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Figure 1. Overview. Left: Existing diffusion-based text-to-image models fall short in synthesizing higher-resolution images due to the
fixed image resolution during training, resulting in a noticeable decline in image quality and semantic deviation. Right: Our proposed
tuning-free MegaFusion can effectively and efficiently extend diffusion models (e.g. SDM [38], SDXL [33] and Floyd [8]) towards
generating images at higher resolutions (e.g., 1024× 1024, 1920× 1080, 2048× 1536, and 2048× 2048) of arbitrary aspect ratios (e.g.,
1 : 1, 16 : 9, and 4 : 3). We recommend the reader to zoom in for the visualization results.

Abstract

Diffusion models have emerged as frontrunners in text-
to-image generation, but their fixed image resolution during
training often leads to challenges in high-resolution image
generation, such as semantic deviations and object repli-
cation. This paper introduces MegaFusion, a novel ap-
proach that extends existing diffusion-based text-to-image
models towards efficient higher-resolution generation with-
out additional fine-tuning or adaptation. Specifically, we
employ an innovative truncate and relay strategy to bridge
the denoising processes across different resolutions, allow-
ing for high-resolution image generation in a coarse-to-fine
manner. Moreover, by integrating dilated convolutions and
noise re-scheduling, we further adapt the model’s priors for
higher resolution. The versatility and efficacy of MegaFu-
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sion make it universally applicable to both latent-space and
pixel-space diffusion models, along with other derivative
models. Extensive experiments confirm that MegaFusion
significantly boosts the capability of existing models to pro-
duce images of megapixels and various aspect ratios, while
only requiring about 40% of the original computational
cost. Code is available at https://haoningwu3639.
github.io/MegaFusion/.

1. Introduction

Diffusion models have demonstrated unparalleled per-
formance across broad applications such as text-to-image
generation [8, 10, 18–20, 38, 43], image editing [4, 5, 16,
25, 29, 31, 50], consistent image sequence generation [28,
30, 32], and even achieves promising results in challeng-
ing text-to-video generation [18, 21, 42, 51]. Among them,
Stable Diffusion (also known as Latent Diffusion [38])
performs denoising in a compressed latent space, and
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has showcased impressive generative capabilities after pre-
training on large-scale paired datasets [41]. In comparison,
Imagen [40] and Floyd [8] adopt cascading diffusion mod-
els in pixel space, initiating with low-resolution image syn-
thesis followed by successive super-resolution stages.

Despite these advancements, as depicted in Figure 1 Left,
these models face a major challenge: they struggle to gener-
ate images beyond training resolutions, leading to semantic
deviation and degraded image quality. Existing solutions
often require additional tuning or are limited to specific
models. For example, MultiDiffusion [3] and ElasticD-
iffusion [14] adopt post-processing optimization to stitch
high-resolution panoramas, which is inefficient and time-
consuming. Relay Diffusion [44] employs blurring diffu-
sion in pixel space, yet it necessitates training multiple spe-
cific diffusion models from scratch. ResAdapter [7] and
CheapScaling [13] involve minimal extra training through
LoRA [23] or Upsamplers, but still incur a notable training
overhead. Meanwhile, tuning-free alternatives like Scale-
Crafter [15] and FouriScale [24] adapt pre-trained SDMs
for higher resolutions, but demand meticulous hyperparam-
eter adjustment and are restricted to latent-space models.

To tackle these limitations, we introduce MegaFusion, a
tuning-free method to extend existing diffusion models to-
wards generating higher-resolution and variable aspect ra-
tio images with megapixels. Concretely, we begin with a
truncate and relay strategy, which seamlessly bridges the
synthesis of different resolution images, enabling efficient
generation in a coarse-to-fine manner with only 40% of the
original computational cost. Moreover, it is orthogonally
compatible with existing techniques such as dilated convo-
lutions [54] and noise re-scheduling for better image qual-
ity. The versatility of MegaFusion makes it applicable to
both latent-space and pixel-space diffusion models, as well
as other diffusion-based frameworks with extra conditions,
such as IP-Adapter [53] and ControlNet [56]. As shown
in Figure 1 Right, MegaFusion significantly improves the
ability of diffusion models to synthesize higher-resolution
images with accurate semantics and superior quality.

To summarize, our contributions are fourfold: (i) we pro-
pose MegaFusion, a tuning-free approach utilizing a trun-
cate and relay strategy to efficiently generate high-quality,
high-resolution images with megapixels in a coarse-to-fine
manner; (ii) we incorporate dilated convolution and noise
re-scheduling techniques to further refine the adaptability
of pre-trained diffusion models for higher resolution; (iii)
we demonstrate the applicability of our method across both
latent-space and pixel-space diffusion models, as well as
their extensions, synthesizing high-resolution images with
various aspect ratios at roughly 40% of the original com-
putational cost; (iv) we conduct extensive experiments val-
idating the superiority of our proposed method, in terms of
efficiency, image quality, and semantic accuracy.

2. Related Works

Diffusion Models. As a part of probabilistic generative
models, diffusion models typically learn to generate sam-
ples by iterative denoising. DDPM [19] has first show-
cased remarkable performance, while DDIM [43] signifi-
cantly improves sampling efficiency. Leveraging their ex-
cellent generative capabilities, diffusion models have been
applied to diverse fields, including image-to-image transla-
tion [4, 16, 25, 31, 50] and video generation [18, 21, 42, 51].

Text-to-Image Generation. Generative models have been
widely adopted for the challenging text-to-image generation
task, with GAN [11, 52, 55] as the pioneers. Meanwhile,
auto-regressive transformers like DALL·E [37] further push
the boundaries. Diffusion models, such as DALL·E 2 [36],
Imagen [40] and Floyd [8], have recently risen to promi-
nence. Notably, Stable Diffusion (Latent Diffusion [38]),
performing denoising in latent space, has demonstrated out-
standing performance, thereby being widely applied within
the research community. Additionally, SDXL [33] fur-
ther elevates the generative performance of Stable Diffusion
with a diffusion refiner and an extra text encoder.

Our MegaFusion, is designed for seamless integration
with diffusion models across both latent and pixel spaces,
extending their capacity for higher-resolution generation.

Higher-resolution Generation. Existing diffusion mod-
els are typically limited to fixed resolutions and aspect ra-
tios, struggling to produce images beyond their training
resolutions. MultiDiffusion [3] and ElasticDiffusion [14]
address this by synthesizing overlapping crops and merg-
ing them into panoramic images, which requires a time-
consuming inference procedure. Relay Diffusion [44] de-
signs a pixel-space model with blurring diffusion to craft
high-resolution images, at the cost of retraining several
models from scratch. ScaleCrafter [15] achieves high-
resolution generation by enlarging receptive fields of Sta-
ble Diffusion with dispersed convolution without extra fine-
tuning. DemoFusion [9] attempts to connect multiple reso-
lutions for coarse-to-fine generation, but demands repeating
generation multiple times, leading to low efficiency.

Several concurrent works also express rich interest in this
task: ResAdapter [7] and CheapScaling [13] can generate
images with unrestricted resolutions and aspect ratios with
minimal tuning via trainable LoRA adapters or Upsamplers.
FouriScale [24] and HiDiffusion [57] offer a training-free
strategy but are still limited to SDM-based models.

In contrast to the aforementioned methods, which either
require further training or are limited to specific models, our
proposed MegaFusion emerges as a versatile tuning-free
solution that can be integrated seamlessly into existing dif-
fusion models, enabling the synthesis of higher-resolution
images of various aspect ratios.
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3. Preliminary
In this section, we briefly introduce diffusion models, in-

cluding their forward and backward processes in Sec. 3.1;
and the latent diffusion models (LDMs) that perform diffu-
sion in latent space to improve efficiency in Sec. 3.2.

