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ABSTRACT

Video quality assessment (VQA) is a challenging problem since the perceptual
quality of a video can be affected by many factors, e.g., content attractiveness,
distortion type and level, motion pattern, and level. Further, the huge expense of
annotating limits the scale of VQA datasets, which becomes the main obstacle
for deep learning-based VQA methods. In this paper, we propose a VQA method
leveraging PreTrained Models, named PTM-VQA, to transfer knowledge from
models pretrained on various pre-tasks to benefit VQA from different aspects.
Specifically, features of input videos are extracted by different pretrained models
with frozen weights, transformed to the same dimension, and integrated to generate
the final representation. Since these models possess various fields of knowledge and
are often trained with labels irrelevant to quality, we propose an Intra-Consistency
and Inter-Divisibility (ICID) loss, which imposes constraints on features extracted
by multiple pretrained models from different samples. The intra-consistency
constrain is model-wise and requires features extracted by different pretrained
models to be in the same unified quality-aware latent space, while the sample-wise
inter-divisibility introduces pseudo clusters based on the annotation of samples and
tries to separate features of samples from different clusters. Further, confronted
with a constantly growing number of pretrained models, it is crucial to determine
which ones to use and how to use them. To tackle the problem, we propose an
efficient scheme to choose suitable candidates: models that possess better clustering
performance on a VQA dataset are chosen to be our candidate backbones. Extensive
experiments demonstrate the effectiveness of the proposed method.

1 INTRODUCTION

Social network platforms focused on videos have gone viral in recent years. According to the Visual
Networking Index (VNI) by Cisco, by the year 2022, the global IP video traffic will account for
82% of all IP traffic (both business and consumer) (Barnett et al., 2018). The substantial growth
in the consumption of video content brings tremendous challenges for video providers to deliver
better services. Since the perceptual quality of videos significantly affect Quality of Experience
(QoE), how to identify quality of videos becomes one of the most important problems (Klink &
Uhl, 2020; Chikkerur et al., 2011; Shahid et al., 2014; Fan et al., 2019; Chen et al., 2015). Imitating
subjective feedback of human when viewing a video, video quality assessment (VQA) aims to assess
the perceptual quality of input videos automatically, and has been studied extensively in the context
of assessing compression artifacts, transmission error, and overall quality (Saad et al., 2014; Liu et al.,
2018; Mittal et al., 2016; Korhonen, 2019; Li et al., 2019). Compared with conventional methods
based on hand-crafted features, data-driven deep learning based methods possess better performance
and has been drawing more and more attention (Chen et al., 2022c; 2020; Xu et al., 2021; Kossi et al.,
2022; Chen et al., 2022b; You, 2021; Qian et al., 2021; Li et al., 2019; 2021a; Wang et al., 2021).

Compared with other high-level computer vision tasks, datasets for VQA are much smaller. One of
the most popular datasets for human action classification Kinetics (Carreira et al., 2019) has 650,000
clips, while the popular VQA dataset KoNViD-1k (Hosu et al., 2017) has only 1,200 videos. One
of the reasons is because VQA is a highly subjective task (Winkler, 1999; Wang & Li, 2007). To
obtain an unbiased label, it is recommended by annotation guidelines (Rec, 2006) that the subjective
quality of a single video should be measured in a laboratory test by calculating the arithmetic mean
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Figure 1: Video frames sampled from KoNViD-1k dataset, which illustrate a certain correlation
between content/motion patterns and video quality. We specify some of the reasons that may lead to
poor perceptual video quality in italic, following the labeled MOS.

value of multiple subjective judgments, i.e., Mean Opinion Score (MOS). Take KoNViD-1k as an
example, it has 114 votes for each video on average. This significantly raises the cost of labeling and
limits the size of the VQA dataset. Such a small amount of data limits the power of data-driven VQA
methods. To deal with the problem, most existing methods (You, 2021; Chen et al., 2022b; Kossi
et al., 2022; Xu et al., 2021) choose to finetune their model on VQA datasets using weights pretrained
on common larger datasets (e.g., ImageNet (Deng et al., 2009)). However, existing works (Li et al.,
2022; 2019; Wang et al., 2021) show that the perceptual quality of a video is related to many factors,
e.g., content attractiveness, aesthetic quality, distortion type and level, motion pattern and level, etc.
Only considering content-based pretrained models may not be sufficient for VQA. Thus, in this work,
we focus on how to better utilize a large amount of available pretrained models to benefit VQA.

