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Abstract

Randomly initialized dense networks contain subnetworks that achieve high accu-
racy without weight learning—strong lottery tickets (SLTs). Recently, Gadhikar
et al. [11] demonstrated that SLTs could also be found within a randomly pruned
source network. This phenomenon can be exploited to further compress the small
memory size required by SLTs. However, their method is limited to SLTs that are
even sparser than the source, leading to worse accuracy due to unintentionally high
sparsity. This paper proposes a method for reducing the SLT memory size without
restricting the sparsity of the SLTs that can be found. A random subset of the
initial weights is frozen by either permanently pruning them or locking them as a
fixed part of the SLT, resulting in a smaller model size. Experimental results show
that Edge-Popup [31, 34] finds SLTs with better accuracy-to-model size trade-off
within frozen networks than within dense or randomly pruned source networks.
In particular, freezing 70% of a ResNet on ImageNet provides 3.3× compression
compared to the SLT found within a dense counterpart, raises accuracy by up to
14.12 points compared to the SLT found within a randomly pruned counterpart,
and offers a better accuracy-model size trade-off than both.

1 Introduction

The Strong Lottery Ticket Hypothesis (SLTH) conjectured the existence of subnetworks within a
randomly weighted network—strong lottery tickets (SLTs)—that achieve comparable accuracy to
trained dense networks [42, 31, 26]. The existence of such subnetworks that do not require weight
training, illustrated in Figure 1 (left), has been demonstrated experimentally [42, 31, 18, 22, 40]
and proven theoretically for dense source networks [26, 28, 29, 7, 6, 1, 3, 9, 11]. They appear in
networks with excessive amounts of parameters, and their existence indicates the possibility of new
optimization strategies for deep neural networks based on a network connectivity perspective.

SLTs offer a particularly advantageous opportunity for specialized inference hardware [15, 5, 4] since
the random weights can be reconstructed from the seed (i.e., they do not need to be memorized),
and the binary mask—supermask—can be greatly compressed with entropy coding, vastly reducing
off-chip memory access and its associated overheads. Furthermore, the binary nature of both the
supermask and the random weights can be exploited for multiplier-less execution, as demonstrated
practically by Hirose et al. [15].
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Figure 1: Freezing the source network by randomly pruning
some parameters and locking others reduces the memorized
supermask for finding an SLT.
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Figure 2: Freezing (•) improves the
accuracy-to-model size trade-off over
pre-pruning only (•) or non-freezing (•).

Recently, Gadhikar et al. [11] showed that accurate SLTs could be found even if the number of edges
to be optimized was reduced by randomly pruning the source network at initialization (see Figure 1,
center). Since the random pre-pruning mask can be reconstructed from the seed in the same way as
the random weights, and thus there is no need to store the part of the supermask corresponding to
pre-pruned weights, their approach can be exploited to further reduce the memory cost required by
the SLT in specialized hardware. However, when aiming for high compression, their method can only
search for SLTs in the relatively high sparsity region, and may even lead to layer collapse [12, 35].
Furthermore, since the SLT sparsity regions where highly accurate SLTs exist depend on the dataset
and network architecture, a search limited to sparse regions may fail to find accurate SLTs. For
instance, work on SLTs within graph neural networks has shown that dense SLTs are more accurate
than sparse ones in some settings [18, 39]. Therefore, it would be desirable to use a method that
allows for increased randomness in SLTs for further model compression, but has the freedom to
allocate it in the SLT sparsity regions that lead to more accurate tickets.

This paper introduces such a novel method to reduce the memory cost of the optimized supermask
without restricting the desired sparsity of SLTs to be searched for: in addition to random pruning
at initialization, it also locks randomly chosen parameters at initialization to be a permanent part
of the SLT (i.e., never pruned), as exemplified in Figure 1 (right). Both the randomly pruned and
the locked parameters—the frozen parameters—are left completely random and can be regenerated
from seed. The weights corresponding to the optimized supermask region (less than 50% of the
total) are also reconstructed from seed, and the supermask is binary and sparse, producing a highly
compressible model. Far from negatively impacting performance, this cost reduction is efficient: as
shown in Figure 2, the frozen SLTs achieve a higher accuracy than SLTs with a similar size resulting
from conventional methods. The contributions of this paper are summarized as follows:

• We propose a novel method that vastly reduces the number of parameters to be memorized for
finding an accurate SLT by freezing (pruning and locking) the source random network.

• We experimentally validate our method in three scenarios corresponding to low, medium, and
high optimal SLT sparsity regions, which reveal that parameter freezing consistently produces
smaller yet accurate supermasks. Even with randomly frozen parameters, we find highly accurate
SLTs that cannot be found within dense networks for some desired sparsities.

• Furthermore, the experimental results show that SLTs found in frozen networks achieve compara-
ble or better accuracy-to-model size trade-off than SLTs found within dense (non-freezing) or
sparse (non-locking) random networks.

As mentioned above, SLTs are quite attractive for neural engine design, as they can vastly reduce the
memory size for model storage, meaning that off-chip memory access—by far the major bottleneck
of energy and time consumption [16]—can be drastically reduced for energy-efficient inference
acceleration [15]. Our contributions have the potential to reduce off-chip memory access further and
to make inference more energy-efficient than previous designs.

