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Abstract
Semi-implicit distributions have shown great
promise in variational inference and generative
modeling. Hierarchical semi-implicit models,
which stack multiple semi-implicit layers, en-
hance the expressiveness of semi-implicit distri-
butions and can be used to accelerate diffusion
models given pretrained score networks. How-
ever, their sequential training often suffers from
slow convergence. In this paper, we introduce
CoSIM, a continuous semi-implicit model that
extends hierarchical semi-implicit models into a
continuous framework. By incorporating a contin-
uous transition kernel, CoSIM enables efficient,
simulation-free training. Furthermore, we show
that CoSIM achieves consistency with a care-
fully designed transition kernel, offering a novel
approach for multistep distillation of generative
models at the distributional level. Extensive ex-
periments on image generation demonstrate that
CoSIM performs on par or better than existing
diffusion model acceleration methods, achieving
superior performance on FD-DINOv2.

1. Introduction
Semi-implicit distributions, which are constructed through
the convolution of explicit conditional distributions and im-
plicit mixing distributions, have gained significant traction
in variational inference and generative modeling. Unlike
traditional approximating distributions with explicit density
forms, semi-implicit distributions enable a more expressive
family of variational posteriors, leading to improved approx-

*Equal contribution. This work was done during an internship
at StepFun. 1School of Mathematical Sciences, Peking University,
Beijing, China 2Department of Computer Science and Engineering,
Hong Kong University of Science and Technology 3School of
Computer Science, Fudan University, Shanghai, China 4Megvii
Technology Inc., Beijing, China 5Center for Statistical Science,
Peking University, Beijing, China. Correspondence to: Cheng
Zhang <chengzhang@math.pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. Selected generated images on Imagenet 512× 512 using
L model from Section 4.2.

imation accuracy (Yin & Zhou, 2018; Titsias & Ruiz, 2019;
Moens et al., 2021; Yu & Zhang, 2023; Cheng et al., 2024).
Beyond variational inference, semi-implicit architectures
have been successfully integrated into deep generative mod-
els, including variational autoencoders (VAEs) (Kingma &
Welling, 2014; Rezende et al., 2014) and diffusion models
(Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al.,
2020; Song et al., 2021; 2020).

In VAEs, the generator typically employs a single-layer
semi-implicit construction, pushing forward a simple noise
through a conditional factorized Gaussian distribution pa-
rameterized by a neural network. However, despite their
widespread adoption, VAE-generated samples often suffer
from blurriness and fail to capture high-frequency details
in the data distribution (Dosovitskiy & Brox, 2016). To
address these limitations, several VAE variants have been
proposed (Rezende & Mohamed, 2016; Razavi et al., 2019;
Vahdat & Kautz, 2021). A prominent approach is hierar-
chical VAEs (Gregor et al., 2015; Ranganath et al., 2016;
Sønderby et al., 2016; Kingma et al., 2017; Vahdat & Kautz,
2021), which enhances the expressiveness of the single layer
vallina VAEs through the introduction of multiple latent vari-

1



Continuous Semi-Implicit Models

ables, enabling multistep generation. Similarly, diffusion
models have emerged as a leading framework for generat-
ing high-quality and diverse samples (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020; Song et al.,
2021; 2020). These models can also be interpreted through
the lens of semi-implicit distributions, where a fixed noise
injection process is used to generate latent variables instead
of learnable posterior distributions as in hierarchical VAEs.

Although multistep generative models are a promising di-
rection for improving sample quality, they often involve
a trade-off between generation quality and computational
cost. Drawing on the connection between diffusion models,
hierarchical VAEs, and semi-implicit distributions, recent
works have explored distilling diffusion models using tools
from semi-implicit variational inference (SIVI) (Yin et al.,
2023; Luo et al., 2023; Yu et al., 2023; Zhou et al., 2024b;a).
These methods can be broadly categorized into two types:
(1) one-step deterministic distillation methods, which learn a
direct mapping to generate samples from the target distribu-
tion (Yin et al., 2023; Luo et al., 2023; Zhou et al., 2024b;a),
and (2) stochastic multi-step models, which generate more
diverse samples in fewer steps. In particular, hierarchical
semi-implicit variational inference (HSIVI) falls into the
second category, recursively constructing the variational
distribution over a fixed sequence of time points (Yu et al.,
2023). While HSIVI can generate more diverse samples
than one-step models, its discretized design results in slow
convergence during training due to the sequential simulation
process.

Drawing inspiration from continuous-time diffusion pro-
cesses (Song et al., 2020), we introduce a Continuous Semi-
Implicit Model (CoSIM), which extends hierarchical semi-
implicit variational inference (HSIVI) into a continuous
framework. By leveraging a continuous transition kernel,
CoSIM generates samples of the mixing layer in a single
push-forward operation, significantly accelerating the train-
ing process. The design of the continuous transition kernel
shares some similarities with consistency distillation (CD)
(Song et al., 2023; Kim et al., 2023; Song & Dhariwal, 2024;
Geng et al., 2024; Heek et al., 2024; Lu & Song, 2024),
which learn a consistency function to map noisy distribu-
tions back to clean target distributions. While Salimans et al.
(2024) explore distilling multi-step diffusion models using
moment-matching losses, CoSIM distinguishes itself by em-
ploying semi-implicit variational inference (SIVI) training
criteria. This approach enables learning the consistency
function directly at the distributional level, bypassing the
need to recover the reverse process of diffusion models at
the sample or moment level. As a result, CoSIM signifi-
cantly reduces the number of iterations required for distilla-
tion. In experiments, we demonstrate that CoSIM achieves
comparable results on the Fréchet Inception Distance (FID)
(Heusel et al., 2017) while incurring lower training costs.

Furthermore, CoSIM outperforms existing methods on the
FD-DINOv2 metric (Stein et al., 2024), which employs the
larger DINOv2 encoder (Oquab et al., 2024) instead of the
InceptionV3 encoder (Szegedy et al., 2016) to better align
with human perception.

2. Background
2.1. Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Song & Er-
mon, 2019; Ho et al., 2020; Song et al., 2021; 2020) perturb
the clean data to noise in the forward process and then gen-
erate the data from noise by multiple denoising steps in the
backward process. The forward process can be described by
a stochastic differential equation (SDE)

dxs = f(xs; s)ds+ g(s)dBs, (1)

where s ∈ [0, T ], T > 0 is a fixed terminating time, Bs

is a standard Brownian motion, and f(xs; s) and g(s) are
the drift and diffusion coefficients respectively. The starting
x0 ∼ p(·; 0) is the data distribution. Denote the density
law of the forward process as {p(·; s)}s∈[0,T ]. Typically,
the SDE in (1) is designed as a variance preserving (VP)
or variance exploding (VE) scheme (Song et al., 2020; Kar-
ras et al., 2022), and the samples of p(xt|x0; t, 0) can be
reparameterized as

xt = a(t)x0 + σ(t)ϵ, t ∈ [0, T ], (2)

where ϵ is a Gaussian noise, a(t) is non-increasing function,
and σ(t) is a monotonically increasing function. In the
backward process, one can run the following reversed-time
SDE from T to 0 to generate the samples of p(x0; 0)

dxs = [f(xs; s)− g2(s)∇ log p(xs; s)]ds+ g(s)dB̄s,

where ∇ log p(xs; s) is the score function of p(xs; s),
B̄s is a standard Brownian motion. The score func-
tion ∇ log p(xs; s) is often estimated with a score model
Sθ(xs; s) ≈ ∇ log p(xs; s) via denoising score match-
ing (Vincent, 2011; Song et al., 2020).

2.2. Semi-Implicit Models and Diffusion Distillation

Semi-implicit is a mixture distribution expressed as
qϕ(x) =

∫
qϕ(x|z)q(z)dz, which can be used to approxi-

mate the target distribution via variational inference (Yin &
Zhou, 2018; Titsias & Ruiz, 2019). The conditional layer
qϕ(x|z) is required to be explicit but the mixing layer q(z)
can be implicit, where ϕ is the variational parameter. Recent
works have explored diffusion model distillation within the
semi-implicit framework (Wang et al., 2023b). These meth-
ods are primarily distinguished by their training objectives:
those utilizing density-based divergences (e.g., JSD and KL
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divergence) (Luo et al., 2023; Wang et al., 2023a; Yin et al.,
2023), and those employing score-based divergences (e.g.,
Fisher divergence) (Yu et al., 2023; Zhou et al., 2024b).
Following SiD (Zhou et al., 2024b), which demonstrated
superior performance and faster convergence in terms of
FID results than Diff-Instruct (Luo et al., 2023), we adopt
the score-based training objective in this work.

Hierarchical Semi-Implicit Variational Inference Yu
et al. (2023) propose a hierarchical semi-implicit structure
recursively defined from the top layer k = K−1 to the base
layer k = 0 for multistep diffusion distillation. This struc-
ture employs the conditional layer qϕ(xk|xk+1; tk) and the
variational prior q(xT ;T ), defined by

qϕ(xk; tk) =

∫
qϕ(xk|xk+1; tk)qϕ(xk+1; tk+1)dxk+1,

(3)
where k = 0, 1, . . . ,K − 1, 0 < t1 < . . . < tK = T
and qϕ(·; tK) := q(·;T ). Moreover, the forward process
(1) of diffusion models naturally provides a sequence of
intermediate bridge distributions {p(x; tk)}K−1

k=0 , which can
be combined with (3) for diffusion models distillation. In the
training procedure, Yu et al. (2023) introduce a joint training
scheme to minimize a weighted sum of the semi-implicit
variational inference (SIVI) objectives

LHSIVI-f (ϕ) =

K−1∑
k=0

β(k)LSIVI-f (qϕ(·; tk)∥p(·; tk)) , (4)

where β(k) : {0, . . . , T − 1} → R+ is a positive weighting
function and f represents a distance criterion. In the applica-
tion to diffusion model acceleration, f can be chosen as the
Fisher divergence and the resulting HSIVI-SM optimizes
qϕ(xt; t) via

min
ϕ

max
v(·;tk)

LSIVI-SM(ϕ) = Eqϕ(xtk ;tk)
[
v(xtk ; tk)

T [∇ log p(xtk ; tk)

− ∇xtk
log qϕ(xtk |xtk+1

; tk)
]
− 1

2∥v(xtk ; tk)∥
2
2

]
, (5)

where v(xtk ; tk) is an auxiliary vector-valued function and
qϕ(xtk ,xtk+1

) = qϕ(xtk |xtk+1
; tk)qϕ(xtk+1

; tk+1).

