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Abstract

Crucial for building trust in deep learning models for critical real-world appli-
cations is efficient and theoretically sound uncertainty quantification, a task that
continues to be challenging. Useful uncertainty information is expected to have two
key properties: It should be valid (guaranteeing coverage) and discriminative (more
uncertain when the expected risk is high). Moreover, when combined with deep
learning (DL) methods, it should be scalable and affect the DL model performance
minimally. Most existing Bayesian methods lack frequentist coverage guarantees
and usually affect model performance. The few available frequentist methods are
rarely discriminative and/or violate coverage guarantees due to unrealistic assump-
tions. Moreover, many methods are expensive or require substantial modifications
to the base neural network. Building upon recent advances in conformal predic-
tion [13}[33]] and leveraging the classical idea of kernel regression, we propose
Locally Valid and Discriminative prediction intervals (LVD), a simple, efficient
and lightweight method to construct discriminative prediction intervals (PIs) for
almost any DL model. With no assumptions on the data distribution, such PIs also
offer finite-sample local coverage guarantees (contrasted to the simpler marginal
coverage). We empirically verify, using diverse datasets, that besides being the
only locally valid method for DL, LVD also exceeds or matches the performance
(including coverage rate and prediction accuracy) of existing uncertainty quan-
tification methods, while offering additional benefits in scalability and flexibility.

1 Introduction

Consider a training set Suain = {(X;,Y;)}Y, and a test example (Xx 41, Y1), all drawn i.i.d
from an arbitrary joint distribution P, with (X;,Y;) € X x Y for some X C R?and )) C R. We
are interested in the problem of predictive inference: On observing Sy.i, and Xy 41, our task is to
construct a prediction interval (PI)|'|estimate C (X n41) that contains the true value of Yy 41 with a
(pre-specified) high probability.

!Several recent deep learning papers use “Confidence Interval” and “Prediction Interval” interchangeably. We
stick to the conventional statistical usage.
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Figure 1: Illustration of possible (good and bad) PIs. The PI on the left is valid, as it covers 90%
of the data. It is however only marginally valid, not reflecting the poor model prediction near the
red cluster. The middle PI is discriminative, and reflects the high error near the red cluster, but its
coverage rate is much lower than the target (thus not valid). The PI on the right addresses both
challenges by stretching “just enough” near the cluster, making it not only discriminative, but also
conditionally valid. We seek to construct PIs of the last type, but constructing exact conditionally
valid PIs in a distribution-free setting is theoretically impossible. We thus relax this goal by instead
aiming for local validity (more details in Section [2).

The construction of actionable PIs involves two general challenges: First, C should be valid, meaning
that if the specified probability is 1 — «, we expect C(X 1) to cover Yy 11 at least 1 — « of the
time. Moreover, C' should be discriminative i.e., we expect C'(X y 1) to be narrower for confident

cases and vice-versa. The width of the PI C' (X n+1) is thus quantification of the uncertainty. Figure
[[]illustrates these notions, with more details in Section[2.2]and 2.3]

While deep learning (DL) models have demonstrated impressive performance over a range of
complicated tasks and data modalities, it has remained difficult to quantify the uncertainty for their
predictions. For DL predictions to be actionable, uncertainty information is however indispensable,
especially in domains like medicine and finance [2]]. Apart from requiring validity and discrimination
as discussed earlier, two additional challenges exist specifically for DL models. Obviously, any
uncertainty estimation method needs to finish reasonably fast to be useful, so the third challenge
is scalability. The fourth challenge is accuracy: The uncertainty estimation should not decrease
the prediction accuracy of the DL model. Post-hoc methods are ideal because they usually do not
interfere with the base NN prediction at all. These four requirements together constitute a set of
essential desiderata for uncertainty quantification in DL.

Existing uncertainty estimation methods for DL rarely address more than one or two of the above
requirements. Credible intervals given by posteriors of approximate Bayesian methods such as
[43L [15]], deep ensemble [20} 44] and Monte-Carlo dropout [12] are not valid in the frequentist
sense [7]. Most existing methods also interfere with the original model design, loss function
and/or training, which could be expensive and decrease the model performance (as verified in our
experiments) [[12} 1} (7, 20].