3.1. Diffusion Models

Diffusion models, a class of deep generative models, it-
eratively transform Gaussian noise into structured data sam-
ples through a denoising process. Concretely, diffusion
models comprise a forward diffusion process that progres-
sively adds Gaussian noise to an image x0 via a Markov
process over T steps. Let xt represent the noisy image at
step t, with the transition from xt−1 to xt being modeled by
q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI). Here, βt ∈ (0, 1)

are pre-determined hyperparameters controlling the vari-
ance introduced at each step. By defining αt = 1 − βt and
ᾱt =

∏t
i=1 αi, we can leverage the properties of Gaussian

distributions and the reparameterization trick to reformulate
the relationship as: q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I).

This insight allows us to succinctly express the forward pro-
cess with Gaussian noise ϵ as: xt =

√
ᾱtx0 +

√
1− ᾱtϵ.

Diffusion models also encompass a reverse diffusion
process to reconstruct images from noise. This process, de-
noted as pθ, usually leverages a UNet-based [39] model to
estimate the noise term ϵθ, represented as: pθ(xt−1|xt) =
N (xt;µθ(xt, t),Σθ(xt, t)). Here, µθ is the predicted mean
of Gaussian distribution, expressed in terms of the estimated
noise ϵθ as: µθ(xt, t) =

1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t))

3.2. Latent Diffusion Models

To improve efficiency and reduce computational cost,
Latent Diffusion (LDMs) execute diffusion and denoising
within a learned low-dimensional latent space of a pre-
trained Variational Autoencoder (VAE). Specifically, the
VAE encoder E maps an image x0 ∈ R3×H×W to a latent
representation z0 ∈ R4×h×w via z0 = E(x0). Afterwards,
the decoder D reconstructs the original image x0 from z0,
represented as x̂0 = D(z0) ≈ x0.

This setup allows the diffusion process to be conducted
in a compact latent space, facilitating efficient image syn-
thesis. During inference, LDM samples latent codes from a
conditional distribution p(z0|c), where c represents the con-
ditional information such as text embedding from CLIP [34]
or T5 [35] text encoder. This process can be formalized as:
pθ(zt−1|zt, c) = N (zt;µθ(zt, t, c),Σθ(zt, t, c)).

4. Method
This section initiates with elaborating on the truncate

and relay strategy within our proposed tuning-free Mega-
Fusion in Sec. 4.1. Then, we incorporate dilated convolu-
tion and noise re-scheduling to further adapt model prior to-

wards higher resolution in Sec. 4.2. Lastly, we detail the ap-
plication of our method across latent-space and pixel-space
diffusion models, as well as their extensions, in Sec. 4.3.

4.1. Truncate and Relay Strategy

High-level Idea. As evidenced by eDiff-I [1], diffusion
models synthesize semantics during early denoising steps
and texture details in later steps. Our intuition and insight
here are that: we should perform early-stage denoising at
original inference resolutions to guarantee accurate seman-
tics, followed by truncating and relaying at higher reso-
lutions to continue later-stage denoising to produce texture
details. This strategy extends the higher-resolution gener-
ation capabilities of pre-trained models, enabling the syn-
thesis of high-quality images with precise semantics at low
computational costs, and supports various aspect ratios.
Problem Setting. For clarity, we focus on latent-space
diffusion models as an example. As for pixel-space mod-
els, our method can be applied more straightforwardly and
conveniently. Given that our strategy is inherently tuning-
free, we focus on the inference stage herein. Using a pre-
trained Latent Diffusion (LDM) with a denoiser ϵθ, a low-
resolution latent code z10 ∈ R4×h1×w1 can be synthesized
within T denoising steps conditioned on a text prompt cT ,
and then decoded into an image x1

0 ∈ R3×H1×W1 by the
VAE decoder D. Our goal is to generate a higher-resolution
image xk

0 ∈ R3×Hk×Wk alongside its latent code zk0 ∈
R4×hk×wk , by linking generation processes across different
resolutions over a total of T steps, where T =

∑k
i=1 Ti.

Truncate. To guarantee accurate semantics, we begin with
a low-resolution generation through T1 steps denoising:

zt−1 =
1

√
αt

(zt −
1− αt√
1− ᾱt

ϵθ(zt, t, cT )) + σtϵ, (1)

where t = T, T − 1, ..., T − T1 + 1

where σt are pre-calculated coefficients and ϵ denotes noise
sampled from a standard Gaussian distribution. Subse-
quently, at step t1 = T − T1 + 1, we truncate the gen-
eration process and compute the approximate clean latent
code ẑ1t1 ∈ R4×h1×w1 , which serves as a pivotal element
for multi-resolutions bridging via:

ẑ1t1 =
1

√
ᾱt1

(zt1 −
√
1− ᾱt1ϵθ(zt1 , t1, cT )) (2)

Here, ẑ1t1 is subsequently decoded to an image x̂1
t1 ∈

R3×H1×W1 and upsampled to a higher-resolution relatively
clean image x̂2

t1 ∈ R3×H2×W2 utilizing a non-parametric
Upsampler, Φ, represented as:

x̂1
t1 = D(ẑ1t1), x̂2

t1 = Φ(x̂1
t1) (3)

Relay. To further enhance higher-resolution texture details,
the upsampled image x̂2

t1 is then re-encoded into to latent
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Figure 2. Architecture Overview. (a) The Truncate and Relay strategy in MegaFusion seamlessly connects generation processes across
different resolutions to produce higher-resolution images without extra tuning, exemplified by a three-stage pipeline. For pixel-space
models, the VAE encoder and decoder can be directly removed. (b) Limited receptive fields lead to quality decline and object replication.
Dilated convolutions expand the receptive field at higher resolutions, enabling the model to capture more global information for more
accurate semantics and image details. (c) Noise at identical timesteps affects images of different resolutions differently, deviating from the
model’s prior. Noise re-scheduling helps align the noise level of higher-resolution images with that of the original resolution.

code ẑ2t1 ∈ R4×h2×w2 via the VAE encoder E and perturbed
with noise at the current step t1 to relay the generation:

ẑ2t1 = E(x̂2
t1), z2t1 = N (z2t1 ;

√
ᾱt1 ẑ

2
t1 , (1− ᾱt1)I) (4)

The generation process continues at a higher resolution, by
re-leveraging Equation 1 for T2 steps of denoising, sequen-
tially navigating through t = T − T1, T − T1 − 1, ..., T −
T1−T2+1. Subsequently, the truncate and relay operations
can be then conducted at step t2 = T − T1 − T2 + 1.

As depicted in Figure 2 (a), this iterative process is
repeated multiple times until the generation of a high-
resolution latent code zk0 , which can be then decoded into
a corresponding high-resolution image xk

0 with megapixels.

4.2. MegaFusion++

Our MegaFusion, based on the truncate and relay strat-
egy, can be further combined orthogonally with existing
techniques such as dilated convolution and noise reschedul-
ing, to adapt the model priors to higher resolutions.
Dilated Convolution. Blurriness and semantic deviation in
high-resolution images generated by diffusion models of-
ten stem from the constrained receptive field of UNet lay-
ers trained on fixed-resolution data, lacking comprehensive
global context. As illustrated in Figure 2 (b), existing mod-
els trained on low-resolution images tend to synthesize mul-
tiple rabbits in different local regions due to insufficient re-

ceptive fields, leading to semantic inaccuracies. Inspired by
ScaleCrafter [15], we modify the convolutional kernels of
the UNet-based denoiser ϵθ to incorporate dilated convolu-
tions [54] with a specific dilation rate δ. This broadens the
receptive field without additional tuning, allowing for better
incorporation of global information.