2 Strong Lottery Tickets in Frozen Networks
Recently, Gadhikar et al. [11] revealed that SLTs exist within not only dense but also sparse source
networks, i.e., random networks that have been randomly pruned at initializaton (see Figure 1, center).
Their approach offers a practical advantage: as the randomly pre-pruned parts can be reconstructed
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from the seed, this pre-processing of the source network before finding SLTs can be exploited to
reduce the cost of storing the supermask. (For more detailed preliminaries, see Appendix A)

However, this approach also imposes the limitation that it can only search for SLTs with a sparsity
higher than the pre-pruning ratio. For example, a random pre-pruning ratio of 90% vastly reduces the
memory size of the supermask, but it limits the search to only SLTs sparser than 90%. Therefore,
their method is incompatible with exploring the whole SLT sparsity range for optimal accuracy.

This paper proposes a novel method that allows us to find SLTs within the optimal sparsity range
while still capitalizing on the compression gains offered by random connectivity initialization. We
explore the performance of SLTs within a frozen source network, i.e., a random network that (in
addition to randomly pruned parameters) has randomly chosen parameters forced to be permanent
part (i.e., never pruned) of the SLT—locked parameters (see Figure 1, right). Since the random
locking pattern can be reconstructed from seed in the same way as the random pre-pruning pattern,
our freezing method allows us to compress SLTs further. Additionally, locking allows us to extend
the benefits of pre-pruning to the scenarios where the SLT sparsity should not be too high, e.g., as
found in graph neural networks [18, 39].

This section first describes the construction of frozen networks and the freezing pattern encoding
for model compression. Then, we perform a preliminary experiment of the optimal settings for the
proposed method in preparation for the evaluation experiments in Section 3.

2.1 Partial Freezing for Enhanced SLT Compression
Top-1 Acc.

Desired SLT Sparsity Range

(Locked)(Non-Frozen)

SLT Sparsity

(Pruned)
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Figure 3: Pre-pruning and locking set the bounds
of the SLT sparsity that can be found. These opti-
mal bounds are investigated in Section 2.2.

In our method, since frozen regions in the source
network are completely random and thus can be
reconstructed from seed, we need to memorize
only the optimized supermask region. The total
amount of frozen parameters is determined by
a global freezing ratio Fr, which is the sum of
the respective pre-pruning ratio Pr and locking
ratio Lr. Therefore, we optimize the 1−Fr of the
parameters (i.e., non-frozen parameters) of the
original dense network. As explained previously,
it is not possible to search for an SLT with a
lower sparsity (denser) than the frozen source network. Consequently, as shown in Figure 3, the
pre-pruning ratio Pr sets the lower bound of the sparsity of the SLTs that can be found. On the other
hand, it is not possible to search for an SLT that prunes more parameters than those available, so the
locking ratio Lr sets the upper bound of the sparsity of the SLTs that can be found. (Specifically,
the upper bound is given by 1−Lr.) Thus, these ratios allow us to freely control the proportion of
pre-pruning and locking ratios and memory size reduction ratio for the desired SLT sparsity.
Frozen network construction: We assume that the l-th layer of network with depth L has weights
w(l) ∈ Rn(l)

. The number of frozen parameters is determined by the layer-wise freezing ratios
p
(1)
f , ..., p

(L)
f , where each p

(l)
f is defined as the sum of the layer-wise pre-pruning ratio p

(l)
p and the

layer-wise locking ratio p
(l)
l , and p

(l)
f , p

(l)
p , p

(l)
l ∈ [0, 1].

To prune p
(l)
p n(l) parameters and lock p

(l)
l n(l) parameters, we generate two random masks, a

pre-pruning mask m
(l)
p ∈ {0, 1}n(l)

and a locking mask m
(l)
l ∈ {0, 1}n(l)

, so that they satisfy
||1−m

(l)
p || = p

(l)
p n(l), ||m(l)

l || = p
(l)
l n(l), and (1−m

(l)
p ) ·m(l)

l = 0 (i.e., we require pre-pruning
and locking to be implemented without overlap). The layer-wise weights frozen with these masks are
calculated as w(l)

f := (m
(l)
p ⊙ (1−m

(l)
l ) +m

(l)
l )⊙w(l). These masks are fixed during training,

and we search for SLTs only in the parts where m
(l)
p ⊙ (1−m

(l)
l ) is one.

Setting the layer-wise ratios: Our method considers the following two existing strategies for
determining the layer-wise pre-pruning ratio from the desired global pre-pruning ratio of the network:

• Erdős-Rényi-Kernel (ERK): The pre-pruning ratio of layer l is proportional to the scale
(C

(l)
in + C

(l)
out + k

(l)
h + k

(l)
w )/(C

(l)
in · C(l)

out · k
(l)
h · k(l)w ), where C

(l)
in , C(l)

out, k
(l)
h , and k

(l)
w denote

input channels, output channels, kernel height, and kernel width of the layer l, respectively [8].
• Edge Per Layer (EPL): Each layer’s pre-pruning ratio is set so that they all have the same number

of remaining weights [30, 11].
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The same strategy is employed to determine the layer-wise pre-pruning and freezing ratios from
their respective global ratios, and then the locking ratios are calculated as the difference between the
corresponding freezing and pre-pruning ratios.