To address these requirements, we leverage recent advances in conformal prediction and the classical
idea of kernel regression. Conformal prediction, pioneered by Vovk [40], is a powerful approach for
constructing valid PIs. The most popular split conformal methods usually leverage prediction errors
from a hold-out set to construct C'(X y 1), which would be valid if a future data point (X n 41, Yn+1)
follows the same distribution as data in the hold-out set. This framework is particularly suitable
for deep learning due to its distribution-free nature, and has motivated many recent uncertainty
quantification efforts in deep learning for both classification and regression tasks [} 23} 3} [11]].
However, most conformal methods are only marginally valid [25} 40, 21} 4]]. Moreover, less-than-
meticulous applications to DL can break distributional assumptions and theoretical validity, as in
the case of [[1] (see discussion in Appendix). We however seek to construct a PI conditioning on the
input (similar to the third PI in Fig. E]) Some recent advances ([13}133]]) examine the possibility of
“approximately” conditionally valid PIs. While these methods cannot be directly applied to DL due to
efficiency and performance considerations, their methodological and theoretical contributions serve
as major inspirations for us to develop a highly flexible and practical method.

Summary of Contributions: We propose Locally Valid Discriminative Prediction Intervals (LVD), a
simple uncertainty estimation method for deep learning which combines recent advances in conformal
prediction and the classical idea of kernel regression. LVD applies to almost all DL models, and is
the first method that satisfies all four aforementioned requirements:

 Validity: LVD has frequentist coverage guarantee (not just marginal, but approximately conditional).



* Discrimination: The width of the PIs given by LVD adapts to the risk/uncertainty level of X 1.

* Scalability: LVD is lightweight, adding limited overhead to the base DL model.

* Accuracy: LVD is post-hoc without requiring model retraining, and does not affect the base
performance of the DL model.

‘We must note that while the theoretical foundation for guaranteeing "validity" is mostly based on

[L3], LVD addresses several challenges to satisfy the other three requirements. The code to replicate

all our results can be found at https://github.com/z1in7/LVD.

2 Preliminaries
2.1 Learning Setup and Assumptions

We assume data and response pairs (X,Y) € X' x ) have a joint distribution denoted P, with the
marginal distributions of Y and X and the conditional distribution Y| X denoted as Py, Px, and
Py |x, respectively. Further, we will define Z; := (X, Y;) for concision.

Assuming that we already have an algorithm (with all the training protocols folded in), such as a
Deep Neural Network (DNN), that provides a mean estimator 4V~ () : X — ). Given a target
coverage level 1 — v € (0, 1), our task is to also construct a prediction interval estimator function

Co(z) : X — {subset of J'} that has the validity and discrimination properties as defined below.

2.2 Validity (Frequentist Coverage)

There are several (related) notions for a PI to be valid — marginal, conditional, and local. Given target
level 1 — o, we say C,, has the marginal coverage guarantee (or, equivalently, is marginally valid) if

P{Vii1 € Co(Xni1)} > 1—a (1)
where the probability is taken over the training data and (the unseen) (X1, Yy +1)-

A limitation of marginal coverage is that it is not conditioned on X ;. A more desirable, albeit
stronger, property would be conditional coverage at 1 — o

P{Vn41 € Coa(Xn41)|Xns1 =2} > 1 — o foralmostall z € X. 2)

Here the probability is taken over the training data and Yy 1 (with X1 fixed). It is thus clear that
conditional coverage implies marginal coverage but not the other way around. Indeed, a C,, with
marginal coverage property only implies a 1 — « chance of being accurate on average across all
data points (marginalizing over X ;) i.e. there might be a sub-population in the data for which
the coverage is completely missed. Unfortunately, it is impossible to achieve distribution-free finite-
sample conditional coverage (Eq. [2) in a non-trivial way. Indeed, it is known that a finite-sample
estimated C,, (x) cannot achieve conditional coverage, unless it produces infinitely wide prediction
intervals in expectation under any non-discrete distribution P [39, 22} 5]

It is thus reasonable to instead seek approximate conditional coverage. As might be apparent, there
is considerable freedom in defining an appropriate notion of “approximate”, depending on specific
tasks and domains. However, a sufficiently general-purpose and natural notion involves using a kernel
function K : X x X — R and a center 2’ € X, like the relaxation given in [33]:

JP{Yi 1 € Cal@)| Xny1 = 2} K (2, 2')dPx (v)
[ K(z,2")dPx ()
with the probabilit~y P ~in the integral) taken over all training samples and Yy.;, with

(XNt1,YN41) ~ P = Px x Py|x. Here Py is just the distribution re-weighted by the ker-

nel with a center 2/, defined by % x d?iw(r)l( (2', z). Instead of choosing =’ beforehand, if we

let the center be X 1 and fold the integral into PP like in [13]], we arrive at the definition of local
coverage:

>l-a 3)

P{Yni1 € Coa(Xns1)|Xns1 =2'} >1—q (4)

Here the probability integrates over all training data and an additional ()~( N+1, YN-H) ~ P defined
above. Intuitively, this definition means C', (X y 1) is valid “on average” within a small neighborhood


https://github.com/zlin7/LVD

of Xny1. Note that Egs. [T] and [2] reduce to Eq. [] with K being constant and delta functions,

respectively. In the rest of the paper, we will call Ca marginally/conditionally/locally valid if it
satisfies Eq. respectively, and we will pursue finite-sample local validity.