Score Identity Distillation For the optimization of ϕ in
(5), the coefficient 1

2 is not a unique choice. Zhou et al.
(2024b) introduced Score Identity Distillation (SiD), a one-
step distillation method for diffusion models. Assuming
the variational semi-implicit distribution q̃ϕ(xt, z; t) =
p(xt|Gϕ(z); t, 0)q̃(z), where Gϕ is a learnable neural net-
work generator mapping from a simple distribution q̃(z) to
data distribution and the conditional layer p(·|·; t, 0) follows
the definition in (2). SiD employs a fused loss function,
which can be viewed as the training objective in SIVI objec-

tives

min
ϕ

LSiD(ϕ) = Eq̃ϕ(xt,z;t)
[
v(xt; t)

T [∇ log p(xs; s)−

∇xt log q̃ϕ(xt|z; t)]− α∥v(xt, t)∥22
]
, (6)

where α ∈ R+ is a given hyperparameter used to balance
the cross term and squared term in (6). The lower-level
optimization problem for v(xt; t) remains consistent with
the maximization of LSIVI-SM(ϕ). Empirically, SiD with
α > 1

2 demonstrates significantly better performance than
both the baseline of α = 1

2 and density-based distillation
methods in one-step image generation tasks (Zhou et al.,
2024b).

3. Continuous Semi-Implicit Models
Unlike one-step generation models, stochastic multi-step
approaches such as HSIVI provide a systematic framework
for progressive image quality enhancement while preserving
sample diversity. However, HSIVI suffers from slow con-
vergence in its training process. Inspired by the evolution
of noise conditional score network models (NCSN) (Song
& Ermon, 2019) to continuous-time score-based generative
models (Song et al., 2020), extending the sequential train-
ing to a continuous-time training framework promises to
enhance the training efficiency. Following Yu et al. (2023),
we extend the hierarchical semi-implicit model with a fixed
number of layers to a continuous framework. Our goal is to
learn a transition kernel qtrans(xs|xt; s, t) that maps the dis-
tribution p(xt; t) to p(xs; s) for 0 ≤ s < t ≤ T as a contin-
uous generalization of the conditional layer q(xtk |xtk+1

; tk)
in HSIVI. In the context of diffusion models, we assume
p(·; t) follows the density of the forward process of (1).

3.1. Continuous Transition Kernel

To construct the density of variational distribution at
timestep s, we denote the marginal distribution q(xs; s, t)
as follows

q(xs; s, t) =

∫
qtrans(xs|xt; s, t)qmix(xt; t)dxt, (7)

where qmix(xt; t) is chosen as a role of the mixing distri-
bution in semi-implicit variational distribution. Within the
paradigm of hierarchical semi-implicit distribution (Yu et al.,
2023), qmix(xtk ; tk) is obtained by progressively sampling
from the conditional layers {qϕ(xti |xti+1

; ti)}i≥k as indi-
cated in (3). Instead, we construct qmix(·; t) through a single
push-forward operation using the conditional distribution
p(·|·; t, 0) defined in (2)

qmix(xt; t) =

∫
p(xt|x0; t, 0)p(x0; 0)dx0, (8)

which allows us to sample xt ∼ qmix(xt; t) instantaneously.
With the continuous timesteps t and s, we can train the tran-
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sition kernel qtrans(xs|xt; s, t) via the following continuous
generalization of (4)

LCSI-f (q) =
∫ T
0
π(s, t)LSIVI-f (q(xs; s, t)∥p(xs; s)) dtds, (9)

where π(s, t) = π(s)π(t|s) is a joint time schedule. A
detailed discussion of the design principles for π(s)π(t|s)
is presented in Appendix A.1. Note that the marginal dis-
tribution q(xs; s, t) in (7) depends on t. Thus models of
the continuous transition kernel qtrans(xs|xt; s, t) will lead
to consistency, as it convert qmix(xt; t) to the same distri-
bution p(xs; s) for all t ∈ (s, T ]. We call it a continuous
semi-implicit model (CoSIM).

3.2. The Training Objectives

Let qϕ(xs; s, t) be the corresponding variational distribu-
tion for the parameterized transition kernel qϕ(xs|xt; s, t).
We adopt the score matching objective LSIVI-SM introduced
in Section 2.2 for training. More specifically, we parameter-
ize the auxiliary vector-valued function as vψ(xs; s, t) :=
∇ log p(xs; s)− fψ(xs; s, t) and reformulate the optimiza-
tion into two stages

min
ϕ

Eqϕ(xs,xt;s,t)
[
vψ(xs; s, t)

T [∇ log p(xs; s) −

∇xt log qϕ(xs|xt; s, t)]−
1

2
∥vψ(xs; s, t)∥22

]
,

min
ψ

Eqϕ(xs,xt;s,t)∥fψ(xs; s, t)− log qϕ(xs|xt; s, t)∥22,

(10)

where qϕ(xs,xt; s, t) = qtrans(xs|xt; s, t)qmix(xt; t).

Shifting fψ by Regularization The Nash-equilibrium of
the two-stage optimization problem (10) is given by

fψ∗(xs; s, t) =∇ log qϕ∗(xs; s, t),

ϕ∗ ∈ argmin
ϕ
{Eqϕ(xs;s,t)∥δϕ(xs; s, t)∥

2
2}, (11)

δϕ(xs; s, t) :=Sθ∗(xs; s)−∇ log qϕ(xs; s, t).

A natural initialization, therefore, would be to use the pre-
trained score network fψ0

(xs; s, t) ≈ Sθ∗(xs; s). Dur-
ing training, the optimal fψ is given by fψ∗(ϕ)(xs; s, t) =
∇ log qϕ(xs; s, t). When ∇ log qϕ(xs; s, t) deviates signifi-
cantly from the target score model Sθ∗(xs; s), this initial-
ization strategy becomes inefficient for the second-stage
optimization in (10). To address this mismatch, we follow
Salimans et al. (2024) and adopt a regularization strategy

min
ψ

Eqϕ(xs,xt;s,t)
[
∥fψ(xs; s, t)− log qϕ(xs|xt; s, t)∥22

+λ∥fψ(xs; s, t)− Sθ∗(xs; s)∥22
]
, (12)

where λ ≥ 0 is a hyperparameter controlling the strength of
regularization. It can be shown that the optimal fψ̃∗(ϕ) of
(12) is shifted towards Sθ∗ as follows

fψ̃∗(ϕ)(xs; s, t) =
1

1 + λ
∇ log qϕ(xs; s, t)+

λ

1 + λ
Sθ∗(xs; s).

Although this additional regularization introduces bias into
the second optimization in (10), we found that this bias in
ψ does not transfer to ϕ, and the Nash equilibrium of ϕ
remains consistent with (11). We provide a comprehensive
statement in the theorem 3.1.

Reformulation of Fused Loss In the fused training objec-
tive (6) of SiD, there is a mismatch in the two-stages training
objective (10) when α is not 1

2 . Furthermore, when α > 1,
the fused loss function exhibits pathological behavior as
it becomes negative when the inner optimization of v(·; t)
converges to its optimal solution

L̂SiD(ϕ) = Eq̃ϕ(xt;t)(1− α)∥∇ log p(xs; s)−∇ log q̃ϕ(xt; t)∥22,

However, within the framework of shifting fψ, we can
reformulate the SiD training objective to achieve unbi-
asedness while eliminating the aforementioned patholog-
ical behavior. Consider the scaled Fisher divergence
Dα(p(·; s)∥qϕ(·; s, t)) defined as

Dα(qϕ(·; s, t)∥p(·; s)) := Eqϕ(xs;t,s)
1

4α
∥δ̃ϕ(xs; s, t)∥22,

δ̃ϕ(xs; s, t) := ∇ log p(xs; s)−∇ log qϕ(xs; s, t), (13)

Then we can rewrite the above Dα(p(·; s)∥qϕ(·; s, t)) as the
maximum value of the optimization problem

max
vψ

Eqϕ(xs;s,t)
[
vψ(xs; s, t)

T [∇ log p(xs; s)−

∇ log qϕ(xs; s, t)]− α∥vψ(xs; s, t)∥22
]
, (14)

Similarly, we utilize (14) to reformulate the (13).

Theorem 3.1. Optimization of Dα (p(·; s)∥qϕ(·; s, t)) is
equivalent to the two-stages optimization

min
ϕ

Eqϕ(xs,xt;s,t)
[
vψ(xs; s, t)

T [∇ log p(xs; s)−

∇xs log qϕ(xs|xt; s, t)]− α∥vψ(xs; s, t)∥22
]
, (15)

min
ψ

Eqϕ(xs,xt;s,t)
[
vψ(xs; s, t)

T [∇xs log qϕ(xs|xt; s, t)−

∇ log p(xs; s)] + (1 + λ)α∥vψ(xs; s, t)∥22
]
,

where λ ≥ 0 is a given regularization strength hyperpa-
rameter. The optimal fψ∗(ϕ)(xs; s, t) of the second-stage
optimization is given by

fψ∗(ϕ)(·; s, t) = β∇ log qϕ(·; s, t)+(1−β)∇ log p(·; s), (16)

where β = 1
2α(1+λ) . The equilibrium of ϕ remains consis-

tent with (11).

