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Multiway clustering methods for higher-order tensor observations have been de-
veloped in various fields, including recommendation systems, neuroimaging, and
social networks. However, high computational costs hinder the applications of
tensor-based approaches to real-world large-scale data. Here, we propose a large-
scale multiway clustering framework under tensor block model, named LS-TBM,
with accuracy guarantees. LS-TBM leverages seeded clustering to break down the
expensive high-dimensional tensor clustering into two fast low-dimensional steps.
Our two-step algorithm substantially reduces the time and space complexities from
polynomial to logarithmic rateswhilemaintaining the exact recovery of community
structures, under certain signal conditions. We also establish the theoretical phase
transition of LS-TBM performance with a key interplay between signal levels and
seed sizes. Numerical experiments with synthetic data and real large-scale Uber
Pickup data highlight LS-TBM’s superior performance in practice.

1. Introduction
Multiway data has been extensively collected across various disciplines [1, 2]. Tensors, or multi-
dimensional arrays, are considered as an effective tool to represent and analyze such multiway data
withmultiple indices. One important task in tensor analysis is multiway clustering. Applications of
multiway clustering arise in a wide range of studies, including social relation graph clustering [3],
brain network community detection in neuroscience [4], and hypergraph analysis [5]. Many tensor-
based approaches [6–11] have been successfully developed to capture the higher-order structures
and solve the multiway clustering task with theoretical guarantees. Particularly, Tensor Block Model
(TBM, [7]) is one of the most popular statistical models for multiway clustering. TBM is considered
as a higher-order generalization of matrix stochastic block model (SBM). The goal of TBM is to
identify the underlying community structure in all directions (Output in Figure 1) fromnoisy tensor
observations (Input in Figure 1). Previous works [7, 9] have investigated the theoretical properties
and developed clustering algorithms with accuracy guarantees under TBM.

Figure 1: LS-TBM illustration for an order-3 tensor of with dimension n and seed sizem on all modes.

Despite the rapid development of tensor methods, one significant drawback of most tensor-based
algorithms, including the TBM algorithm in [9], is their computational inefficiency. Computational
costs for one algorithm cover several aspects: (1) the storage size of inputs, (2) the peak memory
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cost to implement all intermediate calculations, and (3) the running time to obtain outputs. Due to
multiple orders, the computational costs for tensor-based algorithmswill inflate polynomially faster
than one-dimensional andmatrix-based algorithms. For example, the typical one-dimensional spec-
tral clustering [12] for n entities has time complexity O(n2)while the higher-order spectral cluster-
ing [9] for n entities on each of K directions has time complexity O(nK+1). This computational
obstacle brings financial and time concerns to apply tensor-based algorithms to large-scale data in
practice, even though tensor methods possess better theoretical properties.
In this work, we provide a large-scale multiway clustering framework, named Large-Scale TBM (LS-
TBM), that substantially reduces the computational burden while maintaining similar accuracy as
full TBM clustering. The key idea of LS-TBM is the utilization of seeded clustering: given a subset
of node community assignments, called seed, we are able to infer the community assignments of
remaining nodes. Specifically, we divide the multiway clustering into two steps: seed generation
and seeded clustering. In Step 1, we randomly sample the node sets and apply the full TBM algo-
rithm on the sub-tensor associated with subsampled nodes to obtain the seed. In Step 2, we infer
the community assignments of all remaining nodes by comparing the node-seed connections with
the block means estimated by the seed and sub-tensor. See Figure 1 for illustration.
Our contributions. We summarize the main contributions with our proposed LS-TBM below.
1. Our LS-TBM substantially reduces the algorithm time and space complexities while maintaining

the theoretical guarantees to exactly recover full community structures. Particularly, LS-TBM
drops polynomial complexities to logarithmic complexities with a strong signal-to-noise ratio
(SNR) level. Table 1 shows the leading performance of LS-TBM in computation.

2. We establish accuracy guarantees for the two steps and the overall LS-TBM.We present the phase
transition of LS-TBM performance with a key theoretical interplay between the SNR level and
seed size m to the clustering accuracy. Figure 2 visualizes the phase transition and interplay.

3. We confirm the superior empirical performance of LS-TBM in large-scale numerical experiments.

Algorithm Full TBM [9] LS-TBM LS-TBM (Strong SNR) LS-TBM (Weak SNR)
Time Complexity O(nK+1) O(mK+1) O(log(K+1)/(K−1) n) O(n(K+1)/2)

Space Complexity O(nK) O(mK−1n) O(n logn) O(n(K−1)/2+1)

Table 1: Time and space complexities of full TBM [9] and LS-TBM on an order-K tensor with dimension n
and seed sizem. See Sections 2, 3, and Remark 2 for detailed discussions.

Figure 2: Phase transition of order-K LS-TBM perfor-
mance with a theoretical interplay between the SNR
level and seed size m. As SNR reduces from strong
O(1) to weak O(n−K/4), LS-TBM requires an increas-
ing seed size m from O(log1/(K−1) n) to O(n1/2) to
the achieve exact recovery. When the combination (m,
SNR) lies in the light blue area, LS-TBM fully recovers
the community structure with a high probability.

Related work. Here, we review several rele-
vant lines of literature for comparison. The
first line is about multiway clustering algo-
rithms. One prominent approach is higher-
order spectral clustering [8, 9, 11, 13–15], which
leverages low-dimensional spectral represen-
tations of data tensors. Higher-order spec-
tral clustering extends traditional spectral clus-
tering methods and incorporates various ten-
sor decomposition methods such as CAN-
DECOMP/PARAFAC (CP) decomposition [16]
and Tucker decomposition [17]. Specific strate-
gies have also been developed for certain sce-
narios, including tensor-SCORE [8], angle-
based iterations [10] for degree-corrected TBM,
and the generalized linear model with alternat-
ing iterations [15] for binary tensor observa-
tions. Only a few works consider the computa-
tional difficulties in the applications with large-
scale tensors while our work pays special atten-
tion to the computational feasibility, resource
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requirement, and running time in implementation. Through our framework, real applications with
massive tensor data are able to practically enjoy the methodological achievements obtained by pre-
vious multiway clustering literature.
The second line focuses on scalable community detection. Several large-scale methods have been
proposed for one-dimensional or matrix community detection problems, including fast pseudo-
likelihood approaches [18, 19], label propagation algorithms [20, 21], divide-and-conquer strategies
[22–25], and subsampling techniques [26, 27]. However, thesemethods rarely address themultiway
clustering problem for higher-order tensors. Given the unique algebraic properties of tensors, such
extensions are non-trivial, and our work addresses this gap with a scalable tensor method.
The last line of research relates to the seed expansion. Generally, seeds refer to objects that require
special attention in a system, and seed expansion propagates information from the seed to the entire
system. In community detection, seed expansion reveals the full structure via node-seed connec-
tions through randomwalks [28, 29] or by comparing node characterizations [30, 31]. This concept
has also been applied to other areas, including graphmatching [32, 33], essential node identification
[34], and relation extraction [35]. To the best of our knowledge, LS-TBM is the first work to adapt
seed expansion to multiway clustering via seeded clustering.
Notation. We use lower-case letters (e.g., a) for scalars, lower-case bold letters (e.g., a) for vectors,
upper-case letters (e.g., S) for sets of integers, upper-case bold letters (e.g., M) for matrices, and
calligraphy letters (e.g., X ) for higher-order tensors with order equal or larger than 3. One excep-
tion is that we reserve letters ‘c’ (e.g., c, c1) and ‘C’ (e.g., C,C1) for generic small or large positive
constants, respectively. For a positive integer n, let [n] = {1, . . . , n}. For a set S, let |S| denote the car-
dinality and S(i) denote the i-th element in S. For two sequences {an, bn} of positive numbers, we
denote an ≲ bn or an = O(bn) if limn→∞ an/bn ≤ c and an ≳ bn or an = Ω(bn) if limn→∞ an/bn ≥ c
for some constant c > 0; we denote an = o(bn) if limn→∞ an/bn = 0; and we denote an ≍ bn if
an ≳ bn and an ≲ bn. We use 1{·} for the 0-1 indicator function, ∥·∥2 for the ℓ2 norm, ⟨·, ·⟩ for the in-
ner product,⊗ for the Kronecker product, 1n ∈ Rn for the vector with all elements 1, In ∈ Rn×n for
the identity matrix, and diag(v) ∈ Rn×n for the diagonal matrix with elements in a vector v ∈ Rn.
Consider an order-K (n1, . . . , nK)-dimensional tensorX ∈ Rn1×···×nK with entriesX (i1, . . . , iK) for
ik ∈ [nk], k ∈ [K]. We use colon ‘ : ’ as a shorthand representing all entries in a particular direction.
For example, X (i1, . . . , iK−1, : ) ∈ RnK is a tensor fiber, and X (i1, : , . . . , : ) ∈ Rn2×···×nK is a tensor
slice of the first mode. For a matrixX ,Xi,: andX:,j are the i-th row and j-th column, respectively.
We use Matk(·) for tensor unfolding operation along the k-th mode and Matl(X ) ∈ Rnl×

∏
k ̸=l nk .