2.3 Discrimination

The idea of discrimination is simple: If the error of our prediction /i(x) is high for an input x, the PI
should be wide, and vice versa. Formally, following [[1], we require

E[W (C(2))] = E[W (C(a")] & Ellly, ilx))] = E[L(y', ala”)]. (5)

Here the expectation is taken over the training data, W is a measure of the width of the PI, and / is a
loss function such as MSE. This property can be verified (as shown in Section[d)) by checking how well

W (C(z)) could predict the magnitude of the error. Discrimination could be considered a measure

of efficiency, as a good C' could “save” some width when the expected risk is low. However, it only
makes sense to compare efficiency if all else is equal (i.e. two marginally valid PIs estimators with
the same error). Note that although discrimination could be related to conditional/local validity, they
are not the same - e.g., a PI that is always infinitely wide is conditionally valid, but not discriminative.

Our goal is to achieve both local validity and discrimination without making any assumptions about
the underlying distribution P (i.e., in a distribution-free setting). As noted in Section[I] our method
should also run fast and not affect the performance of underlying neural network model N %,

3 Method: Locally Valid Disciminative Prediction Intervals (LVD)

Overview: We first train a deep neural network (DNN) 2V (if not already given), followed by
a post-hoc training of an appropriately chosen kernel function K. Specifically, we learn K in a
non-parametric kernel regression setting using embeddings from the deep learning model while
optimizing for the underlying distance metric that the kernel function leverages. Both of these steps
are explicated in more detail in Section Armed with 17V, we proceed to utilize a hold-out set to
collect prediction residuals, which are used with the learned K (along with its distance metric) to
build the final PI for any datum at inference time (Section[3.2)). We then show the finite-sample local
validity and asymptotic conditional validity in Section [3.4]

3.1 Training

At the onset, we partition Sy, of N data points into two sets - Sembea and Sconformal- We will denote
Sembed as {Z; 171 and Sconformal @S {Zn+ti}i%,, where m = N — n. Sembed i used to learn an
embedding function f and a kernel K, and S¢onformar i used for conformal prediction.

[Optional] Training an Embedding Function: Instead of training a deep kernel in a kernel regres-
sion directly, which can be prohibitively expensive, we split the training task into two steps: training
the (expensive) DNN, and training the kernel K. Specifically, we first train a DNN mean estimator
ANN X+ Y to solve the supervised regression task with the mean squared error (MSE) loss.
Note that 2N can be based on any existing model. Moreover, this step could be skipped if we are
already provided with a pre-trained 2~ "V. Then, we remove the last layer of 4V and produce an
embedding function f : X — R” for some positive integer h. If the original model 2V is good,
usually such an embedding provides a rich and discriminative representation of the input (as will be
verified empirically in Section ).

Training the Kernel: Fixing the embedding funtion f, we perform leave-one-out Nadaraya-Watson
[24][14][41] kernel regression with a learnable Gaussian kernel on Sempeq:

KR _ Zj;ﬁi,je[n] yij(mZij) 6
Yi = el 2. (6)
Zj;éi,je[n] £(wi, ;)
here Ke(zi,2;) = K(F(x).8(2;)) = —p—c o5 and[n] == {1,....n}. (]
where Ti,XTj) = z;),I(r;)) = ———e o2 and |n| :=1,...,n; .
f ! ! oV 2w

Here d(-, ) is a Mahalanobis distance parameterized by a positive-semidefinite matrix W = 0, which
is learned. To avoid solving an expensive semi-definite program, instead of working with W directly,




we work with a low-rank matrix A € R"*¥ such that W = AT A, yielding the following equivalent
distance formulation:

d(f (i), f(25)) = |A(F(zs) — £(z)) > (8)
This parameterization of K is similar to that in [42]. Finally, to train K, we minimize the MSE loss.