It is straightforward to observe that (15) is the same as
the SiD loss in (6). If ∇ log p(xs; s) is approximated by
Sθ∗(xs; s), the optimal fψ̃∗ is given by

fψ̃∗(·; s, t) = β∇ log qϕ(·; s, t) + (1− β)∇ log p(·; s). (17)
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(17) indicates that when α > 1
2(1+λ) , then β < 1. The

optimal fψ̃∗(ϕ)(xs; s, t) in the second-stage optimization
also shifts towards Sθ∗(xs; s). This alignment facilitates
learning when fψ is initialized as Sθ∗ . The proof of Theo-
rem 3.1 and its general version are shown in Appendix B.1.
The training process of CoSIM is summarized in Algorithm
2 in Appendix A.1.

3.3. Parameterization of CoSIM

Consistency model (Song et al., 2023) is a family of gen-
erative models that learn a consistency function Gϕ(xt, t)
to map the samples of distribution p(xt; t) back to p(x0; 0).
Once the consistency function is well-trained, the consis-
tency model can generate samples using multiple steps by
iterating with s < t as follows

xs = a(s)Gϕ(xt, t) + σ(s)ϵ, (18)

which approximates x0 in (2) by Gϕ(xt, t), and ϵ ∼
N (0, I). Intuitively, this provides a parameterized form
of the continuous transition kernel qtrans(xs|xt; s, t). We
hereafter adopt this setting for diffusion model distillation.
One can expect that once Gϕ(xt, t) is perfectly trained with
LCSI-f (ϕ), then Gϕ(xt, t) will also map the samples of dis-
tribution p(xt; t) back to p(x0; 0). We present this result in
Proposition 3.2. See a detailed proof of Proposition 3.2 in
Appendix B.2.
Proposition 3.2 (Consistent Similarity). Let the continuous
transition kernel qtrans(xs|xt; s, t) be parameterized as

xs = [a(s)Gϕ(xt, t) + σ(s)ϵ] ∼ qϕ(xs|xt; s, t),

where 0 < s < t ≤ T , ϵ ∼ N (0, I), and a(·), σ(·) are
defined in (2). Then the optimal Gϕ(·, t) obtained from the
two-stage alternating optimization problem (15) also serves
as a consistency function.

With a well-trained continuous transition kernel
qtrans(xs|xt; s, t), we can iteratively sample from it
over multiple steps to ultimately generate samples from
p(x0). To select the sequence of time points, we use the
sampling scheme of EDM (Karras et al., 2022) as an initial
choice and set a scale parameter for tuning with a greedy
algorithm. We summarize the multistep sampling procedure
in Algorithm 1.

Error Bound of CoSIM Building on the parameter-
ized setting (18) of qtrans(xs|xt; s, t), we denote the vari-
ational distribution family Q =

{
qϕ|qϕ(xs; s, t) =∫

qϕ(xs|xt; s, t)qmix(xt)dxt, ϕ ∈ Φ
}

, where Φ is the fea-
sible domain of neural network parameters of Gϕ and qmix
follows (8). Then we can define the optimal variational
distribution in Q as

qϕ∗ ∈ argmin
qϕ∈Q

LCSIα(qϕ), (19)

Algorithm 1 Inference of Continuous Semi-Implicit Models
Input: Continuous transition kernel qtrans(xs|xt; s, t)
and a sequence of time points T = t0 > t1 > · · · >
tk = 0.
Output: The estimated samples of p(x0).
Initialize x0 ∼ p(xT ;T )
for n = 1 to k do

Sample xn ∼ qtrans(·|xn−1; tn, tn−1)
end for
Output: xk

where LCSIα[h] is defined in (9) with the choice of criterion
Dα (p(·; s)∥qϕ(·; s, t)) discussed in section 3.2.

We first introduce the following assumptions with a fixed
λ > 0 and an early-stopping time 0 < δ < T .

As illustrated in Algorithm 2, the approximation errors arise
from the inexact second-stage optimization of fψ. We de-
note it as follows.

Assumption 3.3 (fψ function error). The estimated auxil-
iary vector-valued function fψ̂(ϕ)(xt; t) in the two-stage
optimization problem (15) is ϵf-accurate, that is for all
s, t ∈ [δ, T ] with s < t and ϕ ∈ Φ:

Eqϕ(xs;s,t)∥fψ̂(ϕ)(xs; s, t)− fψ∗(ϕ)(xs; s, t)∥22 ≤ ε2f . (20)

Let the qϕ̂(xs; s, t) be the one obtained by the first stage
optimization problem with the ϵf-accurate fψ̂(ϕ)

qϕ̂(·; s, t)∈ argminqϕ∈Q Eqϕ(xs,xt;s,t)
[
uψ̂(ϕ)(xs; s, t)

T [Sθ∗(xs; s)

−∇xs log qϕ(xs|xt; s, t)]− α∥uψ̂(ϕ)(xs; s, t)∥
2
2

]
,

where uψ̂(ϕ)(xs; s, t) := log p(xs; s)− fψ̂(ϕ)(xs,xt; s, t).

Then we are ready to state the following result.

Proposition 3.4 (Error bound of one-step map, Yu & Zhang
(2023)). Suppose the assumptions [3.3] hold. Then for any
0 < s < t < T , the Fisher divergence between the target
distribution p(xδ) and the estimated distribution of CoSIM
is bounded as follows

FI(qϕ̂(·; s, t)∥p(·; s)) ≲ FI(qϕ∗(xs;s,t)∥p(·, s)) + ε2f .

The above results show that the approximation error of inex-
act fψ only attribute an extra term ε2f to the approximation
accuracy of CoSIM. As long as the approximation error εf
is small, the two stages optimization of CoSIM with regular-
ization strength λ > 0 will provide the same approximation
accuracy as the optimization with the original training ob-
jective (13).
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3.4. Insights on the Benefits of Multi-Step Methods

As discussed in section 3.2, we adopt the same type of
SIVI objective (LSIVI-f ) as in SiD (Zhou et al., 2024b) for
diffusion model distillation. However, unlike the deter-
ministic one-step generation scheme of SiD, continuous
semi-implicit models (CoSIM) allow us to generate samples
from p(x0) through multiple steps. A notable advantage of
CoSIM is that it injects randomness at each generation step,
producing more diverse samples—an observation consistent
with the benefits of stochastic diffusion models (Song et al.,
2020). Moreover, as we show next, CoSIM can generate
samples closer to the target distribution than the one-step
distillation model by employing multistep sampling.

Since the optimal variational distribution qϕ∗(xs; s, t) is de-
fined on Q, this family itself will introduce approximation
gaps due to the approximation capacity of Gϕ(xt, t). Since
Gϕ(xt, t) maps the distribution p(xt; t) back to p(x0; 0),
the approximation error is expected to grow with t. Follow-
ing the assumption in previous work Chen et al. (2023), we
scale the error term of Gϕ(xt, t) accordingly.
Assumption 3.5 (Consistency function error). For all t ∈
[δ, T ], the approximation gaps between ∇ log qϕ∗(xδ, δ, t)
and ∇ log p(xδ; δ) is bounded in L2(qϕ∗):

Eqϕ∗ (xδ ;δ,t)∥∇ log p(xδ; δ)−∇ log qϕ∗(xδ; δ, t)∥22 ≤ εg(t)
2,

where the error term is scaled by εg(t)
2 := 2ε2c FI(p(·; t+

δ)∥p(·; δ)), and error εc characterizes the approximation
capacity of the consistency function family {Gϕ|ϕ ∈ Φ}.
FI(·∥·) denotes the Fisher divergence.

We note that the divergence FI(p(·; t+ δ)∥p(·, δ)) grows as
t increases to T . Furthermore, when {Gϕ | ϕ ∈ Φ} con-
tains only the identity mapping, the aforementioned upper
bound holds with ε2c = 1, validating the reasonableness of
assumption 3.5. More details can be found in the proof of
Proposition 3.4 in Appendix B.2.

Assumption 3.6. The perturbed distribution p(xδ; δ) satis-
fies a logarithmic Sobolev inequality (LSI) as follows.

ent(f2) ≤ 2LLSIEp(xδ;δ)Γ(f), ∀f ∈ C∞(Rd), (21)

where ent(f2) = Ep(xδ;δ)(f2(log f2 − Ep(xδ;δ)f2)) is the
entropy of f2, Γ(f) = ∥∇f∥22 and LLSI is the LSI constant.

The LSI assumption is a standard assumption in the anal-
ysis of diffusion models (Lee et al., 2023), and previous
works show that the LSI inequality holds when p(x0; 0) is
a bounded distribution (Chen et al., 2021). More details can
be found in the proof of proposition 3.4.

Then we investigate the smoothness assumption of the con-
sistency function Gϕ(xt, t). Following the preconditioning
strategy of neural network proposed in (Karras et al., 2022;

Song et al., 2023), we employ the consistency function as
Gϕ(xt, t) as follows

Gϕ(xt, t) = cskip(t)xt + cout(t)Fϕ(cin(t)xt, t), (22)

where cskip modulates the skip connection and cin, cout are
the scaling factors of network input and output.

Assumption 3.7 (Smoothness of neural network). The neu-
ral network Fϕ(x, t) in (22) is Lf -Lipschitz continuous on
the variable x with constant Lf > 1 for all t ∈ [δ, T ].

The Lipschitz continuous assumption is naturally used in
previous works (Song et al., 2023; Lyu et al., 2024; Li
et al., 2024). However, we adopt a practical preconditioning
and impose the Lipschitz condition on Fϕ rather than Gϕ.
Moreover, these two Lipschitz conditions are equivalent
under the variance preserving (VP) scheme, which is shown
in Appendix B.4.

Based on the above error bound in proposition 3.4, we can
give a convergence bound for the multistep sampling of
CoSIM similar to Lyu et al. (2024).

