
WordScape: a Pipeline to extract multilingual, visually
rich Documents with Layout Annotations from Web

Crawl Data

Maurice Weber∗
ETH Zurich

Carlo Siebenschuh∗

University of Chicago
Rory M. Butler∗

University of Chicago
Anton Alexandrov

ETH Zurich,
INSAIT, Sofia University

Valdemar R. Thanner
ETH Zurich

Georgios Tsolakis
ETH Zurich

Haris Jabbar
TU darmstadt

Ian Foster
Argonne National Laboratory,

University of Chicago

Bo Li
UIUC

Rick Stevens
Argonne National Laboratory,

University of Chicago

Ce Zhang
ETH Zurich

{maurice.weber,ce.zhang}@inf.ethz.ch; {siebenschuh,rorymb}@uchicago.edu;
{aalexandrov, thannerv, gtsolakis}@student.ethz.ch;

harisjabbar@gmail.com; {stevens,foster}@anl.gov; lbo@illinois.edu

Abstract

We introduce WordScape, a novel pipeline for the creation of cross-disciplinary,
multilingual corpora comprising millions of pages with annotations for document
layout detection. Relating visual and textual items on document pages has gained
further significance with the advent of multimodal models. Various approaches
proved effective for visual question answering or layout segmentation. However,
the interplay of text, tables, and visuals remains challenging for a variety of
document understanding tasks. In particular, many models fail to generalize well
to diverse domains and new languages due to insufficient availability of training
data. WordScape addresses these limitations. Our automatic annotation pipeline
parses the Open XML structure of Word documents obtained from the web, jointly
providing layout-annotated document images and their textual representations. In
turn, WordScape offers unique properties as it (1) leverages the ubiquity of the
Word file format on the internet, (2) is readily accessible through the Common
Crawl web corpus, (3) is adaptive to domain-specific documents, and (4) offers
culturally and linguistically diverse document pages with natural semantic structure
and high-quality text. Together with the pipeline, we will additionally release
9.5M urls to word documents which can be processed using WordScape to create a
dataset of over 40M pages. Finally, we investigate the quality of text and layout
annotations extracted by WordScape, assess the impact on document understanding
benchmarks, and demonstrate that manual labeling costs can be substantially
reduced.

∗The first three authors contributed equally.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

Extraction of URLs from
Common Crawl Snapshot

URL based deduplication

.wat
.wat .wat

Document Download

Doc based deduplication + Malware filter + Metadata

.docx .docx .doc

Language Identification Bounding Box AnnotationText Extraction

urls urls urlsurls

.wat
.wat .wat

Quality Filtersdocx jpg

Figure 1: Overview over the WordScape pipeline for processing a single Common Crawl snapshot.
First, we extract and deduplicate all URLs from .wat files that point to Word documents. We then
download the documents, apply malware filters, metadata extraction and deduplicate based on content.
In the third step, we convert downloaded documents to page images, extract text, run our bounding
box annotation algorithm, identify the dominant language and apply quality filters. The right side of
the figure shows an example document with bounding box annotations.

1 Introduction

There is an abundance of digital, semi-structured data contained in visually rich documents such as
PDFs or MS Word documents. However, while this information is easily understood by humans,
its semi-structured nature makes its analysis by automated data processing engines difficult. This
difficulty stems, to a large extent, from the diversity of how information in visually rich documents
is organized, across at least the three axes of culture, language, and industry. Therefore, effective
use of such data often necessitates a costly and labour-intensive process of manual information
extraction. Existing techniques in many automated document understanding tasks are either based on
conventional rule-based or machine learning (ML) approaches, relying on hand-crafted features, or
on more promising deep learning approaches which are trained on large amounts of data. However,
to date, both approaches often fail to generalize well due to a lack of compatible formats, or due to
insufficient diversity in existing training datasets, especially for low-resource languages.

At the same time, we have witnessed tremendous progress in the area of natural language processing
(NLP) and computer vision applications, where pre-trained models [8, 25, 31, 24, 27] have enabled
researchers and practitioners to build useful applications by fine-tuning these models on specific
downstream tasks. This progress has, to a large extent, been driven by leveraging large quantities of
high-quality data extracted from the web.

In contrast to these techniques, the task of document understanding is an inherently multimodal
problem, requiring models to understand text, visual, and layout features and to model their re-
lations [13, 22, 17]. As a consequence, next to advances in model design, considerable efforts
have gone into creating datasets that combine these different modalities. These datasets can be
grouped into two categories: on the one hand, there are human-labeled datasets like DocLayNet [23]
for document layout analysis, FUNSD [14] for form understanding or the RVL-CDIP document
classification dataset [12]. While this approach generates high-quality labels, it naturally limits
the size to a few hundred thousand samples due to the restrictive costs of human-annotated labels.
Alternatively, the automatic generation of ground truth labels has been leveraged to create datasets
like PubLayNet [35], DocBank [19] and arXivdocs-weak [26]. While these datasets are larger in size,
they are typically sourced from the scientific domain and are thus mainly in the English language and
lack the diversity needed to reflect the true distribution of documents prevalent in practice and across
industries, cultures, and societies.

Word documents are among the most widely used types of documents. While rendered Word
documents appear as semi-structured pdfs, the source code comprising Word documents consists of

2

highly structured XML files in the Open XML format, containing valuable information like reading
order, the structure of tables and style information. Furthermore, Word documents are often used
in more formal contexts and for professional writing such as academic papers, reports, business
documents or official correspondence. This gives rise to the hypothesis that text found in such
documents generally has higher quality than text on web pages like forums, social media updates or
user-generated content. Here, we present WordScape, a pipeline that enables the automatic sourcing
and annotation of diverse, multilingual, visually rich documents at scale, enabling researchers and
practitioners to curate multimodal document understanding datasets. Similar to large-scale NLP
dataset creation pipelines like CCNet [33], we use the Common Crawl web corpus 2 as our primary
source of documents. We parse Common Crawl to collect urls pointing to MS Word documents
embedded in websites, then parse the Open XML structure of these documents to extract text and
identify the location and category of visual semantic entities like section headings, tables and figures
on the rendered page images. To date, we extracted a total of 9.5M urls to Word files which we will
publish and which can be processed using the WordScape pipeline to build a corpus of roughly 40M
pages. In summary, we make the following contributions:

• We present a novel pipeline to automatically extract and process millions of MS Word documents
from the web, and open-source the codebase 3

• We introduce a novel bounding box labeling algorithm based on the Open XML representation of
MS Word documents.

• We provide a detailed analysis of the size, quality and distribution of datasets created using
WordScape.

• We validate one created dataset on various layout analysis benchmarks and find that WordScape
annotations can substantially reduce manual labeling efforts.

• We will release 9.5M urls to word documents that we have collected from Common Crawl. These
can be processed using WordScape to create a dataset of over 40M pages.

The remainder of this paper is organized as follows: In Section 2 we discuss related work. In Section 3
we present our data creation pipeline and dataset metrics are presented in Sections 4 and 5. We
validate our dataset on downstream benchmarks in Section 6, and finally conclude in Section 7.

2 Related Work

With the proliferation of pre-trained deep learning models, there has been a growing focus on high-
quality, web-scale training datasets, both in the domains of natural language processing and computer
vision. In the NLP domain, notable advances include the CCNet pipeline, C4 [25, 34], OpenWebText
[11], Pile v1 [9], S2ORC [20], Pythia [2], the RedPajama dataset [6], or the Refined Web dataset
[21]. Similar to these datasets and pipelines, this work aims to leverage data that is publicly available
on the web to build a large-scale, diverse, and multilingual data corpus. However, here we focus on
visual document understanding, an inherently multimodal domain, where next to text, layout and
visual features of documents are also a valuable source of data for downstream models.

Perhaps more similar to this work are multimodal web-scale datasets and pipelines like the Laion-
400M and Laion-5B datasets [30, 29], or the multimodal mmC4 [36]. In contrast to these works, we
focus on visually rich documents with layout annotations, rather than (image, caption)-pairs or text
interleaved with images. There are multiple datasets in the visual document understanding domain
such as the manually annotated DocLayNet [23] for document layout analysis, FUNSD [14] for form
understanding or the RVL-CDIP document classification dataset [12]. Other notable datasets include
the automatic, weakly labelled PubLayNet [35], DocBank [19], TableBank [18] and arXivdocs-
weak [26] datasets. In a similar manner to our approach, the LayoutReader dataset [32] leverages the
Open XML format of Word documents to construct a multimodal dataset of visually rich documents
together with the text in reading order. However, LayoutReader does not include object detection
labels for semantic entities and is released as a fixed dataset, rather than as a dataset creation pipeline.
In Table 1, we show a detailed comparison between WordScape and other datasets and pipelines.

2https://commoncrawl.org/
3https://github.com/DS3Lab/WordScape

3

https://commoncrawl.org/
https://github.com/DS3Lab/WordScape

Table 1: Comparison with existing document layout datasets. (1) WordScape is released as a public
pipeline together with 9.5M document urls; (2) 28 top-level categories detected via hierarchical topic
modelling; (3) languages detected with fastText on a single common crawl snapshot [16, 15].

