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Abstract

Inducing causal relationships from observations is a classic problem in machine2

learning. Most work in causality starts from the premise that the causal variables3

themselves are observed. However, for AI agents such as robots trying to make4

sense of their environment, the only observables are low-level variables like pixels5

in images. To generalize well, an agent must induce high-level variables, par-6

ticularly those which are causal or are affected by causal variables. A central7

goal for AI and causality is thus the joint discovery of abstract representations8

and causal structure. However, we note that existing environments for studying9

causal induction are poorly suited for this objective because they have complicated10

task-specific causal graphs which are impossible to manipulate parametrically (e.g.,11

number of nodes, sparsity, causal chain length, etc.). In this work, our goal is to fa-12

cilitate research in learning representations of high-level variables as well as causal13

structures among them. In order to systematically probe the ability of methods14

to identify these variables and structures, we design a suite of benchmarking RL15

environments. We evaluate various representation learning algorithms from the16

literature and find that explicitly incorporating structure and modularity in models17

can help causal induction in model-based reinforcement learning.18

1 Introduction19

Deep learning methods have made immense progress on many reinforcement learning (RL) tasks20

in recent years. However, the performance of these methods still pales in comparison to human21

abilities in many cases. Contemporary deep reinforcement learning models have a ways to go to22

achieve robust generalization [Nichol et al., 2018], efficient planning over flexible timescales [Silver23

and Ciosek, 2012], and long-term credit assignment [Osband et al., 2019]. Model-based methods in24

RL (MBRL) can potentially mitigate this issue [Schrittwieser et al., 2019]. These methods observe25

sequences of state-action pairs, and from these observations are able to learn a self-supervised26

model of the environment. With a well-trained world model, these algorithms can then simulate the27

environment and look ahead to future events to establish better value estimates, without requiring28

expensive interactions with the environment [Sutton, 1991]. Model-based methods can thus be far29

more sample-efficient than their model-free counterparts when multiple objectives are to be achieved30

in the same environment. However, for model-based approaches to be successful, the learned models31

must capture relevant mechanisms that guide the world, i.e., they must discover the right causal32

variables and structure. Indeed, models sensitive to causality have been shown to be robust and33
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Figure 1: (a)-(d): Different aspects contributing to the complexity of causal graphs. (i), (ii): Difference between
observational and interventional data. In RL setting, actions are interventions in the environment. The hammer
denotes an intervention. Intervention on a variable not only affects its direct children, but also all reachable
variables. Variables impacted by the intervention have a darker shade.

easily transferable [Bengio et al., 2019, Ke et al., 2019]. As a result, there has been a recent surge of34

interest in learning causal models for deep reinforcement learning [de Haan et al., 2019, Dasgupta35

et al., 2019, Nair et al., 2019, Goyal et al., 2019, Rezende et al., 2020, Wang et al., 2021]. Yet, many36

challenges remain, and a systematic framework to modulate environment causality structure and37

evaluate models’ capacity to capture it is currently lacking, which motivates this paper.38

What limits the use of causal modeling approaches in many AI tasks and realistic RL settings is39

that most of the current causal learning literature presumes abstract domain representations in which40

the cause and effect variables are explicit and given [Pearl, 2009]. Methods are needed to automate41

the inference and identification of such causal variables (i.e. causal induction) from low-level state42

representations (like images). Although one solution is manual labeling, it is often impractical and43

in some cases impossible to manually label all the causal variables. In some domains, the causal44

structure may not be known. Further, critical causal variables may change from one task to another,45

or from one environment to another. And in unknown environments, one ideally aims for an RL agent46

that could induce the causal structure of the environment from observations and interventions.47

In this work, we seek to evaluate various model-based approaches parameterized to exploit structure48

of environments purposfully designed to modulate causal relations. We find that modular network49

architectures appear particularly well suited for causal learning. Our conjecture is that causality can50

provide a useful source of inductive bias to improve the learning of world models.51

Shortcomings of current RL development environments, and a path forward. Most existing RL52

environments are not a good fit for investigating causal induction in MBRL, as they have a single53

fixed causal graph, lack proper evaluation and have entangled aspects of causal learning. For instance,54

many tasks have complicated causal structures as well as unobserved confounders. These issues make55

it difficult to measure progress for causal learning. As we look towards the next great challenges for56