Proposition 3.8 (Multistep Wasserstein Distance Error).
Under Assumptions [3.3-3.7], consider a sequence of time
points T = t0 ≥ t1 = · · · = tK−1 = tmid > tK = 0. Let
q
(K)

ϕ̂
(·) denote the K-step estimated distribution by CoSIM.

Then for variance preserving scheme of (1), there exists
tmid = O(logLf ) for variance preserving scheme of (1)
such that

W2(q
(K)

ϕ̂
, p(·; 0)) ≲ δ2d+ (

3

4
)K−1E

1
2

W 2
2
(T ) + E

1
2

W 2
2
(tmid),

where EW 2
2
(t) denotes the Wasserstein distance bound be-

tween the one-step CoSIM estimate qϕ̂(·; δ; t) and p(·; δ).
This bound is controlled by the error terms from Assump-
tions [3.3-3.7], with the explicit formulation detailed in
Appendix B.4. For variance exploding scheme of (1), the
above results hold for some tmid = O(Lf ).

Intuitively, since the Wasserstein distance bound EW 2
2
(t)

is increasing with t, the benefit of multistep sampling lies
in reducing the error bound from E

1
2

W 2
2
(T ) of the one-step

model to a smaller one E
1
2

W 2
2
(tmid). We provide a detailed

proof of Proposition 3.8 in Appendix B.4.

4. Experiments
In this section, we explore the performance of CoSIM on the
unconditional image generation task on CIFAR-10 (32×32)
and the conditional image generation task on ImageNet
(64× 64) and ImageNet (512× 512). For all experiments,
the network architecture of the transition kernel qϕ(·|xt; s, t)
and the auxiliary function vψ(xs; s, t) is almost identical
to the pre-trained score network Sθ∗(xs; s) (Karras et al.,
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2022), except for an additional time embedding network
of t. For the purpose of minimal changes, this is done by
duplicating the time embedding network of s in the score
network architecture and summing up the time embedding
of s and t together, leading to only a 4% increase in pa-
rameters. The implementation of CoSIM is available at
https://github.com/longinYu/CoSIM.

We use the well-established metric Frechet Inception Dis-
tance (Salimans et al., 2016) (FID) to measure the quality of
the generated images. Furthermore, as the FID score often
unfairly favors the models trained with GAN losses and
penalizes the diffusion models, we consider an additional
metric - FD-DINOv2 (Stein et al., 2024), which replaces
the InceptionV3 (Szegedy et al., 2016) encoder of FID by
DINOv2 (Oquab et al., 2024) to better align with human per-
ception. Both FID and FD-DINOv2 are evaluated on 50K
generated images and the whole training set, which means
50K images from CIFAR10 (Krizhevsky & Hinton, 2009)
training split and 1,281,167 images from ImageNet (Deng
et al., 2009).

The training setup for CoSIM is basically kept the same
as the underlying pre-trained score models, only with a
different optimization objective in Section 3.2. In practice,
we adopt the setting α = 1.2 as in Zhou et al. (2024b).
In contrast to the SiD loss, which uses α(1 + λ) = 0.5,
we choose to increase the regularization strength λ such
that α(1 + λ) = 1 for simplicity. The time schedule is
detailed in Appendix A.1. We re-use most of the optimizer
settings from the pretrained score models with some slight
tweakings such as learning rate and batch size, more details
can be found in Appendix C.

4.1. Unconditional Image Generation

CIFAR-10 (32 × 32) On the unconditional image gen-
eration task on CIFAR-10, the pre-trained score network
Sθ∗(xs; s) is from Karras et al. (2022).

Table 1 reports the generation quality measured by FID and
FD-DINOv2. We see that our CoSIM reaches the same
FID as the teacher (VP-EDM) with only 4 NFE. Although
the 2-step CoSIM reaches an FID above 2, this is still con-
siderably lower than many of the leading methods. The
reasons for CoSIM’s lagging behind other methods can be
attributed to our model size, which is significantly smaller
than others. On the FD-DINOv2, our CoSIM achieves state-
of-the-art results compared to both trained-from-scratch and
distilled models. Specifially, CoSIM attains an FD-DINOv2
of 113.51 with 4 NFE, outperforming the best-ever PFGM++
(Xu et al., 2023, an FD-DINOv2 of 141.65) by a large mar-
gin. We also note that this leading status of CoSIM still
holds with 2 NFE. Furthermore, the FID metric’s inclination
towards GAN-based models (Stein et al., 2024) may partly
explain why CTM achieves the best FID score, rather than

Table 1. Unconditional generation quality on CIFAR-10 (32× 32).
Results with asterisks (∗) are tested by ourselves with the official
codes and checkpoints. ECT does not provide official checkpoints,
so its FD-DINOv2 score (†) comes from our re-implementation.
The other results are from the original papers. The best result is
marked in black bold font and the second best result is marked in
brown bold font.

Method #Params NFE FID (↓) FD-DINOv2 (↓)
CIFAR:Test Split - - 3.15 31.07

DDPM (Ho et al., 2020) 1000 3.17 -
DDIM (Song et al., 2021) 100 4.16 -
TDPM+ (Zheng et al., 2023a) 100 2.83 -
DPM-Solver3 (Lu et al., 2022) 48 2.65 -
VP-EDM (Karras et al., 2022) 56M 35 1.97 168.01∗

VP-EDM+LEGO-PR (Zheng et al., 2023b) 35 1.88 -
PFGM++ (Xu et al., 2023) 35 1.91 141.65

HSIVI-SM (Yu et al., 2023) 15 4.17 -
CD-LPIPS (Song et al., 2023) 1 3.55 -

2 2.93 -
iCT (Song & Dhariwal, 2024) 1 2.83 -

2 2.46 -
sCT (Lu & Song, 2024) 1 2.97 -

2 2.06 -
CTM (Kim et al., 2023) 324M 1 1.98 237.08∗

CTM (Kim et al., 2023) 324M 2 1.87 210.64∗

CTM (Kim et al., 2023) 324M 4 1.84∗ 197.59∗

ECT (Geng et al., 2024) 56M 2 2.11 211.17†

SiD (Zhou et al., 2024b) 56M 1 1.92 148.17∗

CoSIM (ours) 56M 2 2.40 116.92
CoSIM (ours) 56M 4 1.97 113.51
CoSIM(ours) 56M 6 1.96 111.98

FD-DINOv2. Finally, we observe a consistent decrease in
both FID and FD-DINOv2 as the NFE increases from 2 to 4,
which accords with our theoretical analysis in Section 3.4.

4.2. Conditional Image Generation

ImageNet (64×64) Similarly to Section 4.1, the network
structure and the checkpoint of the pre-trained score model
Sθ∗(xs; s) are from Karras et al. (2022).

We report the conditional generation quality of different
models in Table 3. We see that the VP-EDM (the teacher
model) can get a worse FID with 999 NFE, while the FD-
DINOv2 decreases monotonically as NFE increases. This
consistency in FD-DINOv2 further verifies the reasonability
of introducing FD-DINOv2 for measuring the generation
quality of diffusion-based models. After distillation, our
CoSIM produces an FID of 1.46 with 4 NFE, reaching a
similar performance to VP-EDM with 999 NFE and outper-
forming most methods in Table 3. Our CoSIM also achieves
state-of-the-art results on FD-DINOv2, setting the lowest
record at 56.66 with only 4 NFE. We also notice that Mo-
ment Matching (Salimans et al., 2024) reaches a better FID
score compared to our CoSIM, which we attribute to the
smaller network architecture employed by us.

ImageNet (512× 512) FD-DINOv2 is a new metric pro-
posed very recently (Stein et al., 2024). Most of the models
published before FD-DINOv2 naturally did not consider
metric in their experiments and thus may not set up their
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Figure 2. Conditionally generated images on ImageNet (512 × 512). The two batches of images are generated from 4-step (left) and
2-step (right) CoSIM L model respectively, with identical initial noise and class labels.

Table 2. Conditional generation quality measured by FD-DINOv2
on ImageNet (512× 512). Results of SiD are reported from Zhou
et al. (2025).

Method #Params NFE FD-DINOv2 (↓)
EDM2-S-DINOv2 (Karras et al., 2024) 280M 63 68.64
EDM2-M-DINOv2 (Karras et al., 2024) 498M 63 58.44
EDM2-L-DINOv2 (Karras et al., 2024) 778M 63 52.25
EDM2-XL-DINOv2 (Karras et al., 2024) 1.1B 63 45.96
EDM2-XXL-DINOv2 (Karras et al., 2024) 1.5B 63 42.84

SiD-S (Zhou et al., 2024b) 280M 1 65.08
SiD-M (Zhou et al., 2024b) 498M 1 55.92
SiD-L (Zhou et al., 2024b) 777M 1 56.25

CoSIM-S (ours) 280M 2 67.81
280M 4 67.71

CoSIM-M (ours) 498M 2 53.35
498M 4 51.57

CoSIM-L (ours) 778M 2 46.41
778M 4 41.79

models perfectly for getting a good FD-DINOv2 result. To
make a more convincing comparison, we further test CoSIM
on ImageNet (512×512) against EDM2 (Karras et al., 2024)
which also incorporates FD-DINOv2 benchmark in their
original paper. This experiment also validates the scalability
of our approach.

We test our method on three different model sizes (S, M, L)
from Karras et al. (2024), which are significantly larger than
those models tested in CIFAR 32×32 and Imagenet 64×64 .
Also, with a steady increase in parameter numbers from S
to M and L, we showcase the scalability of our approach by
generating superior results on larger models.