Dataset Pages Classes Annotation Format Document Types Languages Source
PubLayNet [35] 360k 5 Automatic Digital Scientific articles English PubMed Central

DocBank [19] 500k 13 Automatic Digital Scientific Articles English arXiv

arXivdocs-weak [26] 127,472 23 Automatic Digital Scientific Articles English arXiv

PRImA [1] 305 10 Automatic Scans
Magazines, Technical Articles,

Forms, Bank Statements,
Advertisements

English –

DocLayNet [23] 80,863 11 Manual Digital

Financial Reports, Manuals
Scientific Articles,

Laws & Regulations,
Patents, Government Tenders

English, German
French, Japanese –

M6Doc [5] 9,080 74 Manual Digital, Scan,
Photographs

Scientific articles, Textbooks,
Books, Test papers,

Magazines, Newspapers, Notes
English, Chinese Chinese People’s daily,

arXiv, VKontakte

WordScape (Ours) 9.5M urls(1) 30 Automatic digital > 28 Categories(2) > 136 languages(2) Common Crawl

3 Methodology

Our document processing pipeline builds on the Open XML structure of Word documents which
contains valuable semantic information, and the hypothesis that the quality of text contained in such
documents is generally higher than text found on HTML-based websites. As our primary source of
data, we use the Common Crawl web corpus consisting of regular snapshots of the web with little
overlap between different snapshots 4, dating back to 2013. On a high level, our pipeline consists of
three core steps: we first parse a Common Crawl snapshot and extract all links that point to Word files
(i.e. URLs that end in .docx or .doc). The second step is to send HTTP requests to these links and
download the corresponding Word file. The final step consists of processing the document, resulting
in a final multimodal dataset with page images, text contained on each page, and bounding box
annotations for semantic entities like headings and tables on each page. An overview of the pipeline
is shown in Figure 1. In this section, we present each step in more detail.

3.1 Parsing of Common Crawl

The first step in the WordScape pipeline is to extract urls that point to Word files from Common
Crawl snapshots. Common Crawl provides data in raw (warc) format, UTF-8 encoded text (wet) and
metadata (wat) files. Next to HTTP header data, each metadata file also contains a list of hyperlinks,
from which we select all HTTP urls that end in .doc or .docx. Each wat file must be downloaded in
its entirety to be correctly parsed. After the initial parsing of the wat files, the urls from each agent
are merged, then deduplicated on a per-snapshot basis and finally deduplicated globally across all
previously processed snapshots.

3.2 Document Download

In this step of the WordScape pipeline, we download the documents from the urls extracted from
Common Crawl. This step outputs the downloaded Word source files, as well as metadata containing
statistics on the quantity of successfully downloaded urls and failure or rejection reasons for each url.
Failures relate mainly to benign HTTP errors. We reject a document when a response is successfully
obtained but is not useful. A benign reason for rejection is either an unsuccessful HTTP response
code (most commonly 403/404), an invalid URL, too many redirects/retries, no received HTTP
response, an incorrect file format of the response, an incorrect content-type header, or internal
hardware failure/cluster resource limitations. We furthermore reject potentially malicious documents
by performing a check against OLE data structures [7] during download. As such we count any
document that contains VBA code/macros, external relations, an OLE object pool, encryption, or
flash embeddings.5 Finally, we also reject excessively large files. The reason for this is that we aim to
achieve a relatively even distribution of document pages, and to prevent out-of-memory errors.

4https://commoncrawl.github.io/cc-crawl-statistics/plots/crawloverlap
5While this is a conservative malware filter, we emphasize that motivated adversaries can in theory still

engineer malicious documents. Our malware filter is thus not a security guarantee.

4

https://commoncrawl.github.io/cc-crawl-statistics/plots/crawloverlap

Upon a successful download, we save several metadata fields concerning the response and its analysis
such as HTTP status, OLE information, as well as the file itself. In addition, the metadata includes a
SHA-256 hash of the full response bytes: This allows us to perform a second global deduplication
step against files which have identical content but are accessible under different urls, and to ensure
that the document has not changed if it is downloaded a second time. This serves as a defense
against potential dataset poisoning attacks, which have recently been shown to be practical in the
context of web-scale datasets [4]. Finally, the temporary metadata files recorded by the agents are
merged, deduplicated via bytehash, and written to a database. We present metrics on this metadata in
Section 4.

3.3 Document Processing

The processing of Word documents consists of several steps, including language identification,
bounding box annotation and text extraction. Here we describe each step in detail.

3.3.1 Bounding Box Annotation

Similar to the approach from [19, 18], we use a colorization scheme to extract bounding boxes of
semantic entities from a document page. In the first step, we parse the highly structured Open XML
files of a Word document using the python-docx6 library and custom XML parsing code to identify
the categories of different elements in the document.

We identify such elements by one of two methods: If the Word user has either used a built-in
style (such as a heading formatter), or the element is natively tagged in the XML file (such as for
tables), we use this information to label the corresponding element. Clearly, this approach makes the
assumption that using such a built-in functionality reflects the user’s intent, which is not always the
case. Nevertheless, we expect this methodology to be accurate in the majority of cases. If, on the
other hand, no built-in indicator can be found for an element, we fall back to heuristics, such as the
distribution of used fonts in the document indicating headings, or successive numbered or bulleted
paragraphs indicating a succession of list items. This heuristics-based approach is generally more
noisy compared to the method based on built-in XML properties.

Once the category of a document element has been determined, we color it using the Open XML
formats highlighting, formatting and text coloring features, by directly editing the XML. The colored
document is then rendered via LibreOffice 7, and each page is converted to an image. Colors on this
image are then detected, providing bounding boxes for each different entity category. We provide
more details on the annotation process in the Appendix.

3.3.2 Text Extraction

We extract text from a document on two levels of granularity. First, we extract the full document text
from the Open XML structure using python-docx. This document-level text is in reading order, due
to the internal XML structure. Second, we extract the text from individual rendered pages using the
PDFPlumber8 package. This allows us to additionally extract word-level bounding boxes. It should
be mentioned that the PDF-based extraction is less accurate due to the necessity to use heuristics
when identifying and grouping characters into words. We discard any document that has less than
a total of 200 characters. On the page level, we keep pages without any text as they might contain
figures or other relevant entities without text.

3.3.3 Language Identification

To identify the language of a document, we use the fastText language classifier [16, 15]. The classifier
was trained on Tatoeba, Wikipedia and SETimes and can identify 176 languages using n-grams as
features with the hierarchical softmax. We identify languages both on a document level, using the
Open XML-based text, and on a page level using the PDF-based text.

6https://github.com/python-openxml/python-docx
7https://www.libreoffice.org/
8https://github.com/jsvine/pdfplumber

5

https://github.com/python-openxml/python-docx
https://www.libreoffice.org/
https://github.com/jsvine/pdfplumber

2023-14 2023-06 2021-43 2020-40 2016-50 2013-48
104

105

106

107

raw urls unique urls processed urls documents

Figure 2: Number of urls and documents extracted from Common Crawl, for snapshots ranging from
2013 to 2023. Raw urls refers to the initial urls extracted from each snapshot, prior to any processing.
The unique urls are globally deduplicated, starting from the most recent snapshot back to the oldest.
Processed urls is the subset of urls to which an HTTP request was sent, and "documents" refers to
successfully downloaded documents.

3.3.4 Dataset Filters

We provide several ways to filter a subset of the core dataset created by WordScape, based on metadata
collected during the annotation process. First, we implement a quality filter based on the perplexity
of the document text for models trained on Wikipedia, as well as a annotation reliability score to
assess bounding box annotations. The latter metric captures the proportion of entities annotated using
built-in or XML patterns vs. heuristic-based annotations, as the former are generally more reliable.
We present more details on the perplexity distribution in Section 5 and details on the annotation
quality score in the Appendix. In addition, we collect metadata for each document and each page,
allowing the creation of subsets with different requirements such as the number of tables and other
entities, or the language of the resulting dataset.

4 Pipeline Statistics

In this section, we present statistics on running the WordScape pipeline. Specifically, we investigate
the number of links pointing to MS Word files in a single common crawl snapshot, as well as the
reasons that downloads failed, or were otherwise rejected/failed during the annotation process. We
provide details on the resources used to run the WordScape pipeline in the Appendix.

Common Crawl Parsing To estimate the number of documents that can potentially be obtained
using the WordScape pipeline, we parsed 6 individual Common Crawl snapshots ranging from 2013
up to the March/April 2023 snapshot. We found that there are substantial duplicated Word file urls
in each snapshot: per-snapshot deduplication removes 60 − 80% of available urls. However, we
found little overlap between snapshots, mirroring the fact that there is generally little overlap between
the websites visited by Common Crawl. Furthermore, we noticed that the number of valid urls, i.e.
where a document can be successfully downloaded, decreases substantially for older crawls: Out of
all the urls visited for the 2013 snapshot, only 12.5% could be successfully downloaded, compared
to 60.6% of urls from the most recent 2023 snapshot. This is to be expected as older urls are more
likely to be inaccessible than newer ones. These observations are illustrated in figure 2.