Consider node subsets Sk ∈ [nk] for k ∈ [K]. We define sub-tensor associated with {Sk}k∈[K] as

X (S1, . . . , Sk) = JX (S1(j1), . . . , SK(jK))Kjk∈[|Sk|],k∈[K] ∈ R|S1|×···×|SK |.

The multilinear multiplication of a core tensor C ∈ Rr1×···×rK by matrices Mk ∈ Rnk×rk results in
an order-K (n1, . . . , nK)-dimensional tensorX , denoted asX = C×1M1×2 · · ·×KMK , with entries

X (i1, . . . , iK) =
∑

j1,...,jK

C(j1, . . . , jK)M1(i1, j1) · · ·MK(iK , jK).

Last, we drop the subscript k ∈ [K] for any sequence withK elements {nk}k∈[K] and use following
shorthands for {nk}: n∗ =

∏
k∈[K] nk, n−l =

∏
k∈[K],k ̸=l nk, n̄ = maxk∈[K] nk, n = mink∈[K] nk.

2. Large-Scale Tensor Block Model Framework
Before the LS-TBM algorithm, we recall the TBM [7] formula for setup. Consider an order-K tensor
observation Y ∈ Rn1×···×nK . Suppose that there are rk communities on the k-th mode of Y . Let
zk : [nk] 7→ [rk], k ∈ [K] denote the community assignment functions. We say Y follows the TBM if

Y = X + E , where X = C ×1 M1 ×2 · · · ×K MK , (1)
X = E[Y] ∈ Rn1×···×nK is the mean signal tensor, E ∈ Rn1×···×nK is a noise tensor whose entries are
independent and zero-mean with variance upper bounded by σ2, C ∈ Rr1×···×rK is the core tensor
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collecting the block means among communities, and Mk ∈ {0, 1}nk×rk , k ∈ [K] are membership
matrices such that Mk(i, a) = 1{zk(i) = a}. The community assignments {zk} or {Mk} are main
parameters of interests. We focus on high dimensional cases where nk’s increase while rk = O(1).
The key idea of LS-TBM to alleviate computational burden is dividing the high-dimensional and expen-
sive full algorithm into two low-dimensional and cheap steps: seed generation and seeded clustering.
For a better narrative, we firstly introduce seeded clustering and then discuss seed generation.

2.1. Seeded clustering
Seeded clustering aims to extend the seed, i.e., the partial community assignments, to the full com-
munity structure. Taking the seed as “true labels", seeded clustering in fact transfers the unsuper-
vised clustering problem to a relatively easy, supervised classification task.
Specifically, for illustration, we consider the seeded clustering on the first mode with a perfect seed
{z̃k : Sk 7→ [rk], Sk ⊂ [nk]} such that z̃k(i) = zk(i) and |Sk| = mk for all i ∈ Sk, k ∈ [K]. Based on
formula (1), the TBM structure still holds on the sub-tensor associated with {Sk}

X (S1, . . . , SK) = C ×1 M1(S1, : )×2 · · · ×K MK(SK , : ),

where Mk(Sk, : ) ∈ {0, 1}mk×rk are membership matrices corresponding to {z̃k}. By tensor multi-
plication, we have

C1 = W T
1 X1(S1, S2 × · · · × SK)[W2 ⊗ · · · ⊗WK ]T , (2)

where C1 = Mat1(C) ∈ Rr1×r−1 ,X1(S1, S2 × · · · × SK) = Mat1(X (S1, . . . , SK)) ∈ Rm1×m−1 are
mode-1 matricizations of the core tensor and the sub-tensor, respectively, and

Wk = Mk(Sk, :)(diag(1T
mk

Mk(Sk, :)))
−1, k ∈ [K],

are weighted membership matrices such that W T
k Mk(Sk, :) = Irk . The matrix C1 has r1 unique

rows, and the row C1(a, : ) collects the connections between the a-th community on the first mode
to all r−1 communities on the other modes. Notice that, for an arbitrary j ∈ [n1]/S1, we have

C1(z1(j), :) = xj := X1(j, S2 × · · · × SK)[W2 ⊗ · · · ⊗WK ]T ,

where X1(j, S2 × · · · × SK) = Mat1(X (j, S2, . . . , SK)) ∈ Rr−1 collects the node-seed connections be-
tween the node j and seed node subsets S2, . . . , SK . Then, we are able to obtain the community
assignment for node j, z1(j), by comparing the aggregated node-seed connection vector xj with r1
rows of C1. We recognize our seeded clustering as a supervised procedure. Instead of calculating
the pairwise similarities among feature vectors xj ’s, we classify the nodes via the similarities be-
tween xj ’s and r1 “true" reference centroids inC1. This supervised nature makes seeded clustering
more computationally efficient than typical unsupervised clustering (e.g., k-means) who calculates
similarities between all pairs of feature vectors. In practice, we use the noisy observation and im-
perfect seeds for estimation. See detailed procedures in the Sub-algorithm 2 of Algorithm 1.

2.2. Seed generation
Seed generation aims to obtain the partial community assignments {z̃k : Sk 7→ [rk], Sk ⊂ [nk]}. Seed
provides a low-dimensional sketch of the whole community structure and will serve as the “true
labels" for the following seeded clustering. As a pivot linking two steps, seed plays a critical role that
determines the final clustering accuracy. A poor-quality seed misaligned with true zk can mislead
the assignments for remaining nodes. The misalignment in the seed will even be exaggerated in
the full assignments due to the large dimension, making it more difficult to achieve overall exact
recovery. A high-quality seed should satisfy three conditions: 1. {Sk} are representative enough to
cover all {rk} communities, 2. {z̃k} are accurate enough, and 3. sizes of the seed {mk} are proper.
Condition 1 is straightforward. It is impossible to obtain an accurate estimate ofC1(a, :) in (2) if none
of a-th community members is in S1. Fortunately, the uniform sampling addresses this requirement
under most cases. If the true community structure is balanced, {Sk} from uniform sampling are
able to cover all communities with a high probability. See Section 3.2 for the theoretical proof.
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Algorithm 1 Large-scale multiway clustering under tensor block model (LS-TBM)
Sub-algorithm 1: Seed generation
Input: Observation Y , number of communities {rk}, sizes of the seed {mk}, number of iterations

T , relaxation factor in k-means: M > 1 (T,M are hyperparameters only for Algorithm 2).
1: Uniformly sample the node subsets Sk from [nk] such that |Sk| = mk, for all modes k ∈ [K].
2: Apply full TBM Algorithm 2 with {rk}, T,M on the sub-tensor Y(S1, . . . , SK) ∈ Rm1×···×mK .

Output: Seed {z̃k : Sk 7→ [rk]} output by Algorithm 2.
Sub-algorithm 2: Seeded clustering
Input: Observation Y , seed {z̃k : Sk 7→ [rk]} from Sub-algorithm 1.
3: Obtain the estimated core tensor with the seed {z̃k} as

C̃ = Y(S1, . . . , SK)×1 W̃
T
1 ×2 · · · ×K W̃ T

K , where W̃k = M̃k(Sk, :)(diag(1T
mk

M̃k(Sk, :)))
−1,

and M̃k(Sk, :) ∈ {0, 1}mk×rk are membership matrices spanned by z̃k for k ∈ [K].
4: for k = 1 to K do
5: Let Sc

k = [nk]/Sk be the complement of Sk. Calculate the aggregated tensor observation
Ak = Y(S1, . . . , Sk−1, S

c
k, Sk+1, . . . , SK)×1W̃

T
1 ×2 · · ·×k−1W̃

T
k−1×k+1W̃

T
k+1×k+2 · · ·×K W̃ T

K .