Tables [2-4] report the conditional generation quality mea-
sured by FD-DINOv2 and FID of different models. As the
model size grows, the generation quality of both models
improves consistently. For all the model sizes (S,M,L), our
CoSIM with only 2 NFE surpasses the teacher with 63 NFE,
demonstrating the effective distillation ability of CoSIM for
handling high-dimensional samples and larger models. Due
to the GPU memory limit, we do not test CoSIM on XL and
XXL models but expect its similarly superior performance,
since CoSIM-L with 4 NFE already beats EDM2-XXL-dino.

Table 3. Conditional generation quality on ImageNet (64 × 64).
Results with asterisks (∗) are tested by ourselves with the official
codes and checkpoints. The other results are from the original
papers. The best result is marked in black bold font and the
second best result is marked in brown bold font.

Method #Params NFE FID (↓) FD-DINOv2 (↓)
DDPM (Ho et al., 2020) 250 11.00 -
TDPM+ (Zheng et al., 2023a) 1000 1.62 -
DPM-Solver3 (Lu et al., 2022) 50 17.52 -
VP-EDM (Karras et al., 2022) 296M 79 2.64 107.07∗

296M 511 1.36 79.82∗

296M 999 1.41∗ 72.67∗

VP-EDM+LEGO-PR (Zheng et al., 2023b) 250 2.16 -

HSIVI-SM (Yu et al., 2023) 15 15.49 -
CD-LPIPS (Song et al., 2023) 1 6.20 -

2 4.70 -
iCT (Song & Dhariwal, 2024) 1 4.02 -

2 3.20 -
sCT (Lu & Song, 2024) 1 2.04 -

2 1.48 -
CTM (Kim et al., 2023) 604M 1 1.92 163.47∗

604M 2 1.73 159.04∗

Moment Matching (Salimans et al., 2024) 400M 1 3.0 -
400M 2 3.86 -
400M 4 1.50 -
400M 8 1.24 -

ECT (Geng et al., 2024) 296M 2 1.67 ∼ 150
Diff-Instruct (Luo et al., 2023) 296M 1 5.57 -
SiD (Zhou et al., 2024b) 296M 1 1.52 79.15∗

CoSIM (ours) 296M 2 3.35 108.99
CoSIM (ours) 296M 4 1.46 58.66

We also provide the conditionally generated images from
CoSIM in Figure 2. We ensure that the 4-step generation
and 2-step generation start from the same initial noise and
class labels, and show that there is a clearly observable
difference. Specifically, 2-step samples are good enough to
capture the majority of contents, but 4-step samples tend
to capture more fine-grained details, e.g., the human eyes,
cricket legs, and snake bodies shown in this figure.

5. Conclusion
We presented CoSIM, a continuous-time semi-implicit
framework for accelerating diffusion models through
stochastic multi-step generation. Unlike the discrete-time
sequential training in hierarchical semi-implicit variational
inference, CoSIM leverages a continuous-time framework
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Table 4. Conditional generation quality measured by FID on Ima-
geNet (512× 512).

Method #Params NFE FID (↓)
EDM2-S-FID (Karras et al., 2024) 280M 63 2.56
EDM2-M-FID (Karras et al., 2024) 498M 63 2.25
EDM2-L-FID (Karras et al., 2024) 778M 63 2.06
EDM2-XL-FID (Karras et al., 2024) 1.1B 63 1.96
EDM2-XXL-FID (Karras et al., 2024) 1.5B 63 1.91

sCD-S (Lu & Song, 2024) 280M 2 2.50
sCD-M (Lu & Song, 2024) 498M 2 2.26
sCD-L (Lu & Song, 2024) 778M 2 2.04
SiD-S (Zhou et al., 2024b) 280M 1 2.71
SiD-M (Zhou et al., 2024b) 498M 1 2.06
SiD-L (Zhou et al., 2024b) 778M 1 1.91

CoSIM-S (ours) 280M 2 2.66
280M 4 2.56

CoSIM-M (ours) 498M 2 1.95
498M 4 1.93

CoSIM-L (ours) 778M 2 1.84
778M 4 1.83

to approximate continuous transition kernels. By introduc-
ing a framework of equilibrium point shifting, we establish
theoretical guarantees for unbiased two-stage optimization
while resolving the pathological behavior inherent in SiD
training objectives. Through careful parameterization of
continuous transition kernels, we provide a novel method
for multistep distillation of generative models training on
a distributional level. In experiments, we demonstrate that
CoSIM achieves comparable or superior FID while only
requiring fewer training iterations and utilizing similar or
smaller neural networks compared to existing one-step dis-
tillation methods and consistency model variants. Further-
more, CoSIM achieves state-of-the-art performance on both
unconditional and conditional image generation tasks as
measured by FD-DINOv2.

Limitations For diffusion distillation, CoSIM training
involves three models: the generator Gθ, the auxiliary func-
tion fψ and the target score model Sθ∗ . As a result, CoSIM
incurs high memory consumption due to the involvement of
multiple models. Additionally, since CoSIM initializes the
generator Gϕ and the function fψ from a pre-trained target
score model, it limits the flexibility of Gϕ to leverage larger
architectures for modeling the continuous transition kernels.
Consequently, the one-step generation quality of CoSIM is
lower than that of modern one-step distillation models such
as SiD and sCD, we defer this aspect to future research.
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Algorithm 2 Training procedure of Continuous Semi-Implicit Models (CoSIM)
Input: DatasetD, pretrained score model Sθ∗(xs; s), continuous transition kernel qϕ(xs|xt; s, t), auxiliary vector-valued
function fψ(xs; s, t) and λ, α s.t. α = 1.2, α(1 + λ) = 1.0.
Output: Continuous transition kernel qϕ(xs|xt; s, t).
Initialization: ϕ← θ∗, ψ ← θ∗ with require all=False and iteration number n = 0.
repeat

Sample continuous time points s ∼ π(s) and t ∼ π(t|s).
Sample x0 ∼ D and xt ∼ p(xt|x0; t, 0).
Sample xs ∼ qϕ(xs|xt; s, t).
uψ(xs; s, t)→ Sθ∗(xs; s)− fψ(xs; s, t).
if n is odd then

Update ϕ← ϕ− ηw1(s)∇ϕ
{
uψ(xs; s, t)

T [Sθ∗(xs; s)−∇xs log qϕ(xs|xt; s, t)]− α∥uψ(xs; s, t)∥22
}

.
else

Update ψ ← ψ − ηw2(s)∇ψ
{
uψ(xs; s, t)

T [∇xs log qϕ(xs|xt; s, t)− Sθ∗(xs; s)] + α(1 + λ)∥uψ(xs; s, t)∥22
}

.
end if
n← n+ 1.

until convergence

A. SIVI Objectives
A.1. Details of training procedure

Choice of Time Schedule We now discuss the design principles of the time schedule π(s, t) defined over [δ, T ]. First, we
decompose π(s, t) into the marginal distribution π(s) and the conditional distribution π(t|s). For π(s), we adopt the EDM
time schedule (Karras et al., 2022):

s = (σ
1
ρ

min + rs · (σ
1
ρ
max − σ

1
ρ

min))
ρ, rs ∼ Uniform[0, 1],

where σmin = δ, σmax = T , and ρ = 7.0. The conditional distribution π(t|s) is parameterized as:

t = (σ
1
ρ

min + rt · (σ
1
ρ
max − σ

1
ρ

min))
ρ, rt = min{rs + γ, 1},

where γ ∼ π(γ|rs). Since the continuous transition kernel qtrans(xs|xt; s, t) learns the mapping from distribution p(·; t) to
p(·; s), the learning complexity increases with the time difference between t and s. Therefore, we design the distribution
π(γ|rs) to assign higher probabilities to larger time difference γ.

γ = B · Uniform[0, 1] · Uniform{1, 1
2
, · · · , 1

R
}+ (1−B), B ∼ Bernoulli(

1

2
),

where R > 1 is a hyperparameter controlling the probability of sampling smaller values of γ.

Leveraging the aforementioned time schedule and adopting the weight functions wi(s) (i = 1, 2) from SiD (Zhou et al.,
2024b), we present our complete training procedure in Algorithm 2.

B. Theoretical Result
B.1. Proof of Theorem 3.1

Here we provide a general version of theorem 3.1 and illustrate the scaled Fisher divergence within the framework of
generalized Fisher divergence (Cheng et al., 2023). Consider the generalized Fisher divergence equipped with a strictly
smooth convex function h(x)

GFI[h](p(·; s)∥qϕ(·; s, t)) := Eqϕ(xs;t,s)h (∇ log p(xs; s)−∇ log qϕ(xs; s, t)) ,

where h(0) = 0 and h(x) > 0 for x ̸= 0.
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Theorem B.1. Let the variational distribution qϕ(xs; s, t) defined as in (7) and vψ(xs; s, t) := ∇ log p(xs; s)−fψ(xs; s, t).
Then the optimization of GFI[h] (p(·; s)∥qϕ(·; s, t)) is equivalent to the two-stages alternating optimization problem as
follows

min
ϕ

Eqϕ(xs,xt;s,t)
[
vψ(xs; s, t)

T [∇ log p(xs; s)−∇xs log qϕ(xs|xt; s, t)]− h∗(vψ(xs; s, t))
]
, (23)

min
ψ

Eqϕ(xs,xt;s,t)
[
vψ(xs; s, t)

T [∇xs log qϕ(xs|xt; s, t)−∇ log p(xs; s)] + (1 + λ)h∗(vψ(xs; s, t))
]
,

where λ ≥ 0 is a given regularization strength hyperparameter and h∗(·) is the Legendre transformation of h(·). Specifically,
if h(x) = 1

4α∥x∥
2
2 and ∇ log p(xs; s) is approximated by Sθ∗(xs; s), (23) becomes the SiD loss (6). The optimal

fψ̃∗(ϕ)(xs; s, t) of the second-stage optimization is given by

fψ̃∗(ϕ)(·; s, t) = β∇ log qϕ(·; s, t) + (1− β)Sθ∗(·; s), (24)

where β = 1
2α(1+λ) . Similarly, the equilibrium of ϕ remains consistent with (11).

