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Abstract. Implicit neural representations (INR) has found successful
applications across diverse domains. To employ INR in real-life, it is im-
portant to speed up training. In the field of INR for video applications,
the state-of-the-art approach [25] employs grid-type parametric encod-
ing and successfully achieves a faster encoding speed in comparison to
its predecessors [6]. However, the grid usage, which does not consider the
video’s dynamic nature, leads to redundant use of trainable parameters.
As a result, it has significantly lower parameter efficiency and higher
bitrate compared to NeRV-style methods [6, 27, 5] that do not use a
parametric encoding. To address the problem, we propose Neural Video
representation with Temporally coherent Modulation (NVTM), a novel
framework that can capture dynamic characteristics of video. By decom-
posing the spatio-temporal 3D video data into a set of 2D grids with
flow information, NVTM enables learning video representation rapidly
and uses parameter efficiently. Our framework enables to process tem-
porally corresponding pixels at once, resulting in the fastest encoding
speed for a reasonable video quality, especially when compared to the
NeRV-style method, with a speed increase of over 3 times. Also, it re-
marks an average of 1.54dB/0.019 improvements in PSNR/LPIPS on
UVG (Dynamic) (even with 10% fewer parameters) and an average of
1.84dB/0.013 improvements in PSNR/LPIPS on MCL-JCV (Dynamic),
compared to previous grid-type works. By expanding this to compression
tasks, we demonstrate comparable performance to video compression
standards (H.264, HEVC) and recent INR approaches for video com-
pression. Additionally, we perform extensive experiments demonstrating
the superior performance of our algorithm across diverse tasks, encom-
passing super resolution, frame interpolation and video inpainting.

Keywords: Implicit Neural Representation · Neural Video Compression
· Parametric encoding

1 Introduction

Implicit neural representation (INR) is a technique that represents a signal as
a continuous function of its corresponding coordinates. Because it is effective
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Fig. 1: Fast encoding speed with high image quality. (Left) The encoding speed
in UVG, where all models are configured at 0.1bpp and evaluated on the same resource
conditions. NVTM learns quickly and achieves 30dB 3×faster than the NeRV-
series. (Right) Video reconstruction results on ReadySetGo sequence after train-
ing for 1 minutes. While E-NeRV and HNeRV exhibit blurry outputs, NVP and
NVTM, based on parametric encoding, quickly capture complex representations. Fur-
ther, NVTM excels at representing fine details such as text and numbers.

to handle complex signals, INR has gained considerable attention across various
domains such as images [38, 7], sounds [41, 39], 3D objects and scenes [16, 42, 12,
33, 19], and compression [14, 13]. Following this trend, video applications of INR
are now being explored in many studies [25, 8]. They have unique advantages
such as the ability to play videos at arbitrary resolutions and frame rates, as
well as the capability for video inpainting. Furthermore, leveraging INR in video
compression leads to remarkable breakthroughs [27, 5, 30, 49, 22, 21].

NeRV [6], a framework that iteratively combines convolution and pixel-shuffle
operators, was proposed for the application of INR in video reconstruction and
compression. Numerous follow-up studies are conducted [27, 5, 30, 49, 22, 21]
and they emphasize the applicability in video compression by diminishing input
dimensions or replacing input coordinates with image features. However, they
lost one of INR’s major advantages, which is the capacity to produce outputs
at various resolutions using a single learned model. In addition, the slow encod-
ing speed still remains as the main challenge in those architectures. Since all
parameters of network must be updated for every pixel, serious computational
inefficiency occurs and the encoding time increases. To overcome this challenge,
parametric encoding (e.g., grid) is being widely adopted [4, 18, 28, 9, 24]. They
achieve a faster training speed via their strong locality (computing-efficient),
however, they have the drawback that the model size needs to increase accord-
ing to the input dimension (parameter-inefficient). Also, the attempts to directly
embedding videos into a 3D grid [20, 35] or decomposing into three 2D grids [25]
did not sufficiently consider the dynamic nature of videos. This results in the du-
plication of parameters, and large parameter size being required for reasonable
performance.
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In the field of video processing, it is important to deal with temporal re-
dundancy between adjacent frames [10, 47]. Video codecs [46, 40] also efficiently
encode videos by dealing such temporal redundancy with motion compensation
similar to the philosophy, leaving only residual information in each frame. Sev-
eral studies [26, 37] in the INR fields have adopted a warping-residual structure
to eliminate temporal redundancy. However, no studies have been conducted
to consider removing temporal redundancy while using parametric encoding.
Therefore, we propose a computing-efficient (fast encoding speed, shown in Fig-
ure 1) and parameter-efficient (high reconstruction quality, shown in Table 3).
INR framework that takes into account the dynamic characteristics of videos.
The key idea is utilizing a series of 2D grids to represent videos by employing
the same modulation to the corresponding pixels. Overall, we make the following
contributions:

– We propose a novel framework Neural Video representation with Temporally
coherent Modulation (NVTM), which applies consistent modulation equally
to corresponding along the time axis.

– Our framework achieves a fast training speed and high parameter efficiency
on video representation.

– We validate the performance on extensive experiments with various datasets
and various tasks including video reconstruction, video compression, video
super resolution, video frame interpolation, and video inpainting compared
to state-of-the-art methods.

2 Related Works

2.1 Implicit Neural Representation (INR)

INR, also known as neural fields or coordinate-based neural representation (CNR),
has emerged as a new paradigm for representing complex and continuous signals.
It interprets data as a continuous signal and proposes a methodology where data
is encoded into a neural network using coordinate inputs.

2.2 INR for videos

Video data is composed of consecutive frames, and many studies have attempted
to find a better framework to apply INR to video. Since pixel-wise INR, which
output the (r, g, b) for 3D coordinate input (x, y, t) ∈ R3, has slow encoding
speed and low parameter efficiency, NeRV [6] proposed to frame-wise INR with
1D coordinate input t ∈ R1. Although this frame-wise INR on does not consider
spatial input (x, y) ∈ R2, it could efficiently represent videos with comparable
performance in video compression. Subsequent studies also have provided no-
table improvements. [27] improved performance by eliminating redundancy in
model parameters, and [21] leveraged coding efficiency by imposing constraints
on weight entropy. Furthermore, [30, 2] have extended the frame-wise INR to the
patch-wise INR, enabling an improved representation of videos. However, they
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Table 1: The performance on NVP [25] drops when the parameter size of temporal axis
(T ) is decreased while the overall size of parameters (X×Y×T ) is maintained. These
results are based on 600-frame HD videos of UVG, and demonstrate a degradation in
performance as the T becomes smaller than the video length.

T 600 300 200 100 60

PSNR 36.34 35.59 (-0.75) 33.99 (-2.35) 31.65 (-4.69) 29.47 (-6.87)

still have a limitation in that they cannot be expanded spatially, then can only
be decoded at a fixed resolution size.

On the other hand, some approaches try to encode the difference between
frames, instead of directly encoding the frames themselves. [22] generates the
entire video using warping and upsampling from given compressed keyframes,
and [26] reconstructs the final frame by generating a flow map and independent
frames between adjacent frames and aggregating them. These methods effec-
tively reduce the temporal redundancy which is inherent in video data, and
demostrate outstanding performance in video compression. In addition, [5, 49]
suggested that 1D coordinate input t ∈ R1 in frame-wise INR was insufficient
for accurately modeling the video’s context feature. Based on this finding, [5]
proposed a structure that integrates context features with a video-specific de-
coder, whereas [49] established a structure that combines context features with
difference features. These studies exhibited superior performance compared to
traditional frame-wise INRs.

Despite implementing several structural improvements, subsequent studies
on NeRV still exhibit a very slow learning speed. As shown in Figure 1, unlike
other models that successfully capture numbers and text in just one minute of
training, HNeRV [5] and E-NeRV [27] fail to do the same and exhibits a blurry
artifact.

To address these problems, NVP [25] indicates a new direction of pixel-wise
INR for video, while achieving a fast encoding speed. It effectively learns the
video representation by using parametric encoding (e.g., grid) that are used to
improve the learning speed in INR’s field [35, 11]. Specifically, by decomposing
the 3D coordinates into three 2D coordinates (x, y), (y, t), (t, x) and employing
a 3D sparse grid, they successfully trained an pixel-wise implicit video represen-
tation framework. However, this approach has a definite limitation as it simply
treats videos as 3D data, without considering their dynamic nature at all.