6: Calculate matricizations C̃k = Matk(C̃) ∈ Rrk×r−k and Ak = Matk(Ak) ∈ R(nk−mk)×r−k .
The rows of C̃k serve as rk reference community centroids, and rows ofAk serve as aggregated
feature vectors of remaining nk −mk nodes waiting for classification.

7: for j ∈ Sc
k do

8: Obtain the assignment for j as ẑk(j) = argmina∈[rk]
∥C̃k(a, :)−Ak(j, :)∥22.

9: end for
10: Combining seed assignments, obtain the full assignment ẑk such that ẑk(i) = z̃k(i) for i ∈ Sk.
11: end for
Output: Estimated full community assignments {ẑk : [nk] 7→ [rk]}.

Another advantage of uniform sampling is that no extra prior calculation is needed. Other sampling
schemes [36, 37] are sophisticated but lead extra computation burdens. Condition 2 also ensures
the estimation accuracy of C1 in (2). To achieve a high accuracy for seed assignments, we leverage
the optimal full TBM algorithm [9] on the low-dimensional sub-tensor. We recall the algorithm of
[9] as Algorithm 2 in Appendix. Condition 3 is the trickiest one and seed sizes {mk} are the key
hyperparameters of the LS-TBM framework. If we choose largemk’s, the computational burdenwill
increase due to the usage of full TBM on the sub-tensor. Whereas, smallmk’s will lead the failure of
Conditions 1 and 2 simultaneously. The choice of {mk} relates to the computational consideration,
the signal level in C, and the LS-TBM accuracy. For the question “how to choose proper {mk}", we
defer the discussion to Sections 3 and 4. Full procedures of LS-TBM framework are in Algorithm 1.
Remark 1 (Complexity of LS-TBM Algorithm 1). We analyze both time and space complexities,
emphasizing the algorithm operation speed and memory cost, respectively. Consider the balanced
case where nk ≍ n,mk ≍ m for all k ∈ [K] and assume {rk},K as constants. The time complexity
of Algorithm 1 is O(mK+1 + mK + mK−1n). The term O(mK+1) comes from the application of
Algorithm 2 in Line 2. The other terms O(mK + mK−1n) come from the estimation of C (Line 3)
and the aggregation (Line 5) in the seeded clustering step. The space complexity of Algorithm 1 is
O(mK +mK−1n), dominated by the storage of the sub-tensor Y(S1, . . . , Sk) (Line 3) and node-seed
connections Y(S1, . . . , S

c
k, . . . , SK) (Line 5). See comparison with full TBM in Table 1.

3. Theoretical Guarantees
We start the theoretical analysis with several definitions and a general assumption. First, we define
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the clustering evaluation metrics. Take mode-1 as an example. The misclassification error of ẑ1 is

ℓ(ẑ1, z1) =
1

n1
min
π∈Π

∑
i∈[n1]

1{ẑ1(i) ̸= π ◦ z1(i)},

where π : [r1] 7→ [r1] is a label permutation function,Π collects all possible permutations on [r1], and
◦ denotes the composition operation. We say the estimate ẑ1 exactly recovers the true assignment
z1 if ℓ(ẑ1, z1) < 1/n1. Another metric is the misclassification loss of estimate ẑ1, which is defined as

L(ẑ1, z1) =
1

n1
min
π∈Π

∑
i∈[n1]

1{ẑ1(i) ̸= π ◦ z1(i)}∥Mat1(C)(π ◦ z1(i), :)−Mat1(C)(ẑ1(i), :)∥22,

where C is the core tensor in TBM (1). We drop the true assignment in misclassification error and
loss, e.g., ℓ(ẑ1) and L(ẑ1), for simplicity. Second, we define the signal-to-noise ratio (SNR) of TBM as

SNR =
∆2

min

σ2
, where ∆2

min = min
k∈[K]

∆2
k, and ∆2

k = min
a ̸=b∈[rk]

∥Matk(C)(a, :)−Matk(C)(b, :)∥22,

and σ2 is the variance upper bound for the independent entries in the noise tensor E of (1).
Assumption 1 (Balanced communities). There exist universal positive constants α1, α2 such that
α1nk/rk ≤

∑
i∈[nk]

1{zk(i) = a} ≤ α2nk/rk, for all a ∈ [rk], k ∈ [K].

Assumption 1 is mild. Such assumption is common in multiway clustering literature [7–10]. Prac-
tically, we ignore this balance assumption in the numerical experiments in Section 4.

3.1. Accuracy of seeded clustering

The accuracy of seeded clustering relies on the seed. Next assumption requires the seed balance.
Assumption 2 (Balanced communities in seed node subsets). There exist universal positive constants
α3, α4 such that α3mk/rk ≤

∑
i∈Sk

1{zk(i) = a} ≤ α4mk/rk, for all a ∈ [rk], k ∈ [K].

Let zck : [nk]/Sk 7→ [rk] denote the community assignments for remaining nodes, for all k ∈ [K].
Now, we are ready to present the accuracy of seeded clustering.
Theorem 3.1 (Accuracy of seeded clustering). Suppose that the tensor observation Y follows TBM (1)
with number of communities {rk}. Let {z̃k : Sk 7→ [rk]} be the given seed, and let {ẑk : [nk] 7→ [rk]} denote
the output of Sub-algorithm 2 in Algorithm 1 with Y and {z̃k}. Suppose that Assumptions 1 and 2 hold. If
SNR and the seed satisfy following conditions with some positive large constant C and small constant c:

SNR ≥ C
m̄

m∗
log m̄, L(z̃k) ≤ c

∆2
min√
m̄

, for k ∈ [K], (3)

we have
ℓ(ẑck) ≤ C ′SNR−1 exp (−c′m−kSNR) , for k ∈ [K],

with probability at least 1− exp(−c′′m)− exp(−c′′′m−k∆
2
min/σ

2) and C ′, c′, c′′, c′′′ are positive constants.

Consider the balanced case where nk ≍ n and mk ≍ m for all k ∈ [K]. The first condition in (3)
requires the SNR level to be at leastO(m−(K−1) logm). This signal requirement aligns with the SNR
requirement in the guarantee of the higher-order Lloyd algorithm [9] with a tensor of dimension
m. Such condition indicates that our seeded clustering shares a similar spirit as the Lloyd iteration.
The second condition in (3) provides the boundary of the seed’s accuracy to guarantee a good
performance in seeded clustering. Note that we do not assume the seed generation approach for
Theorem 3.1. As long as the seed satisfies the condition (3) and other assumptions hold, the seeded
clustering achieves a fast exponential error rate O(exp(−mK−1)) given a fixed SNR.
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3.2. Quality of seed generation
As described in Section 2.2 and indicated by Theorem 3.1, we consider the seed quality from two
aspects: the coverage of community structure and the accuracy of seed assignments.
Theorem 3.2 (Balanced communities in uniformly sampled node subsets). Consider the node sub-
sets {Sk} obtained by uniform sampling from {[nk]}, such that |Sk| = mk for all k ∈ [K]. Suppose that
Assumption 1 holds. With probability at least 1− C exp(−cmk), we have

α3mk

rk
≤
∑
i∈Sk

1{zk(i) = a} ≤ α4mk

rk
, for all a ∈ [rk], k ∈ [K]

where C, c, α3, α4 are some universal positive constants.