Freezing pattern encoding for model compression: The freezing pattern can be encoded during
inference as a ternary mask—a freezing mask—that indicates whether a parameter is pruned, locked,
or part of the supermask. For example, encoding pre-pruning as −1, locking as +1, and supermask
inclusion as 0, the layer-wise freezing mask can be encoded as m(l)

l + (m
(l)
p − 1) ∈ {−1, 0, 1}n(l)

.
Since this freezing mask is also random and fixed, it can be regenerated from its seed and ratios,
similarly to the random weights. Furthermore, the supermask size is reduced by excluding from it
the frozen parameters, so the SLTs found by this method can be compressed in inference to an even
smaller memory size than those produced by the existing SLT literature [15, 27, 22], reducing costly
off-chip memory access on specialized neural inference accelerators [15, 5], and thus offering an
opportunity to perform even faster and more energy-efficient inference processing.

2.2 Optimal Pruning:Locking Propotion for Freezing
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Figure 4: Different prune:lock proportions
of a 80% freezing ratio using a Conv6.

Here, we perform a preliminary investigation of the op-
timal pruning:locking proportion for each given desired
SLT sparsity by varying the proportion with a fixed freez-
ing ratio of the network. Figure 4 explores different con-
figurations of a 80% freezing ratio—the situation where
the supermask memory size is 20% of the SLT in the
dense source network—on a Conv6 network and com-
pares the performance of the found SLTs on CIFAR-10.
As expected, the best-performing SLT of each prune:lock
configuration is found at the center of the non-frozen
region, where the number of candidate subnetworks is
maximized. In other words, when the non-frozen re-
gion accounts for S ∈ [0, 1] of the entire source net-
work, the optimal SLT sparsity is k = Pr + S/2, where
Pr =

∑
l p

(l)
p n(l)/

∑
k n

(k) is the global pre-pruning ra-
tio of the network. Conversely, for a given freezing ratio
Fr of the network and a desired SLT sparsity k, the op-
timal position of the frozen region is set by the pre-pruning ratio Pr = k − (1 − Fr)/2 and the
corresponding locking ratio Lr = Fr − Pr. In the cases where this would result in Pr<0 or Lr<0,
we choose a best-effort approach that keeps the desired freezing ratio and sets the bounds to Pr=0
or Lr=0, respectively.

Additionally, Figure 4 compares the two strategies for setting ratios considered in Section 2.1, showing
that EPL outperforms ERK in all cases. Consequently, hereafter, the proposed method sets the global
ratios in order to position the frozen region center as close as possible to the desired SLT sparsity,
and then sets the layer-wise ratios using EPL.

2.3 SLT Existence in Frozen Networks
One question comes to mind here: does SLT exist that approximates a given target network, even if the
parameters are randomly frozen (i.e., pruned or locked) in advance? It has been shown by Gadhikar
et al. [11] that an SLT that approximates a given target network exists in the pre-pruned source
network if the source network is sufficiently wider and deeper than the target, but it is not known
whether such an SLT exists in the situation of a frozen source network. Here, we provide a theoretical
result indicating that an SLT capable of approximating a target network exists in a frozen network.
This result is proved by extending the subset-sum approximation lemma (Lemma A.1) to the case
where some parameters are locked (for detailed proof, see Appendix B).

Lemma 2.1 (Subset-Sum Approximation in Randomly Locked Networks). Let X1, ..., Xn be as in
Lemma A.1, and M ′

1, ...,M
′
n ∼ Ber(q) be independent, Bernoulli distributed random variables with

q ∈ (0, 1). Then, except with exponentially small probability, any z ∈ [−1, 1] can be approximated
by the sum of

∑n
i=1 M

′
iXi and a subset-sum of (1−M ′

i)Xi if n is sufficiently large.

Then, by combining Lemma 2.1 and Lemma A.2, we extend the subset-sum approximation to the
situation where some random variables are frozen (i.e., pruned or locked).
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Figure 5: Impact of the freezing ratio on different architectures. Pruning and locking ratios are set
following Section 2.2.

Lemma 2.2 (Subset-Sum Approximation in Frozen Networks). Let X1, ..., Xn be as in Lemma A.1,
M1, ...,Mn ∼ Ber(p) be as in Lemma A.2, and M ′

1, ...,M
′
n ∼ Ber(q) be as in Lemma 2.1. Then,

except with exponentially small probability, any z ∈ [−1, 1] can be approximated by the sum of∑n
i=1 MiM

′
iXi and a subset-sum of Mi(1−M ′

i)Xi if n is sufficiently large.

Finally, by applying Lemma 2.2 to the Theorem 2.5 in Gadhikar et al. [11] instead of Lemma A.2, it
follows that an SLT approximating a target network exists within a frozen network.
Theorem 2.3 (SLT Existence in Frozen Networks). Let a target network fT with depth L and a
partially frozen source network fS with depth L+1 be given. Assume that the source network is
randomly frozen with pruning ratio pl and locking ratio ql for each l-th layer. Also assume that these
networks use the ReLU activation function and are initialized with a uniform distribution U [−1, 1].
Then, except with exponentially small probability, a subnetwork fSLT exists in the frozen source
network fS such that fSLT approximates the target network fT if the width of fS is sufficiently large.

