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ABSTRACT

Exploring brain activity in relation to visual perception provides insights into
the biological representation of the world. While functional magnetic resonance
imaging (fMRI) and magnetoencephalography (MEG) have enabled effective im-
age classification and reconstruction, their high cost and bulk limit practical use.
Electroencephalography (EEG), by contrast, offers low cost and excellent tem-
poral resolution, but its potential has been limited by the scarcity of large, high-
quality datasets and by block-design experiments that introduce temporal con-
founds. To fill this gap, we present EEG-ImageNet, a benchmark for pre-training
and cross-time generalization of visual decoding from EEG. We collected EEG
data from 16 participants while they viewed 4,000 images sampled from Ima-
geNet, with image stimuli annotated at multiple levels of granularity. Our design
includes two stages separated in time to allow cross-time generalization and avoid
block-design artifacts. We also introduce benchmarks tailored to non-block de-
sign classification, as well as pre-training experiments to assess cross-time and
cross-subject generalization. These findings highlight the dataset’s potential to
enhance EEG-based visual brain-computer interfaces, deepen our understanding
of visual perception in biological systems, and suggest promising applications for
improving machine vision models.

1 INTRODUCTION

Recent progress has been made in extracting clues from the human brain to inform advance-
ments in Al and neuroscience, largely driven by the extensive use of functional magnetic reso-
nance imaging (fMRI) (Heeger & Ress| (2002); |[Logothetis| (2008)); [Logothetis et al. (2001)) and
magnetoencephalogram (MEG) (Benchetrit et al.| (2023)) datasets. fMRI and MEG are widely
used to investigate various cognitive functions, neurological disorders, and brain connectivity pat-
terns (Antonello et al| (2024); Ye et al.| (2024)); [Toneva et al.| (2022)); Tang et al.| (2024))). Driven
by the use of deep neural networks, particularly diffusion-based and transformer-based models, it is
even possible to reconstruct human’s visual perceptions from fMRI or MEG recordings (Takagi &
Nishimoto| (2023)); |Scotti et al.| (2024)); (Ozcelik & VanRullen| (2023)); |Cheng et al.| (2023)). These
successes are largely attributed to the availability of large-scale datasets, which offer comprehensive
data essential to perform extensive studies and in-depth analyses (Richards et al.| (2019);|Lin et al.
(2014)). These models and large-scale datasets have opened new avenues for understanding the
brain’s intricate functions and for developing advanced applications in brain-computer interfaces,
neuroimaging, and beyond (St-Yves et al.|(2023))).

In addition to fMRI and MEG, electroencephalography (EEG) is another vital tool in neuroscience
research. EEG is easy to use, cost-efficient, and has high temporal resolution, making it a valuable
tool for capturing rapid and real-time brain dynamics on the order of milliseconds (Teplan et al.
(2002)). EEG signals can be obtained non-invasively by placing electrodes on the scalp, making it a
less intrusive method for monitoring brain activity. However, studies on visual perception with EEG
signals are limited because of three challenges: (1) the lack of large-scale, high-quality EEG dataset;
(2) existing EEG datasets typically featured coarse-grained image categories, lacking fine-grained
categories; and (3) many existing datasets use block-design experiments, causing temporal effects
that degrade data quality.
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Figure 1: The overall procedure of our dataset construction. The experimental paradigm involves
four steps: S1: Category Presentation (displaying the category label), S2: Fixation (500 ms), S3:
Image Presentation (each image displayed for 500 ms), and S4: an optional random test to verify
participant engagement. The stimuli images are sourced from ImageNet21k, with EEG signals
aligned to image indices, granularity levels, and labels. Data flow is indicated by blue arrows, while
collected data is highlighted in gray. Stage 2 experiment is conducted after a 7-day interval, adopting
a non-block-design experimental paradigm. The same colors represent the same categories.

On the one hand, existing visual-EEG datasets such as |[Spampinato et al.| (2017)) are limited by a
small number of participants and a restricted set of stimulus images. The limited data volume of
current EEG datasets limits research findings’ statistical power and generalizability. For example,
Things-EEG |Gifford et al.|(2022) employs a Rapid Serial Visual Presentation (RSVP) paradigm
with extremely short image presentation durations (e.g. 50 ms or 100 ms), where only early neural
responses are captured, limiting the ability to study the full temporal dynamics of visual perception.
On the other hand, the labels in existing EEG datasets are frequently coarse and lack the granularity
needed for detailed analysis. Multi-granularity labels are essential because they allow for a more
nuanced analysis at different levels of detail. For instance, labels can range from broad categories
like “panda” or “golf ball” to more specific attributes like “Rottweiler” or “Samoyed”. Third, recent
work shows a block-design experimental paradigm, in which EEG signals are affected by temporal
effects both before and after stimuli, leading to biases in within-session classification results
(2020)). These challenges underscore the necessity for new visual-EEG datasets and benchmarks
that incorporate larger-scale, multi-granularity labels as well as cross-time experimental designs.