By Theorem 3.2, we formally show that the simple uniform sampling selects node subsets with bal-
anced true community structures. That is, node subsets {Sk} generated by the Line 1 in Algorithm 1
satisfies Assumption 2, which is required by the seeded clustering guarantee Theorem 3.1.
Next, for accuracy, we present the theoretical guarantee in [9] as a corollary under our context.
Corollary 1 (Accuracy of seed assignments [9]). Suppose that the tensor observationY follows TBM (1)
with number of communities {rk}. Let {z̃k : Sk 7→ [rk]} denote the output of Sub-algorithm 1 in Algorithm 1
with given inputs Y , {mk}, T , and M . Suppose that Assumption 1 holds. If SNR and number of iterations
T satisfy the following conditions with some positive large constants C,C ′:

SNR ≥ Cm
−1/2
∗ , T ≥ C ′ log m̄, (4)

we have
L(z̃k) ≤ C ′′σ2 exp

(
−c1m∗

m̄
SNR

)
+ c2

∆2
min

2T
≤ c∆2

min/
√
m̄, for all k ∈ [K], (5)

with a high probability at least 1 − exp(−c′m) − exp(−c′′m−k∆
2
min/σ

2). Here, c, c′, c′′, c′′, ci are some
small positive constants related to M and C ′′ is a large positive constant.

Under the balanced case, the first condition in (4) requires a stronger SNR level at rate O(m−K/2),
compared with Theorem 3.1. Such stronger SNR requirement is due to the spectral initialization
in full TBM Algorithm 2. The second condition in (4) requires a large number of iterations for the
iterative Lloyd step in Algorithm 2. Note that the upper bound (5) aligns with condition (3) in
Theorem 3.1. Combining with Theorem 3.2, we show that our seed generation, Sub-algorithm 1 in
Algorithm 1, is good enough to provide high-quality seeds for seeded clustering.

3.3. Overall accuracy of large-scale multiway clustering
Now, we show the overall accuracy of Algorithm 1.
Corollary 2 (Overall accuracy of LS-TBM). Suppose that the tensor observation Y follows TBM (1) with
number of communities {rk}. Let {ẑk} denote the output of Algorithm 1 with given inputs Y , {mk}, T , and
M . Suppose that Assumption 1 holds. If SNR and number of iterations T satisfy the following conditions
with some positive large constants C1, C2, C3:

SNR ≥ C1m
−1/2
∗ ∨ C2

m̄

m∗
log m̄, T ≥ C3 log m̄, (6)

we have
ℓ(ẑk) ≤ C4SNR−1 exp

(
−c1m∗

m̄
SNR

)
+ c2

mk

2Tnk
, for all k ∈ [K] (7)

with high probability at least 1 − C5 exp(−c3m) − exp(−c4
m∗
m̄ SNR) as mk → ∞, nk → ∞ and some

positive constants ci’s and Ci’s.

Corollary 2 combines the results in seeded clustering and seed generation. Conditions (6) for SNR
and number of iterations are inherited from the seed generation step, Corollary 1. The error rate in
(7) can be obtainedwith Theorem 3.1 and Corollary 1 by the fact that ℓ(ẑk) = mk

nk
ℓ(z̃k)+

nk−mk

nk
ℓ(ẑck).
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Remark 2 (Interplay between seed size m and SNR to the exact recovery of LS-TBM). Corollary 2
indicates themutual effects of the seed sizem and SNR level to themisclassification error bound (7).
Under the balanced case nk ≍ n,mk ≍ m, we investigate the interplay between m and SNR to the
exact recovery of LS-TBM to answer the question “how to select a properm" raised in Section 3.2. Here,
we assume K ≥ 3 and T is large enough to ignore the second term in the bound (7).
To achieve exact recovery with LS-TBM, i.e., ℓ(ẑk) ≤ 1/n for all k ∈ [K], we need following condi-
tions to be fulfilled simultaneously by Corollary 2:

SNR ≳ m−K/2, and mK−1SNR ≳ log n, (8)
where the first inequality comes from (6) and the second inequality comes from (7). Based on (8),
when m ≳ log2/(K−2) n, we need SNR ≳ m−K/2 to achieve exact recovery; when m ≲ log2/(K−2) n,
exact recovery requires SNR ≳ m−(K−1) log n. Inequalities (8) also indicate the trade-off between
m and SNR: a larger SNR level is needed if we want to use a smaller m in LS-TBM for multiway
clustering, and the TBM with a smaller SNR requires a larger seed size m for LS-TBM to recover.
Figure 2 visualizes such phase transition of LS-TBM and the interplay (8). Besides the intersection
point O(log2/(K−2) n), we also discuss two representative cases with strong and week SNRs.
First, consider the strong signal case with constant SNR ≍ 1. By the interplay (8), we only need
a logarithmic seed size m = O(log1/(K−1) n) to achieve exact recovery. Then, based on Remark 1
and [9], the time complexity to fully recover the community structure with full TBM, O(nK+1),
dramatically drops to O(log(K+1)/(K−1) n) with LS-TBM. Also, the space complexity drops from
O(nK) toO(n log n). This complexity comparison proves that LS-TBMhas a huge potential to release
the computational burden of multiway clustering while keeping the exact recovery performance.
Second, we consider a relatively weak signal case with SNR ≍ n−K/4. We need a polynomial seed
size m = O(n1/2) for exact recovery by (8). Under this case, time complexity drops from O(nK+1)
to O(nK+1/2) with LS-TBM, and space complexity reduces from O(nK) and O(n(K−1)/2+1). We
conclude that LS-TBM polynomially relieves the computational burden even under a weak SNR.
Table 1 summarizes the complexity comparison under both strong and weak SNR cases.

4. Numerical Experiments

4.1. Simulations
For simulations, we consider order-3 tensor observations from TBM (1) with nk = n, rk = r and
seed size mk = m for k = 1, 2, 3. We generate true assignments {zk} via random sampling from [r]
and set noise level σ2 = 1. We use the clustering error rate (CER), i.e., one minus the adjusted Rand
index, to measure clustering accuracy. The CER is equal to the misclassification error ℓ(ẑ) up to a
constant factor [38]. We report average statistics and standard deviations across 30 replications 1.
Our first experiment verifies the theoretical interplay in Section 3. We choose three SNR levels
from strong to weak: O(1),O(log−3 n), and O(n−3/4). Based on Remark 2, the seed size thresh-
olds are m = O(log1/2 n),O(log2 n), and O(n1/2), respectively. LS-TBM performance is expected to
change rapidly around the thresholds. Figure 3 confirms such phase transition. Under the strong
SNR = O(1) case, all LS-TBM algorithms converge except that with constant seed size m = O(1);
under the weak SNR = O(n3/4), a significant performance gap is observed between m = O(log2 n)
and O(n1/2). Additional experiments in Appendix further support the rapid LS-TBM performance
changes around the seed size threshold m = O(n1/2) under the weak SNR case.
Our second experiment compares the empirical performance of LS-TBM and full-TBM from accu-
racy (in CER), memory cost (peak RAM, in Mb), and running time (in second). We consider the
strong SNR = O(1) cases. Experiments that exceed the memory limit 25 Gb will be accounted
as infeasible. Figure 4 shows the leading advantage of LS-TBM in saving computational resources

1LS-TBM software is available at https://github.com/Marchhu36/LS-TBM.
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without accuracy sacrifices. The memory cost and running time of full TBM inflate at a polyno-
mial rate, while the costs of LS-TBMs increase in an extremely slow rate. Such phenomenon agrees
with the complexity comparison in Table 1. Moreover, the gap in computational cost between LS-
TBM and full TBM increases significantly as the orderK increases. See Appendix for the additional
experiments with K = 4, 5. Therefore, we conclude that LS-TBM is favorable than full TBM for
large-scale multiway clustering.
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Figure 3: Interplay between the SNR and seed size m in LS-TBM. Set dimension n from 50 to 700, SNR =

O(1),O(log−3 n),O(n−3/4) and seed sizem = O(1) O(1),O(log1/2 n),O(logn), O(log2 n), O(n1/2), n/4.

0.0

0.1

0.2

0.3

0.4

0 250 500 750
n

C
E

R

Accuracy

0

5000

10000

15000

20000

25000

0 250 500 750
n

R
A

M
 (

M
b)

Memory cost

0

100

200

300

0 250 500 750
n

tim
e 

(s
ec

)
m

O(1)
O(log1 2n)

O(logn)
O(log2n)

O(n1 2)
n 4
full

Running time

Figure 4: Empirical comparison between LS-TBMs and full TBM from accuracy (CER), memory cost (peak
RAM, in Mb), and running time (in second). Set dimension n from 50 to 900, SNR = O(1), and seed size m
from O(1) to n/4. Full TBM exceeds the memory upper limit of 25 Gb when n > 800.