For the sake of simplicity, we omit channel dimensions
and convolution biases here, focusing on modifying weight
parameters to transform standard convolutions into dilated
ones. Given a feature map F ∈ Rm×n and a convolutional
kernel k ∈ Rr×r, the standard convolution can be repre-
sented as: (F ∗ k)(p) =

∑
s+t=p F (s) · k(t). In contrast,

the corresponding dilated convolution, with dilation rate δ,
can be expressed as: (F ∗δ k)(p) =

∑
s+δt=p F (s) · k(t).

Here, p, k, and t denote spatial locations within the feature
map and convolution kernel, respectively.

Following previous practices [15], instead of replacing
all convolutions with dilated ones, which may lead to catas-
trophic quality decline, we selectively apply this modifica-
tion to the middle layers of UNet. The insight here is that:
we broaden receptive fields in the bottleneck to aggregate
global context, while preserving original priors at higher
resolution to sample nearby features for enhancing details.

Noise Re-scheduling. Consistent with discoveries in sim-
ple diffusion [22] and relay diffusion [44], we observe that
identical noise levels impact images differently across var-
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Methods resolution FIDr ↓ FIDb ↓ KIDr ↓ KIDb ↓ CLIP-T↑ CIDEr↑ Meteor↑ ROUGE↑ GFlops Inference time

SDM [38] 1024× 1024 41.35 51.02 0.0086 0.0113 0.3009 17.75 18.38 23.64 135.0K 15.17s
SDM-StableSR [47] 1024× 1024 25.46 19.61 0.0062 0.0031 0.3117 20.24 20.91 26.28 292.6K 33.48s
SDM-RealESRGAN 1024× 1024 25.20 19.49 0.0059 0.0032 0.3119 21.35 21.26 26.76 35.6K 5.12s

ResAdapter [7] 1024× 1024 27.38 20.47 0.0073 0.0033 0.3102 20.99 21.38 27.65 137.5K 16.25s
ScaleCrafter [15] 1024× 1024 27.97 22.05 0.0076 0.0043 0.3125 20.14 21.65 28.23 135.0K 17.52s

SDM-MegaFusion 1024× 1024 30.19 10.98 0.0088 0.0034 0.3101 21.14 21.44 27.34 48.2K 7.56s
SDM-MegaFusion++ 1024× 1024 25.14 7.82 0.0064 0.0012 0.3121 20.46 22.18 28.36 48.2K 7.56s

SDXL [33] 2048× 2048 47.53 47.08 0.0133 0.0139 0.3041 17.55 18.65 25.10 540.2K 79.66s
SDXL-RealESRGAN 2048× 2048 24.76 13.54 0.0056 0.0021 0.3192 23.27 22.44 28.44 147.1K 22.33s

ScaleCrafter [15] 2048× 2048 27.46 24.73 0.0064 0.0061 0.3138 19.97 22.34 28.12 540.2K 80.72s
DemoFusion [9] 2048× 2048 24.61 13.36 0.0066 0.0023 0.3198 22.02 22.86 28.48 1354.9K 217.19s

SDXL-MegaFusion 2048× 2048 25.12 12.13 0.0059 0.0027 0.3227 23.49 22.65 28.12 216.1K 30.94s
SDXL-MegaFusion++ 2048× 2048 23.86 6.93 0.0056 0.0018 0.3244 23.42 22.74 28.38 216.1K 30.94s

SD3 [10] 2048× 2048 38.37 31.91 0.0165 0.0181 0.3058 17.89 18.72 24.66 433.9K 64.89s
SD3-MegaFusion 2048× 2048 28.81 8.93 0.0098 0.0018 0.3178 23.01 22.45 29.14 201.4K 29.07s

Floyd-Stage1 [8] 128× 128 66.27 81.65 0.0262 0.0454 0.2818 14.69 18.22 25.06 111.7K 77.08s
Floyd-MegaFusion 128× 128 53.09 39.73 0.0273 0.0334 0.3024 25.01 25.00 31.35 44.9K 32.19s

Floyd-MegaFusion++ 128× 128 43.43 50.08 0.0213 0.0437 0.3046 20.28 25.01 31.64 44.9K 32.19s

Floyd-Stage2 [8] 512× 512 46.64 38.15 0.0254 0.0166 0.3098 23.85 21.47 26.26 60.7K 48.58s
Floyd-MegaFusion 512× 512 39.80 24.87 0.0164 0.0078 0.3106 23.22 23.51 29.30 24.3K 21.72s

Floyd-MegaFusion++ 512× 512 26.34 24.55 0.0063 0.0077 0.3110 24.01 23.58 29.52 24.3K 21.72s

Table 1. Quantitative comparison. We compare our boosted models on higher-resolution generation with representative latent-space and
pixel-space diffusion models on MS-COCO [27] dataset. RED represents best performance, and BLUE denotes second best performance.

ious resolutions, as illustrated in Figure 2 (c), leading to
varying signal-to-noise ratios (SNR) at the same timestep.

According to the SNR definition in previous work [22]:
SNRt = (

√
ᾱt)

2

(
√
1−ᾱt)

2 = ᾱt

1−ᾱt
. Given a low-resolution

image x ∈ R3×H×W and a high-resolution one x′ ∈
R3×H′×W ′

with H ′ > H and W ′ > W , if we downsam-
ple x′ to x′

down ∈ R3×H×W , the SNR at timestep t of
x′

down (denoted as SNRH′×W ′

down ) in comparison to x (rep-
resented as SNRH×W ) will exhibit the following relation-
ship: SNRH×W = γ · SNRH′×W ′

down .

Assuming the original noise scheduler at H ×W is de-
noted as ᾱt, the revised scheduler ᾱ′

t at higher resolution
H ′ ×W ′ should satisfy: ᾱt

1−ᾱt
= γ · ᾱ′

t

1−ᾱ′
t
. This yields the

relationship: ᾱ′
t = ᾱt

γ−(γ−1)ᾱt
. Incorporating this into the

high-resolution noise scheduler initialization gives a new ᾱt

sequence. This process, termed noise re-scheduling, adjusts
noise levels to better suit higher-resolution image genera-
tion, thereby improving synthesis quality and fidelity.

4.3. Further Application on other Models

Pixel-space Diffusion Models. MegaFusion is equally ap-
plicable to pixel-space diffusion models, such as Floyd [8],
with the primary difference being that the truncate and re-
lay operation is performed directly in pixel space. Conse-

quently, Equations 2, 3, and 4 are adapted as follows:

x̂1
t1 =

1
√
ᾱt1

(xt1 −
√
1− ᾱt1ϵθ(xt1 , t1, cT )) (5)

x̂2
t1 = Φ(x̂1

t1), x2
t1 = N (x2

t1 ;
√
ᾱt1 x̂

2
t1 , (1− ᾱt1)I) (6)

Diffusion Models with Extra Conditions. Our method-
ology can also extend to diffusion models that incorpo-
rate extra input conditions, such as ControlNet [56] and IP-
Adapter [53]. These models utilize both text condition cT
and image condition cI as inputs. Consequently, Equation 1
can be reformulated to accommodate both conditions:

zt−1 =
1

√
αt

(zt −
1− αt√
1− ᾱt

ϵ(zt, t, cT , cI)) + σtϵ (7)

5. Experiments
In this section, we first describe our experimental set-

tings in Sec. 5.1. Next, we present comparisons to existing
models with quantitative metrics and human evaluation in
Sec. 5.2. We then showcase qualitative results of applying
our method to various diffusion models in Sec. 5.3. Lastly,
ablation studies are presented in Sec. 5.4.

