
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALITA-G: SELF-EVOLVING GENERATIVE AGENT FOR
AGENT GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) perform better when scaffolded into agents with
memory, tools, and feedback. Beyond this, self-evolving agents have emerged,
but current work largely limits adaptation to prompt rewriting or failure retries.
Therefore, we present ALITA-G, a self-evolution framework that transforms a
general-purpose agent into a domain expert by systematically generating, abstract-
ing, and curating Model Context Protocol (MCP) tools. In this framework, a
generalist agent executes a curated suite of target-domain tasks and synthesizes
candidate MCPs from successful trajectories. These are then abstracted to parame-
terized primitives and consolidated into a MCP Box. At inference time, ALITA-G
performs retrieval-augmented MCP selection with the help of each tool’s descrip-
tions and use cases, before executing an agent equipped with the MCP Executor.
Across several benchmarks GAIA, PathVQA, and Humanity’s Last Exam, ALITA-
G attains strong gains while reducing computation costs. On GAIA validation, it
achieves 83.03% pass@1 and 89.09% pass@3, establishing a new state-of-the-art
result while reducing mean tokens per example by approximately 15% relative to a
strong baseline agent. ALITA-G thus provides a principled pathway from generalist
capability to reusable, domain-specific competence, improving both accuracy and
efficiency on complex reasoning tasks.

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong performance across a wide range of
tasks [1; 2]. However, a standalone LLM is still often insufficient for complex real-world tasks,
especially those that demand professional domain knowledge and difficult multi-step reasoning. To
further enhance their problem-solving capability, recent work constructs agentic systems around
LLMs that decompose tasks, orchestrate tools and data sources, and iterate via feedback [3; 4; 5].
Embedding an LLM within an agentic system mitigates the limitations of its parametric knowledge
and, by leveraging external knowledge sources and tools, enables deep research ability, demonstrating
remarkable capabilities in task decomposition, tool coordination, and adaptive reasoning across
diverse domains [6; 7]. Beyond these abilities, a distinguishing property of advanced agent systems
is their potential for self-evolution [2; 8]: by leveraging self-generated content and both internal and
external feedback, they can bootstrap their capabilities and, with minimal explicit human intervention,
evolve into increasingly capable agent systems.

Despite rapid progress in self-evolving agents, current systems still exhibit limitations that constrain
their evolutionary potential and downstream performance. Evolution is often narrow in scope: agents
iteratively polish performance in a single target task or a restricted domain without the capacity to lift
a general-purpose agent into a domain expert across a set of related tasks [4; 9]. At the same time,
evolution is typically shallow in mechanism: many methods tune only a limited subset of modules or
tools [10; 11], or a or rely on error-repair heuristics [12], instead of performing task-conditioned,
end-to-end adaptation of the whole architecture. End-to-end evolution is important sincereal tasks
demand planning, decomposition, tool use, and memory to improve together rather than in isolation.
Likewise, transforming a general agent into a domain expert across a task set improves transfer and
sample efficiency within that domain, supports robust generalization to new but related tasks, and
sustains long-horizon improvement.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these limitations, we define a new paradigm of self-evolution: transforming a general-
purpose agent into a domain expert across a set of tasks through task-conditioned, end-to-end
adaptation. Building on this paradigm, we introduce ALITA-G, a framework that enables such
transformation and achieves substantially improved performance within the target domain. to deep
expertise and strong performance on domain-specific tasks. Our method employs a multi-execution
strategy, where a generalist agent repeatedly engages the task collection and systematically synthesizes
diverse Model Context Protocol (MCP) [13] components to capture, generalize, and adapt behaviors
across executions. Across iterations, we harvest high-quality MCPs from successful runs and subject
them to abstraction and refinement to build domain-specific MCP repositories, referred to as MCP
Box. These repositories serve as specialized toolkits that support retrieval-augmented tool selection at
inference time, allowing agents to dynamically identify and invoke the most contextually relevant
MCPs for novel tasks in their specialization domain. From a system-level perspective, ALITA-G
integrates two central dimensions. It is evolving as it end-to-end transforms a general agent into a
domain specialist, and it is generative as it instantiates task-specific specialists on demand. This dual
capability improves both the efficiency of agent construction and the effectiveness of domain problem
solving.

We conduct comprehensive experiments across diverse benchmarks, GAIA [14], PathVQA [15], and
Humanity’s Last Exam [16], to validate the effectiveness of our approach. The results demonstrate
that ALITA-G generates high-performing domain-specialist agents across multiple domains: these
specialists deliver strong in-domain performance while reducing computational overhead relative to a
generalist agent. On the challenging GAIA benchmark, our method achieves 83.03% pass@1 and
89.09% pass@3 accuracy, establishing a new state-of-the-art performance. Detailed ablations and
analyses confirmed the necessity of each component and the advantages of our key hyperparameter
choices. Our contribution can be summarized in three dimensions:

• We present ALITA-G, a novel self-evolution framework that transforms generalist agents
into domain specialists to achieve substantially improved performance within a specific
domain.

• We are the first to couple MCP abstraction with MCP-level retrieval-augmented generation
(RAG) in a single framework. This design distills task-specific MCPs into reusable primitives
and retrieves them at inference, yielding consistent gains in accuracy while reducing compute
and latency.

• Across diverse benchmarks, our method improves performance while reducing compute;
on the GAIA validation set, it achieves 83.03% pass@1 and 89.09% pass@3 (new SOTA),
scales with MCP Box richness, and ablations verify the contribution of each component.

2 METHODS

We introduce ALITA-G, a novel framework for automatic agent generation that constructs task-specific
agents through systematic MCP box curation and retrieval-augmented tool selection. Our approach
addresses the fundamental challenge of agent design automation by leveraging task-driven MCP
generation and intelligent tool filtering mechanisms, overcoming the limitations of prior methods that
are narrow in scope or shallow in mechanism.

2.1 PROBLEM FORMULATION

Given a collection of target tasks T = {(xi, yi)}Ni=1 where xi represents task specifications and yi
denotes desired outcomes, our objective is to automatically synthesize a specialized agent πspecialized
capable of effectively handling tasks within the domain defined by T .