To address these challenges, we present EEG-ImageNet, a novel EEG benchmark specifically de-
signed to promote research related to visual neuroscience, biomedical engineering, etc. As shown
in Figure [T, EEG-ImageNet has a comprehensive dataset that includes EEG recordings from 16
subjects, with a total of 22 sessions, each exposed to 4,000 images sourced from the ImageNet-
21k (Ridnik et al| (2021))). These images span 80 different categories, with 50 images per cate-
gory. The dataset is structured to support multi-granularity analysis, with 40 categories dedicated to
coarse-grained tasks and 40 to fine-grained. For 6 of the participants, we conducted Stage 2 exper-
iment after a 7-day interval, adopting a non-block-design experimental paradigm. EEG-ImageNet
incorporates classification experiments on non-block-design data, which avoids temporal confounds
and thus offers a more reliable evaluation of EEG-based visual decoding. Furthermore, it integrates
cross-time experiments that evaluate model generalization across sessions separated by several days,
cross-participant experiments that assess robustness across individuals, and pre-training experiments
that explore whether leveraging data from other participants can enhance cross-time recognition.
Together, these tasks form a comprehensive benchmark designed to evaluate the robustness, gener-
alization, and scalability of EEG-based visual decoding models, offering a solid foundation for both
neuroscience and brain—computer interfaces.
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Table 1: Detailed metadata for various neurological datasets based on visual stimuli. We only
compare stimuli duration when stimuli modalities is image.

Dataset #Subjects Modalities Visual Stimuli #Stimuli  Stimuli duration
GOD
(Horikawa & Kamitani|(2017)) 5 fMRI ImageNet 1,200 ls
NSD
(Allen et al.|(2022)) 8 fMRI MS COCO 10,000 3s
SEED
(Zheng & Lu|(2015)) 15 EEG movie clips (4 min) 15 -
DEAP
(Koelstra et al.|(2011)) 32 EEG, ECG music video (1 min) 40 -
AMIGOS
Miranda-Correa et al.|(2018)) 40 EEG, ECG long/short videos 20 -
Spampinato et al.|(2017) 6 EEG ImageNet 2000 500 ms
Things EEG1
(Grootswagers et al.|(2022)) 50 EEG Things 22248 50 ms
Things EEG2
(Gifford et al.|(2022)) 10 EEG Things 16740 100 ms
EEG-SVRec
(Zhang et al.|(2024)) 30 EEG, ECG short videos 2636 -
EIT-1M
(Zheng et al.|(2024)) 5 EEG CIFAR-10 60,000 50 ms
Alljoined
(Xu et al.|{(2024)) 8 EEG MS COCO 10,000 300 ms
EEG-ImageNet (Ours) 16+6 EEG ImageNet 4,000 500 ms

We summarize the main contributions of this work as follows: 1) We propose EEG-ImageNet, the
first EEG benchmark with multi-granularity semantic labels, designed for pre-training and cross-
time generalization of visual decoding from electroencephalogram. 2) We significantly scales up
existing EEG-visual datasets in the number of subject sessions and total recording duration, pro-
viding high-quality and long-duration EEG segments for semantic-level visual understanding. 3)
We establish benchmarks including classification tasks on non-block-design EEG data as well as
pre-training experiments across time participants, thereby enabling systematic evaluation of model
robustness and generalization.

2 RELATED WORK

In this section, we review some datasets related to visual recognition and neuroscience and compare
them with EEG-ImageNet, as shown in Table/[I}

Visual recognition is a cornerstone of computer vision, driven by datasets like ImageNet (Ridnik
et al| (2021))), CIFAR (Krizhevsky et al| (2009)), and MS COCO (Lin et al| (2014))). Efforts to
combine visual recognition with human have led to datasets like the SALICON dataset (Jiang et al.
(2015)), which extends MS COCO with eye-tracking data, enabling the study of visual attention
and saliency through large-scale annotations. Neuroscience datasets utilizing fMRI have further
enriched this field. The Generic Object Decoding dataset (Horikawa & Kamitani| (2017))) captures
brain activity while subjects view and imagine objects, facilitating the decoding of mental images.
The NSD (Allen et al.| (2022)) is a large-scale fMRI dataset in visual neuroscience, recording high-
resolution (1.8-mm) whole-brain 7T fMRI data from 8 subjects exposed to 9,000—10,000 color nat-
ural scenes from the MS COCO dataset over the course of a year.

fMRI is renowned for its high spatial resolution, allowing researchers to obtain detailed images of
brain activity by measuring changes in blood flow (Logothetis et al.|(2001))). This capability makes
fMRI particularly effective for identifying the specific brain regions involved in various cognitive
and sensory tasks. In contrast, EEG offers several distinct advantages over fMRI. EEG is relatively
easy to use and cost-efficient, with a straightforward setup that involves placing electrodes on the
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scalp to measure electrical activity. One of the most significant benefits of EEG is its exceptional
temporal resolution, which captures neural dynamics on the order of milliseconds (Teplan et al.
(2002)). This makes EEG ideal for studying fast-occurring brain processes and real-time neural
responses, providing insights into the timing and sequence of neural events (Liu et al.| (2021)).
However, EEG signals collected using portable devices often have a low signal-to-noise ratio, which
can complicate data analysis and reduce the accuracy of the results (Kannathal et al.| (2005)).