Residual Collection: In this step, we take the trained embedding function and kernel, denoted as K¢
for simplicity, and apply it on Sconformal- V¢ € [m], we compute and collect the absolute residual,

Ri = |Ynti — Until, &)

the distribution of which is used for PI construction. It is important to remark that ¢ does not have
to be 7/ f*. The main purpose of the previous step is to train the K, and 4 could still be obtained
through the original DNN ¢ = 4™ (), or any estimator not trained on Sonformal- As a result, the
accuracy can only improve (if 4" turns out to be a better mean estimatori

3.2 Inference

Before proceeding further, we recall a useful definition and fix some necessary notation. For
a distribution with cumulative density function (cdf) F' defined on the augmented real line R U
{—00, 00}, the quantile function is defined as Q(c, F') = F~!(«). This definition is the same for
a ﬁmte distribution like the empirical distribution. Suppose the empirical distribution consists of
Ri,..., R, then we denote the empirical distribution F and the empirical quantile Q(c, F) as:

m

F== ZaR and  Q(a,F)=inf F(r)>a (10)

where dp(r) = 1{r > R}. Note that we treat {R;}", as an unordered list. Besides, R; can be
+o00, and can repeat. Finally, we can assign weights to R;, and define the quantiles for a weighted

distribution: . .
P = wid,  where Y w;=1 (a1
i=1 i=1

Split Conformal: Before presenting the detailed construction of the PI in LVD, it would be particu-
larly instructive to first consider a special case. Specifically, when K returns a constant number for
any (z;, xj), we recover the well-known “split conformal” method [25} 40, [21]], which uses the 1 — «
quantile of the residuals as the PI width. Following our setup, the split conformal PI is given by:

~ . 1 m
split — . 5 < _ _
CP"" (X Ny1) {ZJER- ly —gn41] £ Q (1 R <5oo+;_l 5&))}- (12)

Because the residuals {R;};c};n) U {Rn+1} are ii.d., Ry y1’s ranking among them is uniformly
distributed. We cannot know Ry .1, so we use oo instead to be “safe” (Vr € R, doo(r) = 0). It
follows that C’gp”t is (1 — o) marginally valid [25]].

Local Conformal: In order to achieve the local coverage property, all we need to do is to re-weigh
the residuals. Following the approach in [13]], we arrive at the following suitable notion of PI:

CEVP(Xn 1) = {y ER:|y—inpl < Q(l - a, <wN+15oo + an+i5m>> } (13)

i=1
Ke(vj,vN41)
Ke(eng1,on41) + 2oy Ke(Tpi, ng1)

where w; = (14

In other words, we first assign weights to { R; } based on the similarity between {X,,;} and X1

using K, and then set the width to be the weighted quantile . Note that with 6o, CLVP (X y 1) will
be infinitely wide if data is scarce around X 1. However, as argued in [[13], this is desired.

2As will be shown in the Appendix, 7 is often preferable because of the distance information it encodes.



3.3 Implementation Details

Parameterization and Training: Since A is intricately linked to the computation of the
weights assigned by the Gaussian kernel K (Eq. , it is implemented as K (f(x;),f(z;)) =

e~ IIAE@)—£@ DI In order to optimize for A, we treat it as a usual linear layer in a neural network
and perform gradient descent.

Smoothness Requirement: In the context of obtaining locally valid prediction intervals, a potential
drawback of using the Nadaraya-Watson kernel regression framework is that the K¢ will not mean-
ingfully learn the similarity of any input with iself. For example, we can arbitrarily define K¢(x, x)
to be any value, including co. In the context of only regression, the fitted function’s performance
will not change as long as there are no two identical x;. With the Gaussian kernel, this issue is
somewhat mitigated. However, during the training, the K (x;, ;) can still be too high compared with
K (z;,x; + €), resulting in a less meaningful definition for local coverage. We could then enforce a
regularization by replacing the y; in Eq. [f] with

JER = Y iKe(wi, zi) + Zj;éi,je[n] Y Ke (i, )
i Kf(mi,mi) +Zj¢i,j6[n] Kf(l’i,l’j)

1
where y_, = — E y;. (15)
J#4,5€[n]

This can be considered an explicit bias term towards the (leave-one-out) sample mean. Empirically,
we observe that enforcing this requirement is crucial to obtain meaningful and tight intervals. We
direct the reader to the Appendix for a detailed ablation on its utility.

Complexity: To facilitate training, we use stochastic gradient descent instead of gradient descent with
batch size denoted as B;. Furthermore, if the dataset size is prohibitively large, we can also randomly
sample a subset of By points {z; },; to predict §;. The total complexity is O (B Bahk) where h
and k, defined earlier, denote the dimensionality of the embedding before/after it is multiplied by
A. Note that By = O(1) or o(N). The inference time for each data point can be improved from
O(B2hk) to O(Byk + hk) by storing Az, instead of A and x; separately.