Formally, we aim to construct:

πspecialized = Alita-G(T , πmaster), (1)

where πmaster is a powerful general-purpose agent system, and the resulting specialized agent should
satisfy:

E(x,y)∼Dtarget [I{πspecialized(x) = y}] > E(x,y)∼Dtarget [I{πbase(x) = y}], (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Task-Driven MCP Generation

Task 1

Task 2

Task n

Parameter Generalization

Context Removal

Interface Standardization

Documentation Enhancement

Task Analyzer

MCP Retriever

MCP Executor

CodeAct
 Loop

Similarity 1

Answer

Query

Raw MCP Pool

Specialized Agent

Multiple times

…

MCP Abstraction & Box Construction

MCP 1

…

MCP kMaster Agent

MCP Box

Filtered MCP Box

RAG-Enhanced MCP Selection

Threshold-based / Top-k Selection

Manager Agent

Use case &

Description

MCP 1

…

Query

Similarity m…

Use case &

Description

MCP m

Retrieve

Execute

Figure 1: Overall workflow of ALITA-G. The process begins with task-driven MCP generation, where
a Master Agent repeatedly executes target tasks and distills a pool of raw MCPs from successful
trajectories. These MCPs are then abstracted and refined through parameter generalization, context
removal, interface standardization, and documentation enhancement to form a reusable MCP Box.
At inference time, the MCP Box supports RAG-enhanced tool selection: user queries are matched
against MCP descriptions, and threshold/top-k filtering yields a contextually relevant set of MCPs.
Finally, a specialized agent—comprising a Manager Agent with a Task Analyzer, MCP Retriever, and
MCP Executor—runs a CodeAct loop to retrieve and invoke the selected MCPs, thereby transforming
a general-purpose agent into a domain specialist for end-to-end task solving.

where Dtarget represents the target task distribution and πbase denotes a baseline agent without special-
ized capabilities.

2.2 TASK-DRIVEN MCP GENERATION

Our framework begins with systematic MCP generation through the master agent’s task execution.
When processing each task (xi, yi) ∈ T , the master agent πmaster produces a reasoning trajectory:

τi = (r
(i)
1 , a

(i)
1 , o

(i)
1 , . . . , r

(i)
Li
, a

(i)
Li
, o

(i)
Li
), (3)

where r
(i)
t ∈ R represents reasoning tokens, a(i)t ∈ A denotes action tokens (including MCP

generation calls), and o
(i)
t ∈ O corresponds to environmental observations.

During trajectory execution, the master agent is guided by explicit prompting to externalize reusable
sub-solutions as self-contained MCPs rather than only producing final answers. The prompt instructs
the agent to modularize complex sub-tasks into callable procedures with standardized interfaces and
documentation, so that solving a task also expands the MCP pool for future reuse. We denote the j-th
MCP generated during the execution of task i as MCPi,j , which includes both the executable code
and associated metadata:

MCPi,j = {codei,j , descriptioni,j , use_casei,j}, (4)

where descriptioni,j provides a concise functional summary and use_casei,j records the specific task
context that triggered the MCP’s creation.

To ensure quality and reliability, we implement a multi-execution strategy where each task (xi, yi)
is executed K times, generating potentially different MCP variants. We collect MCPs only from
successful executions where πmaster(xi) = yi, forming the raw MCP pool:

L = {MCP(k)
i,j | π

(k)
master(xi) = yi, i ∈ [N], j ∈ [Jk,i], k ∈ [K]}, (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where Jk,i denotes the number of MCPs generated for task i during the k-th execution run.

2.3 MCP ABSTRACTION AND BOX CONSTRUCTION

Following the principles established in agent distillation literature, we apply abstraction techniques
to transform instance-specific MCPs into generalizable tools. For each MCP in the raw pool L, we
employ a high-capacity language model to perform abstraction:

M̂CP
(k)

i,j = LLMabstract(MCP(k)
i,j) (6)

The abstraction process accomplishes several critical transformations:

• Parameter Generalization: Replace hard-coded values with configurable parameters

• Context Removal: Eliminate task-specific references while preserving core functionality

• Interface Standardization: Ensure compatibility with FastMCP [17] protocol specifica-
tions, which is a high-performance implementation of the Model Context Protocol that
provides optimized runtime support for dynamic tool integration and execution.

• Documentation Enhancement: Generate comprehensive docstrings and type annotations

Unlike traditional clustering approaches, our method preserves the diversity of MCP implementations
to maximize coverage of potential task variations. The complete MCP box is defined as:

B = {M̂CPm | m ∈ [M]}, (7)

where M = |L| represents the total number of abstracted MCPs, and each M̂CPm maintains its
original metadata structure with abstracted code, preserved description, and use case information.

2.4 RAG-ENHANCED MCP SELECTION

To address the challenge of tool relevance in diverse task scenarios, we introduce a retrieval-augmented
generation mechanism for dynamic MCP selection. For each M̂CPm ∈ B, we construct a composite
representation by concatenating its description and use case: contextm = descriptionm ⊕ use_casem,
where ⊕ denotes string concatenation.

Given a new task query xnew, we compute semantic embeddings for both the query and all MCP
contexts using a pre-trained embedding model ϕ:

equery = ϕ(xnew), em = ϕ(contextm), ∀m ∈ [M] (8)

The relevance score between the query and each MCP is computed using cosine similarity:

sm =
equery · em

∥equery∥2∥em∥2
(9)

Our framework supports two complementary strategies for MCP selection based on the computed
relevance scores:

Threshold-based Selection: We select MCPs whose relevance scores exceed a predefined threshold
τ :

Bthresh
filtered = {M̂CPm | sm ≥ τ,m ∈ [M]} (10)

This approach ensures that only sufficiently relevant tools are included, providing quality control over
the selected MCP subset while maintaining flexibility in the number of selected tools.

Top-k Selection: Alternatively, we select the k MCPs with the highest relevance scores:

Btop-k
filtered = {M̂CPm | m ∈ argsort({sj}Mj=1)[−k :]} (11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This strategy guarantees a fixed number of tools for consistent computational overhead while ensuring
that the most relevant MCPs are always selected, regardless of their absolute similarity scores.