5.1. Experiment Settings

Implementation Details. We evaluate text-to-image diffu-
sion models in both latent space (SDM 1.5 [38], SDXL [33]
and SD3 [10]) and pixel space (Floyd [8]). All models use
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Figure 3. Qualitative results of applying our MegaFusion to both latent-space and pixel-space diffusion models for higher-resolution
image generation on MS-COCO and commonly used prompts from the Internet. Our method can effectively extend existing diffusion-
based models towards synthesizing higher-resolution images of megapixels with correct semantics and details.

DDIM [43] for T = 50 steps of sampling unless explic-
itly stated otherwise. Given that SDM is trained with a
fixed resolution of 512 × 512, we choose to generate high-
resolution images of 1024× 1024 for quantitative compari-
son. Specifically, we orchestrate generation across k = 3
resolutions: 512, 768 and 1024, with respective denois-
ing steps of T1 = 40, T2 = 5, and T3 = 5. Further-
more, our proposed MegaFusion can be applied to syn-
thesize even higher-resolution images with SDM for qual-
itative assessment. SDXL defaults to synthesizing images
of 1024 × 1024, considering the balance of computational
costs, we discard the Refiner module and employ two-stage
generation, 1024 and 2048, with their denoising steps being
T1 = 40 and T2 = 10. For SD3, which defaults to denoise
28 steps for generating 1024 × 1024 images, we iterate 20
steps at 1024 resolution and 8 steps at 2048 resolution.

On the other hand, Floyd, a 3-stage cascaded model, se-
quentially upscales images from 64× 64 to 256× 256, cul-
minating in 1024 × 1024 images. Due to computational
constraints, only the first two stages of Floyd are employed
in our experiments. The first stage necessitates 100 sam-
pling steps (T1 = 80 for generating 64 × 64 images, and

T2 = 20 for 128× 128), while the second stage requires 50
steps (T1 = 40 for 256× 256 and T2 = 10 for 512× 512).

Bicubic upsampling serves as the default non-parametric
Upsampler Φ. For typical 2× higher-resolution generation,
we set the dilation rate δ = 2, and select the hyperparameter
γ = 4 for noise re-scheduling. For classifier-free guidance,
to ensure a fair comparison, we apply the default weight w
of official implementations across all methods: w = 7.0
for SDM, SDXL, SD3, and Floyd-Stage 1, and w = 4.0
for Floyd-Stage 2. All experiments are conducted on a sin-
gle Nvidia RTX A40 GPU, with SDM, SDXL, and SD3 in
float16 precision, and Floyd at in float32 precision.

Evaluation Datasets. We assess our method and baseline
models on the MS-COCO [27] dataset, which comprises ap-
proximately 120K images in total, each accompanied by 5
captions. Due to the computational costs of high-resolution
generation, we randomly sample 10K images from MS-
COCO, assigning a fixed caption to each as input. To en-
sure consistent comparisons, we utilize the same random
seed for each image across methods, neutralizing random-
ness. For qualitative human evaluations, we use commonly
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available prompts from the Internet as text conditions and
conditional images from the official code repositories as ex-
tra inputs for IP-Adapter and ControlNet.
Evaluation Metrics. To evaluate the quality of generated
images, we adopt several widely-used metrics, including
Fréchet Inception Distance score (FID) [17], Kernel Incep-
tion Distance score (KID), and CLIP [34] text-image sim-
ilarity (CLIP-T). Following [15], we consider two types of
FID and KID: (i) FIDr and KIDr to gauge the quality and
diversity of generated images relative to real ones, and (ii)
FIDb and KIDb to assess the discrepancies between syn-
thesized samples under the base training resolution and high
resolution. These latter metrics reflect the model’s ability to
retain generative proficiency at unfamiliar resolutions.

To evaluate the semantic accuracy of generated contents,
we adopt MiniGPT-v2 [6] to caption the images, and cal-
culate several linguistic metrics between these captions and
the original input text. Concretely, we report the commonly
used CIDEr [45], Meteor [2], and ROUGE [26]. Moreover,
we detail the GFlops and inference time measured on a sin-
gle A40 GPU for efficiency comparison.

5.2. Quantitative Results

Objective Metrics. We evaluate the performance of both
latent-space and pixel-space models boosted by Mega-
Fusion against their baseline counterparts on the MS-
COCO [27] dataset. Here, [model-MegaFusion] refers to
models employing truncate and relay strategy to bridge
multi-resolution generation, while [model-MegaFusion++]
denotes advanced models incorporating dilated convolution
and noise re-scheduling. We also compare several state-of-
the-art methods, such as ScaleCrafter [15], and DemoFu-
sion [9], which are limited to specific latent-space models
and less efficient, as well as SDM and SDXL with SR post-
processing [12, 47–49], e.g. StableSR, and RealESRGAN.

The results in Table 1 highlight significant improvements
with MegaFusion across all metrics, including image qual-
ity, semantic accuracy, and especially computational effi-
ciency. This confirms that MegaFusion effectively extends
the generative capabilities of existing diffusion models to-
wards synthesizing high-resolution images with correct se-
mantics and details at only 40% of the original computa-
tional cost. Moreover, incorporating dilated convolution
and noise re-scheduling further improves performance on
several metrics, reflecting improved generation diversity
and better alignment with real images and text conditions.
Human Assessment. To complement our objective anal-
ysis, we conduct a human-centric evaluation focusing on
image quality and semantic integrity. Concretely, utiliz-
ing identical text prompts and random seed, we synthesize
higher-resolution images via standard models (SDM and
Floyd) and their MegaFusion-boosted counterparts. Partic-
ipants are asked to rate the outputs with a score from 1 to

Methods Image Quality Semantics Preference

SDM 2.60 2.05 5.42%
SDM-MegaFusion 3.25 4.40 12.92%

SDM-MegaFusion++ 4.25 4.55 81.66%

Floyd-Stage2 2.18 4.28 1.67%
Floyd-MegaFusion 3.45 4.58 21.25%

Floyd-MegaFusion++ 4.22 4.58 77.08%

Table 2. Human evaluation with MS-COCO captions and com-
monly used prompts from the Internet as input.

5 (higher is better), considering both image quality and se-
mantic accuracy. Additionally, they also need to select their
preferred image among the options for preference rating.

The results in Table 2 affirm that our MegaFusion signif-
icantly improves the performance of higher-resolution im-
age generation in terms of image quality and semantic ac-
curacy. Additionally, our advanced MegaFusion++ further
demonstrates potential for even greater improvements. This
evidence underscores MegaFusion’s ability to elevate pre-
trained models, enabling them to produce higher-resolution
images with superior quality and precise semantics.

5.3. Qualitative Results

Comparison on text-to-image foundation models. Fig-
ure 3 showcases visualization results of higher-resolution
image generation in both latent and pixel spaces. These
results affirm that MegaFusion can be seamlessly inte-
grated with existing diffusion models to produce images
of megapixels with accurate semantics, whereas prior base-
lines fail to do so. Moreover, incorporating dilated con-
volutions and noise re-scheduling further improves image
details. Additional results are available in the Appendix.
Comparison on models with additional conditions. We
further apply MegaFusion to diffusion models equipped
with extra input conditions, such as IP-Adapter and Con-
trolNet, as illustrated in Figure 4. Our MegaFusion exhibits
universal applicability, significantly extending the capacity
of various diffusion models to synthesize high-quality im-
ages of higher resolutions, which not only adhere to the in-
put conditions but also maintain semantic integrity. Please
refer to the Appendix for more qualitative results.