Denoting the number of parameter of the base NN as P, since DL models are usually overparameter-
ized, the additional training time for each descent could be comparable or shorter than training the
base NN (depending on the relation between P and By hkzﬂ and the additional inference time would
be much shorter than that of the base NN model. In addition, most of these factors (especially B5)
can be easily parallelized. The full procedure is summarized below in Algorithm ]

Algorithm 1 LVD

Input:

Strain: A set of observations {Z; = (X;, Y;)}Y,

«: Parameter specifying (local) target coverage rate

X n41: Unseen data point

Output: A locally valid PI, C’a(X N+1)-

Training:
[Optional] Randomly split Syain int0 Sembed and Seonformal- Denote Sconformar a8 { Zn+i }i
[Optional] Train a NN regression model VY on Semped-
Remove the last layer of 4V to get an embedding function f
Train A on f(Sembed) in @ Nadaraya-Watson kernel regression setting, with kernel K¢ (21, z2) =
e~ I|AE (@) —f(z2))|?
Collect residuals R; = |ypn+i — Gn+i| fori € [m)]

Inference:
Compute PI as C'Q(XNH) = {y ER:|Jy—gn+1| <Q <1 — o, WN1+1000 + an+i6Ri> }
i=1
K .
where w; = e, 241

Ke(xni1,on 1) + 2y Ke(Tngis 2n41)

3In practice, since f is already well-trained, the training of K¢ converges very fast.



3.4 Theoretical Guarantees

We conclude this section by showing that CA%VD provides the local coverage property. We adapt

Theorem 5.1 in [13] and results in [33] to our setting. The detailed proof is deferred to the Appendix:
Theorem 3.1. Conditional on X 1, the PI obtained from Algorithm CLVD (X, 1), satisfies

P{Yni1 € CEVP(Xny1)|Xnpr =2’} > 1 — aforany 2/ (16)

e . i.i.d. 5 ~
where the probability is taken over all the training samples <" P = Py|x xPx, and (Xn 41, YN41)
with distribution XN+1|XN+1 ~ P;N“ and ?N+1|XN+1 ~ Py|x. Here P))((N“ means the

XN+1
localized distribution with “Tx o @) o dp(;;(x) K¢(XNt1,2).

With some regularity assumptions like in [22], we can also obtain asymptotic conditional coverage:

Theorem 3.2. With appropriate assumptions, CLVD g asymptotically conditional valid.

The detailed assumptions, formal statement, and proof of Theorem [3.2] are deferred to the Appendix.

Remark: Roughly speaking, Theorem [3.T]tells us that the response Y of a new data point sampled
“near” X1 will fall in our PI with high probability. Theorem [3.2] further states that, under suitable

assumptions and enough data, CLVD also covers Y1 (i.e., no re-sampling) with high probability.

4 Experiments

Baselines: We compare LVD with the following baselines (with a qualitative comparison in Table|T):

1. Discriminative Jackknife (DJ) [1]], which claims to be both discriminative and marginally valid
but is neither (See Appendix [C).

2. Deep Ensemble (DE) [20], which trains an ensemble of networks to estimate variance and mean.

3. Monte-Carlo Dropout (MCDP) [12]], a popular bayesian method for NN that performs Dropout
[31]] at inference time for the predictive variance estimate.

4. Probabilistic Backpropagation (PBP) [15]], a successful method to train Bayesian Neural Networks
by computing a forward propagation of probabilities before a backward computation of gradients.

5. Conforamlized Quantile Regression (CQR) [29], an efficient (narrow PI) marginally valid confor-
mal method that takes quantile predictors instead of mean predictors. This comes with a huge
cost: one needs to retrain the predictor for each « if more than one coverage level is desired.

6. MAD-Normalized Split Conformal (MADSplit) |21} 8], a variant of the well-known split-conformal
method that requires an estimator for the mean absolute deviation (MAD), and performs conformal
prediction on the MAD-normalized residuals.

In our experiments, PIs for non-valid methods are obtained from the quantile functions of the posterior
for target coverage 1 — « like in [[1]].

