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ABSTRACT

Batch active learning (BAL) is a crucial technique for reducing labeling costs and
improving data efficiency in training large-scale deep learning models. Traditional
BAL methods often rely on metrics like Mahalanobis Distance to balance uncer-
tainty and diversity when selecting data for annotation. However, these methods
predominantly focus on the distribution of unlabeled data and fail to leverage feed-
back from labeled data or the model’s performance. To address these limitations,
we introduce TrustSet, a novel approach that selects the most informative data
from the labeled dataset, ensuring a balanced class distribution to mitigate the
long-tail problem. Unlike CoreSet, which focuses on maintaining the overall data
distribution, TrustSet optimizes the model’s performance by pruning redundant
data and using label information to refine the selection process. To extend the
benefits of TrustSet to the unlabeled pool, we propose a reinforcement learning
(RL)-based sampling policy that approximates the selection of high-quality Trust-
Set candidates from the unlabeled data. Combining TrustSet and RL, we introduce
the Batch Reinforcement Active Learning with TrustSet (BRAL-T) framework.
BRAL-T achieves state-of-the-art results across 10 image classification bench-
marks and 2 active fine-tuning tasks, demonstrating its effectiveness and efficiency
in various domains.

1 INTRODUCTION

In the era of deep learning, large-scale labeled datasets are indispensable for training models on com-
plex tasks. Active learning (AL) provides an efficient approach to reduce the labeling costs by intel-
ligently selecting critical subsets from unlabeled data for annotation (Zhan et al., 2022; Yang et al.,
2024; Németh & Matuszka, 2024; Safaei et al., 2024). Batch active learning (BAL) (Citovsky et al.,
2021), a variant of AL, further improves this process by selecting data points in groups (batches),
thereby reducing the overhead associated with model retraining and oracle interactions.

In most modern BAL methods, the selection strategy is typically based on two factors: uncertainty
and diversity. Uncertainty-based methods focus on choosing the most ambiguous or difficult data,
which is likely to improve the model, but this often results in selecting redundant data that doesn’t
sufficiently cover the data distribution (Shen et al., 2017). On the other hand, diversity-based meth-
ods aim to ensure a representative subset by covering as many different types of data as possi-
ble, but they may neglect critical uncertain samples near the decision boundaries. For instance,
CoreSet (Phillips, 2017) selects subsets that reflect the overall data distribution, ensuring diversity
by minimizing the distance between the selected subset and the full dataset. While methods like
Cluster-Margin (Citovsky et al., 2021) combine diversity and uncertainty to improve data selection,
they still have limitations, such as overlooking feedback from the labeled dataset, ignoring class
distribution, and potentially inheriting the long-tail distribution problem.

To address these challenges, we propose TrustSet, a novel data selection approach that distinguishes
itself from CoreSet by emphasizing the utilization of label information. TrustSet focuses not only
on ensuring diversity but also on selecting data that is most beneficial for improving the model’s
performance and releasing class imbalance problem. TrustSet differs from CoreSet in two ways:

Objective: TrustSet is designed to optimize the model’s performance, with an explicit focus on
improving accuracy and tackling the long-tail distribution problem by selecting crucial data that has
a high potential to be forgotten by the model (Toneva et al., 2018). In contrast, CoreSet focuses
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Figure 1: An overview of the BRAL-T framework, which consists of two main processes: (1)Active
Learning for data selection. (2)Reinforcement Learning to approximate TrustSet selection.

on representing the full data distribution without directly considering the impact on the model’s
learning process, which can lead to inheriting undesirable distributional imbalances.

Data Source: TrustSet leverages labeled data, utilizing ground truth labels to prune redundant and
noisy data and ensure that the selected subset is balanced across classes. This approach contrasts
with CoreSet, which selects data purely from unlabeled pool, without considering feedback from
trained model. As a result, CoreSet-based methods can miss the opportunity to incorporate critical
information about model’s current performance, potentially leading to suboptimal data selections.

TrustSet’s balanced class distribution ensures better handling of the long-tail distribution problem,
where underrepresented classes are more likely to be included in the training process. To construct
TrustSet, we use the GradNd method (Paul et al., 2021), which ranks data based on the gradient
norms of model updates, prioritizing data points that contribute most to model learning. Further-
more, to improve the data quality, we incorporate SuperLoss (Castells et al., 2020), which follows a
curriculum learning strategy to assign higher importance to easier data in early training stages, while
still considering difficult samples later.

However, extending TrustSet to the unlabeled data pool presents a challenge, as the selection process
requires label information. To overcome this, we introduce an RL-based policy for approximating
the selection of high-potential TrustSet candidates from the unlabeled data pool. Unlike previous
RL-based active learning approaches, which often require frequent retraining of the model and rely
heavily on complex reward structures (Fang et al., 2017; Zhang et al., 2023), our method minimizes
retraining costs by leveraging TrustSet to guide the reinforcement learning process.

To this end, we propose a novel batch active learning framework called BRAL-T (Batch
Reinforcement Active Learning with TrustSet extraction), which integrates TrustSet and RL-based
policies for efficient data selection. The framework consists of two primary components: (1) Trust-
Set extraction, which ensures that the labeled dataset contributes optimally to model performance
and maintains a balanced class distribution, and (2) RL-based subset selection, where a learned pol-
icy selects from the unlabeled data pool to approximate TrustSet. This significantly reduces the need
for repeated oracle queries and model retraining. As shown in Figure 1, BRAL-T is implemented
with two processes: reinforcement learning (RL) for policy training and active learning (AL) for
model training.

Our contributions are summarized as following: (1) We introduce TrustSet, a novel method for
data selection that leverages label information to balance uncertainty, diversity, and class distribu-
tion, thus releasing class imbalanced issue and improving performance of AL. (2) We develop an
RL-based data selection policy that bridges the gap between TrustSet’s label dependency and the
unlabeled setting of active learning, allowing for more efficient and targeted data selection. (3) We
propose BRAL-T, a new batch active learning framework that integrates TrustSet and RL to reduce
the computational burden of active learning while improving model performance. We demonstrate
that BRAL-T achieves state-of-the-art performance across multiple image classification and active
fine-tuning tasks.