5.4. Ablation Studies

Proposed strategy & modules. To evaluate the efficacy
of our proposed strategy and components, we assess sev-
eral model variants in both latent and pixel spaces. Here,
‘T&R’, ‘D’, and ‘R’ represent the truncate and relay strat-
egy, dilated convolution, and noise re-scheduling, respec-
tively. The results in Table 3 demonstrate that our strategy
and modules significantly elevate the quality and diversity
of contents generated by generative models such as SDM
(1024×1024) and Floyd (128×128), especially in improv-
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Image Prompt IP-Adapter IP-Adapter-MegaFusion

A cute little 
tiger toy

Condition ControlNet ControlNet-MegaFusion

Plaster statue 
of beautiful 

girl

a boy 
wearing 
smile is 

playing plate

Input Text

Figure 4. Qualitative results of incorporating MegaFusion to models with extra conditional inputs. MegaFusion can be universally applied
across various diffusion models, providing the capability for higher-resolution image generation with better semantics and fidelity.

Methods T&R D R FIDr FIDb KIDr KIDb

SDM [38] % % % 41.35 51.02 0.0086 0.0113
SDM-MegaFusion ! % % 30.19 10.98 0.0088 0.0034

SDM-MegaFusion-D ! ! % 27.56 9.34 0.0075 0.0019
SDM-MegaFusion-R ! % ! 26.78 9.34 0.0075 0.0019
SDM-MegaFusion++ ! ! ! 25.14 7.82 0.0064 0.0012

Floyd-Stage1 % % % 66.27 81.65 0.0262 0.0454
Floyd-MegaFusion ! % % 53.09 39.73 0.0273 0.0334

Floyd-MegaFusion-D ! ! % 51.76 41.96 0.0268 0.0345
Floyd-MegaFusion-R ! % ! 44.27 49.38 0.0215 0.0431
Floyd-MegaFusion++ ! ! ! 43.43 50.08 0.0213 0.0437

Table 3. Ablation Study on proposed modules in MegaFusion on
MS-COCO. The modules gradually improve the higher-resolution
generation quality, especially in comparison with real images.

ing the quality and fidelity to real-world images.
Upsampler Φ. The non-parametric Upsampler is cru-
cial in our truncate and relay strategy to bridge genera-
tion processes across different resolutions. To determine
the optimal choice, we evaluate several variants of SDM-
MegaFusion++ on MS-COCO dataset, including Config-
A (bilinear upsampling); Config-B (bicubic upsampling);
Config-C (bicubic with a 5×5 Gaussian filter), and Config-
D (bicubic with a 3 × 3 edge-enhancement kernel). As de-
picted in Table 4, SDM-MegaFusion++ with Config-B out-
performs others in terms of both FID and KID metrics, lead-
ing us to adopt bicubic upsampling as the default choice.

6. Conclusion
In this paper, we present MegaFusion, a tuning-free ap-

proach designed to tackle the challenges of synthesizing

Methods FIDr ↓ FIDb ↓ KIDr ↓ KIDb ↓
SDM 41.35 51.02 0.0086 0.0113

Config-A 28.03 9.70 0.0076 0.0020
Config-B 25.14 7.82 0.0064 0.0012
Config-C 35.07 18.10 0.0118 0.0063
Config-D 26.56 13.26 0.0065 0.0021

Table 4. Ablation study on Upsampler function Φ.

higher-resolution images, effectively resolving issues of se-
mantic inaccuracies and object replication. Our method
adopts an innovative truncate and relay strategy to ele-
gantly connect generation processes across different resolu-
tions, synthesizing higher-resolution images with megapix-
els and various aspect ratios. By integrating dilated con-
volutions and noise re-scheduling, we further improve the
synthesis quality. The versatility of MegaFusion makes it
universally applicable to both latent-space and pixel-space
diffusion models, as well as their extensions with extra con-
ditions. Extensive experiments have validated the superi-
ority of MegaFusion, demonstrating its capability to gen-
erate higher-resolution images with approximately 40% of
the original computational cost.
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In this appendix, we start by giving more details on the
implementation details of our proposed MegaFusion in Sec-
tion A. Then, we provide extra quantitative comparisons to
further demonstrate the universality and effectiveness of our
method in Section B. Next, we offer additional qualitative
results across various experimental settings and methods
to illustrate the superiority of our proposed MegaFusion in
Section C. Finally, we discuss the limitations of our method
and future work in Section D.

A. Implementation Details
More Details on Floyd-MegaFusion. We have evalu-
ated the higher-resolution image generation performance of
Floyd [8] at resolutions of 128 × 128 and 512 × 512. For
128× 128 resolution, we directly apply MegaFusion to the
first stage of Floyd. As for the comparison at 512×512 res-
olution, we utilize the first two stages of Floyd. Considering
that the quality of the results from the first stage generation
would significantly affect the second generation stage, we
opt for using the 64 × 64 images generated by the origi-
nal first stage model as inputs of both the baseline and our
boosted Floyd-MegaFusion. That is, higher-resolution im-
age generation is only performed under the second genera-
tion stage. Ultimately, the experimental results presented in
Table 1 of our submitted manuscript effectively demonstrate
the universality and effectiveness of our proposed Mega-
Fusion. Furthermore, we also conduct experiments where
128 × 128 out-of-distribution images are generated in the
first stage, followed by 512 × 512 resolution images in the
second stage. This further demonstrates that MegaFusion
maintains semantic accuracy across all stages of generation.
Details on Human Evaluation. To more effectively reflect
the performance of different models in generating high-
resolution images, we have recruited 10 volunteers with a
background in image generation research for human evalu-
ation. Specifically, the evaluators are asked to follow these
rules: (i) Rate unknown source images on a score from 1 to
5 for both image quality and semantic accuracy, with higher
scores indicating better quality; and (ii) Observe the results
generated by different models with the same input condi-
tions and select their favourite one based on overall quality
and semantic accuracy.

B. Additional Quantitative Results
B.1. Comparison on crop FID/KID

Following previous work [9], we also evaluate crop FID
and crop KID metrics on the generated results of various
models to reflect the quality of local patches in the images.
As depicted in Table 5, previous methods are often limited
to specific latent-space models, whereas our MegaFusion
consistently improves the quality of high-resolution image
generation across both latent-space and pixel-space models.

Method SDM-1024 SDXL-2048 Floyd-128 Floyd-512

Original 41.21/0.0139 42.29/0.0125 70.16/0.0224 40.65/0.0171
ScaleCrafter 32.24/0.0085 26.58/0.0062 inapplicable inapplicable
DemoFusion inapplicable 25.91/0.0061 inapplicable inapplicable
MegaFusion 39.42/0.0137 27.38/0.0063 57.24/0.0243 32.36/0.0122

MegaFusion++ 33.39/0.0084 25.64/0.0049 41.22/0.0188 29.18/0.0077

Table 5. Comparison of FIDcrop/KIDcrop on MS-COCO dataset.

B.2. Comparison on CUB-200 Dataset

To demonstrate the universality of our proposed Mega-
Fusion, in addition to the MS-COCO [27] dataset, we
also conduct quantitative evaluations on the CUB-200 [46]
dataset, which is also commonly used in previous works.
The CUB-200 dataset consists of over 10K images of 200
categories of birds, each accompanied by 10 textual descrip-
tions. Considering computational costs and time expendi-
ture, similar to the experimental settings on the MS-COCO
dataset in our manuscript, we randomly select 1K images
from the CUB-200 dataset. Each image is assigned a fixed
caption, and the same random seed is used across differ-
ent methods to eliminate the effects of randomness among
models. As depicted in Table 6, our proposed MegaFu-
sion can also be universally applied to both latent-space
and pixel-space diffusion models on the CUB-200 dataset,
achieving high-quality higher-resolution image generation.