3 Experiments
This section demonstrates that freezing reduces the SLT memory size in a broad range of situations
by evaluating it on image classification and graph node classification. We evaluate the impact of
the freezing ratio on various network architectures, identifying three scenarios. Then, we explore
trade-offs between accuracy and model memory size for different network widths and architectures.
The detailed experimental setting and additional experiments are in Appendix C.1.

3.1 Varying Desired SLT Sparsity at Different Freezing Ratios
This section investigates the effect of the freezing ratio of the network on desired SLT accuracy. We
identify three scenarios, represented in Figure 5.

In the cases where the optimal SLT sparsity is found at intermediate sparsity—e.g., around 50% for
Conv6 in Figure 5a—pruning and locking can be applied with equally high ratios. Results show that
the supermask memory size can be reduced by 40% with a small impact on accuracy, and by 70%
with still a moderate accuracy drop of 5 points.

Applying the much larger ResNet-18 to the same task results in much stronger overparametrization.
Therefore, optimal SLTs are found in the higher sparsity range, as revealed by Figure 5b, benefiting
from much higher pruning than locking. Even though 90% of the memory size is reduced in this
scenario, we can find 90% sparse SLTs with 88.1% accuracy.

As an example of the scenario where optimal SLT sparsities are found in the denser range, benefiting
from a higher locking ratio, we evaluate GIN in Figure 5c. Compared with the best-performing SLT
found in the dense GIN, of 70.1% accuracy and 20% sparsity, by freezing 50% of the memory size,
our method finds similarly performing SLTs of 69.8% accuracy with 40% sparsity.

Interestingly, with low SLT sparsity (e.g., 10% sparsity) in all three scenarios, despite the reduced
parameters to be optimized, SLTs within frozen networks achieve higher accuracy than SLTs within
dense networks. These results imply that parameter freezing at an appropriate ratio has the effect
of avoiding the inclusion of low-grade local optimal solutions in the search space. While searching
for SLTs in a dense network by Edge-Popup leads to convergence to a local optimal solution [10], a
moderate random parameter freezing may reduce the number of less accurate local optimal solutions
and facilitate convergence to a more accurate local optimal solution within the reduced search space.
In other words, we conjecture that if the network is properly frozen, the local optimal solution for the
reduced search space is close to the global optimal solution of the entire search space.
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Figure 6: Compared to sparse (•) or dense (•) source networks, freezing achieves better accuracy-to-
model memory size trade-off (top-left is better).

3.2 Accuracy-to-Model Memory Size Trade-Off
The freezing mask compression scheme proposed in Section 2.1 allows to reduce the model memory
size during inference by regenerating both the random weights and the freezing mask with random
number generators. Here we consider this compression and investigate the accuracy-to-model size
trade-off offered by the SLTs found in the frozen networks. Model size refers to the total memory
size of model parameters that need to be stored. The random weights and the frozen parts of the
supermask are excluded, since they can be regenerated from seed, whereas each non-frozen element
of the supermask and each learned batchnorm parameter are counted as 1 and 32 bits, respectively.
Furthermore, we also compare the Kaiming Uniform (KU) weight initialization used so far with
the binary weights provided by the Signed Kaiming Constant (SKC) initialization [31], which can
be exploited for reduced computational cost in neural engines [15]. For SKC, we scale weights by
1/

√
1− kl, where kl is the sparsity of each layer, as proposed by Ramanujan et al. [31].

Figure 6 explores varying the width of the source network to analyze its impact on accuracy and
model size. SLT sparsity is fixed to that of the best performing SLT found in a dense source network
in Figure 5: 50% in Conv6, 90% in ResNet-18, and 20% in GIN. Compared to the SLTs found in
dense or sparse source networks, SLTs found by our method achieve similar or higher accuracy for
similar or smaller model size, thus improving the accuracy-to-model size trade-off in all scenarios.

Empirically, it is known that SLTs within an SKC-initialized dense network achieve better perfor-
mance than with continuous random weights [31, 27, 22, 39]. Our results show that such a trend can
also be observed in frozen source networks. Nonetheless, in all source networks, we find that this
improvement is smaller the wider the source network is, suggesting that the requirement for source
networks of larger width is weaker in the case of binary weights.

3.3 ImageNet Experiments
Finally, we evaluate our method using larger models on a large-scale dataset: deeper and wider
ResNets on ImageNet. Since SLTs with 80% sparsity achieve the highest accuracy in a dense source
ResNet-50 (for details, see Appendix C.2), we compare the three methods using 80% SLT sparsity.

Figure 2 compares the accuracy-to-model size trade-off in finding the 80% sparsity SLTs between
the proposed and conventional methods with SKC using ImageNet. Despite the more challenging
setting and the significant 70% memory size reduction, our method (green) finds SLTs that are more
accurate than pre-pruning-only methods (orange) for the same model size. This result demonstrates
that the effective combination of parameter pruning and locking at initialization can improve the SLT
memory efficiency even on large-scale datasets and models.