As shown in Table 1, performance degradation occurs if the grid parameters
of the sparse 3D grid are not sufficiently secured along the time axis when the
parameter size of temporal axis is lower than video length. Particularly, despite
the overall parameters remaining the same, as the grid parameters decrease along
the time axis, the performance degradation becomes more severe. This implies
that it does not properly remove temporal redundancy. In this paper, we propose
a fast and parameter-efficient video representation using a grid-type parameter
encoding that considers the dynamics of the video. while having 3D coordinate
input (x, y, t) ∈ R3.
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Fig. 2: Overview of NVTM. NVTM generates the same modulation latent for tem-
porally correlated pixels between consecutive frames, and the latent is used to modulate
the base network. To obtain this latent, 1) input video is split into GOP units, 2) net-
work F generates an alignment flow to transform 3D coordinate (x, y, t) to specific time
tk in k-th GOP unit, 3) 2D aligned coordinated (xk, yk) is obtained by adding (x, y)
and the alignment flow. 4) The temporally coherent latent (zxyt) is extracted from the
latent grid Gk using normalized (x′

k, y
′
k). Following the process, the temporally corre-

lated 3D coordinates (yellow square and orange square) are mapped to the same 2D
coordinate, thereby ensuring they share the same modulation latent representation.
This shared modulation helps in the fast and efficient learning of video representation.

2.3 Modulation for INR

Although INR can represent each specific data instance successfully, it lacks
generalization and requires re-training from scratch whenever different data in-
stances are applied. Therefore, unlike conventional paradigm which inputs co-
ordinates and outputs data values, several studies [31, 15, 3] have researched
to further modulate network operations. [31] introduced an auxiliary modula-
tor in parallel to the base network, controlling the frequency and phase of the
base network to increase its representational power. [15, 3] proposed to learn
the instance-specific shift modulation latent, allowing the base network to rep-
resent the entire dataset while each shift modulation latent represent each in-
stance. However, alternative approaches [41, 17] utilize a hyper-network, which
determines the weights of the base network according to each data, completely
altering the operation of the base network. While primary studies focus on an
instance-wise modulation, in this paper, we introduce the concept of pixel-wise
modulation to represent video data more efficiently.

3 Methodology

3.1 Overall Framework

The overview is described on Figure 2. The base network M takes the 3D co-
ordinate (x, y, t) as the input and produces (r, g, b) as the output, and this can
be expressed as (r, g, b) = M(x, y, t). The base network M also takes the latent
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zxyt, obtained from each pixel, as a modulation value which affects the network’s
behavior. The process of computing the latent is detailed in following subsection.

(r, g, b) = Mθ(zxyt)(x, y, t). (1)

Utilizing the latent zxyt to modulate the base network enables temporally co-
herent modulation Mθ(zxyt). We adopt the modulated-SIREN [31] as the mod-
ulation scheme for the base network.

3.2 Temporally Coherent Modulation

NVTM is composed of an alignment flow network and multiple 2D latent grids.
As mentioned previously, our key idea is to group similar pixels together and
apply the same modulation, allowing the model to learn the pixel values quickly
and sufficiently, even with fewer model parameters.

Segment Video As mentioned before, it is needed to group similar pixels within
the video. However, grouping all the pixels in the video is challenging and not
effective. Therefore we aim to segment the input video into group-of-pictures
(GOPs) of size n and match corresponding pixels along time within each GOP.
The number of GOPs, m, is calculated by dividing the total number of video
frames with n. k-th GOP is composed of {t|(k − 1)n ≤ t < kn}-th frames, and
the grouping alignment will executed within each GOP unit.

Flow Decoding To match corresponding pixels, we align 3D coordinates into
2D coordinates at a specific time tk, which is defined each GOP unit. We refer
to this time as the keyframe time, and used the first frame of the each GOP unit
as the keyframe in this work. For this process, the network F generates a flow
from input time t to keyframe time tk for each 3D coordinate input (x, y, t).

Flowt−→tk(x, y) = F (x, y, t) (2)

Since this alignment flow F (x, y, t) is likely to be similar the optical flow from
time t towards keyframe time tk, we utilize the optical flow as a guidance to
train F , and we add an auxiliary loss at the beginning steps of training. In the
decoding phase, the optical flow is not necessary as the output of F is used
directly.