Proof of Theorem B.1. We can write the optimization problem with the generalized Fisher divergence GFI[h] as

min
qϕ

Eqϕ(xs;t,s)h(∇ log p(xs; s)−∇ log qϕ(xs; s, t)). (25)

Since the Legendre transformation of h(x) is that h∗(y) = maxx{yTx − h(x)} and h∗∗(·) = h(·), we can rewrite the
optimization problem as

min
qϕ

max
vψ(·;s,t)

Eqϕ(xs;s,t)
[
vψ(xs; s, t)

T [∇ log p(xs; s)−∇ log qϕ(xs; s, t)]− h∗(vψ(xs; s, t))
]
, (26)

By the trick on the score function∇ log qϕ(xs; s, t), we have

Eqϕ(xs;s,t) ⟨vψ(xs; s, t),∇ log qϕ(xs; s, t)⟩ = Eqϕ(xs,xt;s,t) ⟨vψ(xs; s, t),∇ log qϕ(xs|xt; s, t)⟩ . (27)

Therefore, the optimization problem (25) can be rewritten as these two stages optimization problem

min
qϕ

Eqϕ(xs,xt;s,t)
[
vψ(xs; s, t)

T [∇ log p(xs; s)−∇xs log qϕ(xs|xt; s, t)]− h∗(vψ(xs; s, t))
]
, (28)

min
vψ

Eqϕ(xs,xt;s,t)
[
vψ(xs; s, t)

T [∇xs log qϕ(xs|xt; s, t)−∇ log p(xs; s)] + h∗(vψ(xs; s, t))
]
. (29)

If the regularization strength parameter λ > 0, the optimization problem with a regularized term is formed as

min
vψ

Eqϕ(xs;s,t)
[
vψ(xs; s, t)

T [∇xs log qϕ(xs; s, t)−∇ log p(xs; s)] + (1 + λ)h∗(vψ(xs; s, t))
]
. (30)

We can view the above minization formulation as the Legendre transformation with the convex function (1 + λ)h∗(·), then
the optimal function vψ∗(ϕ)(·; s, t) of the above optimization problem satisfies

Eqϕ(xs;s,t)
[
vψ∗(ϕ)(·; s, t)T [∇xs log qϕ(xs; s, t)−∇ log p(xs; s)] + (1 + λ)h∗(vψ∗(ϕ)(·; s, t))

]
, (31)

=− Eqϕ(xs;s,t)
[
(1 + λ)h∗

]∗(
∇ log p(xs; s)−∇xs log qϕ(xs; s, t)

)
, (32)

=− Eqϕ(xs;s,t)(1 + λ)h
( 1

1 + λ
(log p(xs; s)−∇xs log qϕ(xs; s, t))

)
. (33)

Bring the above optimal function vψ∗(ϕ)(·; s, t) back to the first stage optimization problem (28), then we have

Eqϕ(xs,xt;s,t)
[
vψ∗(ϕ)(xs; s, t)

T [∇ log p(xs; s)−∇xs log qϕ(xs|xt; s, t)]− h∗(vψ∗(ϕ)(xs; s, t))
]
, (34)

=Eqϕ(xs,xt;s,t)(1 + λ)h
( 1

1 + λ
(log p(xs; s)−∇xs log qϕ(xs; s, t))

)
+ λh∗

(
vψ∗(ϕ)(xs; s, t)

)
. (35)
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As h is a strongly smooth convex function, the Legendre transformation h∗ is also a strongly convex function, and h(x) = 0
if and only if x = 0. When vψ∗(ϕ)(xs; s, t) ≡ 0, the first derivate condition of the optimal function vψ∗(ϕ)(·; s, t) is
satisfied

[∇xs log qϕ(xs; s, t)−∇ log p(xs; s)] + (1 + λ)h(0) = [∇xs log qϕ(xs; s, t)−∇ log p(xs; s)] = 0.

Therefore, the global optimal distribution of (34) is qϕ∗(xs; s, t) = ∇ log p(xs; s) that similar with the original optimization
problem (25). So the two stage optimization problem with regularization term has the similar optimal solution as the original
optimization problem.

In practice, we choose the function h(x) = 1
4α∥x∥

2
2, then the Legendre transformation of h(x) is that

h∗(y) = max
x
{yTx− 1

4α
∥x∥22} = α∥y∥22.

Substituting the Legendre transformation h∗(x) back into the second stage optimization problem (30), we obtain

Eqϕ(xs;s,t)
[
vψ(xs; s, t)

T [∇ log qϕ(xs; s, t)−∇ log p(xs; s)] + (1 + λ)α∥(vψ(xs; s, t)∥22
]
,

=(1 + λ)αEqϕ(xs;s,t)
∥∥∥vψ(xs; s, t)− 1

2(1 + λ)α
[−∇ log qϕ(xs; s, t) +∇ log p(xs; s)]

∥∥∥2
2
+ C(ϕ),

where C(ϕ) := Eqϕ(xs;s,t)∥∇ log qϕ(xs; s, t)−∇ log p(xs; s)∥22 and is independent of ψ. Therefore, the optimal function
of the second stage optimization problem (30) is that

vψ∗(ϕ)(xs; s, t) =∇ log p(xs; s)− fψ∗(ϕ)(xs; s, t)

=
1

2(1 + λ)α
[−∇ log qϕ(xs; s, t) +∇ log p(xs; s)] .

Replacing the target score function ∇ log p(xs; s) with the estimated score model Sθ∗(xs; s), we eventually write the
optimal fψ̃∗(ϕ)(xs; s, t) of the second stage optimization problem with the regularization term as

uψ̃∗(ϕ)(xs; s, t) = Sθ∗(xs; s)− fψ̃∗(ϕ)(xs; s, t) (36)

fψ̃∗(ϕ)(xs; s, t) =
1

2α(1 + λ)
∇ log qϕ(xs; s, t) + (1− 1

2α(1 + λ)
)Sθ∗(xs; s). (37)

Moreover, (34) is rewritten as

Eqϕ(xs,xt;s,t)
[
uψ̃∗(ϕ)(xs; s, t)

T [Sθ∗(xs; s)−∇xs log qϕ(xs|xt; s, t)]− α∥(uψ̃∗(ϕ)(xs; s, t))∥
2
2

]
,

=
(1 + 2λ)

4α(1 + λ)2
Eqϕ(xs;s,t)∥Sθ∗(xs; s)−∇ log qϕ(xs; s, t)∥22.

Therefore, the equilibrium of the two-stage optimization problem for ϕ remains consistent with (11).

B.2. Proof of Proposition 3.2

Proof. As discussed in the proof of theorem 3.1, the two-stages optimization problem in (15) is equivalent to optimizing

min
ϕ

(1 + 2λ)

4α(1 + λ)2
Eqϕ(xs;s,t)∥∇ log p(xs; s)−∇ log qϕ(xs; s, t)∥22. (38)

And the continuous transition kernel qtrans(xs|xt; s, t) is parameterized as

qϕ(xs|xt; s, t) = N (xs; a(s)Gϕ(xt, t), σ(s)
2I), (39)

where 0 < s < t ≤ T , a(s), σ(s) ∈ R+ are defined in (2). Then we have that the marginal distribution qϕ(xs; s, t) is
supported on Rd since

qϕ(xs; s, t) =

∫
qϕ(xs|xt; s, t)p(xt; t)dxt > 0, ∀xs ∈ Rd. (40)
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Therefore, the optimal variational distribution qϕ(xs; s, t) in (38) satisfies that

∇ log p(xs; s) = ∇ log qϕ(xs; s, t), ∀xs ∈ Rd.

It implies that qϕ(xs; s, t) = p(xs; s). Furthermore, for the independent random variables xt ∼ p(·; t) and ϵ ∼ N (0, I),
the characteristic function of Gϕ(·, t)♯p(·; t) satisfies

φGϕ(·,t)♯p(·;t)(w) = Eeiw
TGϕ(xt,t) = Eei

1
a(s)

wT [a(s)Gϕ(xt,t)+σ(s)ϵ](Eei
σ(s)
a(s)

wT ϵ)−1,

= Eqϕ(xs;s,t)e
i 1
a(s)

wTxs(Eei
σ(s)
a(s)

wT ϵ)−1 = Ep(xs;s)e
i 1
a(s)

wTxs(Eei
σ(s)
a(s)

wT ϵ)−1,

= Ep(x0;0)·N (ϵ;0,I)e
i 1
a(s)

wT [a(s)x0+σ(s)ϵ](Eei
σ(s)
a(s)

wT ϵ)−1 = φx0
(w).

Therefore, the characteristic function of Gϕ(·, t)♯p(·; t) is the same as the characteristic function of p(x0; 0). We can
conclude that Gϕ(·, t) establishes a mapping from distribution p(·; t) back to p(·; 0).

B.3. Proof of Proposition 3.4

Proof of Proposition 3.4. As the approximated variational distribution qϕ̂ is obtained by

qϕ̂(·; s, t) ∈ argmin
qϕ∈Q

Eqϕ(xs,xt;s,t)
[
uψ̂(ϕ)(xs; s, t)

T [∇ log p(xs; s)−∇xs log qϕ(xs|xt; s, t)]− α∥uψ̂(ϕ)(xs; s, t)∥
2
2

]
,

(41)
where uψ̂(ϕ)(xs; s, t) := ∇ log p(xs; s)− fψ̂(ϕ)(xs; s, t).