4 Conclusion
This paper capitalizes on the fact that pre-pruning a randomly weighted network reduces the super-
mask memory size, but identifies that doing so limits the search to a suboptimal sparsity region. This
problem is tackled by freezing (i.e., pruning or locking) some parameters at initialization, excluding
them from the search. Freezing allows to the search for SLTs in the optimal sparsity region, while
further reducing the model size. Experimental results show that SLTs found in frozen networks
improve the accuracy-to-model size trade-off compared to SLTs found in dense [31, 34] or sparse
networks [11]. Interestingly, although for weight training random parameter locking has only been
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found useful for reducing accuracy degradation in network compression [42, 37], we identify scenar-
ios in SLT training where they can be used for raising accuracy. Our method can be interpreted as
being capable of generating more useful SLT information from a random seed than previous methods,
offering an opportunity for reducing off-chip memory access in specialized SLT accelerators [15].
Additionally, the reduced number of parameters to be optimized may be exploited for training cost
reduction, which remains for future work.
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A Preliminaries

This section outlines the background of strong lottery tickets (SLTs) within dense or sparse networks
and SLT search algorithms.

A.1 Strong Lottery Tickets in Dense Networks

SLTs [42, 31, 26] are subnetworks within a randomly weighted neural network that achieve high
accuracy without any weight training. Compared with learned dense weight models, SLTs can be
reconstructed from a small amount of information: since the random weights can be regenerated
from their seed, it is only necessary to store the binary supermask and the seed [15]. SLT search
algorithms for deep neural networks [42, 31, 43, 34] find SLTs by updating weight scores, which are
then used to generate the supermask, instead of updating weights. For example, the Edge-Popup
algorithm [31, 34] used in this paper finds SLTs by applying a supermask generated from the
connections with the top-k% scores. Such as this top-k, these methods determine the SLT sparsity to
be explored as a hyperparameter explicitly or implicitly.

SLT Existence via Subset-Sum Approximation Based on the subset-sum approximation
(Lemma A.1), which was first introduced into the SLT context by Pensia et al. [29], previous
works [1, 2, 6, 29] showed that an SLT that approximates an arbitrary target network exists in a
dense source network if it is logarithmically wider and constantly deeper than the target network.
In particular, Burkholz [1] proved that a source network with depth L+1 and larger width than the
target network contains an SLT that can approximate the target network with depth L. Given a set of
random variables and a target value, the subset-sum problem consists of finding a subset whose total
value approximates the target. Lueker [25] showed that such a subset exists with high probability if
the number of random variables is sufficiently large:

Lemma A.1 (Subset-Sum Approximation [25]). Let X1, ..., Xn ∼ U(−1, 1) be independent,
uniformly distributed random variables. Then, except with exponentially small probability, any
z ∈ [−1, 1] can be approximated by a subset-sum of Xi if n is sufficiently large.

A.2 Strong Lottery Tickets in Sparse Networks

Recently, Gadhikar et al. [11] revealed that SLTs also exist within sparse source networks, i.e., random
networks that have been randomly pruned at initialization (see Figure 1, center). They showed its
existence experimentally as well as theoretically, as outlined later: an SLT that approximates a given
target network exists with high probability in a sparse source network that is sufficiently wider and
deeper than the target.

SLT Existence in Sparse Networks To prove the existence of SLTs within sparse networks,
Gadhikar et al. [11] extended the subset-sum approximation (Lemma A.1) to the situation where
randomly chosen variables are permanently pruned at initialization:

Lemma A.2 (Subset-Sum Approximation in Sparse Networks [11]). Let X1, ..., Xn be as in
Lemma A.1, and M1, ...,Mn ∼ Ber(p) be independent, Bernoulli distributed random variables with
p ∈ (0, 1). Then, except with exponentially small probability, any z ∈ [−1, 1] can be approximated
by a subset-sum of MiXi if n is sufficiently large.

By applying this extended lemma instead of Lemma A.1 to the SLT existence theorem presented
by Burkholz [1], Gadhikar et al. [11] proved the SLT existence in sparse networks as Theorem B.1.
Thus, by extending the subset-sum approximation lemma, the conventional SLT existence proof can
be easily extended to various network settings.

B Proof for Strong Lottery Tickets (SLTs) Existence in Frozen Networks

This section describes the proofs of the lemma and theorem introduced in the manuscript. For
reference, we present a theorem presented by Gadhikar et al. [11] in advance.

Theorem B.1 (SLT Existence in Sparse Networks [11]). Let input data D , a target network fT with
depth L, and a source network fS with depth L+1, parameters θS , and edge probabilities pl be given.
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Assume that these networks have ReLU activation function, and each element of θS is uniformly
distributed over [−1, 1]. Then, with probability at least 1− δ, there exists a binary mask mS so that
each output component i is approximated as maxx∈D ∥fT,i(x)− fS,i(x;θS ⊙mS)∥ < ϵ if

nS,l ≥ C
nT,l

log(1/1− pl+1)
log

(
1

min{ϵl, δ/ρ}

)
(1)

for l ≥ 1,where

ϵl :=
ϵ

nT,LL

[
(1 +Bl−1

(
1 +

ϵ

L

) L−1∏
k=l+1

(∥∥∥θ(l)
T

∥∥∥
∞

+
ϵ

L

)]−1

, (2)

Bl := sup
x∈D

∥∥∥x(l)
T

∥∥∥
1
, (3)

ρ =
CN1+γ

T

log (1/(1−minl{pl}))1+γ log

(
1

min{minl{ϵl}, δ}

)
(4)

for any γ ≥ 0. Moreover, we need to satisfy

nS,0 ≥ Cd log

(
1

min {ϵ1, δ/ρ}

)
, (5)

where C > 0 denotes a generic constant that is independent of nT,l, L, pl, δ, and ϵ.