4.2. Real data analysis
We apply our LS-TBM to the Uber Pickup Data [39] in New York City (NYC) from April 2014
to August 2014. We organize the data as an order-3 tensor Y ∈ R4392×445×559 with count entries
recording the hourly amount of Uber pickups, where mode-1 refers to timestamps of 183 days ×
24 hours, mode-2 and mode-3 refer to 445 latitude and 559 longitude coordinates, respectively. To
mimic the application on personal laptop, we choose m1 = 0.1n1, (m2,m3) = 0.5(n2, n3) for LS-
TBM, taking peak RAM around 5 Gb and running time 25 seconds. Due to the large dimension,
it is time-consuming to perform r selection on the entire Y . We select r1 = 6 based on the time
combinations (Workday, Weekend)× (Early Morning, Daytime, Evening) and select r2 = r3 = 4 as
themaximal numbers not leading singletons in LS-TBM clustering. For comparison, we still conduct
the expensive full TBM with peak RAM around 27 Gb and running time 40 minutes.
Figure 5A shows the similar geographic community structure of NYC obtained by TBM and LS-
TBM. The averaged CER between LS-TBM and full TBM on the last two modes (latitude and lon-
gitude) is 0.015. Particularly, both LS-TBM and full TBM identify an unique cluster highlighting
the Manhattan district. For the first mode (timestamp), LS-TBM learns different time clusters com-
pared to full TBM but captures major patterns. See detailed time cluster comparison in Appendix.
Figure 5B shows three representative common time clusters: Cluster 1 (Early Morning × Week-
days), Cluster 2 (Daytime × Workdays), and Cluster 5 (Evening × Later Workdays). Meanwhile,
by Figure 5C, the averaged Uber pickup amount in Manhattan neighborhoods increases from early
morning to evening. Overall, given the similar clustering performance but the huge gap in com-
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putational requirements, we say LS-TBM is more practically useful than full TBM for real-world
large-scale multiway clustering tasks.
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Figure 5: Multiway clustering on Uber Pickup Tensor. A. Geographic communities obtained by full TBM and
LS-TBM. NYC is partitioned in 16 district clusters combined from 4 longitude clusters × 4 latitude clusters. B.
Counts of 24 hours and 7 weekdays for timestamps in Time Clusters 1, 2, and 5 from LS-TBM. C. Estimated
hourly Uber pickup amount (estimated C of (1)) in Manhattan neighborhoods under different time clusters.

5. Conclusion
This paper introduces an efficient multiway clustering framework, LS-TBM, for large-scale tensors.
LS-TBMdecomposes the high-dimensional and expensive TBMalgorithm into two low-dimensional
and cheap steps, seed generation and seeded clustering. Complexity analysis and accuracy guaran-
tees theoretically proves the efficacy of LS-TBM: substantially reduces the computational cost while
achieving a desirable clustering performance. In particular, under the strong SNR case, LS-TBM is
able to exactly recover the community structurewith logarithmic complexity, in contrast to the poly-
nomial complexity required by the full TBM algorithm. Simulations and real data analysis using
Uber Pickup data further empirically validate the superior efficiency of LS-TBM in terms of runtime
and memory usage while maintaining a comparable accuracy to the full TBM algorithm.
LS-TBM is a generalizable framework with potential extensions in multiple directions. In the seed
generation step, when additional prior community information is available, structural sampling
may be preferable to uniform sampling for generating high-quality seeds. Furthermore, since the
performance of LS-TBM only depends on seed quality, more sophisticated multiway clustering
methods can be incorporated for seed generation in specific scenarios, such as cases with high spar-
sity and heavy-tailed observations. In the seeded clustering step, alternative distance metrics may
be employed in Step 8 of Sub-algorithm 2 for different purposes. For instance, an angle-based com-
parison can be adopted for seeded clustering under the degree-corrected model, while people may
use absolute distance for robust clustering. Therefore, we believe that LS-TBM serves as a strong
foundation to the development of generalized multiway clustering methodologies for large-scale
tensors.
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Appendix

A. Full TBM Algorithms in [9]
We present the full TBM algorithm in [9] for consistency.

Algorithm 2 Full TBM algorithm with spectral initialization and Lloyd iteration [9]
Input: Observation Y , number of communities {rk}, relaxation factor M > 1, iteration number T

Higher-order spectral initialization
1: Compute Ũk = SVDrk(Matk(Y)) for k ∈ [K].
2: for k = 1 to K do
3: Compute the singular space estimator Ûk via

Ûk = SVDmin{rk,r−k}

(
Matk(Y ×1 Ũ

T
1 ×2 · · · ×k−1 Ũ

T
k−1 ×k+1 Ũ

T
k+1 ×k+2 · · · ×K ŨT

k )
)

4: end for
5: for k = 1 to K do
6: Calculate Ŷk = ÛkÛ

T
k Matk

(
Y ×1 Û

T
1 ×2 · · · ×k−1 Û

T
k−1 ×k+1 Û

T
k+1 ×k+2 · · · ×K ÛT

k

)
7: Find z

(0)
k : [nk] 7→ [rk] and centroids x̂1, . . . , x̂rk ∈ Rr−k such that∑

j∈[nk]

∥Ŷk(j, :)
T − x̂

z
(0)
k (j)

∥22 ≤ M min
x1,...,xrk

∈Rr−k ,zk : [nk]7→[rk]

∑
j∈[nk]

∥Ŷk(j, :)
T − xzk(j)∥

2
2.

8: end for
9: Obtain the spectral initialization {z(0)k }.

Higher-order Lloyd algorithm
10: for t = 0 to T − 1 do
11: Update the block means S(t) via

S(t)(i1, . . . , iK) = Average
({

Y(j1, . . . , jK) : z
(t)
k (jk) = ik, k ∈ [K]

})
.

12: for k = 1 to K do
13: for j = 1 to nk do
14: Calculate Y(t)

k ∈ Rr1×···×rk−1×rk+1×···×rK such that

Y(t)
k (i1, . . . , ik−1, j, ik+1, . . . , iK) =

Average
({

Y(j1, . . . , jk−1, j, jk+1, . . . , jK) : z
(t)
l (jl) = il, l ∈ [K]/k

})
.

15: Update the mode-k membership for the j-th entry z
(t+1)
k (j) via

z
(t+1)
k (j) = argmin

a∈[rk]

∥Matk(Y(t)
k )(j, :)−Matk(S(t))(a, :)∥22.

16: end for
17: end for
18: end for

Output: Estimated block memberships {z(T )
k }.
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B. Additional Numerical Experiments
B.1. Additional Simulation
Here, we provide additional simulation results for supplement.
The first additional experiments further investigate the LS-TBM under weak SNR O(n−3/4) cases.
Based on Remark 2, m = O(n1/2) is the phase transition threshold for exact recovery, and LS-TBM
performance is expected to change rapidly around this threshold. We consider two other choices
for m, O(n1/2 log−1/4 n) and O(n1/2 log1/4 n), which are slightly smaller and larger than O(n1/2).
Figure 6 shows that the LS-TBM accuracy indeed changes rapidly around the threshold O(n1/2),
given that the actual seed sizes associatedwith the threem values are very close. Moreover, Figure 2
demonstrates the divergent error for seeds as the dimension increases. This phenomenon implies
that the divergent error of LS-TBM with m equal to or smaller than O(n1/2) is caused by the TBM
error on the sub-tensor. Such divergence agrees with the unstable performance of TBM at the phase
transition thresholds, as reported in Han et al. [9, Figure 3]. TBM provides a stable performance
only when SNR exceeds the threshold. Nevertheless, above numerical experiments still support the
theoretical phase transition in Corollary 2, as LS-TBM exhibits sharp changes around the threshold
m = O(n1/2).
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Figure 6: Additional theoretical verifications of LS-TBM under weak SNR O(n−3/4) cases. In addition to the
phase transition threshold m = O(n1/2), we consider two other choices of m for LS-TBM, O(n1/2 log−1/4 n)
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The second additional experiment explores the empirical LS-TBM performance on tensors of order
K = 3, 4, 5. Since the number of tensor entries grows exponentiallywith increasingK, we set n = 60
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to ensure that the data tensor can be generatedwithin 32 GB ofmemory. We also consider fixed seed
sizes m = 15, 30, 45 for LS-TBM due to the small n. Figure 7 confirms that the computational costs
for tensor methods increase exponentially as the tensor order increases. This result aligns with
the complexity analysis in Table 1. Furthermore, this experiment indicates the importance of our
scalable LS-TBM approach for the analysis of higher-order tensors.