2 RELATED WORK

Active Learning: Active learning aims to reduce labeling costs by selecting informative data based
on uncertainty and diversity. Shen et al. (2017) explored uncertainty-based methods for Named
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Entity Recognition, later integrating diversity. Galaxy (Zhang et al., 2022) leveraged a model con-
fidence graph to estimate uncertainty, while Yuan et al. (2020) applied self-supervised models for
diversity-based selection. Recent works (Liu et al., 2019; Ash et al., 2019; Sinha et al., 2019; Mar-
gatina et al., 2021; Ash et al., 2021; Citovsky et al., 2021; Kim et al., 2021; Gentile et al., 2022)
highlight the uncertainty-diversity trade-off, where uncertainty-focused methods risk redundancy,
and diversity-based methods may overlook critical uncertain samples. However, the batch sampling
methods in these works tend to ignore the distribution of selected data, leading to further redundancy

Batch Active Learning: Active learning methods, aiming to minimize oracle queries, prefer batch
data processing over individual sample handling. Batch active learning approaches (Zhang et al.,
2023; Ash et al., 2021; Kirsch et al., 2019; Citovsky et al., 2021; Sener & Savarese, 2017) concen-
trate on batch sampling to reduce costs and preserve subset distribution. BatchBald (Kirsch et al.,
2019) addressed the lack of joint informativeness in batch sampling with an entropy-based selec-
tion. Cluster-Margin (Citovsky et al., 2021) used Hierarchical Agglomerative Clustering to identify
highly uncertain samples at scale. Despite their success in computer vision tasks, existing methods
overlook feedback from selected samples, such as accuracy changes, which could be crucial for
refining data sampling strategies.

Active Learning with RL: RL has been explored to learn data selection policies (Zhang et al., 2023;
Fang et al., 2017; Liu et al., 2019; Gong et al., 2022; Smit et al., 2021; Casanova et al., 2020). Some
approaches(Fang et al., 2017; Gong et al., 2022; Smit et al., 2021; Casanova et al., 2020) defined
rewards based on target model metrics (e.g., accuracy, AUROC), requiring frequent retraining and
suffering from credit assignment issues. Instead, Liu et al. (2019) used the Mahalanobis distance
for reward definition, while TAILOR (Zhang et al., 2023) formulated class balance as a reward
signal. However, the former is task-specific (Re-ID), and the latter does not directly align with
model accuracy. To address these limitations, we propose an RL-based active learning approach that
avoids retraining while maintaining high correlation with task performance.

3 PROBLEM DEFINITION

In this section, we formally define the active learning problem in batch setting, following Sener &
Savarese (2017), and introduce the TrustSet selection problem. We consider an C-class classification
task over a compact input space X and a label space Y = {1, . . . ,C}. Our goal is to train a
target model Mθ with parameters θ to optimize a loss function ℓ(Mθ(x), y) : X × Y → R, where
ŷ = Mθ(x) refers to the predicted category by the target model and cross entropy loss is widely
used as ℓ in classification task. In practice, we assume a large collection of data points sampled i.i.d.
over the space Z = X ×Y as {xk, yk}k∈[n] ∼ pZ , where n refers to the total amount of data points
and [n] = {1, 2, . . . , n}.

For active learning problem, we further define the labeled dataset with |L| data points as L =

{xk, yk}|L|
k and the unlabeled data pool with |U | data points as U = {xk}|U |

k . In general, |L| ≪ |U |
and L ∩ U = ∅. For the i-th active learning iteration, the labeled and unlabeled dataset are defined
as Li and Ui respectively. We aim to select a data subset SUi

⊆ Ui to be labeled by an oracle and
added to the current labeled dataset Li forming an enhanced labeled dataset Li+1 = Li ∪ SUi

. We
abbreviate SUi

as Si for readability in the rest of the paper. Training on Li+1, the model MθLi+1

with the trained parameter θLi+1 is expected to achieve the best performance across all possible
choices of Si which can be formulated as the following Eq. 1:

S∗
i = argmin

Si⊆Ui:|Si|≤b

Ex,y∼pZ [ℓ(MθLi+1
(x), y)] (1)

where S∗
i refers to the optimal data subset for active learning and b refers to the size of data subset

that needs to be selected in each iteration. As a result, Eq. 1 indicates that we aim to select a data
subset Si from Ui to enhance Li such that the trained model MθLi+1

achieves the minimal loss
value.

Directly solving the above optimization problem is challenging due to the large number of possible
choice of Si from Ui. To address this, we consider an ideal scenario where label information for Ui

is available and analyze the entire dataset D = Li ∪ Ui to identify the most important samples that
contribute to model training. Formally, we define the TrustSet TD to be the important data of D as
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Figure 2: Details of BRAL-T. (a) Active Learning Process: πϕi
selects the subset Si from Ui for the

oracle to annotate, and the model MθLi+1
is trained on Si ∪Li. (b) RL process: we sample L and U

from Li+1 to train policy πϕi+1 .

the following Eq. 2:

TD = argmin
SD⊆D:|SD|≤bT

Ex,y∼pZ [ℓ(MθSD
(x), y)] s.t. balance(SD) (2)

where SD refers to a data subset selected from D and we require SD to be balanced across C
categories for TrustSet selection to alleviate long-tail distribution problem; MθSD

refers to the model
trained on SD and bT refers to the predefined size of TrustSet. Eq. 2 indicates that given the limited
size of data subset, TD contains the most useful information from the dataset to train the model.
Combining with Eq. 1, we instead select S̃i from the unlabeled data pool Ui for active learning as:

S̃i = argmin
Si⊆Ui,|Si|≤b

d(Si, TD ∩ Ui) (3)

where d(·, ·) indicates a statistical distance function (e.g. Wasserstein Distance) for two distributions
and we aim to select a data subset that has a distribution similar to TD∩Ui. As TD contains the most
significant data points for model training, enhancing Li with such data points could also benefit the
performance of the trained model. As a result, S̃i, which approximates TD ∩ Ui, also contributes
to a significant improvement of model training. Compared to Eq. 1, TrustSet is more reliable due
to the use of annotation labels and the balance requirement releases the class imbalance problem
of collected labeled dataset. Additionally, Eq. 2 can be more straightforwardly solved using data
pruning methods (Paul et al., 2021; Park et al., 2023; Tan et al., 2023).

However, label information of Ui is not available under the active learning assumption. To solve this
problem, we train a data selection policy πϕi with RL method on the labeled dataset Li, learning to
select S̃i as an approximation of TD ∩ Ui. In the i-th iteration, we create an environment similar
to the active learning setting by randomly sampling two subsets L and U from labeled dataset Li,
where the labels of L are retained to simulate labeled dataset while the labels of U are omitted to
simulate unlabeled dataset. The whole dataset in this environment is then defined as D = L ∪ U ,
ensuring L ∩ U = ∅ and |L| ≪ |U|. Although we omit the labels of U for active learning purpose,
we can still leverage the label to extract TD. Taking L and U as input, πϕi is trained to select a
subset S from U , with the reward defined as:

R = −d(S, TD ∩ U) (4)

where S = πϕi(L,U) and we optimize the parameters ϕi to minimize the statistical distance be-
tween TD ∩U and S. In this way, πϕi

learns to select data from the unlabeled dataset that has a high
potential to be included in the TrustSet based on the feature space. After training, πϕi

is applied to
the real unlabeled data pool Ui to select Si = πϕi

(Li, Ui).