Meanwhile, the optical flow appears to move spatially over time, reflecting the
movements of objects in video sequences [17]. Based on this flow observation,
we make network F be influenced from t for easily learning flows with fewer
parameters. For this, we adopt a hyper-SIREN [17] as FH(t)(x, y), which uses a
hyper-networkH(t) to generate SIREN F ’s weights over time t. Further, to offset
the difference in flow scale caused by the interval to tk at each t, we incorporated
the log scale factor into the output scaling of the model.

Flowt−→tk(x, y) = log (t− tk)FH(t)(x, y) (3)
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Alignment Using the alignment flow, each 3D coordinate (x, y, t) is warped
into the 2D aligned coordinate (xk, yk) of keyframe time tk.

(xk, yk) = (x, y) + log (t− tk)FH(t)(x, y) (4)

Parametric Encoding Parametric encoding takes the form of extracting values
from a parameter group corresponding to each input. We utilize a parameter
group structured as a 2D-grid type for each GOP and designate as the latent
grid Gk for the k-th GOP. The 2D aligned coordinate (xk, yk) serves as the
input to Gk. The input of the latent grid must satisfy ∈ [0, 1]. However, given
that both alignment flow and the initial 3D coordinate (x, y, t) range in [0, 1],
their sum, which results in (xk, yk), may not satisfy this condition. To adjust
them, some naive approaches such as clipping or simple re-normalization (xk −
min(xk))/(max(xk) −min(xk)) can be considered, but they have unacceptable
side effects. Clipping occurs information loss and re-normalization decreases grid
parameter efficiency.

Therefore, we propose an adaptive normalization method, which can opti-
mize the spatial utilization of the grid while containing the maximum amount of
information. We search the largest area with a higher pixel density than the pre-
defined threshold rth and define the area as {xmin

k , ymin
k , xmax

k , ymax
k }. Finally,

(xk, yk) are normalized into (x′
k, y

′
k) using the calculated min and max values.

x′
k = Clip{(xk − xmin

k )/(xmax
k − xmin

k ), (0, 1)}
y′k = Clip{(yk − ymin

k )/(ymax
k − ymin

k ), (0, 1)}
(5)

This adaptive normalization ensures that areas with a high pixel occupancy are
properly normalized, whereas sparse regions are effectively handled by clipping
the coordinates.

Modulation latent is obtained from the normalized coordinate, as zxyt =
Gk(x

′
k, y

′
k). Additionally, we extend modulation latent to utilizing two or more

latent grids of neighboring GOPs. We define a neighbor index set P , and the
final latent is obtained by concatenating all latents computed from the latent
grids {Gk, Gk+1, .., Gk+p} of the neighboring GOPs belonging to P = {0, 1, .., p}.

zxyt = concat{Gk+p(x
′
k+p, y

′
k+p)|p ∈ P} (6)

Loss Total loss is a combination of the reconstruction loss and the auxiliary loss
with the weight factor waux. The reconstruction loss Lrecon is the Mean Squared
Error (MSE) between the original and reconstructed pixels, while auxiliary loss
Laux is the MSE between the alignment flow and the optical flow. Then the total
loss is calculated as Ltotal = Lrecon + waux · Laux.

4 Experimental Results

4.1 Implementation Details

Dataset. We conduct experiments on UVG [32] and MCL-JCV [45] datasets,
which are widely used in various video tasks such as compression and quality
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Table 2: Encoding speed on video reconstruction. All models are configured as 0.1bpp
and we compare their reconstruction performance (PSNR) based on the encoding time
(i.e., the training time). Bold values represent the best value for each encoding time,
and evaluated epoch or step (e/s) of each model is denoted.

UVG (Dynamic)

Models
Encoding time

∼ 1min. ∼ 5min. ∼ 10min. ∼ 20min. ∼ 60min.

NeRV [6] 18.10/1e 21.84/9e 22.01/18e 25.27 30.88
E-NeRV [27] 16.66/1e 17.20/5e 19.02/10e 24.38 30.00
HNeRV [5] 20.73/2e 24.39/13e 27.22/26e 28.64 32.51

NVP [25] 23.37/250s 28.48/1250s 28.93/2500s 30.39 31.40
NVTM (Ours) 26.52/111s 29.20/556s 29.97/1111s 30.49 31.85

MCL-JCV (Dynamic)

Models
Encoding time

∼ 1min. ∼ 5min. ∼ 10min. ∼ 20min. ∼ 60min.