The choice between threshold-based and top-k selection depends on task characteristics and computa-
tional constraints. Threshold-based selection adapts the tool set size to task complexity, while top-k
selection provides predictable resource utilization. This RAG-based filtering mechanism ensures
that the specialized agent operates with a focused, relevant tool set for each specific task, thereby
improving both efficiency and performance.

2.5 SPECIALIZED AGENT ARCHITECTURE

The final specialized agent πspecialized integrates the master agent’s core reasoning capabilities together
with the curated MCP box and RAG-based tool selection mechanism. The agent architecture
comprises:

• Task Analyzer: Processes incoming tasks and generates appropriate embedding representa-
tions

• MCP Retriever: Implements the RAG-based selection algorithm to identify relevant tools
• MCP Executor: Provides runtime support for dynamic tool invocation with standardized

interfaces

The inference process follows a structured pipeline that accommodates both selection strategies. A
detailed workflow is shown in Algorithm algorithm 1.

Through this systematic approach, ALITA-G automatically constructs specialized agents that inherit
the master agent’s reasoning capabilities while being equipped with task-specific, efficiently retriev-
able tools, thereby achieving superior performance on target task domains with minimal manual
intervention.

3 EXPERIMENTS

Through extensive experiments on diverse task domains, we demonstrate that ALITA-G produces
automatically generated agents that consistently surpass general-purpose agents in both accuracy and
efficiency.

3.1 EXPERIMENTAL SETUP

Settings. Throughout all experiments, we employ a unified agent architecture consisting of a
Manager Agent and a Web Agent, following the Alita framework [4]. The Manager Agent utilizes
Claude-Sonnet-4 as the base model for high-level task coordination and reasoning, while the Web
Agent leverages GPT-4.1 for external information retrieval and web interactions. We select the
currently most powerful text embedding model, OpenAI’s text-embedding-3-large [18], as the
embedding computation model, and employ threshold mode for filtering, incorporating MCPs with
similarity scores greater than τ = 0.7 for usage. We use GAIA [14], PathVQA [15] and The
Humanity’s Last Exam (HLE) [16] as benchmarks, details can be found in Appendix C. We report
both the accuracy achieved on these benchmarks and the average number of tokens consumed during
answer generation.

Baselines. We compare our approach against several state-of-the-art agent systems and variants of
our method:

• Octotools [19]: A tool-augmented agent framework that provides agents with access to a
predefined collection of specialized tools for various tasks.

• ODR-smolagents [20]: The Open Deep Research agent implementation within the Smola-
gents framework, representing a strong baseline for general-purpose agent capabilities.

• Original Agent System: The master agent used for MCP generation, evaluated without
access to the specialized MCP box to establish the baseline performance of the underlying
architecture.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Method Metric GAIA PathVQA HLE
Level 1 Level 2 Level 3 Total

Baseline Methods

Octotools Accuracy (%) - - - 18.04 47 -
Avg. Tokens - - - - - -

ODR-smolagents Accuracy (%) 67.92 53.49 34.62 55.15 42 -
Avg. Tokens - - - - - -

Original Agent System

Original (pass@1) Accuracy (%) 77.36 76.74 65.38 75.15 52 24
Avg. Tokens 11058 12467 14308 12305 12542 14730

Original (pass@3) Accuracy (%) 88.68 89.53 76.92 87.27 63 39
Avg. Tokens 10947 12492 14489 12310 12627 14503

Generated Agents (Our Method)

ALITA-G1× (pass@1) Accuracy (%) 84.91 80.23 69.23 80.00 56 28
Avg. Tokens 10149 11357 13094 11243 10867 13128

ALITA-G1× (pass@3) Accuracy (%) 90.56 89.53 80.77 88.48 64 41
Avg. Tokens 10259 11297 13027 11236 10862 13096

ALITA-G3× (pass@1) Accuracy (%) 86.80 83.72 73.08 83.03 60 33
Avg. Tokens 9951 10258 11746 10394 10574 11956

ALITA-G3× (pass@3) Accuracy (%) 90.56 90.70 80.77 89.09 66 42
Avg. Tokens 10025 10367 11689 10465 10479 12002

Table 1: Performance comparison across benchmarks and baseline methods. Each method is evalu-
ated on both test accuracy and computational efficiency (measured by average token consumption).
Original refers to the master agent system used to generate MCP boxes for specialized agents.
ALITA-G1× and ALITA-G3× represent our method equipped with MCP boxes generated from single
and triple task executions respectively. pass@1 and pass@3 indicate single-attempt and best-of-three-
attempts evaluation protocols. Bold values indicate the best performance in each category.

3.2 EXPERIMENTAL RESULTS

Table 1 presents the comprehensive evaluation results across all benchmarks and baseline configura-
tions.

Our experimental results demonstrate several key findings that validate the effectiveness of the
proposed ALITA-G framework:

Superior Task-Specific Performance. The automatically generated agents consistently outperform
both general-purpose baselines and the original agent system across all benchmarks. ALITA-G
(3×) pass@1 achieves 83.03% accuracy on GAIA, representing a 50.5% relative improvement over
ODR-smolagents (55.15%) and a 10.3% improvement over the original agent system with pass@1
(75.15%). Similar performance gains between ALITA-G (3×) pass@1 and original agent system
pass@1 are observed on PathVQA (60% vs. 52%) and HLE (33% vs. 24%), demonstrating the
generalizability of our approach across diverse task domains.

MCP Box Quality Correlation. The comparison between single-generation and triple-generation
MCP boxes reveals a clear correlation between MCP box richness and agent performance. The
triple-generation variant consistently achieves higher accuracy across all benchmarks, with notable
improvements on GAIA (83.03% vs. 80.00%) and more substantial gains on complex reasoning tasks
in PathVQA and HLE. This finding supports our hypothesis that multiple execution rounds lead to
more comprehensive and robust tool collections.