We can bound the Fisher divergence between qϕ̂ and p(·; s) as follows. First we rewrite the first stage optimization objective
as

Eqϕ(xs,xt;s,t)
[
uψ(xs; s, t)

T [∇ log p(xs; s)−∇xs log qϕ(xs|xt; s, t)]− α∥uψ(xs; s, t)∥22
]
,

=Eqϕ(xs;s,t)
[
uψ(xs; s, t)

T [∇ log p(xs; s)−∇xs log qϕ(xs; s, t)]− α∥uψ(xs; s, t)∥22
]
,

=
1 + 2λ

4α(1 + λ)2
Eqϕ(xs;s,t)∥δϕ(xs; s, t)∥

2
2 +

λ

1 + λ
Eqϕ(xs;s,t)

〈
δϕ(xs; s, t),uψ(xs; s, t)−

1

2α(1 + λ)
δϕ(xs; s, t)

〉
−αEqϕ(xs;s,t)∥uψ(xs; s, t)−

1

2α(1 + λ)
δϕ(xs; s, t)∥22, (42)

where δϕ(xs; s, t) := ∇ log p(xs; s)−∇ log qϕ(xs; s, t). Then we have

1

4α(1 + λ)2
FI(qϕ̂(·; s, t)∥p(·; s)) =

1

4α(1 + λ)2
Eqϕ̂(xs;s,t)∥∇ log p(xs; s)−∇ log qϕ̂(xs; s, t)∥

2
2

=
1 + 2λ

4α(1 + λ)2
Eqϕ̂(xs;s,t)∥δϕ̂(xs; s, t)∥

2
2︸ ︷︷ ︸

①

− λ

2α(1 + λ)2
FI(qϕ̂(·; s, t)∥p(·; s)),

Bring (42) into ①, we have

① =Eqϕ̂(xs;s,t)
{[

uψ̂(ϕ̂)(xs; s, t)
T
[
∇ log p(xs; s)−∇xs log qϕ̂(xs; s, t)

]
− α∥uψ̂(ϕ̂)(xs; s, t)∥

2
2

]
− λ

1 + λ

〈
δϕ̂(xs; s, t),uψ̂(ϕ̂)(xs; s, t)−

1

2α(1 + λ)
δϕ̂(xs; s, t)

〉
︸ ︷︷ ︸

②

+α∥uψ̂(ϕ̂)(xs; s, t)−
1

2α(1 + λ)
δϕ̂(xs; s, t)∥

2
2

}
,

≤Eqϕ∗ (xs;s,t)
{[

uψ̂(ϕ∗)(xs; s, t)
T [∇ log p(xs; s)−∇ log qϕ∗(xs; s, t)]− α∥uψ̂(ϕ∗)(xs; s, t)∥

2
2

]
︸ ︷︷ ︸

③

−Eqϕ̂(xs;s,t)(②) + αε2f .
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For the term Eqϕ̂(xs;s,t)(②), we have

−Eqϕ̂(xs;s,t)(②) ≤ λ

2α(1 + λ)2
Eqϕ̂(xs;s,t)∥δϕ̂(xs; s, t)∥

2
2 +

αλ

2
Eqϕ̂(xs;s,t)∥uψ̂(ϕ̂)(xs; s, t)−

1

2α(1 + λ)
δϕ̂(xs; s, t)∥

2
2,

≤ λ

2α(1 + λ)2
FI(qϕ̂(·; s, t)∥p(·; s)) +

αλ

2
ε2f .

For the term ③, by (42)we have

③ =
1 + 2λ

4α(1 + λ)2
Eqϕ∗ (xs;s,t)∥δϕ∗(xs; s, t)∥22 − αEqϕ∗ (xs;s,t)∥uψ̂(ϕ∗)(xs; s, t)−

1

2α(1 + λ)
δϕ∗(xs; s, t)∥22

+
λ

1 + λ
Eqϕ∗ (xs;s,t)

〈
δϕ∗(xs; s, t),uψ̂(ϕ∗)(xs; s, t)−

1

2α(1 + λ)
δϕ∗(xs; s, t)

〉
,

≤ 1 + 2λ

4α(1 + λ)2
FI(qϕ∗(·; s, t)∥p(·; s))− αEqϕ∗ (xs;s,t)∥uψ̂(ϕ∗)(xs; s, t)−

1

2α(1 + λ)
δϕ∗(xs; s, t)∥22

+
λ2

4(1 + λ)2α
Eqϕ∗ (xs;s,t)∥δϕ∗(xs; s, t)∥22 + αEqϕ∗ (xs;s,t)∥uψ̂(ϕ∗)(xs; s, t)−

1

2α(1 + λ)
δϕ∗(xs; s, t)∥22,

=
1

4α
FI(qϕ∗(·; s, t)∥p(·; s)).

Bring the above results back to ①, we have

FI(qϕ̂(·; s, t)∥p(·; s)) =4α(1 + λ)2(①− λ

2α(1 + λ)2
FI(qϕ̂(·; s, t)∥p(·; s))),

≤(1 + λ)2FI(qϕ∗(·; s, t)∥p(·; s)) + 2α2(1 + λ)2(2 + λ)ε2f . (43)

Introduce the approximation gap from Assumption 3.5, we have

FI(qϕ̂(·; s, t)∥p(·; s)) ≤ 2(1 + λ)2ε2c FI(p(·; t+ s)∥p(·, s)) + 2α2(1 + λ)2(2 + λ)ε2f . (44)

The assumption 3.5 quantifies the capacity of the consistency map Gϕ(·, t) based on the initial gap. That is, the qϕ0
(x; s, t) =∫

p(x|xt; 0, s)p(xt; t)dxt = p(x; t + s) when Gϕ0
(xt, t) ≡ xt. Therefore, the initial approximation gap FI(qϕ0

(·; t +
s)∥p(·, s)) = FI(p(·; t+ s)∥p(·, s)).

B.4. Proof of Proposition 3.8

Proof of Proposition 3.8. First we bound the Wasserstein distance between qϕ̂(·; 0, t) and p(·; 0). Since p(·; 0) is supported
on the hypercube [−1, 1]d, its support is contained in the Euclidean ball B(0,

√
d). By the results of bounds on the

logarithmic Sobolev inequality (LSI) constants (Bardet et al., 2018; Chen et al., 2021; Cattiaux & Guillin, 2022), we can
derive the following LSI inequality

Ep(xδ;δ)f
2(xδ)(log f

2(xδ)− logEp(xδ;δ)f
2(xδ)) ≤ 2CLSIEp(xδ;δ)∥∇f(xδ)∥

2
2, ∀f ∈ C∞(Rd), (45)

where the LSI constant CLSI ≤ 6(4d+ σ(δ)) exp( 4d
σ(δ)2 ). Let f2(·) = qϕ̂(·;δ,t)

p(·;δ) , then we have

KL(qϕ̂(·; δ, t)∥p(·; δ)) ≲ (4d+ σ(δ)) exp(
4d

σ(δ)2
)FI(qϕ̂(·; δ, t)∥p(·; δ))

Moreover, by Otto-Villani theorem (Otto & Villani, 2000), the following Talagrand’s inequality holds

W 2
2 (qϕ̂(·; δ, t), p(·; δ)) ≤ 2CLSIKL(qϕ̂(·; δ, t)∥p(·; δ)) ≲ (4d+ σ(δ))2 exp(

8d

σ(δ)2
)FI(qϕ̂(·; δ, t)∥p(·; δ)).

Denote ∆ := (4d+ σ(δ))2 exp( 8d
σ(δ)2 ), we have the bound of Wasserstein distance between qϕ̂(·; δ, t) and p(·; δ) as

W 2
2 (qϕ̂(·; δ, t), p(·; δ)) ≲ EW 2

2
(t) := ε2c∆FI(p(·; t+ δ)∥p(·, δ)) + ∆ε2f . (46)
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Next, following the methodology proposed in (Lyu et al., 2024), we give the bound for the multistep sampling of CoSIM.
Given a sequence of fixed time points T = t0 ≥ t1 ≥ · · · ≥ tK−1 ≥ tK = δ, we denote z0 ∼ p(·; t0) and

zk = a(tk)Gϕ̂(zk−1, tk−1) + σ(tk)ϵ2k, (47)

q
(k)

ϕ̂
(·; δ) = Law{z(δ)

k := a(δ)Gϕ̂(zk−1, tk−1) + σ(δ)ϵ2k−1}, k = 1, 2, · · · ,K, (48)

where ϵk ∼ N (0, I) are independent Gaussian noises, then it can be shown that q(1)
ϕ̂

(·; δ) = qϕ̂(·; δ, T ). For a fixed time
points tk, we consider the optimal transport coupling γ(zk,xtk) ∈ Γopt(Law(zk), p(·; tk)) and let

zδk+1 =
[
a(δ)Gϕ̂(zk, tk) + σ(δ)ϵ2k+1

]
∼ q(k)

ϕ̂
(·; δ),

y =
[
a(δ)Gϕ̂(xtk , tk) + σ(δ)ϵ2k+1

]
∼ qϕ̂(·; δ, tk).

Then we have

W2(q
(k+1)

ϕ̂
, p(·; δ)) ≤W2(q

(k+1)

ϕ̂
, qϕ̂(·; δ, tk)) +W2(qϕ̂(·; δ, tk), p(·; δ)),

≤E(zk,xtk )∼γ,ϵ2k+1∼N (0,I)∥zδk+1 − y∥22 +W 2
2 (qϕ̂(·; δ, tk), p(·; δ)),

=a(δ)E(zk,xtk )∼γ∥Gϕ̂(zk, tk)−Gϕ̂(xtk , tk)∥
2
2 +W 2

2 (qϕ̂(·; δ, tk), p(·; δ)). (49)

Recall that the consistency function Gϕ̂(·, t) is parameterized as

Gϕ(xt, t) = O (cskip(t)xt + cout(t)Fϕ(cin(t)xt, t)) , (50)

where

cskip(t) =
σ2

dataa(t)
2

σ(t)2 + σ2
dataa(t)

2
, (51)

cout(t) = (
σ2

dataσ(t)
2a(t)2

σ(t)2 + σ2
dataa(t)

2
)1/2, (52)

cin(t) = (
1

σdata2a(t)2+σ(t)2
)1/2. (53)

Practically, σdata := 1
2 is a fixed constant. Given any x1,x2 ∈ Rd and by the Lf -Lipschitz continuity of Fϕ(·, t) with

respect to xt, we have

∥Gϕ(x1, t)−Gϕ(x2, t)∥2 ≤∥cskip(t)(x1 − x2) + cout(t)(Fϕ(cin(t)x1, t)− Fϕ(cin(t)x2, t))∥2,
≤(cskip(t) + cout(t)Lfcin(t))∥x1 − x2∥2,

≤( a(t)

σ(t)2 + a(t)2
+ 2Lf

σ(t)a(t)

σ(t)2 + a(t)2
)∥x1 − x2∥22. (54)

In the case of variance preserving (VP) scheme for (1), we have

a(t) = e−t, σ(t) =
√
1− e−2t, ∀t ∈ [0, T ]. (55)

This implies that Gϕ(x, t) is 3Lf -Lipschitz continuous with respect to x if a(t), σ(t) is defined as (55).