To begin with, we notice that there is a certain correlation between VQA tasks and other computer
vision tasks. Figure 1 shows several examples from KoNViD-1k dataset. It is natural to expect
models pretrained on datasets for various pre-tasks to capture characteristics of different aspects
with respect to video quality. In this paper, we conduct a simple clustering experiment using LMNN
(Weinberger & Saul, 2009) to observe the correlation between typical pretrained models and the
VQA task. Based on the observation, we propose a practical VQA method leveraging PreTrained
Models, named PTM-VQA, which takes pretrained models as pure feature extractors and predicts
the quality of input videos based on integrated features. Since the parameters of pretrained models are
frozen, we can introduce more pretrained models with limited computational resources. Moreover,
we notice that labels in common datasets for pretraining (e.g., object/scene/action) are quite quality-
irrelevant. For instance, a clear photo of a puppy with high quality and a blurred photo of a puppy
may have the same object-wise label, whereas their quality-wise label may be significantly different.
This will confuse the learning process for the VQA task. To tackle the problem, we propose a
Intra-Consistency and Inter-Divisibility loss, which imposes constraints on features extracted by
multiple pretrained models from different samples. Model-wise intra-consistency requires features
extracted by different pretrained models to be in the same unified quality-aware latent space, while
sample-wise inter-divisibility introduces pseudo clusters based on the MOS label of samples and tries
to separate features of samples from different clusters. Further, since the number of pretrained models
is constantly growing in the past decade (e.g., PyTorch image models library (Timm) (Wightman,
2019) itself currently supports more than 700 pretrained models), finding models suitable for VQA
task through trail-and-error is unpractical. We propose to use Davies–Bouldin Index (DBI) (Davies &
Bouldin, 1979) to measure the clustering results and adopt it as the basis of model selection and the
weighting for feature integration. To summarize, the main contributions are specified below:

• We verify the correlation between models pretrained on different pre-text tasks and the VQA
task and propose a practical NR-VQA method, named PTM-VQA, to exploit cutting-edge
pretrained models with diversity to benefit VQA effectively.

• To constrain features with diversity into a unified quality-aware space and eliminate the
mismatch between objective (common vision tasks) and perceptual (VQA tasks) annotations,
we propose an Intra-Consistency and Inter-Divisibility loss. To avoid looking for a needle in
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a haystack, we propose an effective way to select candidate models based on DBI, which
also determines the contributions of different pretrained models during feature integration.

• PTM-VQA achieves state-of-the-art performance with a rather small amount of learnable
weights on three VQA datasets, improving the results to 0.8718 (+0.0303) and 0.8570
(+0.0273) in PLCC for KoNViD-1k and YouTube-UGC datasets, respectively. Extensive
experiments and ablation studies prove the effectiveness of our method.

2 RELATED WORK

VQA. Based on whether the pristine reference video is required, VQA methods can be classified as
Full Reference (FR), Reduced Reference (RR), and No Reference (NR). Our work will be focused
on the NR-VQA method, which directly quantifies the perceptual quality of input video, without
any other information. Traditional NR-VQA methods either measure video quality by rule-based
metric (Yang et al., 2005), or predict MOS by an estimator (e.g., Multi-Layer Perceptron, Support
Vector Machine) based on hand-crafted features (Culibrk et al., 2009). In recent years, deep learning-
based VQA methods have been studied and surpassed traditional methods. STDAM (Xu et al.,
2021) introduced a graph convolution to extract features and a bidirectional long short-term memory
network to handle motion information. StarVQA (Xing et al., 2021) proposed encode space-time
position information of each patch on video frames and feed them into a Transformer architecture.
RAPIQUE (Tu et al., 2021b) proposed to combine conventional features and deep convolutional
features. These works, however, neglected the correlation between VQA and other tasks and did not
utilize datasets of other tasks. BVQA (Li et al., 2022) took one step further and proposed to transfer
knowledge from image quality assessment (IQA) and action recognition datasets to VQA. Our work
further investigates the possibility of using more kinds of tasks.

Pretrained models. Pretrained models reveal the great potential in deep learning. In Natural
Language Processing (NLP), BERT (Devlin et al., 2019) and GPT-3 (Brown et al., 2020) demonstrated
substantial gains on many NLP tasks and benchmarks by pretraining on a large corpus of text followed
by finetuning on a specific task. The advent of ViT (Dosovitskiy et al., 2021) had migrated this
capability into the visual realm. Some subsequent literature (Radford et al., 2021; He et al., 2021; Li
et al., 2021b) had shown that the same benefits can be achieved. For example, CLIP (Radford et al.,
2021) trained on the WebImageText matched the performance of the original ResNet-50 on ImageNet
zero-shot, without using any of the original labeled data. In the field of quality assessment (QA),
there are also efforts (Li et al., 2019; Chen et al., 2020; Mittal et al., 2012; Li et al., 2022) to introduce
pretrained models to improve performance. Among them, VSFA (Li et al., 2019) extracted features
from a pretrained image classification neural network for its inherent content-aware property. And
BVQA (Li et al., 2022) proposed to transfer knowledge from IQA datasets and action recognition
datasets with motion patterns. But combining more types of tasks has not been studied.

