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Abstract

Designing new protein sequences that exhibit de-
sirable functionality carries significant implica-
tions for medicine and biotechnology. Traditional
methods for protein design have prominently com-
prised of experimental methods, such as in vitro-
screening or animal experiments, which are costly
and time-consuming. We propose a generative
model based approach to protein sequence genera-
tion using guided discrete diffusion. We introduce
a novel diffusion-based posterior sampling algo-
rithm which uses a BERT-like transformer model
to iteratively denoise discrete protein sequences.
This approach demonstrates an efficient way to
leverage an oracle that is trained to predict the
desired functionality and can guide the protein
generation procedure. Our experiments demon-
strate that our method outperforms the state of the
art, achieving higher functionality scores as well
as higher ProtGPT2 likelihood scores.

1. Introduction
Protein design is revolutionizing medicine and biotechnol-
ogy by enabling the creation of tailored proteins with spe-
cific functions, leading to significant advancements in var-
ious fields. For instance, custom-designed enzymes are
being developed to break down environmental pollutants,
offering a sustainable solution to bioremediation (Arnold,
2018). In medicine, engineered proteins are used to de-
velop novel therapeutics, such as monoclonal antibodies
that target specific cancer cells, improving the precision and
effectiveness of cancer treatments (Carter & Lazar, 2018).
Additionally, protein design is crucial in the development
of vaccines, including those for emerging infectious dis-
eases, by creating immunogens that elicit strong immune
responses (Sanchez-Trincado et al., 2017).
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Protein design is currently performed using a combination of
computational and experimental techniques that allow scien-
tists to predict and engineer proteins with desired properties.
Computational methods, such as molecular modeling and
simulations, play a crucial role in predicting protein struc-
tures and functions based on amino acid sequences (Khoury
et al., 2014). Tools like Rosetta (Das & Baker, 2008) and
AlphaFold (Jumper et al., 2021) are widely used to model
protein folding and stability, enabling researchers to design
proteins with high precision.

The standard approach in protein design is to handcraft
an energy potential that maps 3D structure to the desired
function, and this potential is used to guide the search for a
suitable structure. However, this is fundamentally limited by
the fact that even if we can find a suitable 3D structure, there
is no guarantee that we can find an amino acid sequence with
the desired 3D structure. Additionally, datasets for structural
data are limited in size and the computational models tend
to be slow and resource intensive. This motivates the more
straightforward approach of searching directly in the space
of amino acid sequences. To this end, we will focus on
generative models that can learn a distribution over amino
acid sequences in an unsupervised manner, and use these
to design new sequences with guidance from supervised
classifiers that can map sequences to function.
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Figure 1. The solid green line denotes a probabilistic model that
relates an amino acid sequence w0 to its protein function y. The
variable wt denotes a noisy intermediate step in the diffusion
process, and the dashed red line indicates the diffusion model that
estimates p(w0|wt).

Diffusion models (Ho et al., 2020; Song et al., 2020; Sohl-
Dickstein et al., 2015) have achieved remarkable success in
modelling various data modalities such as images (Rombach
et al., 2022), audio (Kong et al., 2020), and text (Li et al.,
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2022). Starting from random noise, the model applies a se-
quence of learned denoising steps that gradually reduce the
noise and reconstruct the original data. Each step predicts a
slightly less noisy version of the data until the final output is
a high-quality, coherent result that closely resembles the ini-
tial clean data. While sampling data using diffusion models
is well studied (Chen et al., 2022; 2024), guided sampling is
far more difficult, and recent work has shown that it is hard
in general (Gupta et al., 2024). The fundamental challenge
in guided sampling is that the potential functions that relate
the sequence to the protein function are derived using exper-
imental data from actual proteins and are not applicable to
the noisy intermediate steps of the diffusion process.

Existing work that considers protein design using diffu-
sion models (Gruver et al., 2024) handles this difficulty by
training a classifier that relates the noisy sequences and the
protein function, which unfortunately is not grounded by
any experimental data. Our approach is to use the diffusion
model itself to address this difficulty and is shown in Fig-
ure 1. Concretely, if w0 denotes an amino acid sequence
and y denotes a protein function, then we can relate them
through some probabilistic model p(y|w0) (solid green line
in Figure 1) that is trained using experimental data. Now, if
wt denotes a noisy intermediate sequence in the diffusion
process, in order to apply guidance during the diffusion
process, we need to relate wt and y. This involves marginal-
izing over w0 via

p(y|wt) =

∫
p(y|w0)p(w0|wt)dw0, (1)

which is intractable in general. However, since the diffusion
model is trained to estimate w0 conditioned on wt (dashed
red line in Figure 1), we can use the posterior distribution
p(w0|wt) in an appropriate manner, for example, by sam-
pling from it or computing the conditional expectation, in
order to approximate the integral in Eqn (1). This allows
us to incorporate the function p(y|wt) as guidance in the
diffusion process and produce sequences that have high
functional values.