In the case of variance exploding (VE) scheme for (1), we have

a(t) = 1, σ(t) = t, ∀t ∈ [0, T ]. (56)

Then Gϕ(x, t) is (
2Lf
t+1 + 1

t2+1 )-Lipschitz continuous in the variance exploding scenario. Denote these two Lipschitz

constant as Lvp = 3Lf adn Lve =
2Lf
t+1 + 1

t2+1 respectively. To ensure the condition σ(δ) > a(δ)
√
d, we have the early

stopping time δvp = O(log(d)) for VP scheme and δve = O(
√
d) for VE scheme.
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For the variance preserving scheme, substituting the above results into (49) yields

W2(q
(k+1)

ϕ̂
, p(·; δ)) ≤a(δ)LvpE(zk,xtk )∼γ∥zk − xtk∥22 +W2(qϕ̂(·; δ, tk), p(·; δ)),

≤a(δ)LvpW2(Law(zk), p(·; tk)) +W2(qϕ̂(·; δ, tk), p(·; δ)).

Next, given the optimal coupling γ′(z′,x′) ∈ Γopt(q
(k)

ϕ̂
(·; δ), p(·; δ)), we consider the following coupling γ1(z,x) ∼

Γ(Law(zk), p(·; tk))

z = a(tk − δ)z(δ)
k + σ(tk − δ)ϵ2k,

x = a(tk − δ)xδ + σ(tk − δ)ϵ2k.

Then

W2(Law(zk), p(·; tk)) ≤ (E(z,x)∼γ1∥z − x∥22)1/2 = a(tk − δ)Eγ′∥z′ − x′∥22 ≤ a(tk − δ)W2(q
(k)

ϕ̂
(·; δ), p(·; δ)).

Therefore, we have
W2(q

(k+1)

ϕ̂
, p(·; δ)) ≲ a(tk)LvpW2(q

(k)

ϕ̂
(·; δ), p(·; δ)) + E

1
2

W 2
2
(tk).

Let t1 = · · · = tK−1 = tmid > 1 with a fixed tmid and apply the discrete type Grönwall’s inequality (Gronwall, 1919), we
have

W2(q
(K)

ϕ̂
(·; 0), p(·; 0)) ≲W2(q

(K)

ϕ̂
(·; δ), p(·; δ)) + δ2d

≲δ2d+ (a(tmid)Lvp)
K−1E

1
2

W 2
2
(T ) + (1− a(tmid)Lvp)

−1E
1
2

W 2
2
(tmid),

=δ2d+ e(K−1)(−tmid+log(3Lf ))E
1
2

W 2
2
(T ) + (1− e−tmid+log(3Lf ))−1E

1
2

W 2
2
(tmid).

For the variance exploding scheme, we have

W2(q
(K)

ϕ̂
(·; 0), p(·; 0)) ≲ δ2d+ (

2Lf
tmid + 1

)K−1E
1
2

W 2
2
(T ) + (1− 2Lf

tmid + 1
)−1E

1
2

W 2
2
(tmid).

Therefore, the first term on right-hand side has an exponential decay rate as tmid = log(4Lf ) for VP scheme and tmid = 4Lf
for VE scheme.

C. Experimental Details
Our consistency method is to build on top of existing pre-trained diffusion models and distill from them. With numerous
existing diffusion models, we choose our base models using the following criteria:

1. Completely open-source, including checkpoints, model architectures, and all training and inferencing details.

2. Results that are generally recognized to be reproducible.

3. State-of-the-art performance.

Fortunately, all these are satisfied with EDM (Karras et al., 2022) and EDM2 (Karras et al., 2024). They are set to be our
base models.

Pre-processing and Evaluation We followed EDM to process CIFAR10 and Imagenet 64× 64, and followed EDM2 for
Imagenet 512× 512 . Most of the consistency methods we compared with in Table 1,2,3 follow the same pre-processing
protocol. However, CTM (Kim et al., 2023) followed a different way to down-sample Imagenet to 64× 64. More precisely,
CTM has a different down-sampling kernel compared to EDM.

This caussed a significant disruption to the FD-DINOv2 value. Because FD-DINOv2 is computed at a fixed resolution
224× 224 and all images at lower resolution have to be up-sampled before computing this value, the final result will be
very sensitive to the down-sampling kernel. For a fair comparison, we compute FD-DINOv2 between CTM generated 50K
images and 1,281,167 Imagenet images down-sampled to 64× 64 using the same kernel as CTM.
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Table 5. Hyperparameters for different experimental setup.
Hyperparameters CIFAR10 32× 32 Imagenet 64× 64 Imagenet 512× 512 S Imagenet 512× 512 M Imagenet 512× 512 L

Batch Size 2048 2048 2048 2048 2048
Batch per GPU 64 16 32 32 32

Gradient accumulation round 4 16 8 8 8
# of GPU (L40S 48G) 8 8 8 8 8

Learning rate of Gϕ and fψ 1e−5 4e−6 2e−5 2e−5 1e−4

# of EMA half-life images 0.5M 2M 2M 2M 2M
Optimizer Adam eps 1e−8 1e−12 1e−12 1e−12 1e−12

Optimizer Adam β1 0.0 0.0 0.0 0.0 0.0
Optimizer Adam β2 0.999 0.99 0.99 0.99 0.99

R 4 8 8 4 4
# of total training images 200M 200M 200M 200M 20M

# of parameters 56M 296M 280M 498M 778M
dropout 0 0.1 0 0.1 0.1
augment 0 0 0 0 0

Table 6. FD-DINOv2 results of CoSIM on class-conditional ImageNet (512× 512) with different regularization strengths (coef) and total
training images. All results are evaluated with NFE= 2.

Regularization Strength 204k 1024k 2048k 4096k

coef = 0.5 309.77 101.33 69.65 61.53
coef = 0.75 392.85 92.81 61.77 50.54
coef = 1.0 421.90 95.23 58.63 49.28

Network Architecture and Initialization Following Algorithm 2 and Section 3.3, there are three networks in our training
process, generator Gϕ, teacher Sθ∗ and auxiliary function fψ. All are initialized from the pre-trained checkpoints of our
chosen base model. During our training, Sθ∗ is frozen while generator Gϕ and auxiliary function fψ are iteratively refined.
During inferencing, only generator Gϕ is used to generate new samples.

Since Gϕ,fψ,Sθ∗ are initialized from the same checkpoint, their architectures are kept the same as the base model. But
fψ must accommodate the additional s input from Section 3, so we duplicate the time-embedding layer as described in
Section 4. This only adds a very small number of extra parameters during training, and makes no change to the generator
used during inferencing.

Hyperparameters The hyperparameters for all of our experiments are presented in Table 5. For those parameters not
mentioned in this table, they are kept the same as the base model.

Training Budget We conducted all of our experiments using 8× NVIDIA L40S GPU with 48GB video memory. For
CIFAR10 32 × 32, we train our models for ∼ 4 days. For Imagenet 64 × 64, we need ∼ 7 days to reach our reported
results. On Imagenet 512× 512, though the final image size is significantly larger, the training of consistency model is still
conducted on 64× 64 internally. This is because EDM2 (Karras et al., 2024) applied a VAE to encode original input size
into 64× 64 latent size, and our consistency model only works on the latent feature. For S,M,L setups, the training takes
∼ 3, ∼ 7 and ∼ 3 days accordingly.

Sampling Steps In Section 4.2, we show that 4-step sampling generates better quality than 2-step sampling. Here we
provide more visual results in Figure 8 . Compared to 4-step sampling results, some details deteriorate in 2-step sampling,
such as the floating leaves on the spider web, and the shape of shoes are not ideal.

On the Role of λ We conducted an ablation study on λ with the coefficient coef := α(1 + λ) in (15) for ImageNet
512× 512 generation of CoSIM using the L model size with fixed α = 1.2.

The results show that introducing regularization (i.e., increasing coef) within a suitable range significantly enhances the
learning process of fψ , which in turn improves the training of qϕ.

Here we provide more visual results on our experiments.
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Figure 3. Unconditionally generated 32× 32 images on CIFAR10 using 2-step sampling.
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Figure 4. Unconditionally generated 32× 32 images on CIFAR10 using 4-step sampling.
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Figure 5. Conditionally generated 64× 64 images on Imagenet using 2-step sampling.

23



Continuous Semi-Implicit Models

Figure 6. Conditionally generated 64× 64 images on Imagenet using 4-step sampling.
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(a) 2 steps

(b) 4 steps

Figure 7. Class-conditioned 512 × 512 images generated by CoSIM with different steps on Imagenet using M model, starting from
identical noise.
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(a) 2 steps

(b) 4 steps

Figure 8. Class-conditioned 512 × 512 images generated by CoSIM with different steps on Imagenet using L model, starting from
identical noise.
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