In general, for each active learning iteration, we solve Eq. 1 in two processes as shown in Figure 2.
In the active learning process, data subset Si is selected by πϕi(Li, Ui) and passed to the oracle

4
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for annotation. The model Mθ is then trained on the enhanced labeled dataset Li+1. Moreover, the
new unlabeled data pool Ui+1 is achieved by eliminating Si from Ui and the TrustSet Ti is extracted
from Li+1 by solving Eq. 2 to facilitate the next RL process. In the RL process, we create the
environment based on Li and train πϕi

using the reward function defined in Eq. 4.

4 METHOD

In this section, we introduce BRAL-T framework in detail. In Section 4.1, we introduce a TrustSet
construction method based on GradNd score (Paul et al., 2021). In Section 4.2, we illustrate the
details of the RL module and describe how we use the learned policy to select subsets from the
unlabeled pool.

4.1 TRUSTSET

In general, the TrustSet should retain important data and tend to be class-balanced. However, it is
almost impossible to directly solve Eq. 2 due to the large size of labeled dataset and time-consuming
of MθSD

training. As a result, we introduce a TrustSet extraction method based on the GradNd
score (Paul et al., 2021) by analyzing the performance of model trained on entire trainset L rather
than selected subset S. This score is defined as the expected value of the gradient norm term with
respect to a differentiable model and a data sample x:

GradNd = E∥
K∑

k=1

∇
M

(k)
θ

ℓ(Mθ(x), y)
T∇θM

(k)
θ (x)∥ (5)

In this equation, K denotes the number of logits, Mθ(x) ∈ RK refers to the output of model and
M

(k)
θ (x) represents the result of the k-th logit from the model Mθ. For instance, in an image classi-

fication task, ℓ represents the cross-entropy loss, K = C is the number of categories, and M
(k)
θ (x)

is the logit output for the k-th category. Data samples that result in a large gradient value tend to
contain information that the model has not yet learned, as the model would update significantly
based on such data. As demonstrated by the experimental analysis from Paul et al. (2021), data
with a higher GradNd score tend to be forgotten samples for the target model during training and
are more important for further training. However, the GradNd score might lead to a class imbalance
problem when the data subset primarily contains difficult images for certain categories. To mitigate
the long-tail distribution problem, we sort data by class using the GradNd score and select the top-N
data for each category. For the image classification task, we follow Paul et al. (2021) in omitting the
term ∇θM

(k)
θ (x) from Eq 5 and calculate the EL2N score to approximate GradNd.

Curriculum Learning: Data with high GradNd scores tend to be difficult and uncertain samples. As
suggested by previous works (Ash et al., 2021; Citovsky et al., 2021; Gentile et al., 2022), a training
set focusing on uncertainty could result in high redundancy and fail to train a model that captures
general features. We reconsider this issue from another important perspective. Difficult samples
contain noise that can interfere with model predictions and increase the difficulty for the model to
learn the boundaries between categories. With a limited amount of data, easy examples could help
the model capture features and cluster data within the same category. Following the principles of
curriculum learning (Tang & Huang, 2019; Castells et al., 2020), we assign larger weights to easier
data samples in the early active learning iterations and leverage Super Loss (Castells et al., 2020) on
top of the task loss ℓ. For each data sample (x, y), the super loss ℓs is defined as:

ℓs(Mθ(x), y) = (ℓ(Mθ(x), y)− τ)σ + λ(log σ)2 (6)
where τ is the threshold for separating easy and hard samples, and λ is the weight of the regulariza-
tion term. Both τ and λ are hyperparameters, while σ is learnable and indicates the weight assigned
to the task loss. To minimize ℓs, data with task loss ℓ < τ will be assigned a larger weight σ, and
data with ℓ > τ will be assigned a smaller weight σ. Since model training on uncertain data typi-
cally results in larger losses compared to easier data, super loss adaptively adjusts the weight for data
samples. Meanwhile, the scale of σ is determined by λ. As λ increases, the value of σ tends to be 1
and has less effect on the task loss. Specifically, when λ → ∞, σ will always be 1 to minimize the
regularization term, making ℓs equal to ℓ− τ . As shown in Section 5.4, with Super Loss, proposed
method achieves better performance. In the following sections, TD refers to the TrustSet with Super
Loss unless explicitly stated.
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Figure 3: Reinforcement learning process. We use U0 as an example for process in the figure.

4.2 REINFORCEMENT LEARNING

The TrustSet is collected with label information to ensure class balance and improved reliability.
However, during the active learning process, the policy needs to be applied to select a subset from
the unlabeled data pool Ui. To address this, we create an environment with similar conditions and
apply RL to train a policy for subset selection, where the TrustSet serves as the target subset. In
the remainder of this section, we first define the state, action, and reward for the RL task in general,
followed by an illustration of the overall process.

State (L∗
c ,Uc). We randomly sample L as a labeled dataset and U as an unlabeled data pool from Li

to train the policy πϕi . For each sampled dataset D = L ∪ U , we extract TD and calculate TD ∩ U
as the target selected subset. For convenience, we define T = TD ∩ U . Using all data in L and U as
input is computationally expensive and challenging for learning an effective policy. It is beneficial to
have alternative representations. Since in classification task, data tend to cluster based on predicted
categories in feature space and T is distributed across all clusters, it is more reasonable to predict
T using clusters as states. Thus, we define the state space as (L∗

c ,Uc), where Uc refers to the c-th
cluster from the unlabeled data pool U , and L∗

c is a cluster from the labeled dataset L defined as:

L∗
c = argmin

m
d(Lm,Uc) (7)

In this equation, Lm refers to the m-th cluster from L, and L∗
c is the closest labeled cluster to Uc

based on the distance function d(·, ·). We use the Wasserstein Distance (Flamary et al., 2021) in our
RL process. For each (L,U) sample, there are C states, where C is the number of clusters in U .
For improved efficiency, we extract stochastic features of clusters as input for the policy, specifically
using mean and variance as [E[L∗

c ], V ar[L∗
c ], E[Uc], V ar[Uc]].

Action Ua
c . As data in the TrustSet tend to group together by cluster, we further divide Uc into

Ac data groups, denoted as {Ua
c }

Ac
a=1. Given (L∗

c ,Uc) as input, the policy selects the top clusters
within {Ua

c }
Ac
a=1 that have high potential to be included in the TrustSet. Consequently, {Ua

c }
Ac
a=1

represents the candidate action space for each state, and the union of the selected actions forms the
final selected data subset S.