NeRV [6] 19.09/10e 21.93/50e 23.10/100e 24.67 28.33
E-NeRV [27] 16.26/7e 16.67/36e 17.80/72e 23.76 28.11
HNeRV [5] 20.66/12e 24.36/63e 26.30/126e 29.73 32.27

NVP [25] 25.34/294s 29.26/1471s 29.41/2941s 31.13 32.53
NVTM (Ours) 27.71/250s 30.85/1250s 31.65/2500s 32.09 33.57

assessment. Since our proposed approach is designed for videos which contain
temporal dynamic information, we target on dynamic sequences among them.
Hence, we select 4 sequences from UVG and 5 sequences from MCL-JCV, which
have large motion and sufficient spatial/temporal information. We convert those
from raw YUV videos into RGB format and use the complete set of 600 frames for
each sequence in UVG HD and initial 100 frames for each sequence in MCL-JCV
HD. Details of statistics and data procedures are described in supplementary.

Model configuration and training details. These are our default experiment
setting and more exploration are experimented on Section 4.5. We configure
NVTM as a default setting with a GOP size n as 10. And we configure the
index set P as {0, 1}. To capture some static characteristics of video (e.g., still
images), we additionally add a single 2D grid as static feature, similar to NVP
[25]. We utilize RAFT [43] to generate the optical flows, and set waux as 0.5 for
auxiliary loss of the alignment flow network. We use threshold value rth as 0.5
for adaptive normalization to ensure that at least half of the area is considered
effective. All experiments are conducted on a single NVIDIA A100 GPU. More
details are described in supplementary materials.

Evaluation. We evaluate with Peak Signal-to-Noise Ratio (PSNR) and Learned
Perceptual Image Patch Similarity (LPIPS) [48]. We compare our model both
with grid-type models (fast encoding time) and NeRV-style models (efficient
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Table 3: Video reconstruction performance with grid-type models. Each value repre-
sents the average on UVG and MCL-JCV respectively. Bold is the best value and ⋆

indicates that ours uses 10% fewer parameters compared to other methods. We dis-
play the video reconstruction visualizations on videoSRC05 sequence as the pairs of
decoded image and crop-zoomed images. The below images are visualization of FLIP
[1] calculated from the original frame, the bright regions represent errors, while the
darker colors indicate better performance.

Model
UVG (Dynamic) MCL-JCV (Dynamic)

Params. PSNR↑ LPIPS↓ Params. PSNR↑ LPIPS↓

Instant-NGP [35] 145M 37.08 0.126 29M 39.32 0.093
3D ModSIREN [31] 134M 37.24 0.095 29M 36.96 0.134

NVP [25] 136M 39.00 0.090 29M 39.55 0.093
NVTM (Ours) 122M⋆ 40.54 0.071 28M 41.39 0.080

Instant-NGP [35] 3D ModSIREN [31] NVP [25] NVTM (Ours)

parameter size). NeRV-style models, including NeRV [6], E-NeRV [27] and HN-
eRV [5], are reproduced by author’s implementation. Since they have low bpp-
levels, we also evaluate ours with 0.1bpp and compare with them. This experi-
ment demonstrate real-world video settings, as Netflix recommends 5Mbps1 as
the minimum speed for Full HD video streaming, and 0.1bpp corresponds to a
closely aligned bitrate of 4.97Mbps at 24 fps. In addition, we experiment with
grid-type models, including 3D ModSIREN, Instant-NGP [35] and NVP [25].
3D ModSIREN refers to the use of 3D grid as modulation latents in modulated-
SIREN [31] without any dimension reduction, Instant-NGP is implemented by
adjusting network size and NVP is reproduced according to author setting. Since
the performance is dependent on target video scale, we additionally design them
as a smaller parameter size for smaller resolution or short video length settings.

1
https://help.netflix.com/en/node/306

https://help.netflix.com/en/node/306
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4.2 Video Reconstruction: Encoding Speed

To apply on practical service, INR method must be quickly encoded. Then we
first report the performance of the models when trained for 1/5/10/20/60 min-
utes under the same resource conditions on Figure 1 and Table 2. All models
are configured in 0.1bpp, as following their bit range. Our model prominently
exhibits fast encoding and quickly reaches over 30dB compared to the NeRV
series. NVP, which also uses grid-based parametric encoding, encodes quickly
but its performance is inferior to ours.