2. Relevant Work and Background
Designing new proteins sequences can be viewed as a lan-
guage generation task, where each token represents an
aminoacid. In this sense, the discrete nature of protein
sequences make sequence models such as recurrent neu-
ral networks or transformers very suitable to model them.
Indeed, there have been prior works that proposed protein
language models using these architectures, such as Prot-
GPT2 (Ferruz et al., 2022) and Progen (Madani et al., 2020).
However, since the number of possible aminoacid combi-
nations (for a sequence length of L, there are 20L possible
sequences where 20 is the number of unique aminoacids
existing in nature (Branden & Tooze, 2012)), the success

of using these protein language models to design protein
sequences with desirable qualities and naturalness has been
limited (Alamdari et al., 2023).

In order to tackle challenges of these sequence models,
(Gruver et al., 2024) proposed a guided discrete diffusion
model, called NOS (diffusioN Optimized Sampling). In
NOS, the protein sequence generation process is viewed as
the iterative refinement of a noisy sequence. To that end,
a BERT-like transformer is trained to predict the output
sequence given the current noisy sequence (Devlin et al.,
2018).

2.1. Background

Let w0 denote a real protein sequence that is sampled from
the training set. Assuming that there is an alphabet A that
denotes unique tokens to construct the protein sequences, it
is possible to write w0 ∈ AL where L is the total number
of tokens in the sequence. In discrete diffusion models, the
discrete noise can be represented with [MASK] tokens,
as an analogue for the Gaussian noise in (Ho et al., 2020).
For a diffusion process of T steps, the forward process
can be modelled as iteratively replacing the amino-acids
of the original sequence w0 with the [MASK] tokens, to
obtain w0 → wt → wT = [MASK]L, where wt is a noisy
(partially masked) sequence of aminoacids at time t and wT

is a fully noisy (masked) sequence of length L.

In the unguided diffusion model, a transformer model pθ can
be trained conditioned on the current noisy sequence and
time index to predict the clean sequence using the masked
language modelling framework (MLM) in BERT (Devlin
et al., 2018). This makes it possible to sample the clean
estimate ŵ0 ∼ pθ(ŵ0|wt, t). Then, by noising this clean
sequence estimate t times back, the noisy sequence at the
next time index, wt−1, can be obtained. After repeating this
process for t = [T, . . . , 1], w0 is returned as the predicted
sequence. This transformer is trained by the maximizing
the likelihood to denose the ground truth sequences and
minimize the following loss:

L(θ) = E[− log pθ(ŵ0|wt, t)] , wt ∼ p(wt|w0)

where p(wt|w0) represents the forward noising process.

In order to incorporate guidance to this diffusion procedure,
another classifier is trained to predict various functionalities
of the amino acid sequence. Let f(w0) denote the oracle that
provides the score of an arbitrary functionality of the real
protein w0 in the training data. NOS algorithm proposes to
train a utility function vϕ is trained that aims to characterize
the functionality score of the protein which can be used
to guide the reverse diffusion sampling procedure. Note
that since the aim to use the gradients of this function with
respect to its inputs, it must be differentiable. Therefore, this
function needs to work in continuous space. In that case, let
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Tθ denote the encoder of the transformer pθ that is trained
above for the unguided diffusion procedure. Then, using
this encoder, a continuous representation of the discrete
sequence can be obtained ht = Tθ(wt). This utility function
is trained by fitting it to the functionality scores of the real
proteins via mean squared error regression:

min
ϕ
∥vϕ(ht)− f(w0)∥2.