Metric learning. Metric learning can learn distance metrics from data to measure the difference
between samples. It has been used in many research, including QA. RankIQA (Liu et al., 2017)
trained a siamese network to rank synthesized images with different levels of distortions constrained
by pairwise ranking hinge loss and then finetune the model on the target IQA dataset. UNIQUE
(Zhang et al., 2021) sampled ranked image pairs from individual IQA datasets and used a fidelity loss
(Tsai et al., 2007) and a hinge constraint to supervise the training process. FPR (Chen et al., 2022a)
extracted distortion/reference feature from the input/reference, hallucinated pseudo reference feature
from the input alone, and used a triplet loss (Schroff et al., 2015) to pull the pristine and hallucinated
reference features closer while pushing the distortion feature away. In our work, we group samples
into clusters and propose a centroid triplet loss, trying to pull features of samples within one cluster
closer while pushing those from different clusters farther.

3 METHOD

3.1 OBSERVATIONS

Recently, many researches (Devlin et al., 2019; Brown et al., 2020; Radford et al., 2021; He et al.,
2021) are focused on pretraining and demonstrate the effectiveness of applying pretrained models to
downstream tasks. This meets the main obstacle of VQA tasks, where huge expense of annotating
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Figure 2: Visualization of clustering results of features extracted by different pretrained models using
t-SNE (van der Maaten, 2009). Videos in KoNViD-1k (Hosu et al., 2017) are used. The number of
cluster centers is set to be 6 according to the range of MOS values. And DBI scores, which will be
introduced in detail in Sec. 3.4, measure the divergence of clustering results (the smaller, the better).

limits the scale of datasets. In the field of VQA, there are also efforts (Li et al., 2019; Chen et al.,
2020; Li et al., 2022) to introduce pretrained models to capture their inherent content-aware properties
or motion-related patterns, benefiting the representation of the perceptual quality of videos. However,
multitudinous factors in pretrained models may affect the transferring performance (e.g., architecture
of neural networks, pre-text tasks, and pretrained databases). Yet to the best of our knowledge, these
factors as well as newly-appeared cutting-edge pretrained models are rarely explored and exploited in
the VQA field. So we intend to find a way to make full use of these models.

To verify the correlation between pretrained models and VQA tasks, we construct a simple clustering
experiment. First, a selected pretrained model, whose weights are frozen, is performed as a feature
extractor to obtain the corresponding features of videos. Then these features are clustered into
multiple centers using LMNN (Weinberger & Saul, 2009) according to their range of MOS values.
Based on aforementioned factors, we take eight models for example, including MAE (He et al., 2021)
trained on ImageNet-1k (Deng et al., 2009), Swin-Base (Liu et al., 2021) trained on ImageNet-22k
(Deng et al., 2009), X3D (Feichtenhofer, 2020) trained on Kinetics-400 (Kay et al., 2017), ir-CSN-152
(Tran et al., 2019) trained on Sports-1M (Karpathy et al., 2014), CLIP (Radford et al., 2021) trained
on WebImageText (Radford et al., 2021), ConvNeXt (Liu et al., 2022) trained on ImageNet-22k,
TimeSformer (Bertasius et al., 2021) trained on Kinetics-400 and ViT-Base (Dosovitskiy et al., 2021)
trained on ImageNet-22k. As shown in Fig. 2, some models show surprising discriminant results
even though they had not been exposed to quality-related labels during the training of pre-text tasks.
We speculate that during the training of pre-text tasks, some quality-aware representations have been
learned simultaneously. Take CLIP which learns visual concepts from natural language supervision
as an example, some texts may contain emotional descriptions related to the quality of images.
And other models trained on action recognition tasks (e.g., ir-CSN-152, X3D) could be sensitive to
motion-related distortions (Li et al., 2022) (e.g., camera shaking or motion blurriness). These broader
pretrained models have the potential to help VQA tasks achieve better performance.

3.2 PIPELINE OF THE PROPOSED PTM-VQA

Suppose there exist multiple available pretrained models, the most intuitive way to apply them to
VQA tasks is finetuning on target datasets and integrating extracted features for quality prediction.
Nevertheless, this is highly computationally resource-consuming and becomes less practical as the
number of pretrained models increases and the models get larger. For example, the training of ViT
(Dosovitskiy et al., 2021) requires a TPUv3 with 8 cores in approximately 30 days. And MAE (He
et al., 2021) consumes 128 TPUv3 cores for its 800-epoch training. This would be unaffordable in
a VQA task. Fortunately, the above results in Fig. 2 suggest that pretrained models can be applied
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Figure 3: The pipeline of the proposed PTM-VQA. Features of input videos are extracted by
pretrained models with frozen weights, transformed to the same dimension, and integrated to generate
the final representation. Expect for the ordinary smooth L1 loss for regression, we add an ICID loss
to ensure model-wise consistency and sample-wise divisibility.

directly with their weights frozen. In this paper, we propose a simple framework, named PTM-VQA,
to utilize the knowledge from pretrained models of diversity efficiently.