B.3. More Results of Floyd-MegaFusion

As mentioned above, we also conduct experiments that
first generate 128×128 out-of-distribution images, followed
by 512 × 512 high-resolution images on the Floyd model.
As depicted in Table 7, MegaFusion consistently improves
the high-resolution generation capability of Floyd under
both settings. This demonstrates that MegaFusion can im-
prove the semantic accuracy of high-resolution images at
any stage of the generation process.

B.4. Ablation Study of Classifier-free Guidance

As detailed in the implementation details, to ensure a fair
comparison and eliminate the impact of classifier-free guid-
ance (CFG) on generation quality and efficiency, we use
the default CFG weights from official implementations for
all methods and their corresponding MegaFusion-boosted
counterparts. To further investigate the impact of CFG on
MegaFusion at higher resolutions, we generate 100 images
from the MS-COCO dataset using SDM-MegaFusion and
SDXL-MegaFusion with varying CFG values, using the
same text prompt and random seed as inputs, and evaluate
the FID scores against our testset. The results in Figure 5
indicate that classifier-free guidance does affect our high-
resolution generation quality, with preliminary findings in-
dicating that w = 7.0 is a relatively good choice for SDM-
MegaFusion and SDXL-MegaFusion.
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Methods resolution FIDr ↓ FIDb ↓ KIDr ↓ KIDb ↓ CLIP-T↑ CIDEr↑ Meteor↑ ROUGE↑ GFlops Inference time

SDM [38] 1024× 1024 77.92 46.34 0.0363 0.0220 0.2952 8.12 7.48 7.09 135.0K 15.17s
SDM-MegaFusion 1024× 1024 71.78 36.21 0.0303 0.0189 0.3060 24.46 11.98 12.62 48.2K 7.56s

SDM-MegaFusion++ 1024× 1024 68.92 34.94 0.0251 0.0182 0.3115 28.52 12.32 13.29 48.2K 7.56s

SDXL [33] 2048× 2048 73.49 48.78 0.0308 0.0274 0.2994 16.43 9.90 10.35 540.2K 79.66s
SDXL-MegaFusion 2048× 2048 72.62 13.72 0.0296 0.0039 0.3113 25.98 13.23 13.33 216.1K 30.94s

SDXL-MegaFusion++ 2048× 2048 65.10 11.55 0.0225 0.0026 0.3122 26.35 13.98 14.92 216.1K 30.94s

Floyd-Stage1 [8] 128× 128 87.04 105.59 0.0341 0.0658 0.2866 9.95 8.28 9.07 111.7K 77.08s
Floyd-MegaFusion 128× 128 77.82 36.49 0.0413 0.0281 0.3080 22.12 17.06 20.62 44.9K 32.19s

Floyd-MegaFusion++ 128× 128 73.54 45.76 0.0334 0.0388 0.3086 22.52 16.93 20.05 44.9K 32.19s

Floyd-Stage2 [8] 512× 512 80.34 41.65 0.0401 0.0215 0.3013 23.59 12.28 11.67 60.7K 48.58s
Floyd-MegaFusion 512× 512 77.66 39.34 0.0348 0.0141 0.3110 24.63 15.74 15.29 24.3K 21.72s

Floyd-MegaFusion++ 512× 512 62.91 34.40 0.0232 0.0115 0.3141 25.44 13.90 18.51 24.3K 21.72s

Table 6. Quantitative comparison on CUB-200 [46] dataset. RED: best performance, BLUE: second best performance.

Methods resolution FIDr ↓ FIDb ↓ KIDr ↓ KIDb ↓ CLIP-T↑ CIDEr↑ Meteor↑ ROUGE↑ GFlops Inference time

Floyd-Stage1 [8] 128× 128 66.27 81.65 0.0262 0.0454 0.2818 14.69 18.22 25.06 111.7K 77.08s
Floyd-MegaFusion 128× 128 53.09 39.73 0.0273 0.0334 0.3024 25.01 25.00 31.35 44.9K 32.19s

Floyd-MegaFusion++ 128× 128 43.43 50.08 0.0213 0.0437 0.3046 20.28 25.01 31.64 44.9K 32.19s

Floyd-Stage2 [8] 64 → 512 46.64 38.15 0.0254 0.0166 0.3098 23.85 21.47 26.26 60.7K 48.58s
Floyd-MegaFusion 64 → 512 39.80 24.87 0.0164 0.0078 0.3106 23.22 23.51 29.30 24.3K 21.72s

Floyd-MegaFusion++ 64 → 512 26.34 24.55 0.0063 0.0077 0.3110 24.01 23.58 29.52 24.3K 21.72s

Floyd-Stage2 [8] 128 → 512 61.24 108.01 0.0253 0.0734 0.2779 15.16 14.76 19.75 60.7K 48.58s
Floyd-MegaFusion 128 → 512 58.19 88.56 0.0187 0.0379 0.2821 16.28 15.65 20.02 24.3K 21.72s

Floyd-MegaFusion++ 128 → 512 57.92 94.93 0.0181 0.0417 0.2835 16.36 15.47 21.34 24.3K 21.72s

Table 7. More comparison results on Floyd model and its MegaFusion boosted counterparts under different settings. Within each unit,
we denote the best performance in RED and the second-best performance in BLUE.

Figure 5. Ablation study of classifier-free guidance (CFG) weight
on SDM-MegaFusion and SDXL-MegaFusion.

C. Additional Qualitative Results

C.1. Evidence Behind the Core idea & intuition

As stated in eDiff-I [1], diffusion models synthesize se-
mantics during early denoising stages and refine image de-
tails in later stages. As depicted in Figure 6, we also observe
that semantic deviations and object repetitions commonly
encountered at higher resolutions primarily stem from in-
correct semantics generated during early denoising, leading
to irreparable errors. Thus, our intuition and insight here

are: perform early denoising at the original resolution to
generate accurate semantic information, followed by trun-
cate and relay to continue denoising at higher resolutions,
thereby enriching texture details. This enables MegaFu-
sion to produce high-quality, semantically accurate higher-
resolution images with lower computational costs, while
supporting arbitrary aspect ratios.

C.2. Disadvantages of Direct Upsampling

Compared to our MegaFusion for higher-resolution im-
age generation, a more straightforward approach is to di-
rectly apply upsampling to images generated by diffusion
models. Although simple, this will introduce three po-
tential issues: (i) Direct super-resolution may lead to un-
realistic texture details, such as blurring and artifacts, es-
pecially at high upsampling factors; (ii) While diffusion-
based SR methods can produce more realistic textures via
iterative denoising, they often involve significantly higher
computational costs and may not support arbitrary aspect
ratios; (iii) Most critically, as shown in Figure 7, directly
upsampling [12, 47–49] low-resolution images can stretch
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SDM
(1024×1024)

SDM-MegaFusion
(1024×1024)

SDXL
(2048×2048)

SDXL-MegaFusion
(2048×2048)

𝑥'( 𝑥)( 𝑥*( 𝑥+( 𝑥,( 𝑥' 𝑥(

Figure 6. Evidence behind our core idea and intuition. For
T = 50 steps of DDIM sampling, we visualize the key stages
of the image generation process. For SDM and SDXL, incor-
rect semantics are generated during the early denoising stages of
high-resolution generation, leading to irreparable errors. In con-
trast, MegaFusion generates accurate semantics and further en-
riches texture details at higher resolutions. The input text prompts
are “A cute black cat” and “A white dog sits on the grass.” For
ease of visualization, the images are scaled to the same size.

and distort content, particularly when generating under non-
standard aspect ratios (e.g. 1 : 4), diminishing the natural
aesthetic of images.