We first extend the lemma of the subset-sum approximation shown by Lueker [25] to the case where
some random variables are always included in the subset-sum.
Lemma B.2 (Subset-Sum Approximation in Randomly Locked Networks). Let X1, · · · , Xn ∼
U(−1, 1) be independent, uniformly distributed random variables, and M1, · · · ,Mn ∼ Ber(q) be
independent, Bernoulli distributed random variables with q ∈ (0, 1). Let ε, δ > 0. Then, with
probability at least 1 − δ, for any z ∈ [−1, 1], there exists indices I ⊂ {1, · · · , n} such that
|z −

∑n
i=1 MiXi −

∑
i∈I(1−Mi)Xi| ≤ ε if

n ≥ C log

(
8

εδ

)
, (6)

where C > 0 is a constant.

Proof. Let M1, · · · ,Mn ∼ Ber(q) and m :=
∑

i Mi. By Hoeffding’s inequality, we have

P (|m− qn| ≤ εMn) ≥ 1− 2 exp

(
− ε2Mn

2q(1− q)

)
(7)

for εM > 0. Thus, if we set n ≥ 2q(1−q) log(2/δ)
ε2M

and εM := min(q,1−q)
2 , we have

(2q − β)n ≤ m ≤ βn (8)

with β := q+ εM = min( 3q2 , 1+q
2 ) ∈ (0, 1), with probability at least 1− δ. In particular, the number

of non-vanishing terms in the sum
∑

i∈I(1 −Mi)Xi is n −m ≥ (1 − β)n as long as each Xi is
non-zero.

Now fix M1, · · · ,Mn ∼ Ber(q) with (2q− β)n ≤ m ≤ βn. The goal is to approximate z ∈ [−1, 1]
and

∑n
i=1 MiXi by subset sum from {(1−Mi)Xi : Mi = 0}. For simplicity, we split it into two

parts:
{(1−Mi)Xi : Mi = 0} = {X ′

1, · · · , X ′
n1
} ∪ {X ′′

1 , · · · , X ′′
n2
}, (9)

where the former part is used for approximating z ∈ [−1, 1] and the latter part for approximating∑n
i=1 MiXi.

To approximate z ∈ [−1, 1], we can directly apply Corollary 2.5 from Lueker [25]:

P

(
∀z ∈ [−1, 1] ,∃I ⊂ {1, · · · , n1} s.t. |z −

∑
i∈I

X ′
i| ≥ ε

)
≥ 1− δ (10)
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whenever n1 ≥ C log(2/εδ).

To approximate
∑n

i=1 MiXi, we have to evaluate its norm. By Hoeffding’s inequality on Xi’s with
Mi ̸= 0, we have

P
(∣∣∣ n∑

i=1

MiXi

∣∣∣ ≤ αm
)
≥ 1− 2 exp

(
−3α2m

2

)
, (11)

for any fixed α > 0, whose value will be specified later. Thus
∣∣∣∑n

i=1 MiXi

∣∣∣ ≤ αm ≤ αβn holds

with probability at least 1 − δ whenever m ≥ 2 log(2/δ)
3α2 . Since m ≤ βn holds, n ≥ 2 log(2/δ)

3α2β is
enough.

From the proof of Corollary 3.1 in Lueker [25], for any γ ∈ (0, 1
4 ), we know that

P

(
∀z ∈ [−γn2, γn2] ,∃I ⊂ {1, · · · , n2} s.t. |z −

∑
i∈I

X ′′
i | ≥ ε

)
(12)

≥ 1− δ − 2 exp

(
− (1− 4γ)2n2

64

)
(13)

whenever n2 ≥ C log( 2
εδ ). Thus if

n2 ≥ max

(
C log(

2

εδ
),

C ′

(1− 4γ)2
log(

2

δ
)

)
(14)

holds, we can approximate any z ∈ [−γn2, γn2] by subset sum of X ′′
1 , · · · , X ′′

n2
with probability

1− 2δ.

Now we assume (αβ/γ)n ≤ n2. For example, if we set α = 1
10 and γ = 1

5 , the assumption is
satisfied when we split {(1−Mi)Xi} by n1 = n2 = n

2 in (9). Then the approximation (12) can be
applied to z =

∑n
i=1 MiXi with high probability since |

∑n
i=1 MiXi| ≤ αm ≤ αβn ≤ γn2 holds.

By combining (10), (11), (14) with the fact that n = m + n1 + n2, and replacing δ with δ/4, we
obtain the desired results.