As shown in Fig. 3, given an input video x(i), N pretrained models, whose weights are frozen, are
utilized to extract features, resulting in representations from different perspectives. Specifically, for
video clip-based models, we uniformly sample frames in the temporal dimension to form the input
clip. Corresponding representations are then generated by these models. For frame-based models,
they are fed with sampled frames and the output features are averaged to perform the spatiotemporal
representation. Features extracted by models can be noted as z(i)n , where n ∈ {1, . . . , N}. To further
distill quality-aware features and perform dimension alignment, we apply a learnable transformation
module following each feature extractor. Structurally, the transformation module consists of two
fully connected layers, each followed by a normalization layer and an activation layer of GELU. The
transformed features are defined as f (i)

n ∈ RD, where D represents the aligned dimension. Then
features are integrated to obtain a unified representation through:

h(i) =

∑N
n=1 ωnf

(i)
n∑N

n=1 ωn
, (1)

where ωn is the coefficient for each model. When ωn is 1
N , it means calculating an average, with each

model contributing equally to the final representation. Last, h(i) is used to get the quality prediction
through a regression head, which is a single fully-connected layer.

Based on this design, the training procedure becomes very efficient and avoids the computational
burden met by the aforementioned finetuning paradigm. Referring to the performance in subsequent
Tab. 1, the whole training process can be completed in about two hours, on a single GPU. This
retains the information of the pretrained models well, but it also increases the difficulty of obtaining
preferable performance due to the reduction of learnable parameters. Some concerns are as follows:

• Due to various pre-texts of pretrained models, features generated by different models are of
large diversity, which may distribute over inconsistent feature spaces (Wortsman et al., 2022).
How to constrain these abundant features into a unified quality-aware space is important.

• Different from the objective category in common classification tasks, the perceptual quality
of a video is more implicit and related to various factors (e.g., content attractiveness,
distortion type and level, motion pattern and level), whereas videos of the same quality often
render completely different content and vice versa. Therefore, it is difficult for the models
trained based on objective annotations to distinguish these samples of the same category but
with a large perceptual quality difference. A more comprehensive contrast approach beyond
sample-wise comparison needs to be proposed to deal with these outliers.

• There exists hundreds of pretrained models available in public libraries. How to select the
desired models efficiently and how determining the contribution of these models to represent
the perceptual quality effectively is an urgent problem to be solved.
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Figure 4: Illustration of triplet loss and the proposed ICID loss. The figure shows examples of several
triplets of triplet loss; two sets of model-wise intra-consistency between features extracted by four
pretrained models; and one sample (with two triplets) for sample-wise inter-divisibility.

3.3 INTRA-CONSISTENCY AND INTER-DIVISIBILITY LOSS

To solve the above concerns and better satisfy VQA tasks, we intend to constrain the features between
different pretrained models and different samples using metric learning. Triplet loss, which is one of
the most widely adopted metric learning measures, can be formed as follows:

Ltriplet(fâ,fp̂,fn̂) = max(∥fâ − fp̂∥2 − ∥fâ − fn̂∥2 + α, 0), (2)

where fâ,fp̂,fn̂ are features of an anchor sample â, a positive sample p̂ of the same class as â, and a
negative sample n̂ which has a different class of â. And α is a margin between anchor-positive and
anchor-negative pairs. Some previous studies (Chen et al., 2022a; Golestaneh et al., 2022) in QA also
applied triplet loss to measure the distance between the distorted feature and the reference feature of
the same sample. Since the MOS values are continuous, the original triplet loss cannot be directly
used to constrain the distance between arbitrary samples. We make some modifications to constrain
features generated by different pretrained models and samples, as given in Fig. 4.

Intra-consistency constraint. To constrain features generated by different pretrained models into a
unified quality-aware latent space, we propose a model-wise intra-consistency constraint. Formally,
it is defined to minimize the distance between arbitrary two of the transformed features through
computing a cosine similarity, which is widely used in deep metric learning (Wang et al., 2019a):

Lintra =
2

N · (N − 1)

N∑
n=1

N∑
m,m ̸=n

(
1− f (i)

n · f (i)
m

∥f (i)
n ∥2∥f (i)

m ∥2

)
. (3)

Inter-divisibility constraint. To constrain features generated by different samples, we split videos
into distinct pseudo clusters under different numerical intervals, according to the annotated MOS
values (on a scale of 1.0 to 5.0). For example, videos with MOS in the range of 1.0 to 2.0 are
generally considered to be of poor quality, and whose content cannot be normally recognized due
to the existence of various distortions. And videos with MOS in the range of 4.0 to 5.0 are of high
quality, whose content is unambiguous, without noise, shaking, and blurring. We identify the videos
within the same range as the same category, thus dividing them into K clusters. Each cluster can
be noted as Sk = {x(i)|y(i) ∈ (pk, qk], qk > pk ∈ [1.0, 5.0]}, where y(i) is the labeled MOS for the
i-th input video, pk and qk are the endpoints of the interval. Through this pseudo cluster, triplet loss
can be utilized for samples belonging to the same cluster to be closer and samples of the different
clusters to be farther away. Then Eq. (2) can be rewritten as:

Ltriplet(h
(i),h(j),h(l)), where x(i),x(j) ∈ Sk,x(l) /∈ Sk. (4)

Besides, the original feature f extracted by individual models are replaced by the integrated feature
h.