In contrast, MegaFusion seamlessly bridges coarse-to-
fine generation processes, efficiently producing accurate se-
mantics at low resolutions and enriching texture details at
high resolutions. Leveraging iterative denoising at higher
resolutions, it can synthesize aesthetically pleasing high-
resolution images even with non-standard aspect ratios.

4:1 (2560×640) SDXL

A breathtaking view from the top of a mountain.

A breathtaking view from the top of a mountain.

4:1 (2560×640) SDXL-Bicubic

A breathtaking view from the top of a mountain.

4:1 (2560×640) SDXL-MegaFusion

Figure 7. Analysis of direct upsampling. Using diffusion models
to generate images with non-standard aspect ratios directly or via
upsampling, may lead to stretching and distortion (e.g., trees on
both sides), while MegaFusion effectively mitigates this issue.

C.3. Effects of hyperparameters δ and γ

For denoising at the original size, we do not employ di-
lation. In qualitative experiments for high-resolution gener-

ation, we test various δ values and find that δ = 2 is a sta-
ble choice under our experimental settings, which will not
introduce blurriness or semantic deviations. As described
in our manuscript, we draw inspiration from simple diffu-
sion [22], which derives the SNR relationship between im-
ages of different resolution based on the mean and variance
of pixel distributions. Substituting this into our derived re-
lationship, we obtain that γ = 4. Qualitative experiments
also confirm that this is an appropriate choice. Some visu-
alization examples are shown in Figure 8.

A cute dog sitting on the grass.

𝛿 = 1 𝛿 = 2 𝛿 = 4 𝛾 = 1 𝛾 = 2 𝛾 = 4

A white cat is staring at camera.

Figure 8. Qualitative comparisons of applying different hyper-
parameters δ and γ.

C.4. Ablation Study of Truncation Steps

In the truncate and relay strategy, the number of de-
noising steps at each stage may also affect generation qual-
ity. Our intuition and experience suggest that more denois-
ing steps at lower resolutions improve generation efficiency,
while additional steps at higher resolutions enhance texture
details. However, conducting a comprehensive evaluation
to determine the optimal truncation steps would incur sig-
nificant computational costs. Therefore, in our implementa-
tion, we empirically select truncation steps for each model
based on experience, and validate the above conclusions
through qualitative experiments, as shown in Figure 9. Con-
sidering the trade-off between generation quality and effi-
ciency, we choose denoising steps of T1 = 40, T2 = 5, and
T3 = 5 as the default configuration for SDM-MegaFusion.

𝑇! = 45, 𝑇" = 0, 𝑇# = 5
Inference Time: 5.43s

GFlops: 38.1K

𝑇! = 40, 𝑇" = 5, 𝑇# = 5
Inference Time: 7.56s

GFlops: 48.2K

SDM-MegaFusion (1024×1024)
Prompt: A cute white cat.

𝑇! = 30, 𝑇" = 10, 𝑇# = 10
Inference Time: 8.89s

GFlops: 62.9K

Figure 9. Qualitative ablation study of truncation steps.

C.5. Text-to-Image Foundation Models

We present more visualizations of higher-resolution im-
age generation using both latent-space and pixel-space text-
to-image models in Figure 10 and 11, respectively, to
demonstrate the universality and robustness of our proposed
method. The visual outcomes explicitly confirm that when

14



pre-trained models fail to scale to higher resolutions, our
approach can be universally integrated into existing latent-
space and pixel-space diffusion models, improving their ca-
pability to synthesize higher-resolution images of megapix-
els with accurate semantics. Moreover, our further en-
hanced MegaFusion++ significantly boosts the quality of
the generated images, producing sharper and clearer details.

C.6. Compatibility with Transformer-based Models

To further demonstrate the versatility and effectiveness
of MegaFusion, we also apply it to the transformer-based
(DiT) SD3 [10] model. Since DiT-based methods do not
involve convolutions, we boost the model via only the
truncate and relay strategy. As presented in Figure 12,
SD3 also encounters quality degradation when generating
higher-resolution images directly, while our MegaFusion
effectively improves its high-resolution generation capabil-
ities.

C.7. Comparison to state-of-the-art

To further evaluate the quality of MegaFusion, we com-
pare it with existing state-of-the-art high-resolution genera-
tion methods. Given that these methods (ScaleCrafter [15]
and DemoFusion [9]) are typically restricted to specific
models, we conduct comparisons on models based on
SDXL. The results in Figure 13 indicate that existing meth-
ods still face quality degradation and object repetition when
generating high-resolution images. In contrast, Mega-
Fusion produces high-quality, semantically accurate high-
resolution images, and is much more efficient than existing
approaches, as shown in Table 1 of our manuscript.

C.8. Models with additional conditions

We have confirmed that our method is equally applicable
to diffusion models with additional input conditions, such
as ControlNet [56] with depth maps and IP-Adapter [53]
with reference images as extra inputs. As depicted in Fig-
ure 14, we further discover that ControlNet with canny
edges or human poses as conditional inputs also strug-
gle with synthesizing higher-resolution images, and often
produce images that are not fidelity to input conditions,
with confusing semantics and poor image quality. In con-
trast, with the assistance of our proposed MegaFusion, our
boosted model, ControlNet-MegaFusion consistently gen-
erates high-quality images of higher resolutions with accu-
rate semantics, that are fidelity to conditions.

C.9. Generation with Arbitrary Aspect Ratios

As previously stated, our MegaFusion also enables ex-
isting pre-trained diffusion models to generate images at ar-
bitrary aspect ratios. Figure 15, 16 and 17 showcase more
qualitative results from SDXL-MegaFusion across various
aspect ratios and resolutions, including 1 : 1 (2048×2048),

16 : 9 (1920 × 1080), 3 : 4 (1536 × 2048), and 4 : 3
(2048 × 1536). Moreover, as presented in Figure 18, 19,
and 20, we also include visualizations with non-standard
aspect ratios, such as 1 : 4 (640×2560), 4 : 1 (2560×640),
1 : 2 (1024×2048), 2 : 1 (2048×1024), 21 : 9 (2016×864),
and 9 : 21 (864×2016). These impressive outcomes further
demonstrate the scalability and superiority of our approach.

C.10. Compatibility with LoRA

To further illustrate the versatility and broad applicabil-
ity of MegaFusion, we apply it to SDM and SDXL models
using LoRA from the open-source community for person-
alized higher-resolution image generation. As depicted in
Figure 21, MegaFusion can seamlessly integrate with vari-
ous LoRAs of SDM and SDXL, demonstrating significant
potential for artistic and commercial applications.

D. Limitations & Future Work
D.1. Limitations

Since our proposed MegaFusion is a tuning-free ap-
proach built on existing latent-space and pixel-space image
generation models, it inevitably inherits some limitations
of current diffusion-based generative models. For example,
when handling complex textual conditions, the generated
content often struggles to accurately reflect input prompts,
particularly in aspects such as attribute binding and posi-
tional control. This may lead to degraded synthesis quality
during high-resolution generation with MegaFusion. How-
ever, more powerful backbone models are expected to miti-
gate this issue, and when combined with MegaFusion, they
are likely to produce higher-quality images at higher reso-
lutions with low computational costs.

