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Abstract—Decision-making in real-world robots requires a
robustness to uncertainty in dynamic environments with a bal-
ancing across multiple objectives. This paper proposes a general
model for robust multi-objective reasoning called a topological
partially observable Markov decision process (TPOMDP) and its
fully observable subclass (TMDP). TPOMDPs and TMDPs allow
for additional objective measures, such as maximizing safety,
smoothness, and/or other human preferences, to be incorporated
into a typical POMDP or MDP objective, such as minimizing
time or distance traveled. To enable use on a real robot, we also
present a scalable solver for TPOMDPs. The model is discussed
through comparisons of behaviors produced by POMDP policies
on a fully operational autonomous vehicle prototype acting in
the real world.

I. INTRODUCTION

Reasoning about multiple objectives is prevalent in many
real-world domains that require robust and safe control solu-
tions, such as water reservoir control [3]], industrial schedul-
ing [1]], energy-conserving smart environments [4], and an-
thrax outbreak detection [9]]. Recently, multi-objective rea-
soning techniques have also been starting to be applied to
autonomous robots, such as through notions of safety in semi-
autonomous vehicles [16, (13| [17, [11]. Models for multi-
objective reasoning offer unique capabilities when designing
robots with long-term autonomy, as they allow for explicitly
modeled safety, risk, and any other robustness constraints in
conjunction with environmental uncertainties.

Multi-objective Markov decision processes (MOMDPs) rep-
resent a model of multiple objectives with two main method-
ologies to structure their typically conflicting nature: scalar-
ization and preference orderings. Scalarization approaches
attempt to weigh each objective properly in a complex
function, creating a single-objective MDP which can be
solved with standard techniques [7]. However, finding this
scalarziation function is non-trivial, and suffers from both
computational complexity issues and the conflation of the
reward function, losing any semantic meaning the objectives
might have once had. We instead leverage the latter, using
a preference ordering over objectives [, 8], such as in
constrained (PO)MDPs (C(PO)MDPs) [2l] and lexicographic
(PO)MDPs (L(PO)MDPs) |16, [13]. We assign a preference
structure and only considers other objectives in the case of
tie-breaking, combined with the notion of slack or constraints
to liberate successive objectives’ choice. Our proposed model
defines this ordering via the topological order of a directed
acyclic graph (DAG) over the constraints, generalizing both
C(PO)MDPs and L(PO)MDPs, and is called a fopological
(PO)MDP (T(PO)MDP).
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II. ROBUSTNESS WITH MULTI-OBJECTIVE REASONING

A topological partially observable Markov decision
process (TPOMDP) is a sequential decision-making model
defined by the tuple (S, A,Q,T,0,R, E,0):

o S is a finite set of states;

e A is a finite set of actions;

o () 1is a finite set of observations;

e T :8xAxS — [0,1] is a state transition function
such that T'(s,a,s’) = Pr(s'|s,a) is the probability of
successor s’ given action a was performed in state s;

e O: AxSxQ — [0, 1] is an observation function such that
O(a, s',w) = Pr(wl|a, ') is the probability of observing
w given action a was performed resulting in successor s’;

e R =[Ry,...,Ri]" is a vector of reward functions for
K ={1,...,k} such that R; : S x A — R denotes an
reward R;(s,a) for performing action « in state s;

e« FC K x K is a set of edges over k rewards forming a
directed acyclic graph, with one leaf/sink reward vertex
which, without loss of generality, is reward vertex k; and

e 0: E — R* is a function mapping edges ¢ = (i,j) € E
to a non-negative slack constraint §(e) > 0, or also
overloading notation by the equivalent (¢, j) > 0.

As in a POMDP, the TPOMDP operates over a belief
be B C Al of the world. Given belief b, after performing
a and observing w, the next belief by,,, over state s’ is:

baw(s) < O(a, s, w) > T(s,a,5")b(s) )

seS

A topological Markov decision process (TMDP) is a fully
observable a TPOMDP with Q2 = S and O(a, s’, s") = 1, such
that the reachable beliefs b € B are b(s) =1 for all s € S.

The agent chooses which action to perform via a policy
m : B — A. The objective in an infinite horizon TPOMDP
seeks to maximize the expected discounted reward from an
initial belief b° with discount factor € [0, 1). Formally, for
a policy m, it follows: E[> ;> v'R(b", 7(b%))|r, b°] with b*
denoting the random variable for the belief at time ¢ generated
following T" and O. The value V™ : B — R is the expected
reward at belief b following:

VT(b) = R(b,m(b)) +7 Y Pr(w|b,w(0))V" (b))
weN

and R(b,a) = >, b(s)R(s,a) and b/, , following the belief
update in Equation |1} Also, Q" (b, a) refers to the one step

deviation of 7 following action a in belief b instead of 7 (b).