Having trained such a utility function, after defining h0
t :=

ht = Tθ(wt), the following gradient ascent steps are used
in between the reverse diffusion sampling steps explained
above to guide the reverse diffusion procedure, where

hi+1
t = hi

t+

η∇hi
t

(
λvϕ(h

i
t)− KL

(
pθ(ŵ0|h0

t , t)||pθ(ŵ0|hi
t, t)

))
+ zi

(2)

for i = 0, 1, . . . ,K − 1, where η is the step-size hyperpa-
rameter accounting for the overall step sizes of these updates
and λ is the guidance strength, with higher λ trying to more
aggressively guide the procedure with respect to the utility
function, vϕ, and zi ∼ N(0, 1) is for regularization. Follow-
ing these guidance steps, transformer model pθ is used to
obtain the clean estimate ŵ0 ∼ pθ(ŵ0|hK

t , t) and continue
the reverse process by denoising ŵ0 t− 1 steps. Note that
this guided diffusion procedure is identical to unguided one
if K = 0, since ŵ0 ∼ pθ(ŵ0|h0

t , t) = pθ(ŵ0|wt, t).

One major drawback of this algorithm is that, the way the
utility function vϕ is trained is by using a mean squared
error loss against the true utility function of the ground truth
protein sequences in the training data, which is obtained
by calling a black-box oracle from the Biopython library
(Chapman & Chang, 2000). However, this oracle is only
meaningful if the denoised proteins are given to it. There-
fore, putting wt (noisy sequence) into the utility function
as described above is not ideal since we cannot assume the
existence of an oracle that quantifies functionalities of noisy
sequences. Therefore, we need to follow a posterior sam-
pling procedure to quantify the functionality of the noisy
sequence wt do guide the protein design process.

Diffusion Posterior Sampling (DPS) and Inverse Prob-
lems. Our method is inspired by Diffusion Posterior Sam-
pling (Chung et al., 2022) (DPS) for solving inverse prob-
lems. In inverse problems, we are given observations (for
example, a blurry image) y of some hidden data (for ex-
ample, a high resolution image) x0, along with the con-
ditional distribution q(y|x0), which is typically modelled
using knowledge of the physics of the observation process.

A recent approach to solving inverse problems is via pos-
terior sampling, where the diffusion model captures the
prior distribution of x0, and x0 can be estimated from the

measurements y by sampling from the posterior distribution
p(x0|y). Posterior sampling is done analogous to regular
diffusion sampling: as diffusion sampling only requires ac-
cess to the scores ∇xt

log pt(xt) to sample x0, if we had
access to the diffusion scores∇ log pt(xt|y), we can sample
from p(x0|y).

One way to compute the posterior scores using an uncondi-
tional diffusion model is via Bayes’ rule, since we have

∇xt
log pt(xt|y) = ∇xt

log qt(y|xt) +∇xt
log pt(xt).

Unfortunately, we only have knowledge of the distribution
q(y|x0) for the actual data, and we do not have direct ac-
cess to the distribution qt(y|xt) for the intermediate noisy
states in the diffusion. DPS addresses this issue by cleverly
incorporating the diffusion model: as the diffusion model is
trained to estimate E[x0|xt], we can approximate∇qt(y|xt)
via

∇xt
log qt(y|xt) ≈ ∇xt

log q0(y | E[x0|xt]).

This involves differentiating through the diffusion model,
which poses a challenge when the data is discrete like the
protein sequences we consider in this paper.

3. Proposed Method
We use our trained classifier vϕ to guide the generation
process of new protein sequences in a manner similar to
classifier guidance in inverse problems. In inverse problems,
we usually have access to some measurement y thanks to
some physical measurement process p0(y|x0) of clean data
x0. However, we need access to the distribution pt(y|xt)
relating the measurements to the noisy intermediates xt.
Following the DPS framework (Chung et al., 2022), we can
write the following formula:

pt(y|xt) =

∫
pt(y|x0, xt)p(x0|xt)dx0

=

∫
p0(y|x0)p(x0|xt)dx0

= Ex0∼p(x0|xt)[p0(y|x0)] (3)

While this expectation is intractable in general, we can
switch the expectations to approximate it. Concretely, by
defining x̂0 := E[x0|xt], we can write p(y|xt) ≈ p(y|x̂0).