Computational Efficiency Gains. Remarkably, our specialized agents achieve superior accuracy
while demonstrating significantly improved computational efficiency. ALITA-G (3×) reduces average
token consumption to 10,394 on GAIA compared to 12,305 for the original baseline, representing a
15.5% efficiency improvement. This dual benefit of enhanced performance and reduced computational
cost stems from the targeted nature of the MCP box, which provides agents with precisely the tools
needed for specific task categories, eliminating extensive tool search processes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Iter. Level 1 Level 2 Level 3 Average # MCPs # Clusters Mean Sim. Median Sim.
1 84.91 80.23 69.23 80.00 26 26 0.28 0.27
2 84.91 81.40 71.15 81.82 46 41 0.31 0.29
3 86.79 82.56 73.08 83.03 74 52 0.30 0.28
4 86.79 82.56 73.08 83.03 102 60 0.32 0.30
5 86.79 83.72 73.08 83.63 128 65 0.34 0.31

Table 2: Performance and MCP Box statistics versus the number of generation iterations k on the
GAIA validation set. Accuracies are reported in % for each difficulty level and their average. # MCPs
is the count of curated MCPs in the MCP Box after filtering and abstraction. Mean/Median Sim.
mean statistics of pairwise cosine similarity between MCP embeddings, where Mean Sim. denotes
the average pairwise similarity, Median Sim. denotes the Median of pairwise similarities. # Clusters
is the number of connected components when linking MCP pairs with similarity (≥ 0.7, serving as a
proxy for the number of independent MCPs. Iter. denotes how many times the original task set is run
when constructing the MCP Box.

The consistent improvements across multiple evaluation dimensions provide strong empirical evidence
for the effectiveness of our automatic agent generation methodology. These results demonstrate
that task-driven MCP curation, combined with intelligent retrieval mechanisms, enables the creation
of specialized agents that surpass general-purpose systems in both performance and computational
efficiency.

4 ANALYSIS

4.1 ANALYSIS OF MCP BOX SCALABILITY

To understand the performance boundaries of MCP Box expansion and identify the optimal number
of generation iterations, we investigate the relationship between MCP generation frequency and agent
performance improvements across different task complexities.

Settings. We use the full GAIA validation set and vary the number of generation iterations
k ∈ {1, 2, 3, 4, 5}. Each iteration runs the master agent once over the entire validation set to harvest
additional MCPs, followed by filtering and abstraction to construct the accumulated MCP Box.
For each k we report: (i) the number of curated MCPs; (ii) summary statistics (mean and median)
of pairwise MCP similarity; and (iii) the number of clusters under a fixed similarity threshold.
Concretely, we embed each MCP by concatenating its description and use-case fields, encoding the
resulting text with text-embedding-3-large, and ℓ2-normalizing the embedding. Cosine similarity
between two MCPs is then the inner product of their normalized embeddings. To quantify redundancy,
we build an undirected similarity graph whose vertices are MCPs and whose edges connect pairs with
similarity at least τ = 0.7; the reported cluster count is the number of connected components in this
graph. Downstream agent performance is evaluated with the accumulated MCP Box while keeping
all other configurations identical to Section 3.

Results. Performance shows substantial gains from iterations 1 to 3 before exhibiting clear
saturation and diminishing returns. Table 2 exhibits a clear pattern of diminishing returns in
MCP Box scalability. The largest gains occur when increasing the number of generations from k=1
to k=3, with average accuracy rising from 80.00% to 83.03%. We attribute this improvement to
the stochasticity of MCP discovery: the master agent does not consistently surface the most useful
MCPs in a single pass, and multiple passes enrich coverage of the task distribution. Beyond k=3,
additional iterations yield marginal benefits—the average remains flat at k=4 and nudges to 83.63%
at k=5. Per-level trends echo this picture: Level 1 saturates by k=3 (84.91→86.79), Level 3 plateaus
thereafter (69.23→73.08), and the modest late-stage gain is concentrated in Level 2 (82.56 at k=3 to
83.72 at k=5)

Similarity analysis reveals progressive redundancy accumulation that explains the performance
plateau. Complementing these performance trends, the similarity and clustering statistics indicate
increasing redundancy as the MCP Box grows. Under the fixed threshold τ=0.7, the number of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Metric 1 Generation 2 Generation 3 Generation
Overall accuracy (%) 80.00 81.52 83.03
Wrong→Right # (vs. baseline) 9 12 13
Right→Wrong # (vs. baseline) 1 1 0

Avg. MCP calls per question 1.9 2.2 2.4
Avg. MCP calls per improved questions 2.7 3.0 3.4

Table 3: MCP usage and outcome metrics on the GAIA validation set across MCP Box
configurations. 1 Generation, 2 Generation, and 3 Generation refer to MCP Boxes constructed
via one, two, and three iterative generation rounds. Wrong→Right # (vs. baseline) counts
items that the baseline agent (without an MCP Box) answers incorrectly, but the integrated
agent answers correctly. Right→Wrong # (vs. baseline) counts items that the baseline answers
correctly, but the integrated agent answers incorrectly. Avg. MCP calls per question is the
mean number of calls to any MCP per question over all instances. Avg. MCP calls per
improved question are the same mean computed only over the Wrong→Right subset.

connected components—our proxy for effective MCP families—increases sublinearly relative to
the total number of curated MCPs: clusters grow from 26 to 65 while MCPs grow from 26 to
128. Consequently, the effective-coverage ratio (#Clusters/#MCPs) drops from 1.00 (k=1) to 0.51
(k=5), and the marginal yield of new, independent clusters per iteration diminishes (+15, +11, +8,
+5 from k=1→5). The performance plateau between k=3 and k=4 coincides with an addition
of 28 MCPs but only 8 new clusters alongside a rise in average similarity, suggesting that later
iterations predominantly introduce near-duplicates or narrow variants of existing capabilities. Taken
together, these results indicate that k=3 offers a favorable balance between computational cost and
utility—capturing most of the diverse, high-impact MCP families while avoiding the redundancy that
characterizes further expansions.

4.2 MCP BEHAVIOR ANALYSIS

To validate that agents indeed gain enhanced capabilities through MCP Box integration, we conduct
a detailed analysis of MCP usage patterns in generated agents.