B.2. Additional results in Uber Pickup data analysis
Figure 8 summarizes the Time Cluster results of LS-TBM with m1 = 0.1n1, (m2,m3) = 0.5(n2, n3)
and full TBM for theUber Pickup data. The presented LS-TBM results are obtained from a randomly
selected run among multiple executions of the LS-TBM. The CER between the LS-TBM and TBM
time assignments is 0.33.
Despite the relatively large CER, LS-TBM captures several key patterns consistent with TBM:

1. Time Cluster 1: The largest cluster with the smallest average Uber pickup amounts, primar-
ily covering early morning hours from midnight to 6 a.m..

2. Time Clusters 2 and 3: Show more even timestamp distributions throughout the daytime.
3. Time Clusters 4, 5 and 6: Smaller clusters capturing evening hours, with Cluster 4 focusing

on weekdays, while Clusters 5 and 6 concentrate around weekends. These clusters exhibit
relatively higher pickup amounts than others.

To further evaluate LS-TBM, we consider the identification of Time Cluster 1, labeling other clusters
as 0. Using TBM assignments as the ground truth, LS-TBM achieves an accuracy of 0.7, recall of 0.6,
and specificity of 0.76. McNemar’s test for the confusion matrix yields a p-value of 0.25, indicating
no significant difference between LS-TBM and TBM assignments for Cluster 1. This pattern simi-
larity is consistent across multiple runs of LS-TBM. The average Cluster 1 identification accuracy is
0.74 over 10 replications. Hence, we conclude that LS-TBM effectively captures the major clustering
patterns of TBM for the Uber Pickup data.
Table 2 compares the computational performance between LS-TBMs with differentm’s and TBM in
Uber Pickup application. LS-TBM is shown to have a better computation performance than TBM.
Additionally, Table 2 indicates the variability of LS-TBM across runs, with a CER variance of approx-
imately 0.05. Note that TBM keeps the same result across different runs. The LS-TBM variability
arises from the inherent randomness in themethod, which is a trade-off for its computational speed-
up. We leave the extension of LS-TBM incorporating more robust procedures as a future work.

a = 0.1 a = 0.2 a = 0.3 a = 0.5 a = 0.7 Full TBM
Averaged CER 0.18 (0.02) 0.15 (0.02) 0.12 (0.05) 0.12 (0.02) 0.08 (0.05) -
mode-1 CER 0.36 (0.03) 0.34 (0.02) 0.27 (0.09) 0.32 (0.05) 0.19 (0.15) -
mode-2 CER 0.11 (0.04) 0.06 (0.03) 0.06 (0.07) 0.02 (0.01) 0.03 (0.06) -
mode-3 CER 0.07 (0.03) 0.05 (0.02) 0.04 (0.04) 0.02 (0.01) 0.01 (0.01) -

Peak RAM (Mb) 721.26 (13.10) 2858.20 (0.00) 7643.19 (0.03) 11716.60 (0.00) 15869.99 (2116.02) 26853.1
Running time (sec) 1.31 (0.10) 9.05 (0.14) 32.55 (0.18) 188.61 (1.36) 632.74 (1.98) 2335.7

Table 2: Computational comparison between LS-TBM and TBM in real Uber Pickup tensor application. We
set a = mk/nk from 0.1 to 0.7 for LS-TBM and take full TBM assignments as reference “true" assignments in
CER. Standard deviations across 10 replications for LS-TBM applications are recorded in parentheses.
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Figure 8: Time cluster results of LS-TBM with m1 = 0.1n1, (m2,m3) = 0.5(n2, n3) and TBM for Uber Pickup
data. TBM Time Clusters are relabeled for better comparison. Subplots A and C report the counts of 24 hours
and 7 weekdays for the timestamps in each time cluster. In the hour barplots, the x-axis ranges from 0 to
24. Subplots B and D visualize the estimated hourly Uber pickup amount (estimated C of (1)) in Manhattan
neighborhoods associatedwith 6 time clusters. For both LS-TBM and TBM results, TimeCluster 1 (gray dashed
rectangles) has the largest group size and the smallest averaged pickup amount.

17



C. Proofs
In proofs, for convenience, we use a mixture of notations A(j, :) and Aj: to denote the j-th row of
matrix A. Similar notations are used for the rows of a matrix.

C.1. Proof of Theorem 3.1
Proof of Theorem 3.1. Without loss of generality, we assume that σ = 1, the permutations π̃k =
argminπ∈ΠK

∑
i∈Sk

1{z̃k(i) ̸= π◦zk(i)} are identity mapping on [rk]. We focus on the derivation for
the misclassification error on the first mode k = 1. We drop the subscript 1 for some matricizations,
e.g., Y ,C, without misunderstanding. The derivations for other modes can be easily extended.
The key proof idea is to decompose the misclassification loss for seeded clustering, L(ẑc1), by two
parts: the unavoidable statistical loss from the noise, and the inherited loss from the imperfect seeds.
Under themodel (1), we are able to upper bound the statistical error by the concentration properties
of sub-Gaussian variables. For the inherited loss, intuitively, more accurate seeds will lead to less
mistakes in the classifications for the rest of nodes. Our main goal is to quantify both statistical
and inherited losses to upper bound L(ẑc1), and thereof finally obtain the error bound for ℓ(zc1)with
Lemma 1.
We first introduce extra notations for the proof.

• Complement set for seeds:
Sc
k = [nk]/Sk, k ∈ [K].

• Normalized membership matrices for subsets Sk’s:

Wk := Mk(Sk, :)(diag(1T
mk

Mk(Sk, :)))
−1, W̃k := M̃k(Sk, :)(diag(1T

mk
M̃k(Sk, :)))

−1,

where M̃k(Sk, :) are membership matrices corresponding to the seed z̃k, for k ∈ [K].
• Dual normalized membership matrices:

V := W2 ⊗ · · · ⊗WK , Ṽ := W̃2 ⊗ · · · ⊗ W̃K ,

where ⊗ refers to the matrix Kronecker product.
• Sub-tensors corresponding to the subsets Sk’s and their matricizations:

YS := Y(S1, . . . , SK), Yj,S−1
:= Y(j, S2, . . . , SK)

YS := Mat1(YS), Yj,S−1
:= Mat1(Yj,S−1).

Similar notations are also defined for X , E .
• Estimation of core tensor with seeds and oracle estimator given true assignments:

C̃ = YS ×1 W̃
T
1 ×2 · · · ×K W̃ T

K , C̄ = YS ×1 W
T
1 ×2 · · · ×K W T

K .

We use matricizations C̃ = Mat1(C̃), C̄ = Mat1(C̄), and C = Mat1(C).

Next, we decompose the misclassification loss L(zc1) into two parts. Consider an arbitrary node
j ∈ Sc

1 with true assignment z1(j). We consider the key event in which node j is misclassified to
cluster b ̸= z1(j):

ẑ1(j) = b ⇔ ∥C̃b: −Aj:∥2 ≤ ∥C̃z1(j): −Aj:∥2, (9)
whereAj: = Yj,S−1

Ṽ by the Line 8 in Algorithm 1.
After re-arrangement, the event (9) is equivalent to

2
〈
Ej,S−1

V , C̄z1(j): − C̄b:

〉
≤ −∥Cz1(j): −Cb:∥2 + Fjb +Gjb +Hjb,
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where
Fjb = 2

〈
Ej,S−1

Ṽ , (C̄z1(j): − C̃z1(j):)− (C̄b: − C̃b:)
〉
+ 2

〈
Ej,S−1

(V − Ṽ ), C̄z1(j): − C̄b:

〉
Gjb =

(
∥Xj,S−1

Ṽ − C̃z1(j):∥
2 − ∥Xj,S−1

Ṽ −W T
1,:aYSṼ ∥2

)
−
(
∥Xj,S−1

Ṽ − C̃b:∥2 − ∥Xj,S−1
Ṽ −W T

1,:bYSṼ ∥2
)

Hjb = ∥Xj,S−1Ṽ −W T
1,:aYSṼ ∥2 − ∥Xj,S−1Ṽ −W T

1,:bYSṼ ∥2 + ∥Cz1(j): −Cb:∥2.