Existing EEG datasets span a variety of research areas. The SEED (Zheng & Lu| (2015))) focuses
on emotion recognition with detailed EEG recordings from subjects exposed to various emotional
stimuli. The BCI Competition I'V datasets (Zhang et al.|(2012))) provide EEG data for motor imagery
tasks, while the TUH EEG Corpus (Shah et al.|(2018)) is a large clinical EEG collection often used
for benchmarking EEG data quality across different conditions. The DEAP (Koelstra et al.| (2011))
collects EEG and peripheral physiological signals from 32 participants as they watch 40 one-minute
music videos, providing comprehensive emotional responses. Similarly, the AMIGOS (Miranda-
Correa et al.| (2018)) captures EEG and physiological responses from participants watching short
video clips designed to evoke specific emotional states. In the realm of visual recognition, datasets
like the EEG-Classification dataset (Spampinato et al.|(2017)) involve 6 subjects viewing 2,000 im-
ages across 40 object classes from the ImageNet10k. The Things EEG (Grootswagers et al.| (2022);
Gifford et al.| (2022)) utilizes in the RSVP paradigm features extremely short image presentation
durations (50/100 ms) and collects EEG-image pairs from large-scale datasets, making it a valuable
resource for research in visual neuroscience. Another significant dataset is the EEG-SVRec (Zhang
et al.| (2024)), which includes EEG recordings from 30 participants interacting with short videos,
aiming to capture detailed affective experiences.

3 DATASET CONSTRUCTION

During the data collection process of our user study, participants are presented with a visual stimuli
dataset containing 4000 natural images from ImageNet21k. Throughout this process, we contin-
uously record their EEG signals. The whole experimental process is carried out in the laboratory
environment. This section describes the entire process of EEG-ImageNet dataset construction.

3.1 PARTICIPANTS

We enlist a total of 16 participants via social media, including 10 males and 6 females. These partic-
ipants are all college students aged between 21 and 27, with an average age of 24.06 and a standard
deviation of 1.69. Their majors encompass computer science, mechanical engineering, chemistry,
and environmental engineering, and they range from undergraduate to postgraduate levels. All par-
ticipants are right-handed and assert their proficiency in utilizing image search engines in their daily
routines. Each participant dedicates approximately 2 hours to complete the experiment each stage,
which includes 30 minutes for equipment setup and task instructions. Before the experiment, partic-
ipants are informed of a compensation of US$11.8 per hour upon completion, to ensure the quality
of the data collected for the study.

3.2 STIMULI DATASET

The dataset used for visual stimuli was a subset of ImageNet21k, containing 80 categories of objects.
Each category comprises 50 manually curated images, ensuring that each image has a width and
height greater than 300 pixels and prominently features an object corresponding to its class label in
ImageNet. Additionally, every image is free of watermarks. In this manner, we have selected a total
of 4000 high-quality natural images as our visual stimulus dataset.

Among all categories, the first half is consistent with the EEG-Classification dataset (Spampinato
et al.[ (2017)), comprising 40 significantly distinct categories from ImageNetlk. We treat these as
coarse-grained tasks. The latter 40 categories are designed as a fine-grained task, divided into 5
groups with 8 categories each. The categories within the same group share the same parent node in
WordNet, and each category label is either a leaf node or a sub-leaf node in WordNet. This selection
ensures that the chosen categories represent similar granularity while avoiding overly obscure cate-
gories, thereby minimizing potential biases in the experimental results. For instance, coarse-grained
categories include items such as African elephants, pandas, mobile phones, golf balls, bananas, and
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pizzas. Under the parent node “musical instruments”, the fine-grained categories include accordions,
cellos, flutes, oboes, snare drums, and trombones.

3.3 PROCEDURE

Before engaging in the user study, participants are required to fill out an entry questionnaire and
sign a consent about the protection of privacy security. They will receive an orientation regarding
the primary tasks and operational procedures. Additionally, they will be notified of their right to
withdraw from the study at any point. Before the main trials, participants will undergo a series of
training trials designed to familiarize them with the procedures of formal experiments.

Every participant is required to select a random seed before the experiment to randomize the order
of the categories. This randomization guarantees a fair distribution of categories and images among
participants. The experimental platform follows a sequential and repetitive process as illustrated
in Figure |1} (S1) The experimental platform presents the current category label. Participants can
proceed to the next step by pressing the space key. (S2) A fixation cross is shown at the center of
the screen, ensuring attention is drawn when images are displayed. This fixation period lasts for
500 ms. (S3) The images of this category are sequentially presented using the Rapid Serial Visual
Presentation (RSVP) paradigm, which is commonly employed in psychological experiments. Each
image is presented for a duration of 500 ms (Kaneshiro et al.[ (2015)), with a total number of V.
(S4) Random tests are conducted to verify the participant’s engagement in the experiment after the
presentation. Data from categories for which participants fail the test will not be included in final
analyses. The EEG signals of the participant will be captured and recorded continuously during the
entire process. The program will cycle back to step S1 and display the next category, repeating this
process until all the images have been presented.