Reward R. Since different Ua
c contain varying numbers of data points, for a fixed size of S, we

need to select a varying number of Ua
c . It is more general to define the reward based on Ua

c rather
than S. We set the reward as the negative Wasserstein distance between Ua

c and the sub-TrustSet
Tc = T ∩ Uc as:

R = −d(Ua
c , Tc) (8)

where Ua
c closer in distribution to Tc receives better reward.

We follow the DQN method (Mnih et al., 2013) and illustrate the overall RL process in Figure 3.
Given the dataset L and U , we pass them through the target model Mθi to obtain the feature space.
To construct the input state for the policy, we cluster the features of L into M clusters, denoted
as {Lm}Mm=1 and the features of U into C clusters as {Uc}Cc=1. To generate candidate actions, we
further divide Uc into Ac clusters, denoted as {Ua

c }
Ac
a=1. Meanwhile, we extract the TrustSet for each

cluster as Tc = T ∩ Uc.

6
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Unlike traditional RL tasks, we consider the future effect in curriculum learning and TrustSet selec-
tion, focusing only on the next timestep for policy training. As a result, training the Q-function is
equivalent to training the reward function Rϕ as:

R̃ = Rϕ(Uc,L∗
c ,Ua

c ) (9)

where R̃ refers to the predicted reward value by Rϕ and ϕ refers to the parameter of the reward
function. And ϕ is updated by the Mean Square Error (MSE) loss as:

lRL = E(Uc,Ua
c )∥R− R̃∥ (10)

During RL, we calculate the reward for all candidate actions and states to optimize the reward
function Rϕ. During the active learning process, for each unlabeled cluster Uc in the real unlabeled
data pool U , we predict the reward for all candidate actions Ua

c and select them in descending order
based on the reward score until the fixed size of subset selection is satisfied.

It is worthwhile to note that for each (L,U) sampled from L, Mθ needs to be retrained on D = L∪U
to extract the TrustSet TD as well as T , since the most important data for the model may vary
depending on the labeled training set. To avoid the time-consuming process of frequent retraining,
we approximate the extraction of TD by reusing MθLi

which has been trained on Li in the i-th active
learning iteration. This is justified by the fact that D is randomly sampled from Li and our main
objective is to enhance Li based on the performance of MθLi

in the i-th active learning iteration. The
only requirement is to retrain the policy from scratch for each active learning iteration. In practice,
we extract Ti from the entire labeled set Li and extract T by taking the intersection between U and
Ti as T = Ti

⋂
U for efficiency. Please refer to the Appendix for more details of RL training.

5 EXPERIMENT

In this section, we evaluate our proposed BRAL-T method on the image classification task and
compare our results with previous active learning baselines, following the experimental settings of
Zhan et al. (2022). Additionally, we also evaluate BRAL-T on the active fine-tuning task (Xie et al.,
2023) and compare it with the current state-of-the-art method, ActiveFT. More experiments will be
presented in Appendix.

5.1 IMAGE CLASSIFICATION RESULTS

Datasets: We evaluated BRAL-T on the image classification task across 8 benchmarks, including
Cifar10, Cifar100 (Krizhevsky et al., 2009), Cifar10-imb, EMNIST (Cohen et al., 2017), Fashion-
MNIST (Xiao et al., 2017), BreakHis (Spanhol et al., 2015), Pneumonia-MNIST (Kermany et al.,
2018) and Waterbird (Sagawa et al., 2019; Koh et al., 2021). To create the Cifar10-imb dataset, we
subsampled the training set of Cifar10 with ratios of 1:2:...:10 for classes 0 through 9.

Baselines: We compared BRAL-T with three baselines, LossPrediction (Yoo & Kweon, 2019),
WAAL (Shui et al., 2020) and RandomSample. LossPrediction employs an additional module that
predicts the loss for each data point. WAAL adopts min-max loss to better distinguish labeled
and unlabeled samples while searching unlabeled batch with higher diversity than labeled samples.
According to the experiments in Zhan et al. (2022), among all the methods, LossPrediction and
WAAL achieve best results in 6 benchmarks and competitive results in other 2 benchmarks, therefore
we select them as our baselines. For RandomSample, we randomly selected a subset from the
unlabeled dataset in each active learning iteration. Besides, we visualized accuracy-budget curve on
Cifar10, Cifar10-imb, Cifar100 and FashionMNIST benchmarks and compared with LossPrediction,
WAAL, VAAL (Sinha et al., 2019), BADGE (Ash et al., 2019), CoreSet (Zhan et al., 2022), Cluster-
Margin (Citovsky et al., 2021), BALD (Gal et al., 2017) and KMeans (Ash et al., 2019). To ensure
a fair comparison, we used ResNet18 (He et al., 2016) as the target model. For more experimental
details and hyperparameter settings, please refer to Appendix.

Evaluation Metrics: For all benchmarks, we report evaluation results using two metrics: area
under the budget curve (AUBC) (Zhan et al., 2021a;b) and final accuracy (F-acc). AUBC refers to
the area under the accuracy-budget curve. Methods with a higher AUBC score achieve better overall
performance across different sizes of the training set. F-acc refers to the final accuracy achieved
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Methods FashionMNIST EMNIST CIFAR10 CIFAR100
AUBC F-acc AUBC F-acc AUBC F-acc AUBC F-acc

LossPrediction 0.859 0.888 0.762 0.793 0.837 0.911 0.481 0.655
WAAL 0.861 0.891 0.808 0.831 0.842 0.883 0.460 0.594
RandomSample 0.844 0.874 0.804 0.828 0.832 0.902 0.517 0.650
BRAL-T 0.863 0.894 0.813 0.833 0.847 0.916 0.525 0.662

Benchmarks Cifar10-imb BreakHis Pneum.MNIST Waterbird
AUBC F-acc AUBC F-acc AUBC F-acc AUBC F-acc

LossPrediction 0.748 0.848 0.834 0.844 0.732 0.870 0.588 0.586
WAAL 0.752 0.799 0.836 0.855 0.640 0.870 0.525 0.506
RandomSample 0.710 0.810 0.834 0.832 0.706 0.652 0.586 0.502
BRAL-T 0.762 0.851 0.849 0.868 0.738 0.883 0.606 0.618

Table 1: Experiment results of image classification task on 8 benchmarks.

Cifar10 Cifar10-imb Cifar100 FashionMNIST

Number of Label DataNumber of Label DataNumber of Label DataNumber of Label Data
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Figure 4: Visualization of experiment results on Cifar10, Cifar10-imb, Cifar100 and FashionMNIST.

after the budget Q is exhausted. The experiments for BRAL-T and the baselines were repeated for
3 trials under different random seeds, and the average of the evaluation results are reported.