Document Download Out of a total of 5, 807, 634 requests to urls from the November/December
snapshot, we found that 2, 441, 972 (42.1%) received a 200 return code and could thus be further
processed. Out of the successful responses, there were 364, 648 (14.9%) instances where the content-
type header did not match a Word document and was thus rejected. Another 172, 772 (7.1%)
documents were rejected because they did not pass our OLETools malware filter. This resulted in a
total of 1, 904, 552 Word documents that could be successfully downloaded using the WordScape
pipeline. We emphasize that we ran the requests at the beginning of March 2023, i.e. roughly three
months after the snapshot was published. It is likely that at a later point in time, the number of
responsive urls will be lower, leading to less documents. We provide further details on reasons for
rejected downloads in the Appendix.

6

ru en uk pl es ja fr it pt nl hu bg zh cs de tr ar el vi ro lv th sr sk he id sl hr lt sv hy fa kk no fi ka da ca ko et mk sq cy az be gl ga hi ur tg
103

104

105

106

Pages per Language

Figure 3: Number of pages per language, produced by the WordScape pipeline run on 1.25M Word
documents extracted from the November/December 2022 Common Crawl snapshot.

0 200 400 600 800 1000 1200 1400
Perplexity

105

106

107

108

109

C
um

ul
at

iv
e

W
or

d
C

ou
nt

Language
Russian
English
Ukrainian
Polish
Spanish; Castilian
Dutch; Flemish
French

0 200 400 600 800 1000 1200 1400
Perplexity

105

106

107

108

C
um

ul
at

iv
e

W
or

d
C

ou
nt

Language
Italian
Portuguese
Bulgarian
Hungarian
Czech
Turkish
German
Greek, Modern (1453-); Greek

Figure 4: Number of words in any given language subset, as a function of perplexity threshold. The
figure shows the number of words with perplexity smaller or equal to the value on the x-axis, for the
seven languages with the highest (left) and lowest (right) number of words. A word is defined as a
whitespace-delimited sequence of characters with punctuation removed.

Document Processing To further investigate how the WordScape pipeline performs, we ran the
document processing step of the pipeline on 1, 251, 383 of the successfully downloaded documents
from the November/December 2022 snapshot. Out of these, for 248, 918 (∼ 19.9%) of the documents,
the annotation process was either rejected or failed. The majority of the failures stem from the files
being invalid Zip files, namely in 15.4% of all processed documents. Another 37.5k (∼ 3%) of the
documents were rejected because they contained less than 200 characters. We furthermore rejected
all documents whose uncompressed file size was more than 20 times the compressed size as this
indicates a potentially malicious zip bomb. This process resulted in 1, 002, 465 annotated documents,
or 5, 481, 455 pages, including the document text and object detection bounding boxes.

5 Dataset Statistics

Language Distribution In the 5.5M annotated document pages, we found a total of 136 distinct
languages, identified with fastText [16, 15]. The page counts per language is highly skewed towards
high-resource languages like Russian (2M pages) and English (1M pages), as opposed to roughly 1k
pages for Tajik and Urdu. Figure 3 shows the number of pages for the 50 most frequent languages.

Perplexity Scores We use the perplexity of a language model trained on a target domain to measure
the quality of the text extracted using WordScape. We follow the approach used in [33] and use their
5-gram Kneser Ney models and SentencePiece tokenizers trained on Wikipedia. In this context, a
lower perplexity score indicates that the language is closer to the target domain and is thus expected
to be of higher quality. Figure 4 shows the number of words with at most a certain perplexity value.
We note that especially for Hungarian, Portuguese and Italian, the perplexity scores are relatively low,
and a large part of the corpus can be retained even when aggressively filtering out documents with
moderately high perplexity. We provide further figures that illustrate the perplexity distributions for
more languages in the Appendix.

Semantic Entity Distribution Semantic Entities like headings, tables and lists are the logical units
that build up the structure of a document. Here we present statistics on the semantic entities that
the WordScape pipeline annotates. This analysis is based on the 1.25M documents annotated from

7

list text heading
form_field table figure footer header title toc form_tag quote equation footnote

bibliography
annotation

en

es

fr

nl

pl

ru

uk

Total

26.884% 32.131% 18.617% 6.791% 4.621% 3.264% 3.859% 2.595% 0.654% 0.158% 0.168% 0.069% 0.065% 0.033% 0.071% 0.021%

25.438% 30.817% 17.096% 5.063% 5.082% 5.701% 3.338% 6.402% 0.744% 0.152% 0.058% 0.033% 0.031% 0.030% 0.003% 0.014%

22.335% 32.870% 18.777% 7.119% 5.794% 5.989% 3.370% 2.510% 0.702% 0.154% 0.227% 0.051% 0.046% 0.026% 0.005% 0.025%

22.065% 40.949% 15.798% 3.777% 2.838% 3.173% 2.727% 7.387% 0.499% 0.037% 0.080% 0.476% 0.083% 0.093% 0.001% 0.017%

37.811% 21.402% 14.113% 13.717% 4.490% 3.215% 2.914% 1.695% 0.479% 0.039% 0.039% 0.015% 0.007% 0.043% 0.000% 0.019%

40.770% 28.777% 11.660% 7.673% 6.993% 1.226% 1.142% 1.341% 0.298% 0.047% 0.004% 0.023% 0.027% 0.014% 0.000% 0.005%

33.043% 33.565% 18.179% 4.219% 6.443% 2.408% 0.405% 1.008% 0.661% 0.031% 0.004% 0.013% 0.009% 0.004% 0.000% 0.006%

31.970% 30.349% 15.666% 7.981% 6.035% 2.663% 2.356% 2.152% 0.549% 0.079% 0.062% 0.044% 0.037% 0.029% 0.016% 0.013%

Figure 5: Proportion of layout element categories for the seven most frequent languages.

Figure 6: Hierarchy of topics detected in the WordScape.

the November/December 2022 snapshot, containing a total of 173M entity bounding boxes. The
most frequently appearing category are table cells (86M individual cells), making up roughly 50% of
the entities. Table columns and rows also appear frequently, comprising another 20% of all entity
bounding boxes. The next most frequent category are list items, of which we found 15M (8.9%).
Further frequent categories are plain text (14.8M) and headings (7.6M). We found that, generally, the
entity distribution is highly imbalanced; however, when excluding the individual table elements, the
distribution flattens significantly.

In Figure 5 we show the semantic entity distribution, grouped by languages and where we have
excluded table elements and merged the different heading levels into a single category. We see
that the imbalanced nature of the categories persists across all languages considered. However,
there are differences between languages in regard to the extent to which the classes are imbalanced
(e.g. Russian documents are more imbalanced than French documents). To whether the pairwise
occurrence of layout elements is correlated, we compute Spearman’s rank correlation coefficient for
pairs of layout elements in Figure 10 in the Appendix. We found that the elements are generally
weakly correlated, except for (text, heading), (list, heading), (list, text), (form_field, text) and (footer,
header). Further details on the semantic entities are in the Appendix.

Topic Modeling Since Common Crawl snapshots cover websites across multiple, unfiltered do-
mains, the Word documents extracted via WordScape can potentially themselves also cover a wide
range of topics. To get a better understanding of the topic distribution in WordScape, we ran the
hierarchical topic modelling classifier available in the Google Cloud NLP API 9 over a 25k sample
of WordScape documents in 11 languages support by the API (ru, en, it, ja, es, nl, zh, pt, ko, fr, de).
This allows for a fine-grained analysis giving both a high-level overview of the topics in the dataset,
and also exposes more low-level details of sub-classifications. The top categories we found are
"/Law & Government/Government/Other" (15.3%), "/Reference/General Reference/Forms Guides &
Templates" (9.0%), "/Jobs & Education/Education/Primary & Secondary Schooling (K-12)" (5.6%),
"/People & Society/Religion & Belief" (3.5%), and "/Jobs & Education/Education/Colleges & Uni-
versities" (3.4%). The full hierarchy is shown in Figure 6. We furthermore split the analysis across
languages that where we found significant differences in topic distributions. While the most frequent
top-level category in both Russian and Portuguese is "Law & Government", accounting for ∼ 37% of
documents, this category occurs relatively infrequently in other languages (< 13%). We provide a
more fine-grained overview over the language specific topic distributions in the Appendix.

9https://cloud.google.com/natural-language

8

https://cloud.google.com/natural-language

6 Training Object Detection Models on WordScape

To further assess the quality of the bounding box annotations extracted by WordScape, we conduct
experiments on three different datasets. We measure the utility of the annotations by first training a
base model on WordScape annotations, then finetuning the model on a target benchmark. We attempt
to show that, by leveraging the automatically annotated labels produced by WordScape, we can reduce
the (manual) labeling cost on the target domain while still maintaining the original performance.

Table 2: Text detection F1 @IoU 0.5 for Faster R-
CNN on FUNSD. Np are the WordScape samples;
Nf the FUNSD samples.