Algorithm 1 Local action restriction (LAR) approximation.
Require: (S, A,Q,T,0,R, E,¢): The TPOMDP.
Require: B: The set of beliefs B C AlSI,
Require: 7: The local slack specific for each e € E.
1: procedure LOCALACTIONRESTRICTION(K, F, x, k, 1)

2: <7T*7V*7A> — <7T07{}7{}>

3: for i +— x1,...,x, do

4: P + {j € K|3(j,i) € E}

5: for b € B do

6: A; (D)« AN(Njep, {acA;()[€; (b, a)<n(j,4)})
7 (w7, Vi) < PBVI(S, 4;, Q, T, O, R;, B)

8: (T, V5 A) « (mF, VUV AU {A})

9: return 7*

10: x < REVERSEPOSTORDERDFS(K, E, k, )
11: return LOCALACTIONRESTRICTION(K, F, x, k, 1)

We leverage the piecewise linear convex property of a simi-
lar finite horizon TPOMDP objective to approximate the infi-
nite horizon TPOMDP. Following the same logic as POMDPs,
we use a set of a-vectors I'; for each objective ¢ € K, with
their collection T' = {[ay,...,ax]T € RF|Vi € K,a; € T},
to represent the value function. The equation for 7 at b is:

V7™(b) = R(b, (b)) + max b(s
(b) = R(b,7(b)) WZ;ZQ,EF; (s)

> T(s,7m(b),s)O(n(b), s, w)e/(s).

s'eS
Point-based value iteration (PBVI) methods [6, [10} [14] apply
this at a fixed set of beliefs B, as used here. Controller-based
methods [15] can also be used with slack constraints [19]].

A. Optimality Criterion

The topologically ordered constraints can subject prede-
cessor objectives to satisfying slack at the initial belief or
across all beliefs, called initial slack and universal slack,
respectively. An initial slack TPOMDP objective for initial
belief b° is the recursively defined objective to find a policy 7
that maximizes the expected value for reward ¢ € K following:

maximize V;"(b%)
subject to V(%) — V.7 (%) < &(w,v)
Yu e A; U{i},Yw € P,

with V*(b") denoting the optimal value of ancestor w recur-
sively following this same constrained objective. The differ-
ence is also denoted €, (b,a) = V5 (s) — Q% (s, a). Universal
slack ensures the constraints are satisfied at all beliefs b € B.

3)

B. Scalable Approximate Algorithm

From Equation |3| we can recognize that applying uni-
versal slack at each belief b € B, with a local slack of
n(j,7) < (1 —~)d(j,) ensures the global slack §(j,¢) is sat-
isfied [[12]. We call this local action restriction (LAR). Algo-
rithm [I] implements this approach. Crucially, this is for real-
world robots and must be tractable. LAR is highly scalable,
with a complexity of PBVI times the number of objectives k.

(a) L(PO)MDP  (b) C(PO)MDP (c) T(PO)MDP
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Fig. 1.  Graphical notation representing robust autonomous vehicle
T(PO)MDP topological constraints E. The vertices K = {£, A,S,T}
denote following the law, assertiveness, smoothness, and time objectives,
respectively. For each vertex ¢ € K: (a) a three-reward L(PO)MDP; (b) a
two-constraint C(PO)MDP; and (c) a general T(PO)MDP able to capture a
richer landscape of robustness constraints.
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Fig. 2. Experiments of three POMDP policies on a fully operational
autonomous vehicle prototype at an occluded T-intersection. For a TPOMDP
implementation (e.g., following Fig [T](c)), in all cases the law to stop at the
stop line must be followed 6. 4 = d,s = 0. The red baseline shows possible
behavior of an assertive policy with d 47 = 0. The blue baseline shows
possible behavior of a smooth comfortable policy with s = 0. The green
line shows desired behavior, which has careful motion for visibility, provided
enough slack (6§ 47 > 0 and 657 > 0) to maximize the time objective 7.

III. ROBUST AUTONOMOUS ROBOTS

In order to incorporate robustness optimization into an
autonomous robot, we now can employ a T(PO)MDP. Real
world robotic domains require more than just safety to be
successfully deployed; the robots need to be robust across
multiple considerations. The objectives can explicitly model
robustness considerations (e.g., following the law, assertive-
ness, smoothness, safety, etc.) in addition to the main objective
(e.g., minimizing time). Figure [T] shows an example of three
T(PO)MDP graphs for an autonomous vehicle domain. Fig-
ure [2]illustrates an example of the kind of difference the graph
E and slacks d(e) will introduce in policy execution behavior,
as shown by actual robot experiments using multiple distinct
POMDPs. The POMDPs are those used in MODIA [18], a
framework enabling scalable decision-making in robots.

TPOMDPs and TMDPs allow for a rich landscape of
robustness constraints to be described in the theoretically
grounded model [12]. This model facilitates the design of
scalable algorithms, such as LAR in Algorithm [I] that enable
TPOMDPs to be deployed on robots operating in the real
world which actualize aspects of robust autonomy.
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