Settings. We analyze MCP usage behavior on the GAIA validation set using agents equipped with
MCP Boxes generated through 1, 2, and 3 iterative rounds, donated as 1/2/3 Generation. Beyond
usage metrics, we additionally report (a) overall accuracy after MCP Box integration, (b) the number
of questions flipped from wrong to right (Wrong→Right) relative to the baseline (no MCP Box),
and (c) the number flipped from right to wrong (Right→Wrong). All metrics are computed on the
same GAIA validation set. We continue to track the average number of MCP calls per question over
all instances and specifically for improved questions (incorrect under the baseline but correct after
integration). An MCP call refers to one invocation to any MCP in the connected MCP Box; the same
MCP may be called multiple times within a single task.

Results. Table 3 shows a clear trend of increased MCP utilization as the MCP Box becomes more
mature. The average number of MCP calls per question rises monotonically from 1.9 to 2.4 when
moving from 1 to 3 generations, while the corresponding average on improved questions increases
from 2.7 to 3.4. Notably, improved questions consistently elicit substantially more MCP usage
than the overall average—about 1.4× more in all configurations (2.7/1.9= 1.42, 3.0/2.2= 1.36,
3.4/2.4= 1.42). The marginal increments suggest targeted deployment of MCPs on challenging
instances: overall usage grows by +0.3 then +0.2 calls, whereas improved-question usage grows
by +0.3 then +0.4, indicating that later generations concentrate additional tool use where it is most
impactful.

Turning to answer correctness, overall accuracy improves steadily from 80.00% to 83.03% as the
number of generations increases from 1 to 3 (a gain of +3.03 points). These gains are driven
primarily by Wrong→Right flips (9/12/13), while Right→Wrong flips are rare (1/1/0), yielding net
improvements of +8, +11, and +13 respectively. The low incidence of regressions—vanishing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

by the 3-generation setting—indicates that the method is robust: it rarely converts correct baseline
answers into errors while delivering consistent accuracy gains as the MCP Box is strengthened. Upon
closer examination of the Right→Wrong cases in the 1- and 2-generation settings, we observe that
these involve distinct questions and stem from reasoning errors introduced during agent execution
rather than incorrect MCP usage. These regressions appear attributable to inherent LLM robustness
limitations within the agent system rather than deficiencies introduced by MCP Box integration.

5 RELATED WORKS

5.1 AUTO GENERATING AGENT

Recent advances in automated agent construction have focused on generating agents or agent systems
with varying degrees of automation and scope. AutoAgents [21] pioneers automatic multi-agent
generation by dynamically creating specialized agents. Building on this foundation, AutoGenesis-
Agent [22] introduces self-generating capabilities with lifecycle management for multi-agent systems,
while EvoAgent [23] applies evolutionary algorithms to extend expert agents into multi-agent con-
figurations. MetaGPT [24] incorporates human software development workflows into LLM-based
multi-agent collaboration. More recently, AutoAgent [25] provides a zero-code framework for
creating LLM agents, and Dynamic LLM-Agent Network [26] focuses on automatic agent team
optimization without requiring strong human priors. Our work differs fundamentally by generating
complete, task-specific agents ready for downstream deployment, rather than focusing on isolated
component generation or requiring extensive manual configuration for integration.

5.2 SELF-EVOLVING AGENT

Self-evolving agents represent a paradigm where AI systems autonomously improve their capabilities
through iterative learning and adaptation. Recent comprehensive surveys [2] categorize these systems
based on their evolution mechanisms, ranging from parametric updates to non-parametric component
optimization. Early foundational work includes Reflexion [27], which introduces verbal reinforcement
learning for language agents through self-reflection and memory-based learning, and ExpeL [28],
which enables agents to gather and learn from experiential data across training tasks autonomously.
More recent advances have explored diverse self-evolution mechanisms such as SAGE [29], Agent-
Pro [30], Gödel Agent [31], RAGEN [32], EvolveSearch [33] and SELF [34]. Our framework can be
conceptualized as a form of agent self-evolution, where agents leverage previously generated tools
from past task executions to enhance performance on similar future tasks, achieving both improved
accuracy and computational efficiency.

5.3 MCP

Model Context Protocol (MCP) has emerged as a standardized framework for enabling seamless
integration between AI systems and external tools or data sources [35; 36; 37; 38]. Introduced by
Anthropic [13], MCP provides a unified interface that addresses fragmentation challenges in tool
integration for LLM-based agents. Our methodology relies on constructing high-quality MCP boxes
as the foundation for generating specialized agents, where the richness and relevance of the MCP
collection directly correlates with the resulting agent’s task-specific performance. While [39] also
leverages the MCP as a conduit for distilling capabilities across agents, their focus is on curating
strong teacher agents to assist weaker ones. In contrast, our work targets the end-to-end evolution of a
more powerful domain-specialist agent tailored to a specific target domain, moving beyond assistance
to specialization.

6 CONCLUSION

In this paper, we introduce ALITA-G, a novel self-evolution framework that transforms generalist
agents to domain-specific experts. By organizing task-derived tools into MCP Boxes with RAG, our
approach significantly enhances agent capabilities on specific domain tasks. Future work could further
expand the ways agents perform self-evolution, enabling even greater leaps in agent development
through collaborative enhancement across multiple dimensions beyond the current framework.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We will open-source our code and evaluation scripts upon publication. All datasets, model settings
are described in the paper, enabling researchers to reproduce all reported experiments and results.

REFERENCES

[1] Hongru Wang, Lingzhi Wang, Yiming Du, Liang Chen, Jingyan Zhou, Yufei Wang, and Kam-
Fai Wong. A survey of the evolution of language model-based dialogue systems: Data, task and
models, 2025.

[2] Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, et al. A survey of self-evolving agents: On path to artificial
super intelligence. arXiv preprint arXiv:2507.21046, 2025.

[3] Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu,
and Yemin Shi. Autoagents: A framework for automatic agent generation. arXiv preprint
arXiv:2309.17288, 2023.