4.1 Synthetic Data

We will first examine the dynamics of different uncertainty methods with synthetic data. The formula
we use is the same as in [I3,[1]]: y = 23 + . Here, ¢ ~ N(0,4?%), and x comes from Uni f[—1, 1]
with probability 0.9, and half-normal distribution on [1, c0) with ¢ = 1 with probability 0.1. We
used this Px to illustrate local validity. The results are shown in Figure[2] We observe that LVD,
CQR, MADSplit, and DJ all achieve close to 90% coverage. However, LVD gives a more meaningful
discriminative predictive band: Specifically, near the boundaries, it will give us wider intervals
(sometimes oo) because there is little similar data around, which is desirable for local validity.
Although CQR and MADSPplit can be discriminative, they are still only marginally valid, so we can
see that despite the varying width, they actually get narrower when z is more eccentric, which is
clearly an issue. DJ essentially gives PIs of constant width, as estimated from the quantile of the
residuals. DE also does not give meaningful uncertainty estimates, giving almost constant PIs that



Table 1: Features of different methods. CQR and MADSplit achieve strict finite-sample marginal
coverage. Unlike LVD, no baseline is locally valid. LVD, MADSplit and CQR are discriminative,
DJ is not, and DE/CMDP/PBP are supposed to be but usually fail to in our experiment. Among the
post-hoc methods, LVD and MADSplit have reasonable overhead, DJ’s overhead is usually O(N)
where N is the number of training data (and extremely large memory consumption). CQR is not
post-hoc because its PI may not contain 4V (X).

‘ LVD MADSplit CQR DJ DE MCDP PBP
Valid Local Marginal Marginal ~ no guarantee X X X
Discriminative v v v X sometimes ~ sometimes  sometimes
Post-hoc v v X v X X X
Overhead (if post-hoc) Low Low N/A Very High N/A N/A N/A
LVD (Covered 93.0%) MADSplit (Covered 88.0%) CQR (Covered 97.0%) DJ (Covered 98.0%)
20 20 20 20
15 15 15 15
10 10 10 10
5 i 5 i 5 ! 5
] [ ] [
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Figure 2: LVD, CQR and MADSplit achieve marginal coverage. Although without theoretical
guarantee, DJ usually marginally covers in practice with near constant width (not discriminative).
DE, MCDP and PBP do not show validity as expected. Among valid PIs, only LVD tries to capture
the less representative points by wider Pls, arguably showing the most useful discriminative pattern.

cover well below 90%. For Bayesian methods, MCDP behaves much like a Gaussian Process (as
claimed in [[12]), with low coverage rate, whereas PBP is mildly discriminative and not valicﬂ

4.2 Real Datasets

Table 2: Size of each dataset. Size of the test set is in parenthesis.

Yacht Housing  Energy Bike Kin8nm  Concrete QMS QM9
308 (62) 506 (101) 768 (154) 17379(3476) 8192 (1638) 1030 (206) 21786 (4357) 133719 (26744)

We will be using a series of standard benchmark datasets in the uncertainty literature [[1} 29} [15]],
including: UCI Yacht Hydrodynamics (Yacht) [38]], UCI Bikesharing (Bike) [35]], UCI Energy
Efficiency (Energy) [37]], UCI Concrete Compressive Strength (Concrete) [36], Boston Housing
(Housing) [9]], Kin8nm [[16]]. We also use QMS (16 sub-tasks) and QM9 (12 sub-tasks) [28, 30} 27]] as
examples of more complicated datasets. In each experiment, 20% of the data is used for testing. The
sizes of datasets used are shown in Table[2] We use the same DNN model for all baselines, which
has 2 layers, 100 hidden nodes each layer, and ReL.U activation for the non-QM datasets. For QM8
and QM9, we use the molecule model implemented in [45] and apply applicable baselines. Missing
baselines (“~" in the tables) are either too expensive (i.e. time and/or memory) or require a significant
redesign of the training and NN, which is beyond the scope of this paper.

Evaluation Metrics: The evaluation is based on validity and discrimination. For validity, we check
the marginal coverage rate (MCR) and the tail coverage rate (TCR), which is defined as the coverage
rate for data whose Y falls in the top and bottom 10%. The motivation behind TCR is that if our local
validity is very close to conditional validity, then LVD’s coverage rate would be above target in any
pre-defined sub-samples, including those with extreme Y's. For discrimination, to verify Eq. [5} which

*Sometimes it may be possible to calibrate Bayesian methods [29]. However, one needs to calibrate the entire
posterior for the Bayesian method to makes sense. Moreover, from our experiments, it is impossible to do this
in MCDP, when it behaves like a Gaussian process and predicts zero variance near known data.



is a prediction task, we compute the AUROC of using the PI width to predict whether the absolute
residual is in the top half of all residuals. AUROC alone is misleading, however, as a bad predictor
can easily be discriminative (e.g., by randomly adding to both its prediction and PI width a huge
M 0 —)

constant). Therefore, we also report the mean absolute deviation (MAD), defined as w
Table 3: Marginal coverage rate (MCR) and tail coverage rate (TCR) (coverage rate for left and
right 10% tail for test label) with target at 90%. “—” represents not-applicable models (see Section
B.2). Coverage rates not significantly lower than target at p = 0.05 are in bold (good). Note that
the too high is not better. For example, MCDP either greatly over- or under-covers with MCR
either 100% or well below 90%.