As shown in Fig. 5, the original triplet loss performs a sample-to-sample form, which is highly
affected by the sampling of triples. When facing outliers that are of the same quality but render
different contents, or vice versa, it may lead to bad local minima and prevent the model from achieving
top performance. To solve the second concern aforementioned, we propose using the centroid of the
cluster to represent the positive and negative points as:

Linter = Ltriplet(h
(i), ck, ct), and ck =

1

|Sk|
∑

{i|x(i) ∈ Sk}
h(i), ct =

1

|St|
∑

{j|x(j) ∈ St}
h(j). (5)
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Given a batch consisting B inputs, during training, the optimization objective can be summarized as:

min L1 + β
(∑B

i=1
Lintra + Linter

)
, (6)

where β is the coefficient balancing smooth L1 regression loss and the proposed ICID loss.

3.4 SELECTION SCHEME THROUGH DBI

We observe an obvious difference in the clustering results of different pretrained models in Fig. 2.
Since the weights of models are frozen both in the clustering test and subsequent training process,
the divergence of clustering results can reflect the relevance of VQA tasks. We propose using the
Davies–Bouldin Index (DBI) (Davies & Bouldin, 1979), which is used as a metric for evaluating
clustering algorithms, for model selection. In our setting, it can be noted as:

ψ =
1

K

K∑
k=1

max
t̸=k

dk + dt
∥ck − ct∥2

, and ck =
1

|Sk|
∑
Sk

z(i), dk =
1

|Sk|
∑
Sk

∥z(i) − ck∥2, (7)

where ck is the centroid of cluster Sk for the set of extracted feature z(i), dk represents the average
distance between each sample and its corresponding centroid. For the n-th model, its DBI score can
be noted as ψn. A lower DBI indicates better clustering performance, which means that the pretrained
model (e.g., ConvNeXt, Swin-Base, ir-CSN-152, CLIP in Fig. 2) is more relevant to the VQA task.
During training, the DBI scores computed offline can be used in the aggregation procedure as given
in Eq. (1), where ωn can be replaced by 1

ψn
. It means the models that are more relevant to the VQA

task contribute more to the feature representation.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION CRITERIA

Datasets. Our method is evaluated on 3 public NR-VQA datasets, including KoNViD-1k (Hosu
et al., 2017), LIVE-VQC (Sinno & Bovik, 2019) and YouTube-UGC (Wang et al., 2019b). In
detail, KoNViD-1k contains 1,200 videos that are fairly filtered from a large public video dataset
YFCC100M. The videos are 8 seconds long with 24/25/30 FPS and a resolution of 960× 540. The
MOS ranges from 1.22 to 4.64. Each video owns 114 annotations to get a reliable MOS. LIVE-VQC
consists of 585 videos with complex authentic distortions captured by 80 different users using 101
different devices, with 240 annotations for each video. YouTube-UGC has 1,380 UGC videos sampled
from YouTube with a duration of 20 seconds and resolutions from 360P to 4K, with 123 annotations
for each video. All the datasets contain no pristine videos, thus only NR methods can be evaluated on
them. Following (Xu et al., 2021; Su et al., 2020), we split the dataset into a 80% training set and
a 20% testing set randomly for all three datasets. We perform 10 repeat runs in each dataset using
different splittings to get the mean values of PLCC and SRCC to eliminate the bias.

Evaluation criteria. Pearson’s Linear Correlation Coefficient (PLCC) and Spearman’s Rank-Order
Correlation Coefficient (SRCC) are selected as criteria to measure the accuracy and monotonicity.
They are in the range of [0, 1]. A larger PLCC means a more accurate numerical fit with MOS scores.
A larger SRCC shows a more accurate ranking between samples. Besides, the mean average of PLCC
and SRCC is also reported as a comprehensive criterion.

4.2 IMPLEMENTATION DETAILS

Our experiments are performed using PyTorch (Paszke et al., 2019) and MMAction2 (Contributors,
2020), and are all conducted on one Nvidia V100 GPU by training for 60 epochs. For KoNViD-1k,
we select ConvNeXt, ir-CSN-152, and CLIP as feature extractors. For LIVE-VQC, we use CLIP and
TimeSformer. For YouTube-UGC, an extra Video Swin-Base is used together with those selected
on KoNViD-1k. For KoNViD-1k, we sample 16 frames with a frame interval of 2. As videos in
LIVE-VQC and YouTube-UGC has a longer time duration, we use larger intervals for these two
datasets. Since most augmentations will introduce extra interference to the quality of videos (Ke et al.,
2021), we only choose the center crop to produce an input with a size of 224× 224. During training,
we use AdamW optimizer with a weight decay of 0.02. Cosine annealing with a warmup of 2 epochs
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Table 1: Training details for different datasets of PTM-VQA.