By similar arguments as in Lueker [25] or Pensia et al. [29], we can easily generalize Lemma B.2 to
the case where the distribution followed by Xi contains the uniform distribution. Also, by combining
our proof and the proof of Lemma 2.4 in Gadhikar et al. [11], we can prove the following extension
of Lemma B.2:
Lemma B.3 (Subset-Sum Approximation in Frozen Networks.). Let X1, ..., Xn be independent,
uniformly distributed random variables so that X ∼ U(−1, 1), M1, ...,Mn be independent, Bernoulli
distributed random variables so that Mi ∼ Ber(p) for p ∈ (0, 1), and M ′

1, ...,M
′
n be independent,

Bernoulli distributed random variables so that M ′
i ∼ Ber(q) for q ∈ (0, 1). Let ϵ, δ ∈ (0, 1) be

given. Then for any z ∈ [−1, 1] there exists a subset I ⊆ {1, ..., n} so that with probability at least
1− δ we have

∣∣z −∑n
i=1 MiM

′
iXi −

∑
i∈I Mi (1−M ′

i)Xi

∣∣ ≤ ϵ if

n ≥ C log

(
C ′

εδ

)
, (15)

where C,C ′ > 0 is a constant.
Theorem B.4 (SLT Existence in Frozen Networks). Let D be input data, fT be a target network with
depth L, and fS be a source network with depth L+ 1, θS be a parameter of fS , and pl, ql ∈ (0, 1).
Assume that these networks have ReLU activation function, and each element of θS is uniformly
distributed over [−1, 1]. Also assume that θS is randomly pruned and locked with pruning ratio pl and
locking ratio ql for each l-th layer. Then, with probability at least 1−δ, there exists a binary mask mS

so that each output component i is approximated as maxx∈D ∥fT,i(x)− fS,i(x;θS ⊙mS)∥ < ϵ if

nS,l ≥ C1 log

(
C2

min{ϵl, δ/ρ}

)
nT,l, (l ≥ 1) (16)

nS,0 ≥ C3 log

(
C4

min {ϵ1, δ/ρ}

)
d (l = 0) (17)

where Ci > 0 are constants that include pl, ql, and ρ, ϵl are as defined in Theorem B.1.
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Proof. By replacing Lemma 2.4 in Gadhikar et al. [11] with our Lemma B.3, we obtain the desired
result as an extension of Theorem 2.5 in Gadhikar et al. [11].

C Additional Experimental Results

C.1 Experimental Settings

We evaluate the SLTs within frozen networks on image classification using the CIFAR-10 [20] and
ImageNet [32] datasets, and on node classification using the OGBN-Arxiv [17] dataset. CIFAR-10
and ImageNet train data are split into training and validation sets with a 4:1 ratio, while for OGBN-
Arxiv we use the default set split. We test the models with the best validation accuracy and report
the mean of three experiment repetitions for CIFAR-10 and OGBN-Arxiv, and the result of one
experiment for ImageNet. The standard deviation of experiments conducted more than once is plotted
as error bars.

For image classification we employ the VGG-like Conv6 [33, 31], ResNet [14], and Wide ResNet [41]
architectures, and for graph node classification the 4-layer modified GIN [38] architecture in Huang
et al. [18], all implemented with no learned biases. ResNet and GIN use non-affine Batch Normaliza-
tion [19], while Conv6 has no normalization layers. Random weights are initialized with the Kaiming
Uniform distribution, while weight scores are initialized with the Kaiming Normal distribution [13].

SLTs are searched using an extension of Edge-Popup [31] that enforces the desired SLT sparsity
globally instead of per-layer [34]. On CIFAR-10, scores are optimized for 100 epochs using stochastic
gradient descent with momentum 0.9, batch size 128, weight decay 0.0001, and initial learning rates
of 0.01 and 0.1 for Conv6 and ResNet-18, respectively. On ImageNet, scores are optimized by
the same setting as ResNet-18 on CIFAR-10, but a 256 batch size. On OBGN-Arxiv, scores are
optimized for 400 epochs using AdamW [24] with weight decay 0.0001 and initial learning rate
0.01. All experiments use cosine learning rate decay [23]. These can be adequately verified with two
NVIDIA H100 SXM5 94GB GPUs.

C.2 Accuracy of SLT within Dense ResNet-50

This section introduces the preliminary experiment used for determining the main experimental setup.
Figure 7 compares the accuracy of SLTs within a dense ResNet-50 source at different SLT sparsity
using ImageNet. The SLT with 80% sparsity is the most accurate, reaching 66.8% accuracy.

10 30 50 70 90
SLT Sparsity [%]

10

30

50

70

To
p-

1 
Te

st
 A

cc
. [

%
] ImageNet

Figure 7: Accuracy comparison of SLTs of different sparsity within a dense ResNet-50 on ImageNet.

C.3 Result Analysis

Table 1 summarizes the presented results and compares the proposed method to weight training and
SLT search in dense and sparse source networks for the same network architecture and SLT sparsity.

In the case of Conv6, compared to weight training our method provides reductions of 66.4× of the
model size, in exchange of a small accuracy drop. Compared to the SLT found in the sparse source
network, the SLT found in the frozen source network achieves much higher accuracy.

Even in the more challenging case of ResNet-18, SLTs found in a frozen network are 250.8× smaller
than the trained-weight model. When comparing SLTs found in sparse and frozen networks with
the same 85% freezing ratio, the accuracy is almost equivalent, demonstrating that the inclusion of
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Table 1: Comparison between trained-weight networks and SLTs found in dense, sparse, and frozen
networks.

CONV6 & CIFAR-10

Method
(Source Net.)

Weight
Init.