4.3 Video Reconstruction: Parameter Efficiency

We also compared the performance of NVTM with other parametric encoding
methods to explore how parameter efficient it is. Table 3 shows that NVTM out-
performs on various video sequences. NVTM has 1.54dB/0.019 improvements
of PSNR/LPIPS even with 10% fewer parameters on UVG (Dynamic), and
1.84dB/0.013 improvements on MCL-JCV (Dynamic). From qualitative com-
parison on decoded images, we can observe how well our model preserves the
fine details such as the thin iron bar and the basketball hoop. These results can
be interpreted as NVTM has better parameter efficiency by dealing the coherent
information of consecutive frames.

4.4 Downstream Tasks

Video super resolution and frame interpolation. One of the major advan-
tages of INR is its capability to capture intermediary points in both temporal
and spatial dimensions. For video super resolution, we decode all models with
doubled spatial coordinate and evaluate with early-defined 4K resolution videos
(T,H,W→T,2H,2W). Similarly, for video frame interpolation, we first train mod-
els with odd number images and decode them with doubled temporal coordinate
and evaluate with original video sequence (T/2,H,W→T,H,W). The evaluated
results are in Table 4, NVTM shows much fewer errors for both intermediate
spatial and temporal values than others. Meanwhile, since 3D ModSIREN can
densely encode pixels utilizing 3D coordinates directly, it might be slightly ad-
vantageous in generating intermediate values and outperforms NVP. However,
our approach, despite not using 3D-shaped grid parameters, demonstrates im-
pressive results, indicating its successful decomposition of 3D video data.

Video inpainting. We further explore the potential of NVTM in the video
inpainting task. We use DAVIS2017 [36] HD dataset. We conduct a random box
experiment, training with random box masked images and targeting to recon-
struct the complete frames, as previous works [25]. We generate masked images
with 10 random boxes masking with 100 × 100 sized on every frame. As seen
in Figure 5, our method exhibits a remarkable restoration performance on the
masked regions. This highlights that our representation is learned as aggregated
by reference on similar pixels along the temporal axis.
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Table 4: Video super resolution and frame interpolation on UVG (Dynamic). We ex-
pand spatial coordinates (×2) and temporal coordinates (×2) respectively on decoding
time. Below figures are cropped images and FLIP visualizations from super resolu-
tion results on Bosphorus sequence (left) and frame interpolation results on Jockey
sequence (right). The bright regions in FLIP figures represent errors, while the darker
colors indicate better performance.

Model
Super Resolution Frame Interpolation

PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

3D ModSIREN [31] 34.72 0.265 25.41 0.221
NVP [25] 31.87 0.396 23.88 0.394

NVTM (Ours) 35.82 0.240 30.49 0.134

Super Resolution Frame Interpolation
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(a) Video Inpainting (b) Video Compression

Fig. 3: Video inpainting and compression performance. (a) Visualization of video in-
painting on Blackswan and Camel sequences in DAVIS2017. Although the masked
regions are excluded during encoding, the NVTM successfully decodes them by uti-
lizing temporally coherent modulation latent from adjacent frames. (b) BPP-PSNR
plot of video compression on UVG (Dynamic). We encode all models with each video
sequence and evaluate as following authors guided.

Video compression. Video compression is one of main applications in INR
for video [6, 27, 25, 5, 49, 22, 21], and they attempt to prune, quantize, or
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Table 5: Ablation study on framework design in UVG (Dynamic).

(a) Framework design

Adaptive norm. Static feature PSNR

x x 40.24
✓ x 40.36
✓ ✓ 40.54

(b) Latent process

Modulation PSNR

x 38.90
✓ 40.54

(c) Index set

P PSNR

{0} 39.45
{0, 1} 40.54

Table 6: Ablation study on GOP size. The performance for each video sequence vary
depending on the GOP size. As the smaller size of GOP results in dividing video
sequences into more segments for coordinate alignment, we modify the model configu-
ration to ensure similar overall model parameters in each experiment.

GOP Bosphorus Jockey ReadySetGo YachtRide

5 43.27 40.41 39.80 39.57
10 43.30 40.17 39.70 38.88
20 43.00 39.29 38.54 35.65
60 40.34 35.39 33.50 32.53

Table 7: Temporal scalability on video length. Experiments on video lengths exceeding
600 frames are conducted on videos composed of concatenated sequences, each labeled
according to the initial letter of sequence names.