RL and AI, there is a need to better understand the implications of varying different aspects of the57

underlying causal graph for various learning procedures.58

Hence, to systematically study various aspects of causal induction (i.e., learning the right causal graph59

from pixel data), we propose a new suite of environments as a platform for investigating inductive60

biases, causal representations, and learning algorithms. The goal is to disentangle distinct aspects61

of causal learning by allowing the user to choose and modulate various properties of the ground62

truth causal graph, such as the structure and size of the graph, the sparsity of the graph and whether63

variables are observed or not (see Figure 1 (a)-(d)). We also provide evaluation criteria for measuring64

causal induction in MBRL that we argue help measure progress and facilitate further research in65

these directions. We believe that the availability of standard experiments and a platform that can66

easily be extended to test different aspects of causal modeling will play a significant role in speeding67

up progress in MBRL.68

Insights and causally sufficient inductive biases. Using our platform, we investigate the impact69

of explicit structure and modularity for causal induction in MBRL. We evaluated two typical of70

monolithic models (autoencoders and variational autoencoders) and two typical models with explicit71

structure: graph neural networks (GNNs) and modular models (shown in Figure 5). Graph neural72

networks (GNNs) have a factorized representation of variables and can model undirected relationships73

between variables. Modular models also have a factorized representation of variables, along with74

directed edges between variables which can model directed relationship such as A causing B, but not75

the other way around. We investigated the performance of such structured approaches on learning76

from causal graphs with varying complexity, such as the size of the graph, the sparsity of the graph77

and the length of cause-effect chains (Figure 1 (a) - (d)).78

The proposed environment gives novel insights in a number of settings. Especially, we found that79

even our naive implementation of modular networks can scale significantly better compared to other80
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Figure 2: Illustration of the key features of the suite. Environments have objects that interact according to the
underlying causal graph which can be based on a subset of objects’ properties. An efficient model should be
able to infer the high level causal variables from raw pixel data and learn the underlying causal graph through
interactions between these high level causal variables.

models (including graph neural networks). This suggests that explicit structure and modularity such81

as factorized representations and directed edges between variables help with causal induction in82

MBRL. We also found that graph neural networks, such as the ones from Kipf et al. [2019] are good83

at modeling pairwise interactions and significantly outperform monolithic models under this setting.84

However, they have difficulty modeling complex causal graphs with long cause-effect chains, such as85

the chain graph (demonstration of chain graphs are found in Figure 1 (i)). Another finding is that86

evaluation metrics such as likelihood and ranking loss do not always correspond to the performance87

of these models in downstream RL tasks.88

2 Environments for causal induction in model-based RL89

Causal models are frequently described using graphs in which the edges represent causal relationships.90

In these structural causal models, the existence of a directed edge from A to B indicates that91

intervening on A directly impacts B, and the absence of an edge indicates no direct interventional92

impact (see Appendix B for formal definitions).93

In parallel, world models in MBRL describe the underlying data generating process of the environment94

by modeling the next state given the current state-action pair, where the actions are interventions in95

the environment. Hence, learning world models in MBRL can be seen as a causal induction problem.96

Below, we first outline how a collection of simple causal structures can capture real-world MBRL97

cases, and we propose a set of elemental environments to express them for training. Second, we98

describe precise ways to evaluate models in these environments.99

2.1 Mini-environments: explicit cases for causal modulation in RL100

The ease with which an agent learns a task greatly depends on the structure of the environment’s101

underlying causal graph. For example, it might be easier to learn causal relationships in a collider102

graph ( see Figure 1(a)) where all interactions are pairwise, meaning that an intervention on one103

variable Xi impacts no more than one other variable Xj , hence the cause-effect chain has a length104

of at most 1. However, causal graphs such as full graphs (see Figure 1 (a)) can have more complex105

causal interactions, where intervening on one variable impacts can impact up to n � 1 variables106

for graphs of size n (see Figure 1). Therefore, one important aspect of understanding a model’s107

performance on causal induction in MBRL is to analyze how well the model performs on causal108

graphs of varying complexity.109

Impotant factors that contribute to the complexity of discovering the causal graph are the structure,110

size, sparsity of edges and length of cause-effect chains of the causal graph (Figure 1). Presence111

of unobserved variables also adds to the complexity. The size of the graph increases complexity112