Our experiment consists of two stages. The first stage follows the same setup as Spampinato et al.
(2017) where images from each category are presented consecutively, with N = 50 as shown in
Figure [I] All of 16 participants took part in this stage. However, as [Li et al (2020) pointed out,
the experimental results under the paradigm of such block-design may be influenced by temporal
effects when using shuffled training and test sets. Therefore, we conducted a second stage of the
experiment, with N = 30/20 and random shuffling. Six participants participated in this phase.
Stage 2 was conducted at least seven days after Stage 1. The 7-day interval was intended to prevent
potential biases arising from memory effects (Fisher & Radvansky| (2018)). Ultimately, the dataset
we construct includes the EEG signals of participants exposed to each image visual stimulus in each
valid session, along with the corresponding category’s wnid and the image’s index in ImageNet21k.

3.4 DATASET DESCRIPTION

The EEG-ImageNet dataset contains a total of 87,850 EEG-image pairs from 16 participants, with a
total of 22 sessions (6 participants took part in two sessions). Each EEG data sample has a size of
(Nehannels> fs + 1), Where nepanners 1 the number of EEG electrodes, which is 62 in our dataset;
fs is the sampling frequency of the device, which is 1000 Hz in our dataset; and T is the time
window size, which in our dataset is the duration of the image stimulus presentation, i.e., 500 ms.
Due to ImageNet’s copyright restrictions, our dataset only provides the file index of each image in
ImageNet and the wnid of its category corresponding to each EEG segment. Additional information
about the dataset is shown in Appendix [A.T]

4 BENCHMARKS SETTINGS

In this section, we detail the benchmarks of our study by outlining the preprocess-
ing steps, feature extraction methods, task definitions, and models used. The detailed
code can be accessed openly through the url https://anonymous.4open.science/r/
EEG-ImageNet-anonymous—74B0.

4.1 PREPROCESSING

We perform a series of preprocessing steps for the raw EEG data we collect to eliminate noise
and artifacts and improve signal quality (Ye et al.|(2024)). The preprocessing pipeline includes the
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Figure 2: Comparison of the training and testing sets used for each task in EEG-ImageNet.

following steps: First, re-referencing is done using the offline linked mastoids method, which uses
the average of the M1 and M2 mastoid electrodes as the new reference point (2019)).
Then, filtering is performed using a 0.5 Hz to 80 Hz band-pass filter to remove low-frequency drifts
and high-frequency noise. Additionally, 50 Hz environmental noise is eliminated. Finally, artifact
removal eliminates abnormal amplitude signals and artifacts caused by blinks or head movements.

4.2 FEATURE EXTRACTION

In our benchmarks, we extract the 40ms-440ms segment of each EEG signal as the domain feature
input. This approach helps to minimize the influence of preceding and subsequent image stimuli
on the current stimulus. For models requiring frequency-domain features as input, we extract the
differential entropy (DE) of the extracted time-domain signals as features, as this characteristic
effectively captures the complexity and variability of brain activity in the frequency domain (Duan|
letal|(2013)). According to the general division in neuroscience, the frequency bands are categorized
as delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz). We
use the Welch method with a sliding window to estimate the power spectral density P(f) in each
frequency band. Then, we normalize the data and calculate the differential entropy (DE) using the
formula, DE = — [ P(f)log(P(f))df. Consequently, for each segment of EEG signals, we obtain
the differential entropy (DE) for each electrode and each frequency band.

4.3 TASK DEFINITION

To demonstrate the effectiveness of EEG-ImageNet with its cross-time, two-stage design, we con-
duct EEG-based object classification tasks under different experimental settings. The object classi-
fication task is defined as predicting the category of the image stimulus that a participant is viewing,
based solely on their EEG signals.

It is important to note that block-design (all images of the same category are presented together)
experiments can introduce temporal markers into EEG data, which may artificially inflate classifica-
tion performance when evaluated only within Stage 1. While such results are not representative of
real-world generalization, they may still provide useful insights for future research on EEG temporal
effects. For completeness, we include these Stage 1-only results in the Appendix [A24]

We conduct evaluations on EEG-based visual decoding with four tasks, Within-Time (WT), Cross-
Time (CT), Cross-Participant (CP), and Pre-training (PT). As shown in Figureg WT using 30
images per category for training and 20 images per category for testing. As WT adopted a non-
block-design paradigm in which images used for training and testing are temporally separated, the



Under review as a conference paper at ICLR 2026

results are free from class-specific temporal bias. CT and CP is conducted to investigate cross-time
and cross-participant generalization of EEG-based visual decoding. In CT, training and testing were
performed on the same participant, while in CP, training was performed on Stage 1 data from 10
participants who did not take part in Stage 2. Finally, we investigated cross-subject, cross-time
pre-training experiments (PT) to investigate whether pre-training on other participants’ data could
improve recognition performance in cross-time classification. This setting enables us to examine
the benefits of leveraging additional subjects for pre-training in enhancing the robustness and gen-
eralization of visual decoding models. On our multi-granularity labeled image dataset, we test the
above tasks with different levels of granularity.

