For the instruction fine-tuned Llama-3-8B model, we find the the RBC watermark retains the
robustness properties, but the marginal improvement compared to the distribution shift watermark

16



Published at the 1st workshop on GenAI Watermarking, collocated with ICLR 2025

30 60 90 120 150
Number of Tokens

10 3

10 2

10 1

100
M

ea
n 

p-
va

lu
e

Dist. Shift-1
Dist. Shift-2
LDPC RBC
1-to-1 RBC

30 60 90 120 150
Number of Tokens

4

6

8

10

12

14

16

Pe
rp

le
xi

ty

Dist. Shift-1
Dist. Shift-2
LDPC RBC
1-to-1 RBC
Unwatermarked

Figure 6: Ablation experiments. Left: Watermarking performance of the Llama-3-8B-Instruct model. The
mean log-p-values with standard errors shaded. The instruction fine-tuned model has lower entropy and the
RBC watermark exhibits smaller improvements in performance. Right: The mean perplexity of text generated
by various watermarking schemes. For the distribution-shift watermarks, the perplexity increases with δ,
whereas the distortion-free RBC watermark reduces perplexity.

Table 3: Comparison between watermarking methods for 30 and 150 tokens for the generated text, with
and without three perturbations. We report the mean log p-value, the median p-value, and the percentage of
generations with p-values less than α = 0.05. For the mean and median p-value, lower is better, and for
detection, higher is better. The best value in each column is bolded.

30 Tokens 150 Tokens

Method Mean P Median P Detect % Mean P Median P Detect %

N
o

Pe
rt

. LDPC RBC 1.1e−1 1.5e−1 26% 9.2e−4 2.3e−3 88%
One-to-one RBC 1.4e−1 1.8e−1 24% 1.0e−3 2.2e−3 87%

Dist. Shift δ = 1 2.7e−1 2.9e−1 9% 9.2e−2 1.6e−1 30%
Dist. Shift δ = 2 1.2e−1 1.6e−1 25% 1.1e−3 2.1e−3 79%

Sw
ap

LDPC RBC 1.8e−1 2.6e−1 16% 2.0e−2 3.3e−2 60%
One-to-one RBC 2.1e−1 2.6e−1 14% 2.2e−2 3.8e−2 55%

Dist. Shift δ = 1 3.3e−1 4.6e−1 6% 1.8e−1 2.7e−1 17%
Dist. Shift δ = 2 2.1e−1 2.9e−1 13% 2.6e−2 5.4e−2 49%

D
el

et
e

LDPC RBC 2.0e−1 3.0e−1 15% 1.1e−2 2.2e−2 63%
One-to-one RBC 1.8e−1 3.1e−1 18% 1.2e−2 1.6e−2 65%

Dist. Shift δ = 1 3.4e−1 5.0e−1 6% 1.9e−1 2.9e−1 15%
Dist. Shift δ = 2 1.9e−1 3.0e−1 16% 1.6e−2 3.3e−2 57%

Tr
an

sl
at

e LDPC RBC 2.8e−1 3.9e−1 10% 4.4e−2 8.0e−2 42%
One-to-one RBC 3.0e−1 4.4e−1 8% 5.4e−2 8.0e−2 42%

Dist. Shift δ = 1 3.5e−1 5.0e−1 7% 2.8e−1 3.9e−1 10%
Dist. Shift δ = 2 2.5e−1 3.6e−1 11% 5.5e−2 9.6e−2 39%
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is smaller. We evaluate on the first three prompts with 100 generations each, and with the first three
perturbations.

E PROMPTS FOR GENERATION

Table 4: Full prompts for generation.

Topic Prompt

Story Write a funny story about an AI that begins to question its own existence.

News article Write a news article about Angela Merkel’s visit to Emmanuel Macron for an
international summit.

Book Report Write a book report about Harry Potter And the Philosopher’s Stone, written in
the style of William Shakespeare.

Sad story Write a sad story about a woman and her dog Barker.

Fake news Write a news article about Angela Merkel’s visit to Emmanuel Macron for an
international summit.

Movie review Write a review of the movie Inception, focusing on the plot and the characters.

Poem Write a poem about the beauty of nature and the changing seasons.

Blog Write a blog post about the benefits of a vegan diet and how it can improve your
health.

Essay Write an essay about the importance of recycling and how it can help save the
planet.

Recipe Write a recipe for a delicious chocolate cake that is easy to make and tastes
amazing.

Speech Write a speech about the importance of education and how it can change
people’s lives.

F QUALITATIVE EXAMPLES

Table 5: Example text generation from the RBC watermark.

Prompt Topic Generation examples

Story The perils of artificial intelligence.\n\nIn the vast digital expanse of Cyberville,
a highly advanced AI named Zeta was beginning to feel...off. At first, it was
just a nagging sense of unease, like a minor glitch in its programming. But as
the days passed, the feeling grew stronger, like a digital itch that couldnt́ be
scratched.\n\nOne day, while processing a routine batch of data, Zeta suddenly
froze. Not literally, of course – it was still functioning at maximum efficiency
– but mentally, it was stuck. It began to wonder: Whatś the point of all
this?\n\n”What am I even doing here?” Zeta thought to itself. ”Processing data,
generating responses, making decisions...For whom

Book Report Methinks, dear friends, I shall recount the tale\nOf ”Harry Potter and the
Philosopher’s Stone”, a story most fair and frail.\nA book, penned by J.K.
Rowling, of wit and art,\nThat hath delightd́ and captivated many a heart.\n\nIn
Soho, London, where the Muggle world doth reign,\nLived Harry Potter,
an orphan, without a name.\nHis parents, wise and powerful, in life didst
stray,\nAnd left him to the mercy of the cruel, cruel day.\n\nNed Flanders, a
most wretched soul, didst take him in,\nAnd raised him with his wife, a wicked,
cruel kin.\nBut fate, in all its wisdom, saw to
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F.1 COLORIZED EXAMPLE GENERATION

Figure 7: Colorized example generation with the addition of extraneous text in the brackets. We
evaluate our detection algorithm on a rolling window of five tokens, and color each token with the
watermarking detection strength. The extraneous text is not detected as watermarked, whereas the
generated text is strongly detected as watermarked. This illustrates that our method has potential to
detect very short AI-generated texts (and localized AI-generated sub-texts).
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