Then, we are able to upper bound the indicator as

1{ẑ1(j) = b} ≤ 1{ẑ1(j) = b,
〈
Ej,S−1V , C̄z1(j): − C̄b:

〉
≤ −1

4
∥Cz1(j): −Cb:∥2}

+ 1{ẑ1(j) = b,
1

2
∥Cz1(j): −Cb:∥2 ≤ Fjb +Gjb +Hjb}.

Further, we can upper bound the misclassification loss

L(ẑc1) ≤ ξ1 +
1

n1 −m1

∑
j∈Sc

1

∑
b∈[r1]

ζjb,

where

ξ1 =
1

n1 −m1

∑
j∈Sc

1

∑
b∈[r1]

1{ẑ1(j) = b,
〈
Ej,S−1

V , C̄z1(j): − C̄b:

〉
≤ −1

4
∥Cz1(j):−Cb:∥2}∥Cz1(j):−Cb:∥2,

and
ζjb = 1{ẑ1(j) = b,

1

2
∥Cz1(j): −Cb:∥2 ≤ Fjb +Gjb +Hjb}∥Cz1(j): −Cb:∥2.

Here, ξ1 is the statistical loss due to the existence of noise E . In contrast, the term ζjb is controlled
by the difference between the oracle estimator C̄ and the estimator based on seeds C̃, which relies
on the accuracy of seeds. The sum of ζjb is the inherited loss, and should be bounded by the losses
of seeds L(z̃k)’s.
Indeed, Lemmas 6 and 5 provide the upper bounds of ξ1 and the sum of ζjb. We have

L(ẑc1) ≤ exp

(
−c2m−1

r−1
∆2

min

)
+ c1L(ẑ

c
1) + cC1

√
m̄ℓ(ẑc1)

∑
k∈[K]

L(z̃k), (10)

with high probability 1−exp(−c3m1)−exp(−c4m−1∆
2
min) and positive constants c in condition (3),

c1 ∈ (0, 1), and c2, c3, C1 ∈ R+.
By Lemma 1, we have ℓ(zc1) ≤ L(zc1)/∆

2
min. Dividing ∆2

min on both sides of the inequality (10) and
rearranging the terms, we have

ℓ(ẑc1) ≤
L(ẑc1)

∆2
min

≤ C2∆
−2
min exp

(
−c2m−1

r−1
∆2

min

)
+ cC1ℓ(ẑ

c
1)

√
m̄
∑

k∈[K] L(z̃k)

∆2
min

≤ C2∆
−2
min exp

(
−c2m−1

r−1
∆2

min

)
+Kc2C1ℓ(ẑ

c
1).

When c is small enough such that Kc2C1 < 1, we finally have

ℓ(ẑc1) ≤ C ′∆−2
min exp

(
−c′m−1

r−1
∆2

min

)
,

with probability at least 1− exp(−c′′m)− exp(−c′′′m−1∆
2
min).
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C.2. Useful lemmas for the proof of Theorem 3.1
In this section, we first list some intermediate lemmas (Lemmas 2, 3, 4) for sub-Gaussian concen-
tration properties and secondary conclusions for misclassification loss analysis. Then, we state and
prove the main lemmas (Lemmas 6 and 5) for the upper bounds of statistical and inherited losses.
The intermediate lemmas are similar with the lemmas for Han et al. [9, Proof of Theorem 2] but
with different dimension and subject considerations. For clearness, we only show the intermediate
results directly used in Lemmas 6 and 5 and highlight the necessary adjustments in the proof. Full
lemma statements and proofs can be found in Han et al. [9, Proof of Theorem 2].
Recall that we use C,C0, C1, . . . and c, c0, c1, . . . for generic large and small positive constants, re-
spectively.
Lemma 1 (Misclassification error and loss). Consider the misclassification error and loss for ẑk under
the TBM (1). We have

ℓ(ẑk) ≤ L(ẑk)/∆
2
min, k ∈ [K].

Lemma 2 (Sub-Gaussian concentration). Under the set up of Theorem 3.1, asmk → ∞, k ∈ [K], for any
j ∈ Sc

1, we have

∥Ej,S−1
V ∥ ≲

√
r−1

m−1
(1 +

√
r−1). (11)

Proof of Lemma 2. Lemma 2 is the Corollary of Han et al. [9, Lemma 9].
Lemma 3 (Upper bound for membership matrix difference). Under the set up of Theorem 3.1 and
Lemma 2, as mk → ∞, k ∈ [K], we have

∥Ej,S−1
(V − Ṽ )∥ ≲

√
r−1(r−1 + m̄r̄)

m−1

K∑
k=2

rkL(z̃k)

∆2
k

.

Proof of Lemma 3. See Han et al. [9, Lemma 5].
Lemma 4 (Upper bounds for Fjb, Gjb, Hjb). Under the set up of Theorem 3.1, asmk → ∞, k ∈ [K], we
have

max
j∈Sc

1

max
b ̸=z1(j)

F 2
jb

∥Cz1(j): −Cb:∥2
≲

∑K
k=1 rkL(z̃k)

∆2
1

∥Ej,S−1V ∥2

+

(
1 +

∑K
k=1 rkL(z̃k)

∆2
1

)
∥Ej,S−1(V − Ṽ )∥2, (12)

max
j∈Sc

1

max
b ̸=z1(j)

G2
jb

∥Cz1(j): −Cb:∥2
≤ c0

(
∆2

1 +

K∑
k=1

L(z̃k)

)
, (13)

max
j∈Sc

1

max
b ̸=z1(j)

|Hjb|
∥Cz1(j): −Cb:∥2

≤ 1

4
, (14)

where c0 < 1
128K is some small constant.

Proof of Lemma 4. Notice that by Assumption 2, there exists some i ∈ S1 such that z1(i) = z1(j) and
thus Xj,S−1

= Xi,S−1
. Therefore, we are able to upper bound Fjb, Gjb, Hjb following the proofs of

inequalities (75), (76), and (77) in [9].
Lemma 5 (Upper bound for the sum of ζjb). Under the set up of Theorem 3.1, we have

1

n1 −m1

∑
j∈Sc

1

∑
b∈[r1]/z1(j)

ζjb ≤ c1L(ẑ
c
1) + cC1

√
m̄ℓ(ẑc1)

∑
k∈[K]

L(z̃k)

for some constants c1 ∈ (0, 1) and C1 > 0, and c is the small constant in condition (3).
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Proof of Lemma 5. Note that

ζjb = 1{ẑ1(j) = b,
1

2
∥Cz1(j): −Cb:∥2 ≤ Fjb +Gjb +Hjb}∥Cz1(j): −Cb:∥2

≤ 1{ẑ1(j) = b,
1

4
∥Cz1(j): −Cb:∥2 ≤ Fjb +Gjb}∥Cz1(j): −Cb:∥2

≤ 641{ẑ1(j) = b}

(
F 2
jb

∥Cz1(j): −Cb:∥2
+

G2
jb

∥Cz1(j): −Cb:∥2

)
,

where the first inequality follows from inequality (14) in Lemma 4, and the last inequality follows
by the fact that 1{1 ≤ x} ≤ x2 for x ∈ R.
We first consider the summation over F 2

jb. With inequality (12) in Lemma 4, we have

1

n1 −m1

∑
j∈Sc

1

∑
b∈[r1]/z1(j)

1{ẑ1(j) = b}
F 2
jb

∥Cz1(j): −Cb:∥2

≤ 1

n1 −m1

∑
j∈Sc

1

1{ẑ1(j) ̸= z1(j)} max
b̸=z1(j)

F 2
jb

∥Cz1(j): −Cb:∥2

≤F1 + F2, (15)

where

F1 =
1

n1 −m1

∑
j∈Sc

1

1{ẑ1(j) ̸= z1(j)}
∑K

k=1 rkL(z̃k)

∆2
1

∥Ej,S−1V ∥2,

F2 =
1

n1 −m1

∑
j∈Sc

1

1{ẑ1(j) ̸= z1(j)}

(
1 +

∑K
k=1 rkL(z̃k)

∆2
1

)
∥Ej,S−1

(V − Ṽ )∥2.