because the number of possible graphs grows super-exponentially with the size of the graph [Eaton113

and Murphy, 2007, Peters et al., 2016, Ke et al., 2019]. The sparsity of graphs also impacts the114

difficulty of learning, as observed in [Ke et al., 2019]. Given graphs of the same size, denser graphs115

are often more challenging to learn. Futhermore, the length of the cause-effect chains can also impact116

learning. We have observed in our experiments, that graphs with shorter cause-effect lengths such as117

colliders (Figure 1 (a)) can be easier to model as compared to chain graphs with longer cause-effect118

chains. Finally, unobserved variables which commonly exist in the real-world can greatly impact119

learning, especially if they are confounding causes (shared causes of observed variables).120

Taking these factors into account, we designed two suites of (toy) environments: the121

physics environment and the chemistry environment, which we discuss in more detail in the fol-122
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Figure 3: Demonstration of the weighted-block pushing environment (left: observed, right: unobserved) along
with the feasible generalizations that the setup provides.

lowing section. They are designed with a focus on the underlying causal graph and thus have a123

minimalist design that is easy to visualize.124

2.1.1 Physics environment: Weighted-block pushing125

The physics environment simulates very simple physics in the world. It consists of blocks of different,126

unique weights. The rule for interaction between blocks is that heavier objects can push lighter ones.127

Interventions amount to move a particular block, and the consequence depends on whether the block128

next to it (if present) is heavier or lighter. For an accurate world model, inferring the weights becomes129

essential. Additionally, one can allow the weight of the objects to be either observed through the130

intensity of the color, or unobserved, leading to two environment settings described below. The131

underlying causal graph is an acyclic tournament, shown in Figure 3.132

The Physics environment consists of 50 x 50 RGB pixels of renderings of visual scenes in 2D;133

examples are shown in Figures 2-3. Each episode consists of a fixed set of k objects, drawn without134

replacement; each object is defined by shape. The initial configuration of objects in the scene is135

random. Objects reside on a 5x5 grid of cells; each grid cell is rendered as a 10x10 pixel array, giving136

rise to the 50x50 RGB images. All objects are visible at every time, so the state is Markovian. The137

action space of the agent is a discrete pair (x,y), where x is the index of the object to intervene on138

and y is a discrete value that sets the value of the intervention. The index-to-object mapping is fixed139

across episodes. The intervention involves pushing the object in a given direction (up, down, left,140

right). The dynamics of that object and others depends on the physics of the domain (e.g., a heavier141

object pushes an adjacent lighter object in the same direction). For more details about the setup,142

please refer to Appendix G.143

Fully observed setting. In the fully observed setting, all objects are given a particular color and the144

weight of each block is represented by the intensity of the color. Once the agent learns this underlying145

causal structure, it does not have to perform interventions on new objects in order to infer they will146

interact with the others.147

Unobserved setting. In this setting, the weight of each object is not directly observable by its color. The148

agent thus needs to interact with the object in order to understand the order of weights associated with149

the blocks. In this case, the weight of objects needs to be inferred through interventions. We consider150

two sub-divisions of this setting - FixedUnobserved where there is a fixed assignment between the151

shapes of the objects and their weights and Unobserved where there is no fixed assignment between152

the shape and the weight, hence making it a more challenging environment. We refer the reader to153

Appendix G.2 for details.154

2.1.2 Chemistry environment155

The chemistry environment enables more complexity in the causal structure of the world by allowing156

arbitrary causal graphs. This is depicted by simple chemical reactions, where the state of an element157

can cause changes to another variable’s state. The environment consists of a number of objects whose158

positions are kept fixed and thus, uniquely identifiable.159

The interactions between different objects take place according to the underlying causal graph which160

can either be a randomly generated DAG, or specified by the user. An interaction consists of changing161

the color (state) of a variable. At this point, the color of all variables affected by this variable (accord-162

ing to the causal graph) can change. Interventions change a block’s color unconditionally, thus cutting163

the graph edge linking it with its parents in the graph. All transitions are probabilistic and defined by164

conditional probability tables (CPTs). A visualization of the environment can be found in Figure 4.165
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The Chemistry environment (see Figure 4166