Experiment Results: The experimental results on 8 benchmarks are presented in Table 1. BRAL-
T significantly outperforms RandomSample under all benchmarks. Compared with WAAL and
LossPrediction, BRAL-T achieves better AUBC as well as F-acc on all benchmarks. In Figure 4,
we visualize the accuracy-budget curves of BRAL-T and baselines on 4 benchmarks. BRAL-T
consistently achieves higher accuracy throughout the entire active learning process for Cifar100
and FashionMNIST. In early active learning iterations of Cifar10 and Cifar10-imb, BRAL-T has
a bit worse accuracy compared with WAAL, the reasons of which could be attributed to WAAL’s
emphasis on diversity. However, without adequate consideration for uncertainty cause performance
diminishing of WAAL when the size of labeled dataset increases. As comparison, LossPrediction
focuses solely on uncertain data with high predicted loss, neglecting the diversity of the selected
subset, which results in bad performance in early stage.

5.2 ACTIVE LEARNING ON MORE LONG-TAIL DATASETS

Dataset. Besides the aforementioned benchmarks, in this section, we focus on long-tail datasets,
including CIFAR10-LT and CIFAR100-LT. Both datasets are subsampled from CIFAR datasets and
the number of samples within each classes decreases exponentially with factor within 10 and 100.
Specifically, we consider 10 and 20 in our experiments. The test images of CIFAR10-LT and
CIFAR100-LT are the same as those in CIFAR10 and CIFAR100 datasets respectively. Both the
two benchmarks are open-source and can be accessed through huggingface tomas-gajarsky/cifar10-
lt and tomas-gajarsky/cifar10-lt. Please refer to Appendix for more details.

Experiment Results. Besides LossPrediction, WAAL and RandomSample, we also compare
BRAL-T with SIMILAR (Kothawade et al., 2021) and TiDAL (Kye et al., 2023) which are de-
signed for active learning in imbalanced dataset. As shown in Table 2, BRAL-T achieves the best
AUBC as well as F-acc results. As pseudo label is not reliable especially when target model might
be overconfident in long-tail dataset, BRAL-T selects informative data with ground-truth label to
construct TrustSet which is more reliable to reflect whether target model has sufficiently learnt from
related samples. As a result, BRAL-T always performs better than SIMILAR. Moreover, compared
with LossPrediction and WAAL, we encourage TrustSet to be balanced which releases the category
bias problem in long-tail distribution and contributes to the success of BRAL-T.
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Methods Cifar10-LT-r10 Cifar10-LT-r20 Cifar100-LT-r10 Cifar100-LT-r20
AUBC F-acc AUBC F-acc AUBC F-acc AUBC F-acc

TiDAL 0.510 0.619 0.435 0.583 0.398 0.450 0.365 0.420
SIMILAR 0.507 0.654 0.431 0.566 0.405 0.514 0.366 0.460
LossPrediction 0.478 0.679 0.413 0.585 0.424 0.516 0.380 0.460
WAAL 0.510 0.623 0.435 0.589 0.381 0.458 0.342 0.412
RandomSample 0.476 0.686 0.397 0.587 0.382 0.463 0.343 0.410
BRAL-T 0.512 0.686 0.440 0.614 0.432 0.517 0.384 0.462

Table 2: Experiment results on Cifar10-LT and Cifar100-LT datasets.

Methods Cifar10-imb TinyImageNet
2% 3% 2% 3%

RandomSample 0.841 0.856 0.213 0.348
ActiveFT 0.838 0.851 0.289 0.359
BRAL-T 0.852 0.865 0.300 0.392

Table 3: Results of Active Finetuning task.

Baseline Cifar10 Cifar100
AUBC F-acc AUBC F-acc

PseudoScore 0.842 0.908 0.486 0.661
BRAL-DiffSet 0.843 0.909 0.521 0.652
BRAL-T w/o CL 0.845 0.906 0.522 0.662
RandomSample 0.832 0.902 0.517 0.650
BRAL-T 0.847 0.916 0.525 0.662

Table 4: Ablation study result.

5.3 ACTIVE LEARNING FOR FINETUNING RESULTS

Experiment Setting: We adhere to the settings of Xie et al. (2023) and use Deit-Small (Touvron
et al., 2021), pretrained with the DINO (Caron et al., 2021) framework on ImageNet-1k, as the target
model. We chose two datasets for fine-tuning: Cifar10-imb and TinyImageNet (Le & Yang, 2015),
resizing all images to 224× 224. For more implementation details, we utilize ActiveFT (Xie et al.,
2023) to select an 1% subset as the initial labeled dataset and select an additional 1% of data for
each active learning iteration. The pretrained model is fine-tuned using the SGD optimizer for 1000
epochs with a batch size of 512. Cosine learning rate decay is applied during the fine-tuning phase
of each active learning iteration.

Experiment Results: All experiments were repeated across 3 trials, and the average results are
reported in Table 3. BRAL-T significantly outperforms the other baselines. ActiveFT could suffer
from the long-tail distribution of unlabeled data pool while TrustSet are defined to be class-balanced.

5.4 ABLATION STUDY

Experiment Setting: To further evaluate BRAL-T, we conducted ablation studies to demonstrate
the benefits of the proposed modules by considering three baselines. For PseudoScore, instead of
training an RL policy, we assign pseudo-labels to the unlabeled data pool based on the category with
the highest logit score. Data subset with top EL2N score will be selected during active learning. For
BRAL-DiffSet, to show the effectiveness of TrustSet, We select the second-best data group instead
of the best as TrustSet. For BRAL-T w/o CL, we remove curriculum learning and directly use the
cross-entropy loss function to calculate the EL2N score.

Experiment Results: Table 4 displays the results for the Cifar10 and Cifar100 datasets. BRAL-T
surpasses PseudoScore in both AUBC and F-acc as pseudo-labels are often inaccurate, especially
when classifier has low performance. In contrast, selecting the TrustSet based on the labeled dataset
is more reliable. Compared to BRAL-DiffSet, BRAL-T also achieves better AUBC and F-acc scores,
empirically proving the correlation between EL2N score and model accuracy. Moreover, curriculum
learning also plays a crucial role in the success of BRAL-T, which aids in selecting easy examples
and enhances the performance of the target model in the initial stages.

6 CONCLUSION

In summary, our RL-based Active Learning framework, BRAL-T, leverages TrustSet to more ac-
curately evaluate distribution of labeled datasets and employs an RL policy to learn from Trust-
Set. BRAL-T benchmarked against 8 baselines across 8 image classification tasks, shows superior
AUBC and F-acc performance. Moreover, in CIFAR-LT benchmarks, BRAL-T outperforms base-
lines to handle long-tail dataset. Additionally, its application in active fine-tuning tasks reveals new
state-of-the-art results.
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Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yichen Xie, Han Lu, Junchi Yan, Xiaokang Yang, Masayoshi Tomizuka, and Wei Zhan. Active
finetuning: Exploiting annotation budget in the pretraining-finetuning paradigm. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23715–23724,
2023.