[4] Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang,
Zixin Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reason-
ing with minimal predefinition and maximal self-evolution. arXiv preprint arXiv:2505.20286,
2025.

[5] Jiahao Qiu, Fulian Xiao, Yimin Wang, Yuchen Mao, Yijia Chen, Xinzhe Juan, Shu Zhang, Siran
Wang, Xuan Qi, Tongcheng Zhang, et al. On path to multimodal historical reasoning: Histbench
and histagent. arXiv preprint arXiv:2505.20246, 2025.

[6] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model
based agents: A survey. arXiv preprint arXiv:2309.07864, 2023.

[7] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, et al. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023.

[8] Jinyuan Fang, Yanwen Peng, Xi Zhang, Yingxu Wang, Xinhao Yi, Guibin Zhang, Yi Xu, Bin Wu,
Siwei Liu, Zihao Li, et al. A comprehensive survey of self-evolving ai agents: A new paradigm
bridging foundation models and lifelong agentic systems. arXiv preprint arXiv:2508.07407,
2025.

[9] Jiabin Tang, Tianyu Fan, and Chao Huang. Autoagent: A fully-automated and zero-code
framework for llm agents. arXiv e-prints, pages arXiv–2502, 2025.

[10] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. In International
Conference on Learning Representations, 2023.

[11] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+
real-world apis. arXiv preprint arXiv:2307.16789, 2023.

[12] Xiang Huang, Sitao Cheng, Shanshan Huang, Jiayu Shen, Yong Xu, Chaoyun Zhang, and
Yuzhong Qu. Queryagent: A reliable and efficient reasoning framework with environmental
feedback-based self-correction. arXiv preprint arXiv:2403.11886, 2024.

[13] Anthropic. Introducing the model context protocol, 2024.

[14] Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[15] Xuehai He, Yichen Zhang, Luntian Mou, et al. Pathvqa: 30000+ questions for medical visual
question answering. arXiv preprint arXiv:2003.10286, 2020.

[16] Yang Liu, Wei Chen, and Ming Zhang. Hle: Human-level evaluation benchmark for complex
reasoning, 2024.

[17] J. Lowin. Fastmcp: The fast, pythonic way to build mcp servers and clients, 2024. GitHub
repository.

[18] OpenAI. New embedding models and api updates, 2024.

[19] John Smith and Alice Johnson. Octotools: A comprehensive tool-augmented agent framework.
https://github.com/octotools/octotools, 2024.

[20] Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik
Kaunismäki. ‘smolagents‘: a smol library to build great agentic systems. https://github.
com/huggingface/smolagents, 2025.

[21] Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu,
and Yemin Shi. Autoagents: A framework for automatic agent generation. arXiv preprint
arXiv:2309.17288, 2023.

[22] J Harper. Autogenesisagent: Self-generating multi-agent systems for complex tasks. arXiv
preprint arXiv:2404.17017, 2024.

[23] Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Li. Evoa-
gent: Towards automatic multi-agent generation via evolutionary algorithms. arXiv preprint
arXiv:2406.14228, 2024.

[24] Sirui Hong, Ming Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a
multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, 2023.

[25] Jinheng Tang, Tianyu Fan, and Chao Huang. Autoagent: A fully-automated and zero-code
framework for llm agents. arXiv preprint arXiv:2502.05957, 2025.

[26] Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent net-
work: An llm-agent collaboration framework with agent team optimization. arXiv preprint
arXiv:2310.02170, 2023.

[27] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems, pages 5446–5461, 2023.

[28] Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Jeffrey Ichnowski.
Expel: Llm agents are experiential learners. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 19637–19645, 2024.

[29] Xinhao Liang, Yuxiang He, Yongqi Xia, Xinyu Song, Jinyu Wang, Mingxuan Tao, Kaiwen Li,
Yimeng Wang, Yifan Liu, and Dejian Dou. Self-evolving agents with reflective and memory-
augmented abilities. arXiv preprint arXiv:2409.00872, 2024.

[30] Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Tan, Weiming Li,
Zhongyu Lu, and Yiming Chen. Agent-pro: Learning to evolve via policy-level reflection and
optimization. arXiv preprint arXiv:2402.17574, 2024.

[31] Xunjian Yin, Xu Wang, Liangming Pan, Liangjun Lin, Xiaojun Wan, and William Yang Wang.
Gödel agent: A self-referential agent framework for recursive self-improvement. arXiv preprint
arXiv:2410.04444, 2024.

[32] Zihan Wang, Kaiwen Wang, Qiyao Wang, Pengjie Zhang, Lei Li, and William Yang Wang.
Ragen: Understanding self-evolution in llm agents via multi-turn reinforcement learning. arXiv
preprint arXiv:2504.20073, 2025.

11

https://github.com/octotools/octotools
https://github.com/huggingface/smolagents
https://github.com/huggingface/smolagents

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[33] Dingcheng Zhang, Yujie Zhao, Jingyi Wu, Bin Li, Wenpeng Yin, Liang Zhang, and Peng Zhang.
Evolvesearch: An iterative self-evolving search agent. arXiv preprint arXiv:2505.22501, 2025.

[34] Jianqiao Lu, Wanjun Zhong, Weiwen Huang, Yutai Wang, Qiqi Zhu, Fei Mi, Baoxun Wang,
Weiming Li, Wenyong Liu, and Lifeng Jin. Self: Self-evolution with language feedback. arXiv
preprint arXiv:2310.00533, 2023.

[35] Tiantian Gan and Qiyao Sun. Rag-mcp: Mitigating prompt bloat in llm tool selection via
retrieval-augmented generation. arXiv preprint arXiv:2505.03275, 2025.

[36] Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang,
Zixin Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reason-
ing with minimal predefinition and maximal self-evolution. arXiv preprint arXiv:2505.20286,
2025.

[37] Huihao Jing, Haoyu Li, Weiwei Hu, Qingyu Hu, Hao Xu, Tiansheng Chu, Peng Hu, and Yihang
Qin. Mcip: Protecting mcp safety via model contextual integrity protocol. arXiv preprint
arXiv:2505.14590, 2025.