for examples) also consists of 50 x 50 RGB167

pixels of renderings of visual scenes in 2D.168

Each episode also consists of a fixed set of169

k objects, drawn without replacement; each170

object is defined by shape. The objects171

does not move within an episode, instead172

the colors of the object can change due to173

an intervention. The action space of the174

agent is still a discrete pair (x, y), where175

x is the index of the object to intervene on176

and y is a discrete value that sets the the177

color that the object is changed to.178

This environment allows for a complete179

and thorough testing of causal models as180

there are various degrees of complexities which can be easily tuned such as: (1) Complexity of the181

graph: We can test any model on many different graphs thus ensuring that a models performance is182

not only limited to a few select graphs. (2) Stochasticity: By tuning the skewness of the probability183

distribution of each object we can test how good is a given model in modelling data uncertainty. In184

addition to this we can also tune the number of object or the number of colors to test whether the185

model generalizes to larger graphs and more colors. A causally correct model should be able to infer186

the causal relationships between observed objects, as well as their respective color distribution and its187

dependence on a causal parent’s distribution.188

2.2 Evaluating causal models189

In much of the existing literature, evaluation of learned causal models is based on the structural190

difference between the learned graph and the ground-truth graph [Peters et al., 2016, Zheng et al.,191

2018]. However, this may not be applicable for most deep RL algorithms, as they do not necessarily192

learn an explicit causal structure [Dasgupta et al., 2019, Ke et al., 2020]. Even if a structure is learned,193

it may not be unique as several variable permutations can be equivalent, introducing an additional194

evaluation burden.195

Another possibility is to exhaustively evaluate models on all possible intervention predictions and196

all environment states, a process that quickly becomes intractable even for small environments. We197

therefore propose a few evaluation methods that can be used as a surrogate metrics to measure the198

model’s performance on recovering the correct causal structure.199

Predicting Intervention Outcomes. While it may not be feasible to predict all intervention outcomes200

in an RL environment, we propose that evaluating predictions on a subset of interventions provides201

an informative evaluation. Here, the test data is collected from the same environment used in training,202

ensuring a single underlying causal graph. Test data is generated from new episodes that are unseen203

during training. All interventions (actions) in the test episodes are randomly sampled and we evaluate204

the model’s performance on this test set.205

Zero Shot Transfer. Here, we test the model’s ability to generalize to unseen test environments, where206

the environment does not have exactly the same causal graph as training, but training and test causal207

graphs share some similarity.208

For example, in the observed Physics environment, a model that has learned the underlying causal209

relationship between color intensity and weight would be able to generalize to new variables with a210

novel color intensity.211

Downstream RL Tasks. Downstream RL tasks that require a good understanding of the underlying212

causal graph of the environment are also good metrics for measuring the model’s performance. For213

example, in the physics environment, we can provide the model with a target configuration in the214

form of some specific arrangement of blocks on a grid and the model needs to perform actions in215

the environment to reach the target configuration. Models that capture causal relationships between216

objects should achieve the target configuration more easily (as it is can predict intervention outcomes).217

For more details about this setup, please refer to Appendix E.218
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Metrics. We also evaluate the learned models on ranking metrics in the latent space as well as219

reconstruction-based metrics in the observation space [Kipf et al., 2019]. In particular we measure220

and report Hits at Rank 1 (H@1), Mean Reciprocal Rank (MRR) and Reconstruction loss for221

evaluation in standard as well as transfer testing settings. We report these metrics for 1, 5 and 10222

steps of prediction in the latent space (refer Appendix C).223

3 Models224

A large variety of neural network models have been proposed as world models in MBRL. These225

models can roughly be divided into two categories: monolithic models and models that have structure226

and modularity. Monolithic models typically have no explicit structure (other than layers). Some227

typical monolithic models are Autoencoders and Variational Autoencoders [Kingma and Welling,228

2013, Rezende et al., 2014]. Conversely, structured models have explicit architecture built into (or229

learned by) the model. Examples of such models are ones based on graph neural networks [Battaglia230

et al., 2016, Van Steenkiste et al., 2018, Kipf et al., 2019, Veerapaneni et al., 2020] and modular231

models [Ke et al., 2020, Goyal et al., 2019, Mittal et al., 2020, Goyal et al., 2020]. We picked some232

commonly used models from these categories and evaluated their performance to understand their233

ability for causal induction in MBRL.234

pairwise interactions, undirected edges

directed edges, higher order interactions

GNN
monlithic model

MLP

Encoder Decoder

Modular

Figure 5: All models have 3 components: encoder, decoder

and transition model. The transition models can either be
monolithic, modular model or graph neural networks (GNNs).
Monothlic models don’t have explicit structure. GNNs have
factorized representation of variables. Modular models have
factorized representation of both variables and directed edges
to potentially model causal relationships, e.g. A causing B.