Nf = 25 Nf = 50 Nf = 100 Nf = 149

Np = 0 0.621 0.690 0.723 0.772
Np = 10k 0.840 0.840 0.823 0.861
Np = 50k 0.868 0.870 0.857 0.869
Np = 100k 0.872 0.869 0.850 0.882

Text Detection on FUNSD We first consider
the word-level text detection task on the FUNSD
dataset [14]. This dataset is a subset of the RVL-
CDIP [12] dataset and comprises 199 manually
annotated, scanned forms. We trained a Faster
R-CNN [28] network on 0 to 100k pages, anno-
tated with word-level bounding boxes. In the
second step, we finetuned the resulting model
on 25 - 149 samples of the FUNSD dataset. In
Table 2 we report the F1 score with IoU thresh-
old 0.5. We can see that using only 10k WordScape samples and 25 finetuning samples substantially
surpasses the text detection accuracy of the model trained on the full FUNSD dataset. By using
WordScape annotations we can thus decrease the labeling cost 6-fold.

Table 3: Table detection mAP @ IoU [0.50:0.95] for
YOLOv8m on ICDAR 2019 cTDaR. Np are the WordScape
samples, Nf the cTDaR samples.

Nf = 75 Nf = 150 Nf = 300 Nf = 600

Np = 0 0.869 ± 0.008 0.888 ± 0.011 0.949 ± 0.006 0.974 ± 0.003
Np = 1.25k 0.906 ± 0.012 0.912 ± 0.011 0.951 ± 0.005 0.972 ± 0.003
Np = 2.5k 0.914 ± 0.009 0.929 ± 0.008 0.960 ± 0.004 0.974 ± 0.003
Np = 5k 0.924 ± 0.007 0.924 ± 0.011 0.956 ± 0.005 0.974 ± 0.003
Np = 10k 0.919 ± 0.006 0.931 ± 0.010 0.961 ± 0.005 0.975 ± 0.003

Table Detection on ICDAR 2019 cT-
DaR Here we present results on the
ICDAR 2019 cTDaR table detection
task [10]. We use the modern tables
subset, the domain of which is closer
to the WordScape domain, compared
to the archival subset. It includes 600
training images and 240 test images.
We compare mAP @ IoU [0.50:0.95]
for the Ultralytics YOLOv8m10 model
on the test set with and without any
training on WordScape table documents. We resize images to 640×640 resolution and train 4 models
with different training set sizes for 200 epochs using SGD, 0.01 learning rate, batch size of 16, 0.937
momentum and 5e − 4 weight decay. We then finetune each model on 4 different subset sizes of
cTDaR using AdamW with 5e− 4 learning rate for 200 epochs, or until no improvement is observed
for more than 30 epochs. We see that pre-training on WordScape improves results particularly in the
low-resource regime.

Table 4: Document Layout Analysis mAP @ IoU [0.50:0.95]
for YOLOv5 on DocLayNet with different pretraining
datasets. Nf is the number of finetuning samples.

Nf = 1k Nf = 5k Nf = 20k Nf = 69k

Random Initialization 0.299 0.553 0.727 0.753
PubLayNet (200k) 0.467 0.659 0.720 0.745
WordScape (200k) 0.508 0.679 0.734 0.755

Layout Analysis on DocLayNet
DocLayNet [23] is one of the largest
human-annotated document layout
segmentation datasets, containing
over 80k pages from a variety of docu-
ment sources. We train a YOLOv5 ob-
ject detection model on 200k images
obtained via WordScape, and then fine
tune the model on subsets of the Do-
cLaynet training split, varying the fine
tuning dataset sizes from 1k to the full 69k. The results are shown in Table 4, where we see that pre-
training on WordScape leads to consistent performance improvements compared to (1) using random
weights for intialization, and (2) pretraining with the same number of samples on the PubLayNet [35]
dataset. This is particularly pronounced when less human labelled data is available.

Handcrafted Scientific Dataset WordScape’s versatility arises from enabling access to multi-
lingual document pages with rich category structure. However, assessing its quality requires an

10https://github.com/ultralytics/ultralytics

9

https://github.com/ultralytics/ultralytics

Figure 7: Layout analsysis mAP @ IoU [0.50:0.95] on the scientific paper dataset with YOLOv8
(left) and DETR (right) for varying WordScape sample sizes. The figures show mean values for
smaller (2.5k, 5k, 7.5k, red) and larger (15k, 20k and 25k, blue) pretraining sizes. The confidence
bands arise as estimates of the quartiles q0.25 and q0.75.

equally refined dataset for downstream tasks. The growing interest in layout detection as a precursor
to multimodal document understanding makes scientific literature a particularly viable candidate.

We compiled a dataset of diverse scientific content of Nf = 2, 500 pages from eight scientific
domains (biology, chemistry, physics, mathematics, engineering, computer science, economics, and
medicine) that span 120 subdomains from abstract algebra to zoology. More than 41,000 instances
were annotated by humans. In total, there are 31 categories that can be grouped into metainformation
(e.g. title), text body (e,g, paragraph), code (e.g. pseudocode), mathematical content (e.g. equation),
and visual assets (e.g .table). Categories relating to text are further split by indicating the presence of
LaTeX-formatted symbols. In addition, categories are present that relate captions to the respective
figure or table. Finetuning a model on an information-dense, annotation-rich scientific corpus is a
formidable challenge for a variety of reasons. It is particularly daunting for a model pre-trained on
Wordscape, however, due to the (1) multi-disciplinary, information-dense scientific content, (2) the
extensive, hierarchical class labels, (3) the high-resolution images stored as PNG rather than JPG, (4)
the human-made annotations and (5) the distributional shift from multi-lingual word documents to
English-only PDFs.

DETR [3] and the current iteration of YOLO represent state-of-the-art choices in terms of accuracy
and latency, respectively. In our experiment, both models are pre-trained on pages stemming from
WordScape with sample sizes ranging from 1000 to 100K. Subsequently, the models are finetuned on
our handcrafted scientific dataset for up to 2, 000 pages. The empirical results are shown in figure 7
and indicate that pre-training on WordScape significantly reduces the need for downstream data.

7 Discussion

In this paper, we present a pipeline to create curated datasets consisting of high-quality, multilingual
and diverse, visually rich documents with layout annotations. The pipeline is scalable to millions
of pages and contains high-quality text, both for high- and low-resource languages. WordScape is
the first pipeline that enables the creation of training datasets for large-scale multimodal document
understanding models that fuse text, visual and layout features. As the main limitation of the pipeline,
we identify the reliability of the bounding box annotations for certain semantic entities like headings,
as they rely to some extent on the assumption that formatting correlates reasonably well with user
intent. In the future, we wish to explore more characteristics of the resulting dataset such as the
amount of toxic or offensive content, and train large-scale document understanding models that make
full use of both text and image modalities in multiple languages. We are also excited to see how this
dataset can further enhance existing web-scale multimodal and NLP datasets.

10

Acknowledgments and Disclosure of Funding

This work is partially supported by the National Science Foundation under grant No. 1910100,
No. 2046726, No. 2229876, and Alfred P. Sloan Fellowship. CZ and the DS3Lab gratefully
acknowledge the support from the Swiss State Secretariat for Education, Research and Innovation
(SERI) under contract number MB22.00036 (for European Research Council (ERC) Starting Grant
TRIDENT 101042665), the Swiss National Science Foundation (Project Number 200021 184628,
and 197485), Innosuisse/SNF BRIDGE Discovery (Project Number 40B2-0 187132), European
Union Horizon 2020 Research and Innovation Programme (DAPHNE, 957407), Botnar Research
Centre for Child Health, Swiss Data Science Center, Alibaba, Cisco, eBay, Google Focused Research
Awards, Kuaishou Inc., Oracle Labs, Zurich Insurance, and the Department of Computer Science at
ETH Zurich. IF and RS acknowledge support from the U.S. Department of Energy under Contract
DE-AC02-06CH11357.

References
[1] Apostolos Antonacopoulos, David Bridson, Christos Papadopoulos, and Stefan Pletschacher.

A realistic dataset for performance evaluation of document layout analysis. In 2009 10th
International Conference on Document Analysis and Recognition (ICDAR), pages 296–300,
2009.

[2] Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff,
Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large
language models across training and scaling, 2023.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16,
pages 213–229. Springer, 2020.

[4] Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka, Will Pearce,
Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning web-scale
training datasets is practical. arXiv preprint arXiv:2302.10149, 2023.

[5] Hiuyi Cheng, Peirong Zhang, Sihang Wu, Jiaxin Zhang, Qiyuan Zhu, Zecheng Xie, Jing Li,
Kai Ding, and Lianwen Jin. M6doc: A large-scale multi-format, multi-type, multi-layout,
multi-language, multi-annotation category dataset for modern document layout analysis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 15138–15147, June 2023.

[6] Together Computer. Redpajama: An open source recipe to reproduce llama training dataset,
2023.

[7] Microsoft Corporation. Object linking and embedding (ole) data structures.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[9] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The Pile: An 800GB dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

[10] Liangcai Gao, Yilun Huang, Hervé Déjean, Jean-Luc Meunier, Qinqin Yan, Yu Fang, Florian
Kleber, and Eva Lang. Icdar 2019 competition on table detection and recognition (ctdar).
In 2019 International Conference on Document Analysis and Recognition (ICDAR), pages
1510–1515. IEEE, 2019.

11

[11] Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus.
http://Skylion007.github.io/OpenWebTextCorpus, 2019.