Model 100 200 300 600 1200 (B+J) 2400 (B+J+R+Y)

3D ModSIREN [31] 38.48 39.37 40.06 40.92 37.37 38.82
NVP [25] 41.23 41.08 41.12 41.47 40.23 40.21

NVTM (Ours) 43.70 43.54 43.50 43.41 41.54 41.05

compress the model parameters after training. We also compress model param-
eter by applying existing codecs, as grid-type INR approaches tried [25, 35].
Especially, since our model is decomposed with a series of 2D grids notated as
G := (G1, ..., Gm), we applied HEVC video compression on the grid parame-
ters and further compress effectively. In Figure 3b, we compare our model with
standard video codecs (H.264 [46], HEVC [40]) and state-of-the-art methods
[6, 27, 25, 22]. The details of the evaluation are described in supplementary.
NVTM demonstrates compression performance similar or slightly better than
[6, 27] which have lower training speeds, and notably outperforms [25] which
has faster training speed as ours. Here, we can confirm the superiority of NVTM
when considering both parameter-efficiency and computing-efficiency.

4.5 Ablations Studies

Framework design We conduct ablation studies on our framework modules.
Table 5a demonstrates the positive impacts of adaptive normalization and static
features, with improvements of 0.12dB and 0.19dB respectively. We compare the
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(a) Temporal consistency analysis (b) Alignment flow analysis

Fig. 4: (a) t-SNE visualization of modulation latent zxyz from our alignment module
on corresponding pixels (1st and 5th frame). We select areas with similar pixel in-
formation, i.e. RGB values, and for ease of verification, these are denoted as {Horse,
Grass, Sign}. The latent derived from the 1st frame and 5th are marked with circle
and star respectively. The analysis is based on segments, each consisting of 400 pixels.
(b) Effects of alignment flow. Each line represents the performance with replacing our
alignment method on Bosphorus sequence. Purple indicates aligning with zero-valued
flow (i.e., its spatial coordinate). Green and blue indicates aligning with random-
valued flow in a notated scale of source video resolution.

effectiveness of using latent as a modulation to the base network versus using
it as a direct input. Table 5b indicates that using it as a modulation is more
effective for representing video. Also we experiment on effect of neighbor index
set P on Table 5c.

GOP size Our framework uses a fixed GOP size to divide the video into seg-
ments. We experiment with different GOP sizes on Table 6. From our analysis
about the degree of motion for each sequence (described on Section A.2), we find
that some sequences with relatively large motion energy exhibit improved perfor-
mance when the video is divided more finely with a GOP value of 5. Conversely,
for sequence which has relatively small motion, a GOP value of 10 yielded bet-
ter performance. From this tendency, we believe that NVTM can achieve better
performance if it uses variable size of GOP.

Video duration We verify temporal scalability that NVTM consistently achieves
the standout performance across various video lengths on Table 7.

4.6 Analysis

Temporal Consistency Modulation We propose that by assigning the same
modulation latent (zxyz) to similar pixels across consecutive frames, the network
could learn more rapidly and achieve higher performance. To confirm this, we
analysis on zxyz corresponding to pixels that appeared to be similar in Figure 4.
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We can observe that the latent values derived from similar pixel areas across dif-
ferent frames are represented as similar embeddings. These findings validate our
intention that our network produces identical modulation latents from similar
pixels in consecutive frames.

Alignment Flow We propose to align the 3-dimensional (x, y, t) to the 2-
dimensional (x, y), using an alignment flow derived from Equation 3. To vali-
date the effectiveness and usefulness of this method, we compare it with other
alignment methods in Figure 4b. Both zero-valued flow and the random-valued
flow, unlike our method, does not consider motion or pixel similarity, and sim-
ply map the video into 2D. From the results, we can verify that the proposed
method demonstrated sufficient performance (much over 30dB) even with fewer
parameters, whereas other methods were significantly deficient in performance.

5 Conclusion

In this study, we proposed a novel approach for implicit neural video repre-
sentation, which involves temporal coordinate alignment and modulation latent
encoding to effectively capture video dynamics at the pixel level. Extensive ex-
periments verified that the NVTM outperforms existing methods of implicit
neural video representation on various video related tasks. We anticipate that
our framework will provide inspiration for the follower on INR for videos.
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