Chenhongyi Yang, Lichao Huang, and Elliot J Crowley. Plug and play active learning for object
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 17784–17793, 2024.

Donggeun Yoo and In So Kweon. Learning loss for active learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 93–102, 2019.

Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-Graber. Cold-start active learning through self-
supervised language modeling. arXiv preprint arXiv:2010.09535, 2020.

Xueying Zhan, Qing Li, and Antoni B Chan. Multiple-criteria based active learning with fixed-size
determinantal point processes. arXiv preprint arXiv:2107.01622, 2021a.

Xueying Zhan, Huan Liu, Qing Li, and Antoni B Chan. A comparative survey: Benchmarking for
pool-based active learning. In IJCAI, pp. 4679–4686, 2021b.

Xueying Zhan, Qingzhong Wang, Kuan-hao Huang, Haoyi Xiong, Dejing Dou, and Antoni B Chan.
A comparative survey of deep active learning. arXiv preprint arXiv:2203.13450, 2022.

Jifan Zhang, Julian Katz-Samuels, and Robert Nowak. Galaxy: Graph-based active learning at the
extreme. In International Conference on Machine Learning, pp. 26223–26238. PMLR, 2022.

Jifan Zhang, Shuai Shao, Saurabh Verma, and Robert Nowak. Algorithm selection for deep active
learning with imbalanced datasets. arXiv preprint arXiv:2302.07317, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USAGE OF LARGE LANGUAGE MODEL (LLM)

LLM is only leveraged to polish the writing and correct wrong expressions in the paper. We pro-
vide each paragraph of the paper draft to ChatGPT separately and ask for revision. The core ideas,
contributions of the paper and technique details are originated by the author without the LLM en-
gagement.

B METHOD DETAILS

BRAL-T comprise two iterative processes: active learning process and reinforcement learning pro-
cess. Algorithm 1 shows the pseudocode of overall framework. We randomly sampled initial labeled
dataset and initialize parameters of target model and reward network in lines 3-5. During the i-th
active learning process (lines 7-9), we trained target model Mθi with i-th labeled dataset Li from
scratch and extract TrustSet Ti from Li, details of which is depicted in Section 4.1. During the rein-
forcement learning (RL) process (lines 11-17), we followed DQN (Mnih et al., 2013) and initialized
replay buffer B to be empty. For each RL iteration, we sample labeled set and unlabeled set from
Li and store state set {L∗

c ,Uc,Ua
c , Tc} into replay buffer (detailed in algorithm 2). To train reward

function Rϕi
, a data batch is sampled from B and parameters of Rϕi

is updated based on Eq 10
(detailed in algorithm 3). After the two processes, we sampled a new dataset for oracle to annotate
and updated Li and Ui.

Algorithm 1 BRAL-T

1: Input: Dataset D
2: Output: Target Model Mθ

3: Random sample L0 from D and annotated by oracle;
4: Set U0 := D \ L0;
5: Initialize Mθ0 , Rϕ0 ;
6: for i = 0 to N − 1 do
7: // Active Learning Process
8: Train Mθi with Li from scratch;
9: Extract TrustSet Ti from Li;

10:
11: // Reinforcement Learning Process
12: Initialize Replay Buffer B;
13: for j = 0 to K do
14: Sample L and U from Li;
15: Extract set {L∗

c ,Uc,Ua
c , Tc} = E(L,U , Ti) and store into B; (Algorithm 2)

16: Sample data from B and train Rϕi as Eq 10. (Algorithm 3)
17: end for
18:
19: // Sample New DataSet
20: Sample Si := π(Rϕi

, Li, Ui);
21: Update Li+1 := Li ∪ Si and Ui+1 := Ui \ Si;
22: end for

In algorithm 2, we show the pseudocode of data extraction for RL (line 15 of algorithm 1). As
illustrated in Section 4.2, we clustered labeled set into {Lm}Mm=1 and unlabeled set into {Uc}Cc=1

to formulate state space of RL. For each unlabeled subset, we further cluster Uc into {Ua
c }

Ac
a=1 to

formulate action space of RL and extract Trustset Tc for each Uc. All pairs of {L∗
c , Uc, U

a
c , Tc} are

stored and return as extraction results.

In algorithm 3, we show the pseudocode of reinforcement learning to train data selection policy (line
16 of algorithm 1). For each gradient step, we sample state and action data from replay buffer B and
extract vector input S and A (line 4-6). Then based on Eq. 8, we calculate the reward for each (state,
action) pair as negative distance between data subset and TrustSet (line 7). And based on Eq. 9, we
predict reward with current reward function Rϕ (line 8). Finally, we calculate mean square error
(MSE) loss between predicted reward r and ground truth reward R and update reward function with
gradient descent (line 9).
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Algorithm 2 Data Extraction For Reinforcement Learning

1: Input: LabeledSet L, UnlabeledSet U , TrustSet T
2: Output: Data list Out
3: Initialize output list Out := [];
4: Cluster L into {Lm}Mm=1;
5: Cluster U into {Uc}Cc=1
6: for each Uc do
7: Extract Tc := Ti ∩ Uc

8: Cluster Uc into {Ua
c }

Ac
a=1;

9: Calculate L∗
c := argminm d(Lm,Uc);

10: Store each {L∗
c ,Uc,Ua

c , Tc} into Out;
11: end for
12: Return Out;

Algorithm 3 Training of Reinforcement Learning

1: Input: Replay Buffer B, Reward Function Rϕ.
2: Output: Update Reward Function Rϕ

3: for Each Gradient Step do
4: Sample data batch from B as {L∗

c , Uc, U
a
c , Tc}B .

5: Extract state vector input as: S = [E[L∗
c ], V ar[L∗

c ], E[Uc], V ar[Uc]].
6: Extract action input as: A = [E[Ua

c ], V ar[Ua
c ]].

7: Calculate reward for each state action pair as Eq. 8: R = −d(A, Tc).
8: Predicate reward with Rϕ as Eq. 9: r = Rϕ(S,A).
9: Calculate Loss L = MSE(R, r) and update Rϕ with gradient descent.

10: end for
11: Return Rϕ;

C EXPERIMENT DETAILS

In this section, we introduce more experiment details of Section 5, including architecture of target
model we used for image classification and hyperparameter settings of experiments.