MCR | LvD MADSplit CQR DJ DE MCDP PBP

Yacht 96.8+2.2 82.4+7.1 91.5+4.7 95.0£2.1 22.7+6.0 87.4+4.2 80.2+10.8
Housing 96.8+2.9 90.6£3.5 91.7£33 97.6t1.4 96.0£1.9 100.01-0.0 8.1+4.3
Energy 94.0+£1.6 90.3+£2.5 90.3+2.2 96.2+1.8 98.0+2.7 100.0+0.0 7.2+5.9
Bike 90.4+0.8 89.9+0.6 89.8+0.7 95.24+0.6  100.0+0.0 71.940.7 0.6+0.2
Kin8nm 98.0+£0.6 90.0+£0.8 90.2£0.6 94.7+£04  100.0+£0.1 100.0+£0.0  100.0+0.0
Concrete | 97.4+1.3 88.8+2.8 88.5+2.3 98.0£1.6 97.8£1.0 100.0£0.0 3.3+0.8

QMS8* 92.6+0.9 90.0+£0.7 90.0+£0.6 - 100.0+0.0 - -
QMOY* 90.3+0.6 90.0+£0.2 90.0+0.3 - 60.7+£46.8 - -
TCR | LvD MADSplit CQR DJ DE MCDP PBP
Yacht 98.5+3.2  654£23.8 77.7£123 762499 1.5+4.9 50.0+9.8 70.0+£14.3

Housing 96.2+4.4 87.6+£8.8 82.9+8.2 90.0-£5.2 81.94+9.7 100.0£0.0 1.0£3.0
Energy 86.8+5.8 78.4£109  7354+12.0  90.0+6.5 95.8+6.3 100.0+0.0 9.7+12.7
Bike 90.2+1.7 89.2+3.5 58.7+7.3 85.6+3.3  100.0£0.0 49.940.0 0.0+0.0
Kin8nm 97.2+1.6 86.41+2.6 852422 88.1£1.8 99.9+0.3 100.0£0.0  100.040.0
Concrete | 97.1+3.4 83.9+7.3 85.4+6.2 95.6£3.6 91.7+4.8 100.0+0.0 3.4+£57
QMS8* 90.8+£1.9 86.3+2.4 80.0+5.9 - 100.040.0 - -
QMO* 89.7+2.5 86.1+3.0 79.7£8.9 - 60.3+£46.5 - -

Table 4: At p = 0.05, AUROCS (in predicting error being greater than 50% percentile) that
are significantly higher than 50%, and mean absolute deviations (MAD) significantly lower than
the second-best, are in bold. LVD, MADSplit and CQR are consistently discriminative, but
CQR sometimes incurs high MAD. DJ is not discriminative, whereas other methods occasionally
demonstrate discrimination but usually have high MADs as well.

AUROC ‘ LVD MADSplit CQR DJ DE MCDP PBP

Yacht 83.5+5.8 77.7+£9.0 84.9+4.6 50.0+£10.5 59.8+6.4 472477 82.8+8.8
Housing | 59.24+8.5 62.0+8.3 62.5+6.7 49.6+£5.9 60.0£6.8 42.5+£7.8 47.4£3.6

Energy 73.5+£6.3 729456 72.1£8.2 57.5+8.1 56.1£11.0 54.6£5.5 48.2£2.6
Bike 68.2+11.0 71.7+£85  84.8433.5 45.84+6.2 86.2+12.5 94.3+1.0 48.3£1.0
Kin8nm | 60.3+1.1 60.4+1.9 60.0+2.1 49.34+2.2 50.5+£2.6 54.1+25 53.6+4.8
Concrete | 64.0+6.1  63.84+5.7 66.0+7.1 46.2+4.9 55.9+6.2 51.94£35 49.7+3.9
QMS8* 71.3+94 73.5+£6.8  65.5£10.3 - 91.7£16.9 - -
QMOY* 62.7£3.6 64.9+35 55.0%144 - 56.8+28.4 - -
MAD | LVD MADSplit CQR DJ DE MCDP PBP