In our experiments, we employed two-way identification as the primary evaluation metric (Ozcelik &
VanRullen, [2023)). We chose this measure because it provides a clearer basis for cross-task compar-
isons. For completeness, we also report additional metrics, such as accuracy, in the Appendix [A.4]
In two-way identification, for each test sample, we randomly select k comparison samples from
different categories. The model is then required to decide which of the two samples is more likely
to belong to the ground-truth class. Each decision is scored as 1 if correct and O otherwise. Final
performance is reported as the average over all pairwise comparisons, with a chance level of 0.5. In
our benchmarks, we set k = 500 to ensure stable and robust evaluation.

4.4 MODELS

We employ simple machine-learning classification models such as ridge regression, KNN, random
forest, and SVM. Additionally, we implement deep learning models including MLP, EEGNet (Lawh-
ern et al.|(2018))) and RGNN (Zhong et al.|(2020)). These models are the most commonly used and
have demonstrated excellent performance in EEG-related research. We train the models on a single
NVIDIA 4090 GPU. For model and training details, please refer to the code and Appendix

5 EXPERIMENTAL RESULTS

Table 2: The average results of all participants in the coarse-grained classification task. * indicates
the use of time-domain features, otherwise the use of frequency-domain features.  indicates that
the difference compared to random is significant with p-value < 0.05.

Model WT CT Cp PT
Ridge 0.861+0.0221  0.509+0.011 0.501+0.007  0.508+0.010
Classic model KNN 0.892+0.02617  0.517+0.019  0.491+0.006  0.521+0.017
RandomForest 0.909+0.031F 0.511£0.019%  0.507+0.011  0.524+0.0207
SVM 0.935£0.0391 0.536+0.018F  0.506+0.015  0.544+0.0177
MLP 0.938+0.0241 0.552+0.012F 0.524+0.0167 0.570+0.0207
Deep model EEGNet* 0.878+0.0221 0.519+0.015F  0.509+0.012  0.524+0.0227
RGNN 0.933£0.0251  0.566+0.015F 0.526+0.0187  0.585+0.0277

Table 3: The average results of all participants in the fine-grained classification task. * indicates the
use of time-domain features, otherwise the use of frequency-domain features. f indicates that the
difference compared to random is significant with p-value < 0.05.

Model WT CT Cp PT
Ridge 0.886+0.0231 0.549+0.017F  0.495+0.007  0.543+0.0127
Classic model KNN 0.909+0.025F 0.554£0.017F  0.505+0.010  0.551+0.015%
RandomForest  0.922+0.0301 0.587+0.022%  0.511+0.012  0.595+0.019%
SVM 0.949+£0.0351  0.592+0.021F  0.509+0.019  0.606+0.0227
MLP 0.954+0.0267 0.617+£0.019F 0.563+0.0267  0.636x0.0277
Deep model EEGNet* 0.893+£0.0231 0.566+0.027F  0.522+0.0267  0.579+0.0257
RGNN 0.945+0.0241 0.601+0.0241  0.573+0.028F 0.634+0.0277
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The coarse-grained represents the 40-class classification accuracy; and the fine-grained represents
the average accuracy of five 8-class classification tasks. Table [2| and Table |3| shows the average re-
sults of all participants in the coarse-grained and grained classification task, respectively. We observe
that in the within-task (WT) task, both classic models and deep models achieve strong performance,
indicating that WT is the relatively easiest among the four tasks. The best-performing model reaches
a two-way identification close to 0.95, suggesting that EEG signals contain sufficient information
for reliable decoding when training and testing are conducted within the same stage. However, in
the cross-time (CT) task, performance drops substantially across all models. This degradation is par-
ticularly obvious for classic models, which primarily rely on learning fixed linear mappings. This
result highlights the challenge posed by temporal variability in EEG signals. In the cross-participant
(CP) task, the performance of classic models is further reduced, in some cases barely above chance,
suggesting that these methods fail to generalize across individuals. By contrast, deep models consis-
tently deliver better results across tasks. This indicates that graph-based neural networks are able to
capture more stable and transferable patterns from EEG signals, making them promising candidates
for addressing inter-individual differences. Meanwhile, the relatively poor performance of EEGNet
may be attributed to the fact that the original version of EEGNet was not designed for semantically
related tasks. Finally, in the pre-training (PT) task, deep models again show clear advantages, with
RGNN and MLP achieving the highest performance across coarse-grained and fine-grained tasks.
In the PT task, deep models outperform their CT counterparts across different levels of granular-
ity, suggesting that leveraging pre-training with data from other participants can effectively improve
cross-time recognition.
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Figure 3: MLP and RGNN performance of the “coarse” (vertical axis) and “fine” task (horizontal
axis) in WT task.