[38] Sanjay Kumar, Akash Girdhar, Rohan Patil, and Deepak Tripathi. Mcp guardian: A security-first
layer for safeguarding mcp-based ai system. arXiv preprint arXiv:2504.12757, 2025.

[39] Jiahao Qiu, Xinzhe Juan, Yimin Wang, Ling Yang, Xuan Qi, Tongcheng Zhang, Jiacheng
Guo, Yifu Lu, Zixin Yao, Hongru Wang, Shilong Liu, Xun Jiang, Liu Leqi, and Mengdi Wang.
Agentdistill: Training-free agent distillation with generalizable mcp boxes, 2025.

[40] Jinze Bai et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2024.

[41] Chankyu Lee et al. Nv-embed: Improved techniques for training llms as generalist embedding
models. arXiv preprint arXiv:2405.17428, 2024.

[42] Shitao Xiao et al. C-pack: Packaged resources to advance general chinese embedding. arXiv
preprint arXiv:2309.07597, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LLMS

LLMs did not play an important role in this paper’s research ideation or writing to the extent that they
should be regarded as a contributor. In the experiments, LLMs are the main experimental object.

B ALGORITHM DETAILS

Algorithm 1: Specialized Agent Inference
1: Input: Task query xnew, MCP box B, selection mode mode ∈ {threshold, top-k}, parameter θ

(threshold τ or k)
2: equery ← ϕ(xnew)
3: for m = 1 to M do
4: em ← ϕ(descriptionm ⊕ use_casem)
5: sm ← cosine_similarity(equery, em)
6: end for
7: if mode = threshold then
8: Bfiltered ← {M̂CPm | sm ≥ θ,m ∈ [M]}
9: else if mode = top-k then

10: Bfiltered ← Top-k-Select({sm},B, θ)
11: end if
12: context← Initialize(xnew,Bfiltered)
13: while not task_completed do
14: reasoning_step← ReasoningEngine(context)
15: if tool_required then
16: mcp← SelectTool(Bfiltered)
17: result← MCPExecutor(mcp, args)
18: context← Update(context, result)
19: end if
20: end while
21: Return: Final output ypredicted

C BENCHMARK DETAILS

We evaluate our framework on three challenging benchmarks that span different domains and
complexity levels:

• GAIA [14]: The General AI Assistant (GAIA) is a benchmark that comprises 466 real-
world questions across three difficulty levels, testing agents’ capabilities in web browsing,
tool usage, and complex reasoning. The benchmark includes questions ranging from
simple factual queries that require only single-tool usage to multi-step reasoning tasks that
necessitate extensive tool coordination. We use the complete validation set.

• PathVQA [15]: PathVQA is a medical visual question answering benchmark containing
pathology images paired with questions. The dataset requires specialized domain knowledge
and visual reasoning capabilities. Due to resource constraints, we randomly sample 100
representative examples for evaluation.

• HLE [16]: The Humanity’s Last Exam (HLE) is a challenging academic benchmark that
focuses on complex reasoning tasks that require multi-modal understanding and sophisticated
problem-solving strategies. Similar to PathVQA, we sample 100 examples to balance
comprehensive evaluation with computational efficiency.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Method Level 1 Level 2 Level 3 Average
RAG with Description+Use Case 86.80 82.55 73.08 83.03
RAG with Description 84.91 81.39 73.08 81.82
RAG with Use Case 83.01 79.06 61.53 77.57

Table 4: Performance comparison of different RAG content configurations on GAIA validation set
using triple-generation MCP boxes. RAG with Description refers to searching by the description of
the MCP function, while RAG with Use Case refers to searching by the task when generating this
MCP, and RAG with Description+Use Case refers to searching by combining the two.

Strategy Parameters and Accuracy (%)
Threshold (τ) 0.65 0.70 0.75 0.80 0.85 0.90
Accuracy 76.0 84.0 80.0 76.0 76.0 68.0

Top-k (k) 1 2 3 5 10 20
Accuracy 76.0 80.0 80.0 76.0 76.0 72.0

Table 5: Performance comparison of different MCP selec-
tion strategies on GAIA validation subset. Threshold-based
selection filters MCPs by semantic similarity scores above
threshold τ , while Top-k selection retrieves the k most similar
MCPs regardless of absolute similarity values. Results show
that threshold-based selection with τ = 0.70 achieves optimal
performance.

D ADDITIONAL ANALYSIS

D.1 ANALYSIS OF RAG CONTENT COMPONENTS

To understand the contribution of different components in our RAG-based MCP selection mechanism,
we evaluate the impact of using different textual representations for computing semantic embeddings.

Settings. We test three configurations: using only MCP descriptions for RAG, using only the use
cases that triggered MCP generation for RAG, and using the concatenation of both description and
use case (our main experimental setting). We compare agent performance under these settings on
the GAIA validation set, with all other experimental configurations kept consistent with the main
experiments section 3.

Results. The results are presented in Table 4. The results demonstrate that combining both
description and use case information achieves the best performance across all difficulty levels, with
an average accuracy of 83.03%. Using description alone for RAG achieves competitive performance
(81.82%), while using only use case information results in notably lower performance (77.57%). This
indicates that MCP descriptions provide more generalizable semantic information for tool selection,
while use case information, though valuable when combined with descriptions, is less effective as a
standalone retrieval signal.

D.2 ANALYSIS OF MCP SELECTION STRATEGIES

To understand the impact of different MCP selection mechanisms on agent performance, we evaluate
various MCP filtering approaches during the task execution phase, including threshold-based selection,
top-k selection, and different filtering thresholds.

Settings. We experiment with threshold values τ ∈ {0.65, 0.70, 0.75, 0.80, 0.85, 0.90} and top-k
values k ∈ {1, 2, 3, 5, 10, 20}. We sample 25 questions from the GAIA Validation Set for testing (9
Level 1, 12 Level 2, and 4 Level 3 questions, maintaining the distribution of the validation set across

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Embedding Encoder Accuracy (%)
text-embedding-3-large 84.0
text-embedding-3-small 80.0
Qwen3-Embedding-8B 76.0
NV-Embed-v2 72.0
BGE-M3 72.0

Table 6: Performance comparison of differ-
ent embedding encoders of RAG. The text-
embedding-3-large and text-embedding-3-
small refers to OpenAI’s corresponding em-
bedding model.

the three levels). The experiments use the MCP Box generated through triple executions on GAIA
validation, with all other settings kept consistent with the main experiments section 3.