Dataset Pretrained Models Frames Interval Initial LR Time(h) Param(M) Mem(G)

KoNViD-1k ConvNeXt, ir-CSN-152, CLIP 16 2 1e-3 2.00 0.66 4.94
LIVE-VQC CLIP, TimeSformer 16 4 5e-3 1.97 0.30 4.32

YouTube-UGC CLIP, ir-CSN-152, CLIP, Video Swin-B 32 8 1e-3 2.34 0.86 5.32

Table 2: Comparisons with existing methods. The “-” is an unreported result. The “*” means using
extra labeled QA data for training. The best and second best results are bolded and underlined.

Method KoNViD-1k LIVE-VQC YouTube-UGC
PLCC SRCC Mean PLCC SRCC Mean PLCC SRCC Mean

VIIDEO (Mittal et al., 2016) 0.3030 0.2980 0.3005 0.2164 0.0332 0.1248 0.1534 0.0580 0.1057
NIQE (Mittal et al., 2013) 0.5530 0.5417 0.5473 0.6286 0.5957 0.6121 0.2776 0.2379 0.2577

BRISQUE (Mittal et al., 2012) 0.626 0.654 0.640 0.638 0.592 0.615 0.395 0.382 0.388
VSFA (Li et al., 2019) 0.744 0.755 0.749 - - - - - -

TLVQM (Korhonen, 2019) 0.7688 0.7729 0.7708 0.8025 0.7988 0.8006 0.6590 0.6693 0.6641
RIRNet (Chen et al., 2020) 0.7812 0.7755 0.7783 0.7982 0.7713 0.7847 - - -

UGC-VQA (Tu et al., 2021a) 0.7803 0.7832 0.7817 0.7514 0.7522 0.7518 0.7733 0.7787 0.7760
CSPT (Chen et al., 2022c) 0.8062 0.8008 0.8035 0.8194 0.7989 0.8091 - - -

RAPIQUE (Tu et al., 2021b) 0.8175 0.8031 0.8103 0.7863 0.7548 0.7705 0.7684 0.7591 0.7637
StarVQA (Xing et al., 2021) 0.796 0.812 0.804 0.808 0.732 0.770 - - -

BVQA* (Li et al., 2022) 0.8335 0.8362 0.8348 0.8415 0.8412 0.8413 0.8194 0.8312 0.8253
STDAM* (Xu et al., 2021) 0.8415 0.8448 0.8431 0.8204 0.7931 0.8067 0.8297 0.8341 0.8319

PTM-VQA 0.8718 0.8568 0.8643 0.8198 0.8110 0.8154 0.8570 0.8578 0.8574

is adopted to control the learning rate. The dimension D of transformed features is set to 128. The
margin α is set to be 0.05. β is set to be 0.2. By default, we select the checkpoint generated by the
last iteration for evaluation. During inference, we follow a similar procedure as given in (Arnab
et al., 2021) by using 4× 5 views. To be specific, 4 clips are uniformly sampled from a video in the
temporal domain. For each clip, we take 5 crops in the four corners and the center. The final score is
computed as the average score of all the views. More training details are given in Tab. 1.

4.3 COMPARISON WITH SOTA METHODS

We select existing VQA methods for comparison in three datasets. As shown in Tab. 2, our method
obtains competitive results on all three datasets. Compared with traditional methods that rely on
statistical regularities (e.g., VIIDEO, NIQE, and BRISQUE), PTM-VQA models outperform by large
margins. Compared with some deep learning-based methods that apply well-designed networks (e.g.,
TLVQM, StarVQA), PTM-VQA still obtains higher performances. Especially, VSFA and RIRNet
also adopt pretrained models that contain content-dependency or motion information to finetune in
VQA tasks. PTM-VQA demonstrates that features extracted directly from pretrained models can
also achieve better results. As the best two SOTA methods BVQA and STDAM who utilize extra
IQA datasets, PTM-VQA proves that transferring knowledge from pretrained models can achieve
competitive results compared with a model trained with additional data. PTM-VQA improved SOTA’s
PLCC by 3.02%, SRCC by 1.20%, and mean score by 2.12% on KoNViD-1k. And PTM-VQA
improved SOTA’s PLCC by 2.73%, SRCC by 2.37%, and mean score by 2.55% on YouTube-UGC.

4.4 EXPERIMENTAL ANALYSIS

In this section, we conduct a performance analysis to evaluate the effectiveness of each proposed
component. By default, experiments are performed following the best configurations in KoNViD-1k.

Ablation on different constraints. As given in Tab. 3, direct usage of triplet loss cannot obtain satisfy
results. When either or both constraints are absent, performance degrades significantly. These prove
the effectiveness of intra-consistency in transferring knowledge from different pretrained models and
inter-divisibility in generating stable predictions.