Yacht 1.90+£0.48 1.90+0.48 3.554+0.85 10.15+0.84  11.25+0.81 10.92+0.73  1.80£0.30
Housing |3.314£0.53 3.31£0.53 3.4440.33  3.69+0.33 4.4240.39 6.04£0.54 7.944+1.97
Energy |2.99£0.75 2.99+£0.75 3.44+1.04 3.19+£0.51 3.79+0.31 8.12+0.59  11.66+2.24
Bike 0.04:£0.03 0.04+0.03 7.3443.51  0.054+0.03 3.37£2.90 124.57+2.68 162.21£2.58
Kin8nm | 0.07+£0.00 0.07£0.00 0.08+0.01  0.09+£0.01 0.19£0.01 0.18+£0.00 0.22£0.12
Concrete | 5.444+0.53 5.44+£0.53 6.21+1.05 5.58+0.58 7.2240.76 13.754£0.69  20.5943.57
QMS8* 0.01£0.01 0.01+0.01  0.03£0.02 - 3.28£5.12 - -
QMOY* 3.69£9.09 3.69+9.09 32.11+50.42 - 268.324357.01 - -

We repeat all experiments 10 times and report mean and standard deviations. For QM8 and QM9, we
report the average numbers across all sub-tasks, with a breakdown on each sub-task in the Appendix.

Results: For validity, as shown in Table[3] LVD achieves marginal coverage empirically, as well as
MADSplitE], CQR, and DJ. However, for tail coverage rate, only LVD consistently covers at or above
target coverage rates. For the larger datasets, both coverage rates tend to get close to 90% for LVD.
DE, MCDP, and PBP do not achieve meaningful coverage (either too high or too low). [19] also
report mixed results on marginal validity with existing uncertainty quantification methods for DL. To

31t is worth noting that MADSplit, despite the theoretical guarantee, misses on the Yacht dataset, because the
MAD-predictor predicts a “negative” absolute residual for some subset of the data, thus creating extremely
narrow PIs, even after requiring the prediction to be positive and the “practitioner’s trick” mentioned in [29].



further test for local validity, we also examine the average coverage rate conditioned on the presence
of certain functional groups for the QM9 dataset (detailed results are relegated to the appendix). LVD
achieves empirical validity for these groups as well, even though functional groups define a kind of
similarity that is never used in the uncertainty quantification process.

For discrimination (Table[d)), LVD is generally in the top two while maintaining the lowest MAD
almost always. MADSplit has the same MAD as LVD (using the same /2"VV), and has a similar
AUROC as LVD despite explicitly modeling MAD. Other baselines occasionally show a significant
discriminative property, but usually have much higher MAD. Despite training an ensemble of models,
DE incurs huge prediction errors in many datasets. As noted earlier, AUROC alone is misleading if
the MAD is high: MCDP and CQR seem highly discriminative on the Bike dataset, mostly due to the
high model error (epistemic uncertainty).

Scalability: For the largest dataset, QM9, the extra inference time of LVD vs. inference time of
the original NN is 0.65 vs. 0.75 second per 1000 samplesﬂ on an NVIDIA 2080Ti GPU. MADSplit
on the other hand takes 0.93 second overhead in the most optimized case. That said, any method
that finishes within O(1) multiple of the original NN model is usable in practice. For LVD, extra
vs. original training time is about 1.5 vs. 0.75 second per 1000 samples, but because the f is already
highly informative, the training of the kernel Ky finishes in very few iterations, resulting in < 5%
overhead of the total training time. Note that MADSplit will take strictly > 1x time in total because
it needs to train a second model to predict residuals. Like MADSplit, CQR needs to train at least one
quantile predictmﬂ but it needs to train a new predictor for every «, which is a huge cost.

5 Conclusion

This paper introduces LVD, the first locally valid and discriminative PI estimator for DL, which is
also scalable and post-hoc. Because LVD is both valid and discriminative, it can provide actionable
uncertainty information for the real world application of DL regression models. Moreover, it is
easy to apply LVD to almost any DL model without any negative impact on the accuracy due to its
post-hoc nature. Our experiments confirm that LVD generates locally valid PIs that cover subgroups
of data all other methods fail to. It also exceeds or matches the performance in discriminative power
while offering additional benefits in scalability and flexibility. We foresee that LVD can enable more
real-world applications of DL models by providing users actionable uncertainty information.
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using/curating? [Yes] We only used public data and codes. We do our best explaining this in
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