To better compare the differences between “fine” and “coarse” tasks, we randomly select 8 coarse-
grained categories and perform WT task because the result is the best on this task. This process
is repeated 5 times, and the results for each participant is calculated and plotted alongside their
average “fine” task results in Figure[3] We then perform linear regression on the data points, and the
resulting function has a slope greater than 1, indicating that models generally achieve better results
on the “coarse” classification tasks. This finding is also consistent with intuition.
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We further aggregate results of different participants across different tasks for comparison, as shown
in Figure |4 MLP and RGNN exhibit remarkably similar performance distributions across different
tasks under both coarse and fine granularity settings. Both models follow the same trend ordering:
WT > PT > CT > CP. This indicates that within-time classification remains the easiest task,
while cross-participant is consistently the most challenging. This trend aligns with prior works that
have compared cross-subject and cross-session EEG decoding, which often report that the most dif-
ficult scenario is generalization across participants (Liang et al.| [2022; |Chen et al.| 2021} |Apicella
et al., [2024). Our results not only corroborate this conventional wisdom but also further demon-
strate that pre-training on data from other participants can significantly boost object classification
performance relative to direct cross-time generalization.

6 DISCUSSION AND CONCLUSION

In this paper, we introduced EEG-ImageNet, a novel EEG benchmark designed to advance research
in visual neuroscience. EEG-ImageNet has a comprehensive and richly annotated dataset, compris-
ing EEG recordings from 16 subjects, with a total of 22 sessions exposed to 4000 images from 80
different categories. We further establish benchmarks that encompass classification tasks on non-
block-design EEG data and pre-training experiments spanning both time and participants. These
benchmarks provide a systematic framework for evaluating the robustness and generalization of vi-
sual decoding models, and highlight the potential to advance cross-time, cross-subject learning in
both cognitive neuroscience and brain—computer interface applications.

Limitation. Firstly, while our dataset is more comprehensive than similar works, each participant’s
data is still relatively limited. This necessitates the development of inter-subject models to overcome
this limitation and enhance generalizability. Secondly, it is limited in representation, as participants
were drawn from a specific sample. This results in an age distribution skewed towards teenager
individuals and a racial composition predominantly White and Asian. Future work should aim to
include a more diverse and extensive participant pool. Additionally, although our non-block-design
paradigm and cross-time training strategy circumvent the temporal effects that often confound block-
design experiments, we did not conduct an in-depth investigation of the temporal effects present
in Stage 1. Future work could leverage our dataset to explore this direction more systematically.
Lastly, our benchmarks did not incorporate many of the latest deep-learning methods. Instead, we
employed a set of commonly used models primarily to demonstrate the effectiveness and to illustrate
how our two-stage, cross-time dataset can be utilized. We believe that recent advancements in deep
learning could greatly benefit from our comprehensive dataset, potentially leading to significant
breakthroughs in visual neuroscience.

Insight for ML. EEG-ImageNet provides a comprehensive resource for developing models in vi-
sual recognition tasks, enabling the development of sophisticated deep-learning models capable of
capturing intricate patterns within EEG data. Future research could leverage the dataset to enhance
domain adaptation and transfer learning techniques, facilitating effective inter-subject and cross-time
task completion. By offering a diverse dataset of visual stimuli and supporting multi-level classi-
fication tasks, EEG-ImageNet could foster the creation of hierarchical models that mirror human
cognitive processes and improve the generalization capabilities of machine learning algorithms. We
hope this benchmark will enable the development of more sophisticated models and methodologies,
driving forward EEG-based visual neuroscience research and offering deeper insights into the neural
mechanisms underlying visual perception and processing.

Insight for BCI. As hardware technology progresses, portable EEG devices are becoming increas-
ingly feasible, offering new opportunities for real-time BCI applications. Researchers could develop
robust BCI systems that accurately interpret user intent from EEG signals. The comprehensive
size and diverse visual stimuli in EEG-ImageNet allow for the creation of adaptive BCI systems
that learn and respond to long-term individual user patterns. This paves the way for personalized
neurotechnology solutions, particularly enhancing human-computer interaction for individuals with
disabilities. Furthermore, addressing privacy protection and ethical concerns will be crucial as BCI
technology advances, ensuring user data is securely handled and individual rights are respected.
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7 ETHICS AND PRIVACY

To protect participants’ privacy and physical health, our user study adheres to strict ethical guide-
lines for human research, with approval from the ethics committe In accordance with ethical
standards, we have taken several steps to protect participants’ privacy, including data anonymiza-
tion and obtaining informed consent from all participants. Participants were fully briefed on the
study’s aims, procedures, and potential implications. Moreover, the EEG recording procedure used
is entirely non-invasive and involves no risk to participants.

8 REPRODUCIBILITY STATEMENT

We are committed to full reproducibility of this work. The dataset in EEG-ImageNet will be publicly
released after the review stage. All code, including data preprocessing, model training, and evalua-
tion scripts, will be made available at github link. The architectural and implementation details of
all models are documented in the Appendix [A.3]
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A APPENDIX

A.1 ADDITIONAL INFORMATION ABOUT DATASET

The specific statistics of the dataset are shown in Table §]

As shown in Listing [T} the EEG-ImageNet dataset storage format is provided after review. The
dataset can be accessed through the cloud storage link available in our GitHub repository after

12
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Table 4: The Statistics of EEG-ImageNet Dataset.