Now, let us make the relation of the above calculations to the
protein sequence generation algorithm concrete: during the
reverse process of our discrete diffusion procedure, at time t,
we can first use the encoder of the transformer Tθ to obtain
the continuous representation ht of our discrete sequence
wt, and substitute h for x above. Then, what the above cal-
culations show us is that when calling the utility function vϕ,
it is better to use an estimate of the final denoised sequence
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Figure 2. Discrete diffusion posterior sampling scheme. The blue arrows represent the forward process in discrete diffusion model, where
we iteratively mask different tokens (amino acids) in the protein sequence, and the black arrows represent the reverse process. We can only
make measurements with real proteins, hence we have some measurement oracle f that gives us the functionality values y of real protein
sequences w0. We de not have a reliable measurement model for evaluating noisy proteins wt. If we wish to evaluate the functionality
score of noisy proteins wt, the correct approach is to sample the clean sequence via conditional expectation E[w0|wt], and use this sample
to evaluate the functionality score.

given our current noisy sequence E[h0|ht] ≈ Tθ(wt) where
wt ∼ Hθ(ht), where Hθ is the decoder of our transformer
which outputs the discrete sequence given a continuous rep-
resentation. Finally, we provide our proposed algorithm in
Algorithm 1, where in lines 8 and 9 we show this posterior
sampling step and line 10 is the Langevin step.

One crucial thing to note here is how this conditional expec-
tation is computed. Essentially, we would like the output of
the utility function, vϕ(E[h0|ht]) to be differentiable with
respect to ht. To do so, we first need to sample the clean dis-
crete protein sequence ŵ0 ∼ Hθ(ht) = pθ(ŵ0|wt), where
the equality follows from the fact that ht = Tθ(wt). Here,
in order to be able to differentiate through the sampling
step, we cannot simply construct a discrete probability dis-
tribution and then sample from this categorial distribution.
Instead, we approximate the discrete probability distribution
over the vocabulary of possible amino-acids Hθ(ht) with a
Gumbell-softmax distribution, which allows us to use the
reparametrization trick and differentiate through the sam-
pled ŵ0 ∼ Hθ(ht) with respect to ht (Jang et al., 2016).
Then, having appropriately estimated the clean sequence
ŵ0, we obtain its continuous representation to finally get
ĥ0 = E[h0|ht] = Tθ(ŵ0).

4. Experiments
4.1. Experimental Setup

For the experiments, we utilized the dataset provided in
(Gruver et al., 2024), which includes 100000 different ex-
ample sequence of hu4D5, a therapeutic antibody targeting
the HER2 antigen (HER2 is an important target for certain
types of breast and stomach cancer). These examples are
already split into training and validation set with a 90:10
ratio, and we keep the same selection in our experiments.

We investigated three different experimental cases. First, we
tried to maximize a single-objective, that is the percentage
of β-sheets in the protein, which are one of the two essential
building blocks of proteins, and the value of the solvent-
accessible surface area (SASA) in Section 4.2. Then, we
did a multi-objective optimization experiment, where we
tried to optimize both the β-sheets and α-helices of our pro-
teins (alpha helices are the second type of building block
of the secondary structure of a protein) simultaneously, and
generate proteins that would have good qualities in both
objectives, in Section 4.3. Finally in Section 4.4, we inves-
tigate the infilling experiments, where do not start from an
all masked sequence, but we start from a partially known
sequence only few of whose tokens are initially masked.

For all of the comparisons in the following subsections, we
train our proposed model and the NOS model for 100 epochs
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Algorithm 1 Discrete Diffusion Posterior Sampling
1: Inputs: Denoising transformer pθ(ŵ0|ht, t) = [Tθ, Hθ], utility value function vϕ, and hyperparameters η, λ
2: wT = [MASK]L

3: for t = T, . . . , 1 do
4: h0

t ← Tθ(wt)
5: for i = 0, . . . ,K − 1 do
6: zi ∼ N (0, I)
7: ŵ0 ∼ Hθ(ŵ0|hi

t)

8: ĥi
t ← Tθ(ŵ0)

9: hi+1
t ← hi

t + η∇hi
t

(
λvϕ(ĥi

t)− KL
(
pθ(ŵ0|h0

t , t)||pθ(ŵ0|hi
t, t)

))
+ zi

10: end for
11: p(wt−1|Hθ(h

K
t )) =

∑
w̃ p(wt−1|w̃)Hθ(w̃|hK

t )
12: wt−1 ∼ p(wt−1|Hθ(h

K
t ))

13: end for
14: return w0

with batch size 64, learning rate at 0.005 and 5 guidance
update steps (K in Algorithm 1), to be compatible with
the hyperparamters suggested in the original NOS paper
(Gruver et al., 2024). We used two NVIDIA RTX A5000
GPUs as compute resources. We trained our models on
those machines and ran the inferences using these GPUs.