Benchmarks |L0| |U0| Q b #e C
FashionMNIST 500 59,500 10,000 250 40 10
EMNIST 1,000 696,932 50,000 500 40 62
CIFAR10 1,000 49,000 40,000 500 50 10
CIFAR100 1,000 49,000 40,000 500 60 100
CIFAR10-imb 1,000 27,239 20,000 500 50 10
CIFAR10-LT 1,000 - |D| 100 50 10
CIFAR100-LT 4,000 - |D| 500 60 100
BreakHis 100 5,436 5,000 100 30 2
PneumoniaMNIST 100 5,132 5,000 100 30 2
Waterbird 100 4,695 4,000 100 30 2

Table 5: Setting of benchmarks. Where |L0| refers to size of initial labeled set, |U0| refers to size
of initial unlabeled data pool, Q refers to budget, b refers to batch size for target model training,
#e refers to number of epoch for target model training and C refers to number of clusters from
unlabeled data pool. For all the benchmarks, the number of clusters M from labeled dataset is set to
be the same as C and number of candidate action for Uc is set to be 5.

DataSets. We evaluated BRAL-T on the image classification task across 5 benchmarks, including
Cifar10, Cifar100 (Krizhevsky et al., 2009), Cifar10-imb, EMNIST (Cohen et al., 2017), and Fash-
ionMNIST (Xiao et al., 2017). To create the Cifar10-imb dataset, we followed the settings of Zhan
et al. (2022) and subsampled the training set with ratios of 1:2:...:10 for classes 0 through 9. We also
evaluated our framework on medical imaging analysis tasks across 2 benchmarks, including Breast
cancer Histopathological Image Classification (BreakHis) (Spanhol et al., 2015) and Chest X-Ray
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Pneumonia classification (Pneumonia-MNIST) (Kermany et al., 2018). Additionally, we assessed
our framework on an object recognition dataset with correlated backgrounds (Waterbird) (Sagawa
et al., 2019; Koh et al., 2021), which contains waterbird and landbird classes manually mixed with
water and land backgrounds. To further evaluate BRAL-T on long-tail datasets, we also consider
CIFAR10-LT and CIFAR100-LT where the number of samples within each classes decreases expo-
nentially with factor to be 10, 20 or 50.

The detail setting for each benchmark are shown in Table 5, including initial data size of labeled
dataset |L0| and unlabeled dataset |U0|, final budget Q of labeled dataset, batch size b for data
subset selection in each active learning iteration, training epoch #e for target model training, and
category number C for dataset.

Model Details. Following the setting of Zhan et al. (2022), we use Resnet18 (He et al., 2016) as
the target model for image classification tasks. For Cifar10, Cifar10-imb, Cifar100 and Pneumo-
niaMNIST, we replaced the kernal size of first convolutional layer to be 3 × 3 and stride to be 1
in order to handle image with smaller size. For grayscale images such as FashionMNIST and EM-
NIST datasets, we add an additional convolutional layer before the first layer of Resnet with 1 × 1
kernal to increase the channel number of images to be 3. Furthermore, we trained the target models
of all baselines for the same number of epochs, as shown in Table 5. For LossPrediction, the target
model is trained with both classification loss and loss prediction loss for the first 20 epochs. After 20
epochs, only the gradient from the classification loss is back-propagated through the target model.

Model and Hyperparameters Setting: We constructed the reward function Rϕ using a fully con-
nected network comprising 2 hidden layers, each with 512 units, and use the ReLU activation func-
tion. SGD was employed as the optimizer for Rϕ, with the learning rate set at 0.01. For hyperpa-
rameters of curriculum learning, we follow the setting of SuperLoss ((Castells et al., 2020)) and set
τ = log |K| where |K| is the category number. Additionally, we set the value of λ to be 0.25 for
EMNIST, CIFAR100 and TinyImageNet datasets and 1.0 for the others. During active learning, We
train target model with SGD optimizer for PneumoniaMNIST and Waterbird benchmarks and Adam
optimizer for other datasets.

After each active learning iteration, we sampled 30 pairs of L and U from the existing labeled set
L to train the policy, setting the batch size to 100 pairs of state, action, and reward. Following each
sampling, we trained Rϕ for 20 iterations, resulting in a total of 600 iterations for the entire RL
training process. As shown in Table 5, the number of clusters C for unlabeled set and M for labeled
set are set to be the same as category number for related benchmark. And the number of candidate
action Ac for each unlabeled cluster Uc is set to be 5 during the experiment.

D MORE EXPERIMENT RESULTS

In this section, we introduce more experiments and results. First of all, we show the confidence
interval results for Table 1 over 8 benchmarks in D.1. Then we evaluate BRAL-T by calculating
penalty matrix in D.3. Moreover, to show the efficiency of BRAL-T, we compare time overhead
between BRAL-T and baselines in D.2. Finally, in D.4, we show more ablation studies of BRAL-T.

D.1 CONFIDENCE INTERVALS OF RESULTS IN IMAGE CLASSIFICATION TASKS.

Besides representing average value of AUBC and F-acc of BRAL-T and baselines on image classif-
cation benchmarks, Table 6 shows the confidence interval of experiment results. In general, BRAL-T
results are stable and robust over different experiment trials.

D.2 TIME OVERHEAD COMPARISON

To evaluate the efficiency of BRAL-T, we compare the time overhead with LossPrediction, WAAL,
VAAL and SIMILAR on Cifar10 and Cifar100 datasets. All experiments were conducted using a
single Quadro RTS 6000 GPU core with CUDA Version 11.4. Figure 5 shows the time cost results
along with active learning iteration.

The time cost associated with BRAL-T increases with each active learning iteration as the labeled set
expands and more samples are clustered during the reinforcement learning process. However, com-
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Methods FashionMNIST EMNIST CIFAR10 CIFAR100
AUBC F-acc AUBC F-acc AUBC F-acc AUBC F-acc

LossPrediction ±0.002 ±0.038 ± 0.016± 0.022 ±0.006 ± 0.012±0.019±0.012
WAAL ±0.002 ±0.015 ± 0.012 ±0.015 ± 0.006 ±0.009 ±0.006±0.011
RandomSample±0.001 ±0.009 ± 0.004 ±0.007 ±0.003 ± 0.011±0.003±0.008
BRAL-T ±0.001 ±0.008 ±0.005 ±0.014 ±0.003 ±0.006 ±0.004±0.009

Benchmarks Cifar10-imb BreakHis Pneum.MNIST Waterbird
AUBC F-acc AUBC F-acc AUBC F-acc AUBC F-acc

LossPrediction ±0.011 ±0.017 ±0.026±0.037±0.023 ±0.038 ±0.014±0.097
WAAL ±0.008 ±0.013 ±0.016±0.042±0.018 ±0.021 ±0.011±0.078
RandomSample± 0.013± 0.019±0.015±0.050±0.001 ±0.009 ±0.005±0.059
BRAL-T ± 0.012± 0.008±0.017±0.037±0.012 ±0.013 ±0.007±0.024

Table 6: Confidence Interval of Experiment results of image classification task.
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Figure 5: Time Cost of BRAL-T and baselines.

pared to other baselines, BRAL-T consistently demonstrates efficiency, maintaining a competitive
edge in terms of computational resource utilization.