[12] Adam W Harley, Alex Ufkes, and Konstantinos G Derpanis. Evaluation of deep convolutional
nets for document image classification and retrieval. In 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), pages 991–995. IEEE, 2015.

[13] Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Layoutlmv3: Pre-training for
document ai with unified text and image masking. In Proceedings of the 30th ACM International
Conference on Multimedia, pages 4083–4091, 2022.

[14] Guillaume Jaume, Hazim Kemal Ekenel, and Jean-Philippe Thiran. Funsd: A dataset for form
understanding in noisy scanned documents. In 2019 International Conference on Document
Analysis and Recognition Workshops (ICDARW), volume 2, pages 1–6. IEEE, 2019.

[15] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou, and Tomas
Mikolov. Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651,
2016.

[16] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 2, Short Papers, pages 427–431,
Valencia, Spain, April 2017. Association for Computational Linguistics.

[17] Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, and Furu Wei. Dit: Self-supervised
pre-training for document image transformer. In Proceedings of the 30th ACM International
Conference on Multimedia, pages 3530–3539, 2022.

[18] Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, and Zhoujun Li. TableBank:
Table benchmark for image-based table detection and recognition. In Proceedings of the Twelfth
Language Resources and Evaluation Conference, pages 1918–1925, Marseille, France, May
2020. European Language Resources Association.

[19] Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu Wei, Zhoujun Li, and Ming Zhou.
DocBank: A benchmark dataset for document layout analysis. In Proceedings of the 28th
International Conference on Computational Linguistics, pages 949–960, Barcelona, Spain
(Online), December 2020. International Committee on Computational Linguistics.

[20] Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Daniel Weld. S2ORC: The
semantic scholar open research corpus. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 4969–4983, Online, July 2020. Association
for Computational Linguistics.

[21] Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb
dataset for Falcon LLM: outperforming curated corpora with web data, and web data only.
arXiv preprint arXiv:2306.01116, 2023.

[22] Qiming Peng, Yinxu Pan, Wenjin Wang, Bin Luo, Zhenyu Zhang, Zhengjie Huang, Yuhui
Cao, Weichong Yin, Yongfeng Chen, Yin Zhang, Shikun Feng, Yu Sun, Hao Tian, Hua Wu,
and Haifeng Wang. ERNIE-layout: Layout knowledge enhanced pre-training for visually-rich
document understanding. In Findings of the Association for Computational Linguistics: EMNLP
2022, pages 3744–3756, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics.

[23] Birgit Pfitzmann, Christoph Auer, Michele Dolfi, Ahmed S Nassar, and Peter Staar. Doclaynet:
A large human-annotated dataset for document-layout segmentation. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 3743–3751, 2022.

[24] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

12

http://Skylion007.github.io/OpenWebTextCorpus

[25] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

[26] Johannes Rausch, Octavio Martinez, Fabian Bissig, Ce Zhang, and Stefan Feuerriegel. Doc-
parser: Hierarchical document structure parsing from renderings. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 4328–4338, 2021.

[27] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779–788, 2016.

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural information processing
systems, 28, 2015.

[29] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmar-
czyk, and Jenia Jitsev. LAION-5b: An open large-scale dataset for training next generation
image-text models. In Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2022.

[30] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton
Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open
dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

[31] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[32] Zilong Wang, Yiheng Xu, Lei Cui, Jingbo Shang, and Furu Wei. LayoutReader: Pre-training
of text and layout for reading order detection. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 4735–4744, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics.

[33] Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco
Guzmán, Armand Joulin, and Edouard Grave. CCNet: Extracting high quality monolingual
datasets from web crawl data. In Proceedings of the Twelfth Language Resources and Evaluation
Conference, pages 4003–4012, Marseille, France, May 2020. European Language Resources
Association.

[34] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text
transformer. In Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 483–498,
Online, June 2021. Association for Computational Linguistics.

[35] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for
document layout analysis. In 2019 International Conference on Document Analysis and
Recognition (ICDAR), pages 1015–1022. IEEE, 2019.

[36] Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang,
Youngjae Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal c4: An open,
billion-scale corpus of images interleaved with text. arXiv preprint arXiv:2304.06939, 2023.

13

A Appendix

A.1 Details on Semantic Entity Annotation

One central part of the WordScape pipeline is the segmentation of page images into different semantic
entities. As discussed in the main part of the paper, we segment the pages as follows:

1. Identify the classes of different elements in the documents by parsing the Open XML
structure of Word documents.

2. Edit the XML tags such that the elements appear in a specific color on the rendered page
images. We first eliminate any highlighting, and then change the color of the font as well as
the background, ensuring that the change in color does not affect the spatial composition of
elements on the pages.

3. Match the colors on rendered pages using OpenCV 11 to get bounding box annotations for
each category.

In this way, we annotate the following set of semantic entities:

Title, Heading Level 1, Heading Level 2, Heading Level 3, Heading Level 4,
Heading Level 5, Heading Level 6, Heading Level 7, Heading Level 8, Heading
Level 9, Plain Text, List Item, Header, Footer, Table Header, Table Header
Cell, Table, Table Cell, Table of Contents, Bibliography, Quote, Equation,
Figure, Table Caption, Footnote, Annotation, Form Field, Form Tag, Table
Row, Table Column.

As discussed previously, we have several ways to identify the category of an element. Here we discuss
each technique in more detail.

Built-in Styles Word has a number of built-in formatting styles which users can apply to achieve
a well structured and formatted document. This includes styles for titles, headings with different
levels, plain text, list items, footnotes and others. We take the usage of a given builtin style as a
signal to identify the entity category of the element in the Open XML files and colorize the element
accordingly.

Open XML tag Some elements cannot be readily identified via builtin styles, but rather using
specific Open XML tags, accessible via the python-docx library. In our implementation we use this
methodology to identify the following categories: header, footer, text box, table, table
cell, built-in table of content, built-in forms, figures. Note that we relabel text
boxes as plain text. In the context of XML tag identification, we refer to table of content and
forms as “built-in” as opposed to heuristically matched toc and forms. The colorization of figures is
implemented by replacing the image files in the Word zip files with an image of the same shape and
format (e.g., jpg or png encoded), but filled with the color corresponding to the figure entity.

Heuristics In the case that we cannot identify an element using built-in styles or XML indicators,
we fall back to heuristics. These fall broadly under three categories:

Firstly, we compare the elements styling to the styling of built-in elements. The following user action
serves as an example: A user creates a heading using the built-in heading feature and then styles
that built-in element, and later copies and pastes the built-in heading to a different location in the
document, then edits its text content. The first element would be detected as a built-in heading, but
the second element would not. The second copy-pasted element possesses no built-in style name
indicator; however, it possesses identical applied styling (font size, boldness, underlines etc.) to the
known built-in element, and should therefore receive the same classification. We perform a second
pass on each document after built-in elements have been found in order to classify any non-builtin
elements with identical applied styling.

Second, we use content-aware heuristics specific to individual element types. For example, a
paragraph in which every line break is immediately followed by a number or special bullet character

11https://github.com/opencv/opencv-python

14

https://github.com/opencv/opencv-python

is classified as a list, and text segments above a certain length consisting only of underscores are
classified as form fields.

The last and most rudimentary heuristic deals only with distinguishing plain text elements from
title and heading elements; we choose this approach as our last fallback because heading elements
are crucial in outlining document structure. We rank elements according to font size, boldness and
underlining, and use this information to create a hierarchy among text elements which matches Words
built-in heading feature. For example, if a document consists of elements with font sizes 20, 16 and
12, this approach would classify elements of size 20 as heading 1, size 16 as heading 2, and size 12 as
plain text. As this is the last heuristic fallback, and therefore the least reliable, we employ various
checks and restrictions on these classifications. For example, We configure a maximum length for
headings classified this way, only rank font sizes as indicating a heading if they are larger than the
most commonly appearing font size, and only classify document titles if their styling is unique and of
the largest font size. Finally, if an element does not match any heuristic, we simply label it as plain
text.

Table Rows and Columns We find table rows and columns by post-processing the bounding boxes
for table cells. Specifically, we divide a table into the grid corresponding to the finest granularity;
i.e., the smallest cell height for rows, and the smallest cell width for columns. After ordering the
cells from top to bottom, a row at vertical position y is then defined as the sequence of all cells that
vertically cover the cell with smallest height and starting at position y, ordered from left to right.
Columns are determined analogously. Note that in this way we account for merged cells, i.e., the same
(merged) cell can appear in multiple rows / columns. This is similar to the internal representation of
tables in the Open XML standard.

A.2 Quality Filters

In WordScape, we calculate several quality indicators based on which subsets of the output can be
filtered.

Preliminary Filters As a preliminary step, during processing, we discard any document that has
less than 200 characters in it. In addition, we discard documents with more than 150 pages or whose
absolute (compressed) file size is larger than 10MB in order to maintain document diversity. We also
discard documents whose uncompressed size is more than 20 times its compressed size, or documents
that contain excessively large images (> 22.4M pixels).