#Categories #Images #Subjects #EEG-image pairs Datasize
EEG-ImageNet 80 4000 16 87,850 20.85GB

review. Due to file size limitations on the cloud storage platform, we split the dataset of Stage 1
into two parts: “EEG-ImageNet_1.pth” and “EEG-ImageNet_2.pth”. Users can choose to use only
one of the parts based on their specific needs or device limitations. Demographic information is also
provided at the file level.

{
"dataset": [
{
"eeg_data": torch.tensor,
"granularity": "coarse"/"fine",
"subject": 15,
"label": "ne2106550',
"image": 'n02106550_1410.JPEG’,
"stage": 30/20, (This attribute only appears in Stage 2)
b
1,
"labels": [
"n02106662",
1,
"images": [
"n02106662_13.JPEG",
]

Listing 1: EEG-ImageNet dataset format.

A.2 APPARATUS

All the image stimuli are presented on a desktop computer that has a 27-inch monitor with a reso-
lution of 2,560x1,440 pixels and a refresh rate of 60 Hz. Participants are required to use the key-
board to interact with the platform. EEG signals are captured and amplified using a Scan NuAmps
Express system (Compumedics Ltd., VIC, Australia) and a 64-channel Quik-Cap (Compumedical
NeuroScan). A laptop computer functions as a server to record EEG signals and triggers using
Curry8 software. Throughout the experiment, electrode-scalp impedance is maintained under 50¢2,
and the sampling rate is set at 1,000Hz.

A.3 EXPERIMENTAL SETUP DETAILS

We conduct experiments under three different granularity settings: the “all” task includes all 80
categories; the “coarse” task includes 40 coarse-grained categories; and the "fine” task includes 8
fine-grained categories that belong to the same parent node, with the average accuracy calculated
across 5 groups.

The model structures and hyperparameters are as follows. For SVM, we try linear, polyno-
mial, and radial basis function (RBF) kernels. The regularization parameter is tested from values
{1073,1072,10~%,1,10%,102,103}. For RandomForest, we try to set the number of trees in the
forest from values {20, 50, 100, 200, 500}, with all other parameters set to their default values. For
KNN, we set the number of neighbors to {5, 10, 15, 20}. For ridge regression, all parameters are set
to their default values. For RGNN, when calculating the edge weights between electrodes, we use
the hardware parameters of our data collection device to determine the topological coordinates of
each electrode. In addition to the standard implementation, we add two batch normalization layers.
The main hyperparameters adjusted are the number of output channels of the graph convolutional
network (i.e., the hidden layer dimension) and the number of hops (i.e., the number of layers). These
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are set to {100, 200,400} and {1, 2,4} respectively. For EEGNet, we use the standard implemen-
tation and set the length of the first step convolution kernel to half the number of sampling time
points, which is 200. The main hyperparameters adjusted are the number of output channels for the
first convolutional layer (F1) and the depth multiplier (D), which are set to {8, 16,32} and {2, 4,8}
respectively. For MLP, we set two hidden layers with dimensions of 256 and 128, respectively. Each
linear layer is followed by a batch normalization layer and a dropout layer with a probability of 0.5.
In the PT task, during the pre-training phase we train with half of the learning rate for half of the
epochs.

For all deep models, we use the cross-entropy loss function. In MLP and EEGNet, we use the SGD
optimizer with learning rate 103, weight decay 10~3, and momentum 0.9, training for 2000 epochs.
After that, we adjust the learning rate to 10~* and weight decay to 10~* and continue training for
another 1000 epochs. In RGNN, we use the Adam optimizer with learning rate 10~3 and weight
decay 103, training for 2000 epochs. Subsequently, we adjust the learning rate to 10~* and weight
decay to 10~* and train for an additional 1000 epochs. The batch size is uniformly set to 80.

All the implementations mentioned above are open-sourced and available in the GitHub repository.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Table[5|shows the average results of all participants in Stage 1 and Table[6|shows the average results
of all participants in Stage 2.

Table 5: The average results of all participants in the object classification task of Stage 1. * indicates
the use of time-domain features, otherwise the use of frequency-domain features.  indicates that
the difference compared to the best-performing model is significant with p-value < 0.05.