D.3 PAIRWISE COMPARISON

We further compare BRAL-T with VAAL (Sinha et al., 2019), SAAL (Kim et al., 2023) and
BAIT (Ash et al., 2021) on Cifar10, Cifar10-imb and FashionMNIST datasets by pairwise penalty
matrix following Ash et al. (2021). For each benchmark, we collect accuracy results achieved by
all baselines. For pairwise comparison between the method for ith row (ri) and the method in jth
column (cj), we add a score to element eij whenever ri achieves better accuracy result in one budget
of data subset for a benchmark, which means the better ri performs compared with cj , the higher
score eij will be.

BRAL-T VAAL SAAL BAIT

BR
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Figure 6: Pairwise Comparison of BRAL-T, VAAL, SAAL and BAIT.
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Figure 6 represents the pairwise comparison results. Compared with all baselines, BRAL-T achieves
highest value in eBRAL-T,· and lowest value in e·,BRAL-T.

Agent Reuse. A potential way to further improve the efficiency of BRAL-T is reusing RL agent
for all active learning iterations. However, considering the distribution shift of labeled dataset,
distribution of TrustSet will also shift during active learning. For this reason, we apply two RL
agents during active learning, one of which is trained in the first active learning step and remains
unchanged for early active learning iterations; the other one of which is maintained for the rest
iterations. Specifically for CIFAR10-imb dataset, we use the first agent for the first 20 iterations and
the second agent for the rest 20 iterations. The result is shown in Table 7 below: where BRAL-T

Method AUBC F-Acc
LossPrediction 0.748 0.848
WAAL 0.752 0.799
RandomSample 0.710 0.810
BRAL-T 0.762 0.851
BRAL-T (two agents) 0.755 0.837

Table 7: BRAL-T reusing two RL agents.

with agent reusing surprisingly achieves better AUBC results compares with other baselines. With a
more careful separation of active learning stages and RL agents, we believe the performance could
be further improved.

D.4 MORE ABLATION STUDY

To evaluate the robustness of BRAL-T, we run BRAL-T on Cifar10-imb dataset under different
qualifies of initial labeled dataset. Moreover, we show the performance of BRAL-T with different
candidate action numbers. To evaluate the quality of RL approximation, we apply ground truth
labels for TrustSet selection and compare the accuracy results with BRAL-T.

Quality Effect of Initial Labeled Set. We explored the impact of the initial labeled set’s quality by
applying three different sampling methods to construct the initial labeled set from the Cifar10-imb
dataset:

• Random Sample: We randomly sample data from the unlabeled pool to form the initial
labeled set which maintains a similar category distribution with unlabeled pool.

• Twisted Main: We sort the 10 categories by the number of data samples first and then
select 50 samples from 5 rare classes and 950 samples randomly from the other 5 main
classes.

• Twisted Rare: Similar to Twisted Main, we randomly select 50 samples from 5 main
classes and 950 samples from the other 5 rare classes.

The results, depicted in the Figure 7, indicate that BRAL-T’s performance varies with the quality of
the initial labeled set, particularly when labeled data is scarce. However, as the size of the labeled
dataset increases, the accuracy differences become negligible, demonstrating BRAL-T’s robustness
to the initial set’s composition. Despite the initial set’s quality impacting BRAL-T’s performance,
in Table 8, the AUBC results in the twisted cases are competitive with the results of the WAAL
baseline in Table-2, and all achieve better F-Acc compared with other baselines.

Ablation Study on Different Action Numbers. In the reinforcement learning process, we set
number of candidate action to be 5 in Section 5. To evaluate the impact of varying action space sizes,

Initial Method AUBC F-Acc
Random 0.762 0.851

Twisted Main 0.750 0.855
Twisted Rare 0.756 0.855

Table 8: Experiment Result of Different Initial Labeled Set Quality.
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Figure 7: Accuracy-budget curve of Different Initial Labeled Set Quality.
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Figure 8: Comparison between BRAL-T with RL policy and Ground Truth Labels.
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we conducted an ablation study on the Cifar10-imb dataset, comparing BRAL-T’s performance
across different numbers of actions: 5, 10, 50, and 100. The results are shown in Table 9

# Actions AUBC F-Acc
5 0.762 0.851
10 0.763 0.853
50 0.755 0.851
100 0.758 0.854

Table 9: Ablation Study on Different Candidate Action Number.

Under all different setting of action numbers, BRAL-T achieves best AUBC and F-Acc results com-
pared with baselines in Table 1. Setting a large number of actions will increase the complexity of
policy training. As we keep the policy architecture to be the same and simple for time efficiency, in
some active learning iteration policy might not be trained well with large action number which lead
to a small drop of AUBC score. But in general, our method is robust to action number. The reason
we choose 5 in the experiment is mainly for the consideration of time efficiency.

Ablation Study on Different Setting of λ. During the TrustSet extraction, we introduce curriculum
learning where λ is introduced to control the effect of SuperLoss. We study the impact of λ on the
CIFAR10-imb dataset for further sensitivity analysis, the result is shown in table 10.

Increasing the value of λ reduces the influence of SuperLoss on the task loss. In an imbalanced
dataset, data samples are limited, especially in rare classes. Focusing on difficult data during the
early stages of active learning can significantly increase the difficulty of model training. As a result,
increasing λ leads to a reduction in AUBC and F-Acc for BRAL-T, highlighting the importance of
incorporating curriculum learning into the active learning process. However, overall, the AUBC and
F-Acc values remain competitive with the baselines presented in Table 1 of the paper.

Compare between RL and Ground Truth Labels. Although label information of unlabeled data
pool is not available during active learning, in order to evaluate the approximation performance
of RL policy, for baseline GradNd we assume ground truth label of unlabeled data pool is avail-
able when calculating the GradNd score of data samples and we pick class-balanced data with top
GradNd score for each active learning iteration. We compare BRAL-T with GradNd on Cifar10 and
Cifar10-imb datasets and shows the accuracy-budget results in Figure 8.

In Cifar10 dataset, BRAL-T achieves good performance to approximate TrustSet, where only small
gap exists when labeled dataset becomes larger. In Cifar10-imb dataset, similarly, when labeled
dataset is limited, BRAL-T achieves similar accuracy compared with GradNd. When the size of
labeled dataset becomes larger, the accuracy difference performs to be acceptable larger. As a con-
clusion, the RL policy in BRAL-T achieves good performance to approximate ground truth TrustSet
selection.

λ AUBC F-Acc
0.25 0.762 0.851
1.00 0.752 0.842
2.00 0.749 0.830

Table 10: Impact of λ value on CIFAR10-imb dataset.
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