Text based characteristics For each document, we collect the number of characters, the num-
ber of words 12, the number of alphabetical characters, the number of numerical characters, the
alphanumerical proportion, and the ratio of of alphabetical to numerical characters. In addition, we
provide utilities to compute the perplexity of Wikipedia trained language models as used in the CCNet
pipeline [33]. Finally, each document is classified according to its dominant language using the
FastText classifier [16, 15]. Here we also include the classification confidence in order to maintain
the possibility to filter out low-confidence documents.

Bounding box annotations The WordScape bounding box annotations stem from either built-in
and Open XML related sources, or from heuristics. We found that the former source is generally
more reliable as the user has less degrees of freedom (e.g., tables) and choosing a particular builtin
style is a conscious action which we argue is a strong signal to their intention. Heuristics on the other
hand are based on relative font sizes and special characters and thus provide a much weaker signal.
To capture these different sources of bounding box annotation, we compute an annotation reliability
metric, which as a weighted average over the proportion of the number of characters of reliably (i.e.,
builtin or XML tag based) annotated entities against the number of characters for heuristic-based
annotations. Formally, we have the following score

R =

N∑
i=1

γiri, γi =
ci∑N
i=1 ci

, ri =
bi

bi + hi
(1)

12We define a word as a white-space delimited sequence of characters with punctuation removed.

15

0.0 0.2 0.4 0.6 0.8 1.0
Annotation Quality Score

0

20000

40000

60000

80000

100000

120000

140000

#
 D

oc
um

en
ts

Figure 8: Distribution of the bounding box annotation quality score.

where N is the number of entity categories, ci is the number of entity with category i, bi is the number
of built-in/reliably annotated characters, and hi is the number of heuristic-annotated characters. Since
Tables and figures may not contain any characters but should still be counted as reliable, we set
ri = 1 in those cases. We show the distribution of the quality scores in figure 8, where we can see
that the distribution is skewed towards documents with higher scores, and a spike at documents with
score close to 1.0. For documents with a score close to or exactly 1, we observe that on average they
have around 50% fewer text entities, total words and list entities and significantly fewer heading
annotations, which is natural since those are the entities that often rely on heuristics rather than
built-in styles. Overall, we believe that the annotation quality score reflects the annotation confidence
relatively well. However, it is important to note that the highest reliability scores (close to 1) could
potentially imply low document diversity, e.g. documents that mainly contain tables and figures as
these are always counted with r = 1.0.

A.3 Perplexity Distributions

We provide perplexity distribution plots for the 15 most common languages in figure 9. We observe
fairly distinct distributions, with some languages showing more pointed curves (e.g. Ukrainian,
Hungarian) and some languages with flat distributions (e.g. Czech, Turkish).

A.4 Download Failure Statistics

Here we provide further details on reasons that the http requests either failed, or successfully
downloaded documents were rejected by WordScape. From table 5, we can see that across snapshots,
the most common reason is an unsuccessful http code (e.g. 404), stemming from dead / invalid links
found in Common Crawl. This pattern gets amplified as we progress towards older snapshots.

Table 5: Frequency of the most common errors encountered during the download stage. "Other"
includes invalid URLs or URLs without a response, exceeded file sizes and miscellaneous errors.
"HTTPCode" refers to an unsuccessful HTTP Code (such as 404), "ContentType" an invalid content-
type header, "RetryRedirect" too many retries or redirects, "maldoc" a failed OLE check.

Other HTTPCode ContentType RetryRedirect Maldoc Total Rejections Checked URLs

2023-14 3.847% 49.151% 11.915% 18.121% 16.966% 1,701,770 4,142,849
2023-06 5.911% 44.832% 12.181% 18.875% 18.200% 1,616,608 3,830,526
2021-43 11.914% 39.727% 9.723% 28.329% 10.308% 2,294,023 3,400,950
2020-40 0.301% 57.873% 12.300% 18.714% 10.812% 1,718,184 2,761,523
2016-50 0.230% 52.471% 16.524% 23.447% 7.328% 912,971 1,209,775
2013-48 0.765% 60.941% 12.980% 20.844% 4.469% 528,848 598,437

16

0 2000
0.000

0.002

0.004

Russian

0 2000
0.000

0.001

0.002

English

0 2000
0.000

0.005

0.010
Ukrainian

0 2000
0.00

0.01

0.02
Polish

0 2000
0.000

0.001

0.002

0.003

Spanish; Castilian

0 2000
0.0000

0.0005

0.0010

0.0015

Dutch; Flemish

0 2000
0.000

0.001

0.002

0.003

French

0 2000
0.000

0.005

0.010

Italian

0 2000
0.000

0.002

0.004

Portuguese

0 2000
0.000

0.001

0.002

0.003

Bulgarian

0 2000
0.000

0.005

0.010

0.015
Hungarian

0 2000
0.0000

0.0005

0.0010

0.0015

Czech

0 2000
0.0000

0.0005

0.0010

Turkish

0 2000
0.0000

0.0005

0.0010

0.0015

German

0 2000
0.0000

0.0005

0.0010

0.0015
Greek, Modern (1453-); Greek

Perplexity Distributions

Pr
op

or
tio

n
in

 la
ng

ua
ge

 s
ub

se
t

Perplexity

Figure 9: Perplexity Distributions for documents in the Top-15 languages from the Novem-
ber/December 2022 Common Crawl snapshot.

A.5 Semantic Entity Distributions

Here we provide more details on the semantic entity distributions. The total number of entities
for each of the 30 categories annotated by WordScape based on 1.25M documents is presented in
table 6. Roughly 50% of all entities are table cells, resulting in a highly imbalanced class distribution.
Excluding categories that correspond to elements of a table (i.e. Cells, Rows, Columns), we find
a more even distribution with the most dominant entity categories being list items and plain text.
Table 7 presents the language specific entity counts, where we have omitted table structure elements
and merged the different heading levels into one single category. Figure 10 shows Spearman’s
rank correlation coefficient for pairs of semantic entity counts at a 5% significance level. Figure 11
indicates how (un)balanced the semantic entity labels are for each language. Specifically, the figure
shows the proportion of entities in the top-k semantic entity categories among all entities in the
language subset. It can be seen that the Dutch, Russian, Polish and Ukrainian subsets appear to more
unbalanced, compared to Spanish or English.

A.6 Language Specific Topic Modelling

As highlighted in the main part of the paper, there exist considerable differences in the distribution of
topics across languages. In Figure 12, it can be seen how the document type diversity varies acress
languages. While the top-5 categories make up 53.7% of documents, they account for over 80% of
Korean and Portuguese documents. Figure 13 provides further evidence for this observation and
shows the entire set of top-level categories for each language.

A.7 Computational Resources

Here we report a detailed breakdown over the computational resources required to process one
common crawl snapshot with WordScape. Running the first step of the pipeline, namely parsing
of Common Crawl, in a single node setup with 64 CPU cores and 512GB RAM, takes 49 hours to
complete, or 3,087 CPU hours. We emphasize that this running time is heavily dependent on the
egress speed in the Common Crawl S3 bucket and might vary over time, depending on demand.
Running the second step of the pipeline, with 64 cores and 256GB RAM takes 22.5 hours, or 1,440
CPU hours. Finally, the last step of the pipeline is the most CPU intense step and was run on a cluster

17

heading title text list
header

footer toc

bibliography
quote

equation
figure

footnote

annotation

form_ta
g

form_fie
ld

title

text

list

header

footer

toc

bibliography

quote

equation

figure

footnote

annotation

form_tag

form_field

table

-0.04

0.57 -0.01

0.45 -0.04 0.48

0.07 -0.00 0.07 0.05

0.15 0.02 0.12 0.10 0.22

0.06 0.06 0.05 0.03 0.04

0.02 0.00 0.02 0.01 0.00 0.01

0.05 0.01 0.06 0.03 0.01 0.01 0.02 0.01

0.03 0.00 0.04 0.02 0.01 0.01 0.01 0.03

0.15 0.05 0.08 0.06 0.11 0.14 0.04 0.01 0.02 0.03

0.04 0.05 0.03 0.03 0.03 0.02 0.00 0.01 0.01 0.00

0.04 0.01 0.04 0.04 0.02 0.02 0.03 0.02 0.00 0.01 0.02 0.02

0.01 0.02 -0.01 0.03 0.04 0.01 -0.00 0.00 0.04 0.00

0.14 -0.01 0.26 0.13 0.05 0.06 0.02 -0.01 -0.02 0.03 0.01 0.12

0.03 -0.06 0.00 0.02 0.10 0.11 0.04 -0.01 0.02 0.05 0.02 0.02 0.04 0.07

Figure 10: Spearman’s rank correlation coefficient for the occurrence of different layout elements.
Pairs were the coefficient is not statistically significant at the 5% level are left blank.