Results The results are presented in Table 5. The results demonstrate that threshold-based selection
generally outperforms top-k selection. This may be attributed to the fact that different tasks require
varying numbers of MCPs from the MCP Box. Fixed top-k selection cannot adapt well to all
tasks—some tasks cannot utilize all suitable MCPs, while others receive irrelevant MCPs. When
using threshold-based selection, both excessively high and low thresholds harm performance. This is
understandable: low thresholds select task-irrelevant MCPs, while high thresholds exclude useful
MCPs that should be selected.

D.3 ANALYSIS OF EMBEDDING ENCODERS

We evaluate the impact of different embedding encoders on the RAG-based MCP selection mechanism.
The choice of encoder directly affects the quality of semantic similarity computation, which is crucial
for retrieving relevant MCPs during task execution.

Settings. We compare several state-of-the-art embedding models, including proprietary mod-
els OpenAI’s text-embedding-3-large [18], text-embedding-3-small [18], and open-source models
Qwen3-Embedding-8B [40], NV-Embed-v2 [41], and BGE-M3 [42]. We use the same 25 questions
sampled from GAIA validation as in subsection D.2. All other experimental settings remain consistent
with the main experiments section 3.

Results. The results are presented in Table 6. The results demonstrate that high-quality encoders
significantly impact task performance. More capable encoders help the model identify suitable MCPs
more effectively, thereby enabling greater improvements in task-solving capabilities. This finding
highlights the importance of encoder selection in retrieval-augmented agent architectures.

E CASE STUDY

We visualize the core mechanism of ALITA-G: task-driven MCP creation, its abstraction into a
reusable primitive, and the downstream effect on inference. Figure 2 illustrates how a raw, task-bound
MCP (left) produced during a marine biology literature task is abstracted into a parameterized,
FastMCP-compatible tool with standardized interfaces and documentation (right). This abstraction
converts ephemeral, instance-specific solutions into broadly reusable capabilities that can be reliably
retrieved across tasks.

Figure 3 demonstrates the impact at inference time. For a thermodynamics question, the baseline agent
without an MCP Box fails (predicting 20 mL), whereas the specialized agent retrieves the abstracted
extract_pdf_measurement via MCP-level RAG and solves the problem correctly (55 mL). The
comparison highlights that (i) abstraction is crucial for turning ad-hoc tool creations into general-
purpose components, and (ii) the MCP Box materially improves accuracy by enabling targeted,
retrieval-augmented tool selection at run time.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Raw MCP Abstracted MCP

What integer-rounded percentage of the total length of the harlequin shrimp recorded in Omar Valencia-Mendez 2017
paper was the sea star fed to the same type of shrimp in G. Curt Fiedler's 2002 paper?

Initial Task

def download_and_extract_pdf():
url = "<some specific url>"
…
with open(filename, 'wb') as f:

f.write(response.content)
text = extract_text(filename)
return text

def extract_measurements():
patterns = [r'(\d+\.?\d*)\s…]
…

def extract_pdf_measurement(pdf_url, target_units=None,
search_terms=None):

"""
Extract measurements from scientific PDFs with flexible unit
specification
Args:
pdf_url (str): URL of the PDF to download and process
target_units (list): Specific units to search for (e.g., ['ml', 'L',
'cm³'])
search_terms (list): Context terms to focus search
"""

Figure 2: MCP generation and abstraction. Left: A raw MCP emerges during execution to extract
measurements from scientific PDFs in response to a concrete task. Right: The MCP is abstracted,
where hard-coded values are lifted into parameters, interfaces are standardized to FastMCP, and
documentation is enhanced, yielding a reusable tool suitable for retrieval and reuse across tasks.

New Task
What is the volume in milliliters of a system comprised of 0.312 kg Freon-12 refrigerant when placed at the
bottom of the Marianas Trench and allowed to stabilize at the Trench's peak temperature, rounded to the
nearest mL? Provide your answer as just an integer value.

Baseline
 Agent

(without MCP Box)

Specialized
Agent

(with MCP Box)

Incorrect answer

 (20 mL)

Correct answer

 (55 mL)

Data Collection Attempts:
Attempted to find Freon-12 thermodynamic properties: Failed to obtain
accurate data

…
Calculation with Incomplete Data:

Used approximate values and simplified assumptions.

Call relevant MCP:
extract_pdf_measurement(
pdf_url="https://doi.org/10.1016/j.fluid.2018.03.021",
target_units=['ml', 'L', 'cm³', 'kg/m³'],
search_terms=['Freon-12', 'density', 'volume', 'pressure', 'temperature']
)

Figure 3: Effect of the MCP Box at inference. Baseline agent (no MCP Box): fails to obtain
precise thermodynamic properties and answers incorrectly (20 mL). Specialized agent (with MCP
Box): retrieves the abstracted extract_pdf_measurement via RAG, extracts the needed properties,
and answers correctly (55 mL). The example underscores how abstraction plus MCP-level retrieval
converts transient problem-solving into reusable competence that boosts downstream performance.

16

	Introduction
	Methods
	Problem Formulation
	Task-Driven MCP Generation
	MCP Abstraction and Box Construction
	RAG-Enhanced MCP Selection
	Specialized Agent Architecture

	Experiments
	Experimental Setup
	Experimental Results

	Analysis
	Analysis of MCP Box Scalability
	MCP Behavior Analysis

	Related Works
	Auto Generating Agent
	Self-Evolving Agent
	MCP

	Conclusion
	Reproducibility Statement
	The Use of LLMs
	Algorithm Details
	Benchmark Details
	Additional Analysis
	Analysis of RAG Content Components
	Analysis of MCP Selection Strategies
	Analysis of Embedding Encoders

	Case Study