Ablation on the clustering settings. Tab. 4 gives the results with different number of clusters. When
K is 2, videos are simply classified as low-quality and high-quality ones. When K is 4, videos are
evenly divided into four parts on a scale of 1.0 to 5.0. Due to the relatively small amount of data at
both endpoints, a 6-split setting can be obtained by using fine-grained division in the middle fraction
segment. Since the need to ensure the number of samples per cluster within the batch, a larger number
of clusters are not attempted. The best result can be acquired when K is 6.
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Table 3: Ablation on constraints.

L1 Lintra Linter Ltri PLCC SRCC

✓ ✓ ✓ 0.8718 0.8568

✓ ✓ 0.7968 0.7850
✓ 0.7867 0.7655
✓ ✓ 0.8545 0.8299
✓ ✓ 0.8172 0.7707

Table 4: Ablation on cluster settings.

K intervals PLCC SRCC

2 S1=[1,3), S2=[3, 5] 0.8277 0.8066

4 S1=[1,2), S2=[2,3), 0.8431 0.8012S3=[3,4), S4=[4,5]

6 S1=[1,2), S2=[2, 2.5), S3=[2.5, 3), 0.8718 0.8568S4=[3, 3.5), S5=[3.5, 4), S6=[4, 5]

Ablation on the effectiveness of DBI. The effectiveness of DBI can be evaluated in 2 aspects: (1)
correlation between offline metrics and final results as given in Tab. 5; (2) integration of different
contributions during training as shown in Tab. 6 and combinations using random strategy in Tab. 7.
Tab. 5 indicates that models with higher DBI scores (e.g., MAE and ViT-B) are more likely to perform
poorly on downstream tasks, and vice versa (e.g., CLIP, ConvNeXt). Tab. 6 shows the effectiveness
of DBI in guiding the integration of different models. Tab. 7 shows that the selection scheme based
on DBI is better than random selection.

Table 5: Correlation of DBIs and performances.

Model DBI KoN1k LIVE YT

MAE 8.29 0.7169 0.7807 0.7631
Swin-B 0.72 0.7892 0.7701 0.7816

X3D 2.35 0.6165 0.5995 0.6432
ir-CSN152 1.41 0.7647 0.6304 0.7349

CLIP 2.49 0.8398 0.7832 0.8089
ConvNeXt 0.62 0.7794 0.7554 0.7988

TimeSformer 4.47 0.8044 0.7427 0.7541
ViT-B 3.15 0.7879 0.7353 0.7218

Table 6: Ablation on the types of ωn.

Datasets ωn PLCC SRCC

KoNViD-1k 1/N 0.8631 0.8521
1/ψ 0.8718 0.8568

LIVE-VQC 1/N 0.8205 0.8197
1/ψ 0.8198 0.8110

YouTube-UGC 1/N 0.8427 0.8446
1/ψ 0.8570 0.8578

Table 7: Ablation on the selection of pretrained models on different datasets.

Dataset N selected pretrained models PLCC SRCC

KoNViD-1k

1 CLIP 0.8398 0.8083
2 CLIP, ir-CSN-152 0.8520 0.8180
3 CLIP, ir-CSN-152, ConvNeXt 0.8718 0.8568
4 CLIP, ir-CSN-152, ConvNeXt, Swin-Base 0.8634 0.8423

3 ViT Base, MAE, Swin-Base (Random) 0.8317 0.7912
3 SlowFast, TimeSformer, MAE (Random) 0.8135 0.7863

LIVE-VQC

1 CLIP 0.7832 0.7779
2 CLIP, TimeSformer 0.8198 0.8110
3 CLIP, TimeSformer, Video Swin-Base 0.8192 0.8075
4 CLIP, TimeSformer, Video Swin-Base, MAE 0.8107 0.8038

4 X3D, TimeSformer, SlowFast, Swin Base (Random) 0.7851 0.7712
4 ConvNeXt,SlowFast, MAE, Swin Base (Random) 0.7768 0.7626

YouTube-UGC

1 CLIP 0.8089 0.8236
2 CLIP, ir-CSN-152 0.8067 0.8243
3 CLIP, ir-CSN-152, ConvNeXt 0.8589 0.8552
4 CLIP, ir-CSN-152, ConvNeXt, Swin-Base 0.8570 0.8578

4 SlowFast, TimeSformer, MAE, Swin-Base (Random) 0.8343 0.8208
4 X3D, SlowFast, ViT Base, ConvNeXt (Random) 0.8167 0.8126

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a new PTM-VQA framework that utilizes in-the-wild pretrained models as
feature extractors for VQA tasks. The DBI scores are utilized to select candidates from a large amount
of available pretrained models. To constrain features with large diversity into a unified quality-aware
latent space and tackle outliers (e.g., render different content but of the same perceptual quality),
we propose a new Intra-Consistency and Inter-Divisibility loss. Under small computational cost,
PTM-VQA models obtain SOTA results in widely-used NR-VQA benchmarks. Furthermore, how to
further use the pretrained models is still an open question with great practical significance. There
are some problems worthy of research, which we would like to explore in future work: (1) is there
a more effective way to select models? (2) We find that different datasets require different model
combinations (by trial-and-error) for optimal performance. Is there an automatic selection manner?
(3) What exactly did the pretrained models migrate? We hope to inspire subsequent related research.
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A APPENDIX

A.1 COMPARISON WITH THE ORIGINAL TRIPLET LOSS

(a) Sample-based triplet. (b) Centroid-based triplet.