To disentangle the architectural biases and235

effects of different training methodologies,236

we trained all the models on both likeli-237

hood based and contrastive losses, respec-238

tively. All models share three common239

components: encoder, decoder and tran-240

sition model. We follow a similar train-241

ing procedure as in Ha and Schmidhuber242

[2018], Kipf et al. [2019]. Details of the ar-243

chitectures as well as the training protocols244

and losses can be found in Appendix F.245

3.1 Monolithic Models246

We evaluate causal induction on two com-247

monly used monolithic models: multilay-248

ered autoencoders and variational autoen-249

coders. We follow a similar setup as in Ha250

and Schmidhuber [2018]. These models do251

not have strong inductive biases other than252

the number of layers used.253

3.2 Modular and Structured Models254

Several forms of structure can be included in neural networks, including modularity, factorized255

variables, and directed rules.256

Taking the three factors into account, we consider two types of structured models in our paper, graph257

neural networks (GNN) and so called modular networks. Graph neural networks (GNN) [Gilmer258

et al., 2017, Tacchetti et al., 2018, Battaglia et al., 2018, Kipf et al., 2019] is a widely adopted259

relational model that have a factorized representation of variables and models pairwise interactions260

between objects while being permutation invariant. In particular, we consider the C-SWM model261

[Kipf et al., 2019], which is a state-of-art GNN used for modeling object interactions. Similar to most262

GNNs, the C-SWM model learns factorized representations of different objects but for modelling263

dynamics it considers all possible pairwise interactions, and hence the transition model is monolithic264

(i.e., not a modular transition model).265

Modular networks on the other hand are composed of an initial encoder that factorizes inputs (images),266

and then a modular transition model (MTM) - M . This internal model is tasked to create separate267

factored representations for each objects in the environment, while taking into account all other268

objects’ representations. This model also learns interactions between objects. The rules learned here269

are directed rules.270
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Figure 6: Success Rate (higher is better) for different models and training losses for 1, 5 and 10 step prediction
for the Fixed Unobserved Physics environment setting with 5 objects. Here, (a) Random stands for a random
policy, (b) greedy is the policy with best greedy actions, (c) NLL are models trained in 2 stages: pretraining the
encoder/ decoder, following by only training the transition model, (d) NLL with finetune are models in 3 stages:
pretraining the encoder/ decoder, following by only training the transition model and then finetuning the encoder,
decoder and transition models together. (e) Contrastive are models trained using a contrastive loss. The GNN
and Modular models trained on constrastive loss significantly outperform the monolithic models (autoencoders
and VAE). The margin significantly increases as the number of steps to reach the goal increase, suggesting that
models with explicit structure and modularity have a much better understanding of the world.

4 Experiments271

Our experiments seak to answer the following questions: (a) Does explicit structure and modularity272

help for causal induction in MBRL? If so, then what type of structures provide good inductive bias273

for causal induction in MBRL? (b) How do different objective functions (likelihood or contrastive)274

impact learning? (c) How do different models scale to complex causal graphs? (d) Do prediction275

metrics (likelihood and ranking metrics) correspond to better downstream RL performance? (e) What276

are good evaluation criteria for causal induction in MBRL?277

We report the performance of our models on both the Physics and the Chemistry environments,278

and refer the readers to Appendix F for implementation details.. All models are trained using the279

procedure described in Appendix F.2 and are evaluated based on ranking and likelihood metrics on280