Top-1 Top-2 Top-3 Top-4 Top-5 Top-6 Top-7 Top-8 Top-9 Top-10

nl
ru
pl
uk
fr

en
es

WordScape

40.9%

40.8%

37.8%

33.6%

32.9%

32.1%

30.8%

32.0%

63.0%

69.5%

59.2%

66.6%

55.2%

59.0%

56.3%

62.3%

78.8%

81.2%

73.3%

84.8%

74.0%

77.6%

73.4%

78.0%

86.2%

88.9%

87.0%

91.2%

81.1%

84.4%

79.8%

86.0%

90.0%

95.9%

91.5%

95.4%

87.1%

89.0%

85.5%

92.0%

93.1%

97.2%

94.7%

97.9%

92.9%

92.9%

90.5%

94.7%

96.0%

98.4%

97.7%

98.9%

96.3%

96.2%

95.6%

97.0%

98.7%

99.6%

99.4%

99.5%

98.8%

98.8%

98.9%

99.2%

99.2%

99.9%

99.8%

99.9%

99.5%

99.4%

99.7%

99.7%

99.7%

99.9%

99.9%

100.0%

99.7%

99.6%

99.8%

99.8%

Figure 11: Layout diversity for the top-7 languages. Each column represents the proportion of top-k
entities among all semantic entities in the language specific subset. This indicates how (un)balanced
the semantic entity labels are for each language. The Dutch, Russian, Polish and Ukrainian subsets
appear to more unbalanced, compared to Spanish or English.

with 24 nodes and 24 CPU cores and 96GB RAM each, for about 22 hours, resulting in 12,672 CPU
hours. In total, processing one snapshot of Common Crawl thus requires roughly 17k CPU hours.

A.8 Intended Use

This dataset creation pipeline, and the URLs to Word files extracted from Common Crawl snapshots
are intended to be used to generate training data for deep learning based document understanding
and language models. The URLs are intended to be processed by the code made publicly available
alongside this paper 13. We emphasize that while the URLs are static and are hosted by the authors,
the http responses may change in the course of time. For this reason, we provide SHA-256 hashes
of the document contents downloaded during June 1st - 12th 2023, that allow to verify whether
the content has changed in any way. Finally, we emphasize that the URLs provided can in some
cases point to documents which are protected under copyright law, or otherwise contain sensitive
information. It is the responsibility of the user of the URLs to comply with these restrictions.

13https://github.com/DS3Lab/WordScape

18

https://github.com/DS3Lab/WordScape

Table 6: Total number of entities after processing 1.25M documents from the November/December
2022 Common Crawl snapshot.

Entity Category # Entities Frequency in Corpus

Table Cell 86,995,260 0.502776
Table Row 20,671,174 0.119466
List Item 15,544,374 0.089836
Table Column 15,276,984 0.088291
Plain Text 14,757,476 0.085289
Form Field 3,880,406 0.022426
Heading Level 1 3,161,658 0.018272
Table 2,935,625 0.016966
Heading Level 2 1,514,728 0.008754
Figure 1,295,668 0.007488
Table Header Cell 1,273,716 0.007361
Footer 1,145,431 0.006620
Heading Level 3 1,086,629 0.006280
Header 1,046,474 0.006048
Heading Level 4 629,615 0.003639
Heading Level 5 402,500 0.002326
Heading Level 6 270,680 0.001564
Title 267,039 0.001543
Heading Level 9 265,021 0.001532
Table Header 170,712 0.000987
Heading Level 7 166,740 0.000964
Heading Level 8 119,500 0.000691
Table of Contents 38,479 0.000222
Form Tag 30,110 0.000174
Quote 21,240 0.000123
Equation 18,181 0.000105
Table Caption 16,289 0.000094
Footnote 14,233 0.000082
Bibliography 7735 0.000045
Annotation 6127 0.000035

Total 173,029,804 1.000000

de en es fr it ja ko nl pt ru zh

Top-1
Top-2
Top-3
Top-4
Top-5

15.4% 20.0% 18.4% 13.7% 24.5% 25.3% 33.3% 17.4% 37.0% 36.8% 34.8%
28.5% 35.4% 36.5% 26.9% 47.1% 38.1% 61.1% 33.8% 59.2% 51.7% 51.5%
38.3% 46.2% 50.0% 38.1% 58.5% 49.8% 72.2% 45.1% 72.1% 61.8% 59.1%
47.3% 55.0% 60.1% 47.3% 69.9% 59.0% 80.6% 52.4% 78.1% 69.7% 66.5%
53.7% 63.1% 67.1% 53.7% 75.2% 67.2% 86.1% 59.0% 83.6% 74.5% 72.5%

Figure 12: Topic diversity for language based subsets of WordScape data. Each row represents the
proportion of documents that are contained in the top-k high level categories obtained via Google
CLoud NLP API topic modelling. The French subset is particularly diverse with the top-5 categories
making up 53.7% of documents, compared to over 80% for Korean and Portuguese documents.

19

Table 7: Semantic Entity Counts for each language. Based on 1.25M documents from the Common
Crawl November/December 2022 Snapshot.

lang total heading title text list header footer toc biblio-
graphy quote equation figure footnote annotation form tag form field table