By inequality (11) in Lemma 2, we have

F1 ≲
1

n1 −m1

∑
j∈Sc

1

1{ẑ1(j) ̸= z1(j)}
∑K

k=1 rkL(z̃k)

∆2
min

r2−1

m−1
≲ ℓ(ẑc1)

∑
k∈[K]

L(z̃k), (16)

given condition (3) such that ∆2
min ≳ m−1

−1.
By Lemma 3, we have

F2 ≲
1

n1 −m1

∑
j∈Sc

1

1{ẑ1(j) ̸= z1(j)}

(
1 +

∑K
k=1 rkL(z̃k)

∆2
1

)
r2−1 + m̄r̄

m−1

K∑
k=2

r2kL
2(z̃k)

∆4
k

≲
1

n1 −m1

∑
j∈Sc

1

1{ẑ1(j) ̸= z1(j)}
√
m̄

m−1

∑K
k=1 L(z̃k)

∆2
min

≲
√
m̄ℓ(ẑc1)

∑K
k=1 L(z̃k)

m−1∆2
min

≤ cC1

√
m̄ℓ(ẑc1)

K∑
k=1

L(z̃k), (17)

where the second inequality follows by condition (3) such that L(z̃k)/∆2
min ≤ c/

√
m̄ for all k ∈ [K]

and the last inequality follows by ∆2
min ≳ m−1

−1.
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Next, we consider the summation over G2
jb. With inequality (13) in Lemma 4, we have

1

n1 −m1

∑
j∈Sc

1

∑
b∈[r1]/z1(j)

1{ẑ1(j) = b}
G2

jb

∥Cz1(j): −Cb:∥2

≤ 1

n1 −m1

∑
j∈Sc

1

1{ẑ1(j) ̸= z1(j)} max
b̸=z1(j)

G2
jb

∥Cz1(j): −Cb:∥2

≤ c0
n1 −m1

∑
j∈Sc

1

1{ẑ1(j) ̸= z1(j)}

(
∆2

1 +

K∑
k=1

L(z̃k)

)

≤c1L(ẑ
c
1) + c0ℓ(ẑ

c
1)

K∑
k=1

L(z̃k), (18)

for some c1 ∈ (0, 1).
Taking C1 large enough, we have term F2 dominants F1 and the second term in inequality (18).
Then, combining the upper bounds (15), (16), (17), and (18), we have shown the upper bound for
the sum of ζjb in Lemma 5.

Lemma 6 (Upper bound for ξ1). Under the set up of Theorem 3.1, we have

ξ1 ≤ exp

(
−c2m−1

r−1
∆2

min

)
with probability at least 1− exp(−c3m1)− exp(−c4m−1∆

2
min) for some small positive constants c2, c3, c4.

Proof of Lemma 6. Recall that

E[ξ1] =
1

n1 −m1

∑
j∈Sc

1

∑
b∈[r1]/z1(j)

∥Cz1(j): −Cb:∥2P(
〈
ej , C̄z1(j): − C̄b:

〉
≤ −1

4
∥Cz1(j): −Cb:∥2)

where ej := Ej,S−1V . Note that ej ’s are independent random vectors in Rr−1 , whose entries are
independently sub-Gaussian distributedwith norm bounded byO(

√
r−1/m−1) based on Lemma 2.

We have the upper bound for the probability

P(
〈
ej , C̄z1(j): − C̄b:

〉
≤ −1

4
∥Cz1(j): −Cb:∥2)

≤ P(
〈
ej ,Cz1(j): −Cb:

〉
≤ −1

8
∥Cz1(j): −Cb:∥2) + P(

〈
ej , C̄z1(j): −Cz1(j):

〉
≤ − 1

16
∥Cz1(j): −Cb:∥2)

+ P(
〈
ej ,Cb: − C̄b:

〉
≤ − 1

16
∥Cz1(j): −Cb:∥2)

≤ 5 exp

(
−cm−1

r−1
∥Cz1(j): −Cb:∥2

)
, (19)

with probability 1 − exp(−c3m1), where the last inequality follows from Han et al. [9, Lemma 6],
replacing S terms by C terms in our context. Note that unlike Han et al. [9, Lemma 6], ej is inde-
pendent with Cb: − C̄b: for all j ∈ Sc

1, b ∈ [r1] since the randomness are from two non-overlapped
parts of the noise tensor. The inner produce 〈ej , C̄z1(j): −Cz1(j):

〉 turns out to be the weighted sum
of products of two independent random vectors eTj el for j ∈ Sc

1, l ∈ S1. Since Han et al. [9, Lemma
6] merely relies on the Bernstein inequality for eTj el with j ̸= l, Lemma 6 also works for our case
and inequality (19) holds.
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Hence, we have upper bound of the expectation

E[ξ1] ≤
5

n1 −m1

∑
j∈Sc

1

∑
b∈[r1]/z1(j)

∥Cz1(j): −Cb:∥2 exp
(
−cm−1

r−1
∥Cz1(j): −Cb:∥2

)

≤ exp

(
−cm−1

2r−1
∥Cz1(j): −Cb:∥2

)
≤ exp

(
−cm−1

2r−1
∆2

min

)
.

With Markov inequality, we have

P
(
ξ1 ≤ E[ξ1] + exp

(
−cm−1

4r−1
∆2

min

))
≥ 1− exp

(
−c3m−1

4r−1
∆2

min

)
.

Then, we have finished the proof of Lemma 6.

C.3. Proof of Theorem 3.2
Proof of Theorem 3.2. Without loss of generality, we only prove the sub-tensor balance property on
the first mode k = 1. Then, we drop the subscript 1 from n1,m1, r1, S1, z1. The balance property on
other modes can be proved by modifying the subscripts.
We first define the number of nodes in a-th community and the ratio of nodes in a-th community:

na =
∑
i∈[n]

1{z(i) = a}, ma =
∑
i∈S

1{z(i) = a}, µa = na/n.

By random sampling, ma follows Hypergeometric distribution with parameters (m,na, n) for all
a ∈ [r]. Notice that ma’s are not independent but the conclusion for marginal distributions holds.
By Corollary 1 in [40], for arbitrary a ∈ [r], we have

P(ma ≥ mµa +mt) ≤ exp

(
− mt2

σ2
a(1− m−1

m−1 ) +
t
3

)
≤ exp

(
−mt2/2

µa +
t
3

)
, for t > 0, (20)

where σ2
a = µa(1− µa) and the second inequality holds by µa < 1.

Similarly, by symmetry, we have

P(ma ≤ mµa −mt) ≤ exp

(
− mt2

σ2
a(1− m−1

m−1 ) +
t
3

)
≤ exp

(
−mt2/2

µa +
t
3

)
, for t > 0.

Take t = 1
4µa. We have upper bound for the maxima of ma

P
(
max
a∈[r]

ma ≤ 5

4
mmax

a∈[r]
µa

)
= P

 ⋂
a∈[r]

{ma ≤ 5

4
mmax

a∈[r]
µa}


≥ P

 ⋂
a∈[r]

{ma ≤ 5

4
mµa}


≥ 1−

∑
a∈[r]

exp

(
−3mµa

128

)

≥ 1− r exp

(
−3mα1

128r

)
, (21)
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where the second inequality follows by the union bound and tail bound (20), and the last inequality
holds with Assumption 1 indicating α1

r ≤ µa ≤ α2

r .
Similarly, we have lower bound for the minima of ma

P
(
min
a∈[r]

ma ≥ 3

4
mmin

a∈[r]
µa

)
≥ 1− r exp

(
−3mα1

128r

)
. (22)

Finally, take α3 < 3α1

4 and α4 > 5α2

4 . We finish the proof of Theorem 3.2 by combining inequalities
(21) and (22):

P
(α3m

r
≤ ma ≤ α4m

r
, for all a ∈ [r]

)
= P

(
α3m

r
≤ min

a∈[r]
ma and max

a∈[r]
ma ≤ α4m

r

)
≥ P

(
min
a∈[r]

ma ≥ 3

4
mmin

a∈[r]
µa and max

a∈[r]
ma ≤ 5

4
mmax

a∈[r]
µa

)
≥ 1− 2r exp

(
−3mα1

128r

)
.
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