Figure 3. Protein generation experiments where we tried to opti-
mize for β-sheet percentages of the generated proteins. A higher
y-axis score indicates better quality, a higher x-axis score indicates
more naturalness. Blue stars are our method, green hexagons be-
long to the baseline.

4.2. Single-objective Experiments

We train the NOS model and our proposed model with the
objective of maximizing the the percentage of β-sheets and
solvent-accessible surface area (SASA), respectively one
at a time. The results are provided in Figures 3 and 4,
respectively.

To compare the performance of these algorithms, we sample
10 proteins using different hyperparameters: we change the
step size (η) and stability coefficient (λ) parameters in line
10 of Algorithm 1. We try 15 different combinations with

Figure 4. Protein generation experiments where we tried to opti-
mize for solvent accessible surface area (SASA) of the generated
proteins. A higher y-axis score indicates better quality, a higher
x-axis score indicates more naturalness. Blue stars are our method,
green hexagons belong to the baseline.

the hyperparameters given in Table 1.

Then, for each of these hyperparameter combinations, we
take the mean of the beta-sheet percentages and the log-
likelihood (which is obtained using ProtGPT2 (Ferruz et al.,
2022), a very capable protein language model characterizing
the likelihood of a protein sequence), and plot the scatter
plots in Figures 3 and 4.

Note that in both figures, our algorithm can provide protein
sequences with higher numbers of desired functionality on
average (beta sheet percentages or SASA values). Moreover,
while doing so, we also obtain protein sequences that are
on average more likely to exist in real-life, since a higher
log-likelihood can be interpreted as proteins being more
natural (Ferruz et al., 2022).
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Table 1. Step sizes and stability coefficients for different hyperpa-
rameter combinations in experiments

Hyperparameter Name Value

Step Size (η) 0.1, 0.5, 1.0
Stability Coefficient (λ) 0.001, 0.01, 0.1, 1.0, 10.0

Figure 5. Multi-objective optimization experiments where we tried
to optimize for β-sheet and α-helix percentages and of the gen-
erated proteins at the same time. A higher y-axis score indicates
better quality, a higher x-axis score indicates more naturalness.

4.3. Multi-objective Experiments

For multi-objective optimization experiments, we train our
proposed method and NOS to maximize both β-sheet and α-
helix percentages in the protein. We again generate multiple
instances of protein sequences for 15 different hyperparam-
eter combinations using the values in Table 1, and plot the
mean values of different sampled proteins for each of these
combinations in Figure 5. Note that in these experiments,
the algorithms perform on par in terms of utility functions
of the generated proteins, but proteins designed by our al-
gorithm have much higher log-likelihood, suggesting they
are more likely to occur in nature while preserving similar
qualities.

Figure 6. Single-objective infilling optimization experiments
where we tried to optimize for β-sheet percentages of the gen-
erated proteins where we start protein generation from a partially
known sequence. A higher y-axis score indicates better quality, a
higher x-axis score indicates more naturalness.

4.4. Infilling Experiments

For the infilling experiments, instead of starting the diffusion
process with a fully masked sequence as in Algorithm 1,
we start from a known sequence that has 300 amino acids,
24 of which are masked. Then, we let our transformer
generate predictions only for these 24 aminoacids. We do
this experiment for both single-objective optimization where
we aim to optimize for the percantage of β-sheets, which
is shown in Figure 6. Notice that the log-likelihoods of the
proteins in Figures 6 are much higher than the ones in 3 and
5, providing a sanity check for us, since in these experiments
we start from partially known sequences so it is expected
for them to have higher log-likelihood scores.

5. Conclusion and Future Work
In this paper, we proposed a novel algorithm where we
improved upon the guided discrete diffusion procedure by
incorporating ideas from inverse problems and diffusion
posterior sampling. We showed that we can achieve better
results in terms of desired qualities and the final likelihood
of the generated proteins when we use appropriate posterior
sampling steps to guide the discrete diffusion algorithm
better.

One limitation of this work is that we still need to obtain con-
tinuous representations of the discrete protein sequences in
order to execute the Langevin and posterior sampling steps.
Works such as (Lou et al., 2023) have recently proposed a
new discrete diffusion algorithm to circumvent this proce-
dure. Therefore, harmonizing the ideas in that paper with
this study could be an interesting future direction. Moreover,
“in-vitro” experiments by synthesizing actual proteins will
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help validate our our algorithm on real-world design tasks.
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