Sparsity
[%]

Pruning
Ratio [%]

Locking
Ratio [%]

Top-1 Test
Acc. [%]

Model
Size [MB]

Weight Training KU - - - 87.1 8.63
SLT (Dense) SKC 50 0 0 86.2 0.27
SLT (Sparse) SKC 50 45 0 66.7 0.15
SLT (Frozen) SKC 50 25 25 84.8 0.13

RESNET-18 & CIFAR-10

Weight Training KU - - - 92.4 42.63
SLT (Dense) SKC 90 0 0 91.0 1.37
SLT (Sparse) SKC 90 85 0 89.9 0.24
SLT (Frozen) SKC 90 82.5 2.5 89.8 0.24
SLT (Frozen) SKC 90 85 5 88.9 0.17

GIN & OGBN-ARXIV

Weight Training KU - - - 70.1 1.452
SLT (Dense) SKC 20 0 0 70.0 0.054
SLT (Sparse) SKC 20 15 0 62.3 0.047
SLT (Frozen) SKC 20 0 40 69.2 0.036

RESNET-50 & IMAGENET

Weight Training KU - - - 74.4 97.49
SLT (Dense) SKC 80 0 0 66.8 3.24
SLT (Sparse) SKC 80 70 0 47.1 1.11
SLT (Frozen) SKC 80 65 5 55.2 1.11

RESNET-34 & IMAGENET

SLT (Dense) SKC 80 0 0 62.5 2.66
SLT (Sparse) SKC 80 70 0 40.7 0.84
SLT (Frozen) SKC 80 65 5 51.2 0.84

RESNET-18 & IMAGENET

SLT (Dense) SKC 80 0 0 54.0 1.43
SLT (Sparse) SKC 80 70 0 25.2 0.45
SLT (Frozen) SKC 80 65 5 39.4 0.45

WIDE RESNET-50 & IMAGENET

SLT (Dense) SKC 80 0 0 70.8 8.46
SLT (Sparse) SKC 80 70 0 57.7 2.72
SLT (Frozen) SKC 80 65 5 63.9 2.72

locking does not introduce a degradation in accuracy even in the scenario that benefits more from
pruning.

Interestingly, the SLT found in the frozen GIN model achieves comparable accuracy to the trained-
weight network, even though the model size is reduced by 40.3×. The SLT found within a dense
network also achieves accuracy comparable to that of the trained-weight network, but the SLT found
by our method is smaller. Generally, graph neural networks (GNNs) suffer from a generalization
performance degradation due to the over-smoothing problem [21]. Searching for SLTs within dense
GNNs has been shown to mitigate the over-smoothing problem [18] and achieve higher accuracy. As
our method is similarly accurate compared to dense networks, it is possible that parameter freezing
offers an even stronger solution to the over-smoothing problem.
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Although the ImageNet experiment falls into the scenario where a relatively sparse SLT is more
accurate (like the ResNet-18 experiment on CIFAR-10), the SLT found in a sparse network is
significantly less accurate. On the other hand, the inclusion of parameter locking shows a significant
improvement in SLT accuracy. These results suggest that the number of highly accurate SLT patterns
decreases as the difficulty of the problem increases, and the pruning:locking proportion affects the
performance of the found SLTs more severely.

D Limitations

Our results have the following limitations: 1) Although the proposed method can effectively reduce
the model memory size for inference in principle, actual hardware implementation remains for
future work. The previous work of the SLT-specialized neural engine, Hiddenite [15], would be a
promising direction for such future implementation. 2) This paper provides theoretical support for the
existence of SLTs in frozen networks, but it does not provide their superiority in the approximation
capability compared to random pruning, a special case of random freezing, which may depend
on the sparsity nature of target networks. Also, the theoretical consideration of the appropriate
proportion of these ratios is left for future work. 3) Even though we demonstrate our method on
various model architectures including CNNs, ResNet families and GIN, following previous SLT
work [42, 31, 22, 18, 39], we have to leave it for future work to apply our method to Transformers [36]
because SLT itself has not yet been established for Transformers.

E Impact Statements

This paper presents work whose goal is to advance the field of machine learning. Among the many
potential societal consequences of our work, we highlight its potential to reduce the computational
cost of inference of neural networks, and thus their energy consumption footprint.
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: This paper supports the SLT existence within frozen networks by extending
the subset-sum approximation lemma (Lemma A.1), which is a core part of the traditional
SLT existence theorem, to the situation where the part of parameters are locked randomly.
We provide a proof of this extended lemma in Appendix B, and other lemmas and theorems
mentioned abstractly in the main paper are also mentioned specifically in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental settings in this paper are described in Appendix C.1. Addi-
tional settings specific to the experiment are also described in the corresponding sections
(e.g., Section 3.2).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code to reproduce the experimental results cannot be submitted due to
inability to attach supplemental materials. We can make them available on github after
acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental settings in this paper are described in Appendix C.1. Addi-
tional settings specific to the experiment are also described in the corresponding sections
(e.g., Section 3.2).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The plots of the experiments conducted more than once have the error bars
using their standard deviation. This explanation is provided in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments in this paper can be verified with two NVIDIA H100 SXM5
94GB GPUs (Appendix C.1).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The impact of this paper is discussed in Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: References to the experimental codes are cited in the corresponding paper, and
the referenced URL is clearly indicated in the code released later.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details of our method and experimental procedures are described in this
paper (Section 2 and Appendix C.1).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

21

paperswithcode.com/datasets


Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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