D.2. Future Work

The striking quantitative results produced by MegaFu-
sion have confirmed its potential to overcome the limi-
tations of existing diffusion-based generative models and
to improve their capabilities to synthesize high-resolution
outcomes. Additionally, we have observed that existing
video generation models encounter significant semantic de-
viations and quality degradation when generating content
beyond their pre-trained spatial resolution and temporal
length. Therefore, we anticipate further applying MegaFu-
sion to current video generation models towards efficient,
low-cost, higher-resolution, and longer video content gen-
eration. Similarly, MegaFusion also holds the potential for
extension to 3D generation models and models for image
and video editing, which are also left for future exploration.
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SDM SDM-MegaFusion SDM-MegaFusion++

A horse pulling a 
carriage on a city 

street

Two teddy bears 
on a couch with a 

pillow

A brown winter 
hat on top of a 

bench near frozen 
grass

A living room 
with yellow brick 
walls and tile floor

There is an adult 
cat that is looking 

at something

Figure 10. More qualitative results of applying our MegaFusion to latent-space diffusion model (SDM [38]) for higher-resolution (1024×
1024) image generation on MS-COCO [27] and commonly used prompts from the Internet.
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A deli sandwich is 
covered in 

steamed greens

There are two 
elephants that are 

walking in the 
wild together

A table topped 
with donuts and a 
small box of even 

more donuts

Zebra roaming 
through the grass 
with others in the 

distance

The modern made 
toilet is next to a 

small bidet

Floyd Floyd-MegaFusion Floyd-MegaFusion++

Figure 11. More qualitative results of applying our MegaFusion to pixel-space diffusion model (Floyd [8]) for higher-resolution (512×
512) image generation on MS-COCO [27] and commonly used prompts from the Internet.

17



SD3 SD3-MegaFusion

The two teddy bears are posed together to take a photo.

A stone statue of an elephant near a large vase.

A person on a four-wheeler herding sheep in the snow.

A few bags laying around in a living room.

Figure 12. Qualitative results of applying our MegaFusion to latent-space diffusion model (SD3 [10]) for higher-resolution (2048×2048)
image generation on MS-COCO [27] and commonly used prompts from the Internet.

18



A close up of 
several zebras 
grazing in a 

field

ScaleCrafter DemoFusion MegaFusion++

A large black 
dog is laying 

on a rug

A clock on a 
tall building 
with a sky 

background

There are two 
elephants that 
are walking in 

the wild 
together

A person 
wearing a 

banana 
headdress and 

necklace

Figure 13. Qualitative comparison with existing state-of-the-art methods (ScaleCrafter [15] and DemoFusion [9]). Our MegaFusion can
generate images with details and accurate semantics at high resolution, whereas existing methods struggle to do so.
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A cute dog

room

chef

A bird stands 
on a branch

Condition ControlNet ControlNet-MegaFusionInput Text

An astronaut 
on the moon

A robot 
danced

Figure 14. Qualitative results of applying our MegaFusion to ControlNet [56] with canny edges or human poses as extra conditions for
higher-resolution (1024× 1024) image generation with better semantics and fidelity.
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A retro-style image with neon lights and vintage cars 

A dog wearing superman suit sits on the grass

An astronaut riding a horse on the moon

Two cats sleeping on a cozy bed

1:1 (2048×2048)

Figure 15. More qualitative results of applying our MegaFusion to SDXL [33] model for higher-resolution image generation with various
aspect ratios and resolutions.
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16:9 (1920×1080)

A high-fidelity landscape with vivid colors, featuring a serene lake surrounded 
by towering mountains and lush forests under a vibrant sunset sky

A starry night sky above a tranquil lake, with the Milky Way galaxy stretching 
across the horizon

A quaint village nestled in the foothills of snow-capped mountains, surrounded 
by lush greenery

Figure 16. More qualitative results of applying our MegaFusion to SDXL [33] model for higher-resolution image generation with various
aspect ratios and resolutions.
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A tranquil lakeside retreat surrounded by forested mountains 
and reflected in the calm waters

An old European-style church, with the 
sound of bells ringing melodiously, spreading 
tranquility and peace.

An ancient castle standing on a mountain top, 
surrounded by dense forests

An old European-style church, with the 
sound of bells ringing melodiously, spreading 
tranquility and peace.

A cozy cabin nestled in a snowy mountain landscape, with 
smoke rising from the chimney and a starry sky above

The calm surface of the lake has mountains in the distance

The room has a great view and a beautiful view from the 
window

3:4 (1536×2048) 4:3 (2048×1536)

Figure 17. More qualitative results of applying our MegaFusion to SDXL [33] model for higher-resolution image generation with various
aspect ratios and resolutions.
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4:1 (2560×640)

4:1 (2560×640)

4:1 (2560×640)

4:1 (2560×640)

A breathtaking view from the top of a mountain.

A breathtaking view from the top of a mountain.

A serene beach with crystal clear turquoise water.

A serene beach with crystal clear turquoise water.
A majestic waterfall 
cascading down a rocky cliff.

A majestic waterfall 
cascading down a rocky cliff.

1:4 (640×2560) 1:4 (640×2560)

Figure 18. More qualitative results of applying our MegaFusion to SDXL [33] model for higher-resolution image generation with various
non-standard aspect ratios and resolutions.

24



2:1 (2048×1024)

2:1 (2048×1024)

2:1 (2048×1024)

2:1 (2048×1024)

1:2 (1024×2048)

1:2 (1024×2048)

A vibrant sunset over the ocean.

A vibrant sunset over the ocean.

A cute rabbit with carrots on the ground.

A cute rabbit with carrots on the ground.

A white dog sits on the grass.

Black cat sleeping on the sofa.

Figure 19. More qualitative results of applying our MegaFusion to SDXL [33] model for higher-resolution image generation with various
non-standard aspect ratios and resolutions.
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9:21 (864×2016) 9:21 (864×2016) 9:21 (864×2016) 9:21 (864×2016) 9:21 (864×2016)

21:9 (2016×864)

21:9 (2016×864)

21:9 (2016×864)

21:9 (2016×864)

An astronaut standing on an alien 
planet.

An astronaut standing on an alien 
planet. A medieval castle in a dense forest. A medieval castle in a dense forest.A desert oasis at dusk.

A cozy cabin nestled in a snowy forest.

A cozy cabin nestled in a snowy forest.

A starry night above a serene lake.

A starry night above a serene lake.

Figure 20. More qualitative results of applying our MegaFusion to SDXL [33] model for higher-resolution image generation with various
non-standard aspect ratios and resolutions.
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1024×1024 SDM (LCM-LoRA)

A LEGO toy sitting on a grassy field.

1024×1024 SDM (LCM-LoRA)

A LEGO toy sitting on a grassy field.

2048×2048 SDXL (nerijs/lego-minifig-xl)

2048×2048 SDXL-MegaFusion (nerijs/pixel-art-xl) 2048×2048 SDXL-MegaFusion (nerijs/lego-minifig-xl)

Self-portrait oil painting of van Gogh. Self-portrait oil painting of van Gogh.

1024×1024 SDM-MegaFusion
(LCM-LoRA)

Lego minifig of a batman.

Lego minifig of a batman.A hacker with a hoodie, pixel art.

Figure 21. Qualitative results of applying MegaFusion to high-resolution image generation with LoRA-integrated SDM and SDXL.
Similarly, SDM and SDXL integrated with LoRA also face common challenges like semantic deviations and object repetitions in high-
resolution generation, while MegaFusion effectively addresses these challenges.
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