ru 15,775,786 1,839,436 46,960 4,539,836 6,431,785 211,531 180,082 7,486 65 3,554 4,313 193,374 2,266 820 553 1,210,465 1,103,260
en 10,394,549 1,935,118 67,979 3,339,825 2,794,441 269,703 401,096 16,373 7,408 7,181 6,767 339,312 3,416 2,167 17,485 705,912 480,366
uk 4,537,089 824,799 29,996 1,522,893 1,499,187 45,734 18,387 1,420 0 605 413 109,246 186 286 173 191,421 292,343
pl 3,280,527 462,993 15,714 702,104 1,240,413 55,609 95,594 1,277 0 494 224 105,481 1,420 627 1,278 450,001 147,298
es 1,788,687 305,786 13,305 551,226 454,999 114,504 59,704 2,720 53 582 554 101,980 531 243 1,029 90,562 90,909
fr 1,103,862 207,277 7,754 362,840 246,549 27,710 37,202 1,705 53 567 503 66,105 282 273 2,502 78,582 63,958
it 1,063,150 160,254 5,913 304,571 193,393 21,031 24,980 468 0 361 56 34,210 320 138 440 267,528 49,487
pt 877,840 166,427 5,169 263,720 178,428 44,381 31,171 280 9 314 236 49,188 252 49 946 81,461 55,809
hu 823,587 148,394 2,978 292,947 236,230 21,647 17,067 256 16 66 37 9,583 397 170 126 64,923 28,750
bg 740,209 158,229 3,873 207,490 211,583 17,406 22,510 131 0 379 27 14,652 41 190 75 73,610 30,013
ja 736,150 119,187 16,068 385,889 61,430 10,789 15,212 235 0 7 49 13,215 2 66 860 11,147 101,994
cs 694,481 139,566 6,631 196,766 215,157 10,943 16,691 289 0 125 299 24,642 114 36 329 56,004 26,889
zh 593,174 114,934 9,900 204,276 110,265 15,248 28,795 864 0 26 305 26,803 47 174 57 13,350 68,130
nl 578,069 91,325 2,883 236,716 127,551 42,702 15,763 216 3 2,751 480 18,341 535 98 462 21,835 16,408
hr 423,961 73,165 2,050 151,419 120,718 7,157 10,260 202 0 197 37 10,146 90 128 49 25,713 22,630
de 423,375 70,926 5,453 139,918 83,645 15,871 17,986 239 3 143 22 28,444 154 64 893 32,967 26,647
tr 410,355 88,572 2,009 119,679 104,771 11,264 11,925 1,296 8 55 37 14,321 255 22 177 24,697 31,267
lv 380,426 52,038 1,248 81,445 185,956 5,573 9,911 145 0 41 3 4,201 16 40 74 17,781 21,954
vi 377,438 65,422 1,199 83,402 136,829 5,458 8,317 377 5 36 277 6,828 111 21 65 46,125 22,966
sk 367,850 63,964 1,470 137,419 89,053 6,653 13,552 65 0 66 98 6,545 3 73 368 22,744 25,777
ro 329,450 55,329 1,034 80,607 83,736 5,757 9,051 19 0 112 11 9,843 156 28 14 66,021 17,732
el 319,227 59,147 1,600 102,678 76,655 6,027 17,906 72 2 50 224 13,372 163 30 156 18,463 22,682
th 300,554 39,930 1,158 64,980 27,600 8,047 5,215 41 0 23 171 6,641 685 7 40 122,149 23,867
ar 298,431 46,699 2,456 89,117 67,563 14,320 13,841 309 50 237 1,145 15,685 2,185 8 38 23,854 20,924
sr 289,466 48,607 908 94,355 72,040 4,023 9,714 106 0 34 29 5,351 159 41 155 33,144 20,800
sl 214,714 34,825 1,184 67,667 66,149 4,411 5,499 96 0 75 17 9,519 20 65 76 12,532 12,579
id 176,534 20,422 607 44,061 67,875 6,222 8,610 211 3 94 423 4,482 116 14 50 11,707 11,637
he 172,600 29,286 1,157 53,074 34,488 10,269 10,634 156 41 1,810 429 9,752 96 39 248 11,340 9,781
sv 103,126 19,525 1,107 34,003 20,422 2,272 3,314 195 2 267 99 5,059 1 26 134 7,074 9,626
no 91,549 17,716 1,181 29,888 22,197 2,076 2,487 50 0 9 14 4,320 2 15 218 5,731 5,645
lt 87,784 10,788 514 23,136 28,844 3,785 1,062 91 0 2 10 1,803 12 1 15 7,265 10,456
fi 81,001 14,818 489 26,454 22,076 2,905 2,203 67 3 11 120 3,563 1 22 141 3,592 4,536
fa 76,790 11,980 463 21,812 13,973 2,661 2,175 349 5 26 46 3,206 44 0 268 13,455 6,327
kk 60,068 9,463 140 16,191 21,014 650 861 15 0 15 2 1,696 0 3 0 4,799 5,219
da 56,403 10,544 629 18,177 14,894 1,797 2,127 20 3 21 24 2,508 0 3 38 1,762 3,856
uz 55,870 6,742 35 7,681 36,317 170 275 0 0 3 20 665 0 0 0 1,774 2,188
ca 55,217 9,480 564 14,631 12,094 1,483 2,410 23 0 4 8 4,517 1 1 268 6,112 3,621
hy 54,569 8,010 652 18,486 16,204 325 804 10 0 4 468 980 35 4 1 2,486 6,100
et 45,368 7,588 212 10,295 19,868 498 586 7 0 1 0 722 3 11 24 2,967 2,586
ko 40,412 6,854 680 18,080 8,458 883 925 0 0 145 0 1,220 0 7 0 626 2,534
ka 35,052 5,985 175 8,821 12,778 524 853 2 0 8 0 558 2 2 14 641 4,689
sq 31,211 8,310 94 7,923 9,627 350 1,012 35 0 57 0 890 5 2 0 1,059 1,847
mk 26,435 4,909 152 7,712 7,135 819 674 1 0 7 0 947 4 9 26 1,979 2,061
ne 22,267 1,527 80 1,539 2,509 1,019 412 3 0 1 1 218 0 0 0 14,092 866
ga 21,889 4,021 101 4,813 7,333 745 596 11 0 0 0 1,234 0 3 30 946 2,056
gl 19,877 2,712 72 6,292 5,696 108 511 4 0 6 0 1,490 0 1 5 2,052 928
cy 19,538 4,938 132 4,876 5,633 613 1,084 371 0 15 0 733 0 95 8 406 634
sh 16,997 3,710 48 6,831 3,478 168 249 0 0 1 9 370 18 1 0 619 1,495
az 12,951 1,731 51 5,393 3,892 15 26 43 0 0 64 547 6 0 4 353 826
is 10,484 1,687 103 2,988 2,135 448 867 0 0 11 0 614 0 1 2 667 961
km 10,163 466 14 1,078 488 86 16 0 0 0 0 34 0 0 0 7,712 269
mn 10,036 1,384 31 3,480 3,319 98 55 0 0 3 58 174 0 0 0 999 435
be 9,875 2,665 26 3,850 2,184 307 111 0 0 5 0 58 1 0 25 329 314
tg 8,883 1,714 18 2,579 3,492 18 104 0 0 3 21 196 9 0 0 540 189
bs 6,489 1,509 11 2,726 1,567 64 37 0 0 0 0 69 0 0 0 36 470
eu 5,770 786 24 1,459 1,641 113 147 15 0 0 1 692 0 0 12 460 420
hi 5,393 1,012 39 1,501 1,276 171 180 19 0 6 0 265 0 0 3 164 757
fy 5,342 752 23 1,643 1,923 7 179 0 0 4 0 120 0 0 0 625 66
bn 4,932 885 75 1,669 273 38 388 2 0 0 0 160 0 0 0 118 1,324
ky 4,898 771 6 1,710 1,408 250 124 0 0 0 0 79 0 0 0 198 352
la 4,812 959 82 2,969 172 69 76 9 3 3 22 172 0 0 1 42 233
mt 4,664 814 16 1,585 1,471 6 202 0 0 0 0 74 0 0 0 64 432
tl 4,300 681 19 1,027 1,101 144 134 0 0 1 0 437 0 0 39 158 559
tt 4,216 1,016 21 1,325 1,477 6 5 12 0 0 0 49 0 0 0 75 230
ur 3,922 752 21 1,490 229 173 119 53 0 1 0 746 0 0 0 172 166
nn 3,697 703 47 875 705 179 89 1 0 1 0 171 1 1 59 535 330
dv 2,663 107 32 317 1,438 0 209 16 0 0 0 62 0 0 19 101 362
ms 1,973 365 12 561 313 59 49 0 0 0 0 135 0 2 0 362 115
mr 1,968 679 15 618 436 14 7 0 0 0 0 76 0 0 0 0 123
sw 1,783 308 12 693 406 0 2 0 0 3 0 136 46 0 0 170 7
mg 1,637 158 9 479 5 0 369 0 0 611 0 3 0 0 0 0 3
eo 1,558 397 11 596 156 25 18 0 0 0 0 41 0 0 0 101 213
lmo 1,352 236 2 410 107 46 46 0 0 0 0 423 0 0 0 41 41
af 1,152 283 13 379 189 8 5 0 0 0 0 75 0 0 0 31 169
krc 1,070 386 1 266 56 0 0 0 0 0 0 361 0 0 0 0 0
am 997 116 10 175 265 29 91 0 0 0 0 79 0 0 0 65 167
ba 958 188 6 274 449 0 3 0 0 0 0 0 0 0 0 17 21
lo 951 166 3 147 538 0 9 0 0 0 0 28 0 0 0 12 48
ps 830 141 18 190 412 3 6 0 0 0 0 26 0 0 0 15 19
pa 686 176 15 276 73 0 87 0 0 0 0 48 0 0 0 0 11
kn 646 269 12 338 22 0 0 0 0 0 0 2 0 0 0 1 2
cv 571 68 2 186 315 0 0 0 0 0 0 0 0 0 0 0 0
my 531 114 5 152 73 39 13 0 0 0 8 16 0 0 0 81 30
ceb 504 1 5 156 6 8 0 0 0 0 0 175 0 0 0 5 148
gu 471 90 2 127 134 0 51 0 0 0 0 13 0 0 0 34 20
rm 447 83 3 106 55 33 0 0 0 0 0 3 0 0 38 89 37
ckb 438 48 5 129 96 20 5 0 0 0 0 72 0 0 0 1 62
yi 419 80 3 104 55 4 19 0 0 0 0 23 0 0 0 106 25
sah 392 87 2 75 145 0 0 0 0 0 0 1 0 0 0 40 42
te 390 116 4 230 4 0 0 0 0 0 0 0 0 0 0 36 0
ta 341 21 15 188 65 0 27 0 0 0 0 12 0 0 0 0 13
si 315 67 1 101 57 0 57 0 0 0 0 3 0 0 0 28 1
ku 282 43 1 72 89 0 49 1 0 0 0 1 24 0 0 0 2
ht 280 33 2 98 53 0 21 0 0 0 0 8 0 0 0 52 13
ml 271 79 2 117 7 56 0 0 0 0 0 7 0 0 0 0 3
jv 268 5 0 12 229 10 0 0 0 0 0 3 0 0 0 7 2
arz 263 28 3 49 53 0 0 0 0 0 0 22 0 0 0 89 19
gd 238 47 1 108 56 0 0 0 0 0 0 15 0 0 0 0 11
ilo 188 1 0 110 61 0 0 0 0 0 0 16 0 0 0 0 0
ia 128 0 0 0 0 18 15 0 0 0 0 42 0 0 0 0 53
oc 122 22 1 36 19 0 0 0 0 0 0 8 0 0 0 32 4
mzn 102 15 0 32 0 6 0 0 0 0 0 0 0 0 0 47 2
war 96 18 1 18 49 1 0 0 0 0 0 5 0 0 0 0 4
lb 96 15 2 39 7 0 2 0 0 0 0 1 0 0 0 28 2
gn 80 4 0 1 75 0 0 0 0 0 0 0 0 0 0 0 0
br 63 0 1 19 0 0 0 0 0 0 0 1 0 0 0 0 42
mhr 61 26 0 32 3 0 0 0 0 0 0 0 0 0 0 0 0
als 41 13 1 14 0 0 0 0 0 0 0 0 0 0 0 8 5
nds 39 0 1 26 0 0 0 0 0 0 0 2 0 0 0 4 6
ug 33 3 0 10 5 0 0 0 0 0 0 13 0 0 0 0 2
new 14 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 8
bcl 12 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 8
or 11 1 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0
wuu 10 1 1 0 6 0 0 0 0 0 0 0 0 0 0 0 2
os 9 2 0 6 0 0 0 0 0 0 0 1 0 0 0 0 0
bo 6 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
diq 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
kw 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
sco 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

20

Figure 13: Distribution of top-level content topics discovered via the hierarchical topic classifier from
Google Cloud NLP api. The distribution is calculated based on a 25k sample of WordScape data.

21

	Introduction
	Related Work
	Methodology
	Parsing of Common Crawl
	Document Download
	Document Processing
	Bounding Box Annotation
	Text Extraction
	Language Identification
	Dataset Filters

	Pipeline Statistics
	Dataset Statistics
	Training Object Detection Models on WordScape
	Discussion
	Appendix
	Details on Semantic Entity Annotation
	Quality Filters
	Perplexity Distributions
	Download Failure Statistics
	Semantic Entity Distributions
	Language Specific Topic Modelling
	Computational Resources
	Intended Use