1, 5 and 10 step predictions. For the Chemistry environment, we evaluate the models on causal graphs281

with varying complexity, namely - chain, collider and full graphs. These graphs vary in the sparsity282

of edges and the length of cause-effect chains. For the Physics environment, we evaluate the model in283

the fully observed setting as well as the unobserved setting.284

4.1 Data285

The autoencoder,VAE, modularand GNN models are trained on sequences generated by an agent286

following a random policy. The training data consists of 1,000 sequences consisting of 100 frames287

per sequence. The validation data consists of 1,000 sequences with 100 frames per sequence. The288

test data consists of 10,000 sequences with 10 frames per sequence.289

4.2 Explicit structure and causal induction290

We found that for both the Physics and the Chemistry environments, models with explicit structure291

outperform monolithic models on both prediction metrics and downstream RL performances. In292

particular, models with explicit structure (GNNs and modular models) scale better to graphs of larger293

size and longer cause-effect chains.294

The Physics environment has a complex underlying causal graph (full graph: refer Figure 1 (a)). We295

found that GNNs performed well in this environment with 3 variables. They achieved good prediction296

metrics (Figure 8) and high RL performance (Figure 14) even at longer timescales. However, their297

performance drops significantly on environments with 5 objects both in terms of prediction metrics298

(Figure 9) and RL performance (Figure 15). We also see in Figures 9 and 15 that modular models299

scale much better compared to all other models, suggesting that they hold an advantage for larger300

causal graphs. Further, modular models and GNNs when evaluated on zero shot settings outperform301

monolithic models by a significant margin (Figures 20 and 21 and Tables 15 and 16).302
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Figure 7: Success rate (higher is better) for different models evaluated on 1, 5 and 10 step predictions for the
static chemistry environment with 5 objects and 5 colors. The results are grouped in types of causal graphs for
the environment, refer to section 1(a) for illustrations of different types of causal graphs. Chain and full graphs
are significantly more challenging compared to collider graphs. This suggests that causal relationships in chain
and full graphs with longer cause and effect chains are more challenging to learn compared to the collider graphs,
which has only pairwise interactions. Modular models outperform all other models in almost all cases, this is an
indication that introducing structure in the form of modularity is an important inductive bias for learning causal
models.

For the chemistry environment, we find that modular models outperform all other models for almost303

all causal graphs in terms of both prediction metrics (Figure 24) and RL performance (Figures 7304

and 26). This is especially true on more complex causal graphs, such as chain and full graphs which305

have long cause-effect chains. This suggests that modular models scales better to more complex306

causal graphs.307

Overall, these results suggest that structure, and in particular modularity, help causal induction in308

MBRL when scaling up to larger and more complex causal graphs. The performance comparisons309

on modular networks and C-SWM [Kipf et al., 2019] suggest that both factorized representation of310

variables and directed edges between variables can help for causal induction in MBRL.311

4.3 Complexity of the Underlying Causal Graph312

There are several ways to vary complexity in a causal graph: size of the graph, sparsity of edges313

and length of cause-effect chain (Figure 1). Increasing the size of the graph significantly impacts all314

models’ performances. We evaluate models on the Physics environments with 3 objects (Figure 8)315

and 5 objects (Figure 9) and find that increasing the number of objects from 3 to 5 has a significant316

impact on performance. Modular models achieve over 90 on ranking metrics over 10-step prediction317

for 3 objects while for 5 objects, they achieve only 50 (almost half the performance on 3 objects).318

A similar pattern is found in almost all models. Another factor impacting complexity of the graph319

is the length of cause-effect chain.We see that collider graphs are the easiest to learn, with modular320

models and autoencoders significantly outpeforming all other models (Figure 24). This is because the321

collider graph has short pair-wise interactions, i.e, intervention on any node in a collider graph can322

impact at most one other node. Chain and full graphs are significantly more challenging because of323

longer cause-effect chains. For a chain or a full graph of n nodes, an intervention on the kth node can324

impact all the subsequent (n� k) nodes. Modeling interventions on chain and full graphs require325

modeling more than pairwise relationships, hence, making it much more challenging. We find that326

modular models slightly outperform all other models on these graphs.327

4.4 Prediction Metrics and RL Performance328

As discussed in Section 2.2, there are multiple evaluation metrics based on either prediction metrics or329

RL performance. The performance of the model on one metric may not necessarily transfer to another.330

We would like to analyze if this is the case for the models trained under various environments. We first331

note that while the ranking metrics were relatively good for most models on physics environments,332

most of them only did slightly better than a random policy on downstream RL, especially on larger333

graphs (Figures Figure 8 - 13 and Table 3 - 8 for ranking metrics; Figure 14 - 19 and Table 9 - 14 for334

downstream RL). Figures 22, 23 and 28 show scatter plots for each pair of losses, with one loss on335

each axis. While there is some correlation between ranking metric and RL performance (Modular336

and GNN; Figure 22), we did not find this trend to be consistent across models and environment337

settings. We feel that these results give further evidence of need to evaluate on RL performance.338
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4.5 Training objectives and learning339