Figure 5: Comparison of the sample-based and centroid-based triplet. Videos of the same quality
often render completely different content and vice versa, increasing the difficulty for models trained
on objective tasks to generate discriminate features. Sample-based triplets mainly focus on the
content, while centroid-based triplet concerns the similarity lies in the cluster, which contributes for
stable predictions when facing these outliers.

A.2 PRE-SELECTION OF PRETRAINED MODELS

In practice, we also used some rules to conduct preliminary selection before computing DBI scores.
First, candidate pretrained models should achieve top performance in their original pre-text fields
(e.g., high Top-1 accuracy in ImageNet classification). Using this, homogeneous models can be
filtered out (e.g., ResNet-18 (ψ=4.36), MobileNet (ψ=4.67)). And the DBI scores also prove this
attempt. Second, there should be a considerable divergence between candidate models. It ensures that
each pretrained model has its own strengths (e.g., building spatiotemporal relation [TimeSformer],
content-aware [Swin], human emotional tendency [CLIP]). By using these two rules, we can filter
the optimal models in each field that own the lowest DBI scores. This effectively reduces the cost of
subsequent attempts for model combinations.

A.3 SELECTION OF HYPER-PARAMETERS

We test using different values of β in Table 9. The best results can be achieved when β is 0.2.
Excessive constraints may cause the features to be too close to affecting the representation. So we set
the default value of β to be 0.2 in all other experiments.

Table 8: Performances using different values of β.

β PLCC SRCC

0.1 0.8514 0.8230
0.2 0.8734 0.8472
0.5 0.8485 0.8190
1.0 0.8457 0.8102
2.0 0.8457 0.8085

A.4 STATISTICAL SIGNIFICANT OVER SOTA METHODS

We perform 10 repeat runs in each dataset using different splittings to get the mean values of PLCC
and SRCC (0.8718±0.0041 of PLCC, 0.8568 ± 0.0103 of SRCC in KoNViD-1k, 0.8198± 0.0022 of
PLCC, 0.8110 ± 0.0051 of SRCC in LIVE-VQC, 0.8570± 0.0043 of PLCC, 0.8578 ± 0.0029 of
SRCC in YouTube-UGC). Then unequal variance t-tests are calculated to show whether these results
are statistically significant, compared with the current SOTA method of STDAM. For KoNViD-1k,
the t-value and degrees of freedom (DF) are 6.54 and 13.04 (reduced to 13), respectively. Using
the degree of freedom value as 13 and 5% level of significance, a look at the t-value distribution
table gives a value of 1.77. For YouTube-UGC, the t-value and DF is 4.81 and 11.71 (reduced to
11), respectively. Using the degree of freedom value as 11 and 5% level of significance, a look at
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the t-value distribution table gives a value of 1.79. Therefore, it is safe to reject the null hypothesis
that there is no difference between means. And PTM-VQA is better than STDAM in statistics in
KoNViD-1k and YouTube-UGC.

A.5 STATISTICAL SIGNIFICANT OVER RANDOM SELECTION

Table 9: Performances using randomly selected pretrained models.

Models PLCC SRCC

ResNet152, ViT, RegNet 0.8022 0.7524
ResNet152, X3D, ir-CSN-IG 0.6221 0.6197

EfficientNet-b7, ViT, Swin Base 0.8117 0.7675
ConvNext, iBot, SlowFast 0.8230 0.7915

TimeSformer, EfficientNet-B7, MAE 0.8049 0.7777
SlowFast, MAE 0.7993 0.7743

SlowFast, TimeSformer, MAE, Swin Base 0.8214 0.7868
ViT 0.7879 0.7353

ViT, MAE, Swin Base 0.8317 0.7912
SlowFast, TimeSformer, MAE 0.8135 0.7863

avg 0.7917±0.0578 0.7583 ± 0.0492

We perform 10 runs (an extra 8) using random model selection in KoNViD-1k. Then a t-test evaluation
is used to show the statistically significant DBI. Compared with random results, the t-value and DF
are 10.18 and 10.27 (reduced to 10), respectively. Using the degree of freedom value as 10 and 5%
level of significance, a look at the t-value distribution table gives a value of 1.79. Using the degree of
freedom value as 11 and 5% level of significance, a look at the t-value distribution table gives a value
of 1.81. Therefore, it is safe to reject the null hypothesis that there is no difference between means.
And DBI gives better results than random selection.
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