Model Acc (all) Acc (coarse) Acc (fine) F1 (all) F1 (coarse) F1 (fine)
Ridge 0.286+0.0747  0.394+0.081F 0.583+0.0747 0.261+£0.0707 0.373+£0.082F 0.610+0.1217
Classic model KNN 0.304+0.0867 0.401+0.0971 0.696+0.068F 0.286+0.0811 0.380+0.096F 0.717+0.1327}
RandomForest  0.349+0.0871 0.454+0.105F 0.729+0.072F1 0.323+0.0831 0.425+0.0991 0.723+0.0921
SVM 0.392+£0.0867 0.506+0.099F 0.778+0.0547 0.378+0.083F 0.486+0.105F 0.770+0.0547F
MLP 0.404+0.103F  0.534+0.115  0.816+0.054  0.397+0.1001  0.523+0.108  0.819+0.053
EEGNet* 0.260£0.098F 0.303+0.1087 0.365+0.095F 0.251+0.0951 0.291+0.098+ 0.374+0.1027}
Deep model RGNN 0.405+0.095  0.470+0.0921 0.706+0.0737  0.401+0.098  0.455+0.0871 0.723+0.079%

Table 6: The average results of all participants in the object classification task of Stage 2. * indicates
the use of time-domain features, the use of frequency-domain features.  indicates that the difference
compared to the best-performing model is significant with p-value < 0.05.

Model Acc (all) Acc (coarse) Acc (fine) F1 (all) F1 (coarse) F1 (fine)
Ridge 0.182+0.0531 0.253+0.0741 0.431£0.108F 0.178+£0.052F 0.243+0.075% 0.438+0.1077
Classic model KNN 0.220+£0.081F1  0.310£0.113F  0.574+0.119F 0.211+0.083F 0.299+0.105F 0.565+0.1347
RandomForest  0.268+0.101F1  0.358+0.129F  0.609+0.1367 0.259+0.098F 0.341+0.117F  0.596+0.139%
SVM 0.281+0.0901 0.368+0.107F  0.657+0.140F 0.271+0.084F 0.365+0.109F 0.648+0.1347
MLP 0.297+£0.093  0.395+0.110  0.718+0.149  0.285+0.087  0.392+0.108  0.710+0.140
Deep model EEGNet* 0.169+0.0441  0.244+0.095F 0.377£0.0967 0.160+0.041F  0.228+0.088F 0.372+0.0967
RGNN 0.302+£0.097  0.401+0.105  0.693+0.1401  0.297+0.100  0.388+0.106  0.701+0.1427

Table [7| shows the performance of the best-performing participant across all models and tasks of
Stage 1..

Figure [5] shows the accuracy for each participant in the object classification task of Stage 1 across
SVM, MLP, and RGNN models. We find that the ranking of participants’ accuracy is relatively
consistent across different models.

Figure [6] presents more image generation results selected from other participants, with Figure [6a]
showing good cases and Figure [6b] showing bad cases. We identified three main types of bad cases.
Similar to the first two images, the reconstructed images lack or misrepresent low-level information
such as color and shape. These errors are relatively common and are due to the limitations of
our feature mapper and the simple structure of the reconstruction pipeline, resulting in insufficient
information restoration. Similar to the latter two images, the reconstructed images lack detail. This
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Table 7: The best results of all participants in the object classification task of Stage 1.

Model Acc (all) Acc (coarse) Acc (fine)
Ridge 0.4550 0.5375 0.7200
Classic model KNN 0.5025 0.6063 0.8013
RandomForest  0.5006 0.6488 0.8450
SVM 0.5794 0.7038 0.8588
RGNN 0.6088 0.6525 0.8050
Deep model EEGNet* 0.4413 0.5213 0.5988
MLP 0.5925 0.7413 0.8875
70
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(c) The “fine” task.

Figure 5: Acc for each participant in the object classification task of Stage 1 across SVM, MLP, and
RGNN Models.

limitation is due to the number of denoising steps in the diffusion model and the inherently low
signal-to-noise ratio of EEG signals.

We also observed that for certain categories, especially fine-grained ones, all test data points resulted
in near-noise outputs, which drew our attention. When we directly input category labels as text
prompts into Stable Diffusion 1.4, we found that the generated images had poor realism and three-
dimensional structure. Figure [6c|compares these images with those generated by our reconstruction
pipeline from the training set. This improvement suggests that we can use EEG, which can be
quickly and extensively obtained as human feedback signals, to enhance the performance of text-
image pre-trained models or generative models. This will be the direction of future research.

A.5 TEMPORAL EFFECT

In Figure [/} we plotted the average classification accuracy for images at different index positions in
the test set under various training and test set splits to show the temporal effect in Stage 1.

We observed that the first few images in the test set have significantly higher accuracy, indicating a
strong temporal effect.
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Figure 6: More results in the image generation task.
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Figure 7: Average classification accuracy under different training and test set splits, with accuracy
plotted against the indices of image stimuli in the test set.

A.6 THE USE OF LARGE LANGUAGE MODELS

In this work, we leveraged large language models (LLMs) to assist in manuscript preparation, in-
cluding refining the text for clarity and style, as well as facilitating literature retrieval. All LLM-
generated suggestions were carefully reviewed, edited, and integrated by the authors to ensure scien-
tific accuracy and consistency with our own writing voice. We acknowledge the ongoing discourse
around the ethical use of LLMs in scholarly writing—particularly regarding transparency, origi-
nality, and accountability. We transparently report the use of LLM assistance and reaffirm that all
substantive intellectual contributions (e.g. experimental design, data analysis, interpretation) origi-
nated from the authors.
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