Likelihood loss and contrastive loss [Oord et al., 2018, Kipf et al., 2019] are two frequently used340

objectives for training world models in MBRL. We trained the models under each of these objective341

functions to understand how they impact learning. In almost all cases, models with explicit structure342

(modular models and GNNs) trained on contrastive loss perform better in terms of ranking loss343

compared to those trained on likelihood loss (refer to Figure 8 - 13). We don’t see a very clear344

trend between training objective and downstream RL performance but we do see a few cases where345

contrastively trained models performed much better than others (refer to Figures 6, 14, 18 and 19 and346

Tables 9, 13 and 14). For other key insights and experimental conclusions on different environments,347

we refer the readers to Appendix G.6 for the physics environment and Appendix H.3 for the chemistry348

environment.349

5 Related work350

Video Prediction and Visual Question Answering. There exist a number of video prediction [Yi et al.,351

2019, Baradel et al., 2019] and visual question answering [Johnson et al., 2017] datasets that also352

make use of a blocks world for visual representation. Though these datasets can appear visually353

similar to ours at first glance, they lack two essential ingredients for systematically evaluating models354

for causal induction in MBRL. The first is that they do not allow active interventions and hence make355

it challenging for evaluating model-based reinforcement learning algorithms. Another key point is356

that these environments do not allow one to systematically perturb different aspects of causal graphs,357

hence, preventing to systematically study the performances of models for causal induction.358

RL Environments. There exist several benchmarks for multi-task learning for robotics (Meta-World359

[Yu et al., 2019] and RLBench [James et al., 2020]), for Physical reasoning Bakhtin et al. [2019]360

and for video gaming domain (Arcade Learning Environment, CoinRun [Cobbe et al., 2018], Sonic361

Benchmark [Machado et al., 2018], MazeBase [Nichol et al., 2018] and BabyAI [Chevalier-Boisvert362

et al., 2018]). However, as mentioned earlier, these benchmarks do not allow one to systematically363

control different aspects of causal models (such as the structure, the sparsity of edges and the size of364

the graph), hence making it difficult to systematically study causal induction in MBRL. The Alchemy365

[Wang et al., 2021] environment, which was released earlier this year, moves a step towards causal366

induction for meta-RL. Though the environment allows for some level of control of the underlying367

causal structures of the environment, it still does so in a limited way.368

Block World. The AI community has been using the “blocks world” for decades as a testbed for369

various AI problems, including learning theory [Winston, 1970], natural language [Winograd, 1972],370

and planning [Fahlman, 1974]. Block world allows to easily vary different aspects of the underlying371

causal structure, and also allow interventions to be performed on many high level variables of the372

environment giving rise to a large space of tasks which have well-defined relations between them.373

6 Discussions and conclusions374

In our work, we focus on studying various model-based approaches for causal induction in model-375

based RL. We highlighted the limitations of existing benchmarks and introduced a novel suite of376

environments that can help measure progress and facilitate research in this direction. We evaluated377

various models under many different settings and discuss the essential problems and challenges in378

combining both fields i.e ingredients, that we believe are common in the real world, such as modular379

factorization of the objects and interactions of objects governed by some unknown rules. Using a380

proposed evaluation framework, we demonstrate that structural inductive biases are beneficial to381

learning causal relationships and yield significantly improved performances in learning world models.382

Limitations and Future Work. There are some limitations of this work that can be explored in383

interesting directions in the future. One direction is extending the environments to settings such as384

meta-learning, where different causal graphs are set for each episode of training. Another limitation of385

our work is that in the environments which we propose the effect occurs immediately after the cause,386

but in real world settings the effect may sometimes be delayed. For example, if a person smokes, it387

can take variable amount of time until they get cancer. This is very relevant for reinforcement learning,388

as this is tightly related to credit assignment in RL. Future works could explore environments where389

the relation between cause and effect does not occur at fixed time-scales.390

Social Impact. The authors do not foresee negative social impact of this work beyond that which391

could arise from general improvements in ML.392
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