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Abstract

A significant portion of the textual data used in001
the field of Natural Language Processing (NLP)002
exhibits gender biases, particularly due to the003
use of masculine generics (masculine words004
that are supposed to refer to mixed groups of005
men and women), which can perpetuate and006
amplify stereotypes. Gender rewriting, a NLP007
task that involves automatically detecting and008
replacing gendered forms with neutral or op-009
posite forms (e.g., from masculine to femi-010
nine), can be employed to mitigate these biases.011
While such systems have been developed in012
a number of languages (English, Arabic, Por-013
tuguese, German, French), automatic use of014
gender neutralization techniques (as opposed015
to inclusive or gender-switching techniques)016
has only been studied for English. This paper017
presents GeNRe, the very first French gender-018
neutral rewriting system using collective nouns,019
which are gender-fixed in French. We intro-020
duce a rule-based system (RBS) tailored for021
the French language alongside two fine-tuned022
large language models trained on data gener-023
ated by our RBS. We also explore the use of024
instruction models to enhance the performance025
of our other systems and find that Claude 3026
Opus combined with our dictionary achieves027
results close to our RBS. Through this contribu-028
tion, we hope to promote the advancement of029
gender bias mitigation techniques in NLP for030
French.031

1 Introduction032

Since the 1970s, several psycholinguistic studies033

have focused on how language influences thoughts034

(Berlin and Kay, 1969; Kay and McDaniel, 1978).035

Further studies examining gender in language036

showed that it could lead to cognitive biases (Jacob-037

son and Insko, 1985; Sczesny et al., 2016), particu-038

larly when it comes to the use of masculine generics039

(MG), that is masculine words that are supposed to040

refer to mixed groups of men and women (Braun041

et al., 2005; Richy and Burnett, 2021; Gygax et al.,042

2008, 2019). For example, Stahlberg et al. (2001) 043

showed that when asked to name a celebrity in a 044

certain field in German, respondents were more 045

likely to give the name of a man when a masculine 046

generic was used in the question. 047

Gender bias in natural language processing 048

(NLP) models is a critical issue that can lead to 049

biased predictions and the amplification of bias 050

in the training data (Ducel et al., 2024; Lu et al., 051

2020; Stanczak and Augenstein, 2021; Kotek et al., 052

2023). This problem is particularly relevant for 053

machine translation systems, which are highly sus- 054

ceptible to gender bias when translating between 055

languages with different grammatical gender sys- 056

tems (Savoldi et al., 2021; Vanmassenhove, 2024). 057

Data augmentation, which involves balancing the 058

amount of data for all genders in a specific lan- 059

guage, has been proposed as a potential solution 060

to debias NLP systems (Zhao et al., 2018). This 061

led to the development of an NLP task known as 062

“gender rewriting,” whose goal is to automatically 063

propose alternatives to sentences containing MG. 064

As of yet, automatic gender neutralization tech- 065

niques have only been developed in English (Van- 066

massenhove et al., 2021; Sun et al., 2021). Thus, 067

we develop a French gender-neutral rewriting sys- 068

tem using human collective nouns (CN), defined by 069

Lecolle (2019) as “nouns referring to entities com- 070

prised of groups of individuals.”1 CNs have been 071

widely discussed in the literature, especially when 072

it comes to French (Flaux, 1999; Lammert, 2010; 073

Lammert and Lecolle, 2014; Lecolle, 2019). Since, 074

in French, this type of noun has a gender which 075

does not depend upon the referent’s,2 it is an effec- 076

tive way of achieving gender neutralization. This 077

gender-neutral rewriting system, GeNRe (Gender- 078

Neutral Rewriting System Using French Collective 079

1In French: « nom désignant une entité composée d’un
ensemble d’individus humains. »

2For instance, “la police” (“police”) refers to both police-
men and policewomen.
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Nouns), is the very first gender-neutral rewriting080

system for French3 and could foster the develop-081

ment of other types of gender rewriting systems for082

that language in the future.083

2 The Task of Gender Rewriting084

While Alhafni et al. (2022b) were the first to de-085

fine this task as “gender rewriting,” similar efforts086

had already been pursued for Arabic (Habash et al.,087

2019), German (Pomerenke, 2022), and English088

(Sun et al., 2021). Alhafni et al. (2022b) define089

this task as: “generating alternatives of a given090

Arabic sentence to match different target user gen-091

der contexts.” (2). While this definition works092

well for the work by Alhafni et al. (2022b), as they093

focus specifically on Arabic and create a system094

to switch between the masculine gender and the095

feminine gender, it is not universally applicable.096

Indeed, among the aforementioned works, several097

approaches to gender rewriting have been explored:098

Habash et al. (2019) and Alhafni et al. (2022a) de-099

veloped a system to transform Arabic sentences100

with masculine words into sentences with feminine101

equivalents, and vice versa. The system created102

by Pomerenke (2022) provides inclusive sugges-103

tions for input sentences in German and has led104

to the publication of an online resource letting the105

user choose the type of inclusive transformation to106

apply. More recently, Veloso et al. (2023) also107

developed an inclusive gender-rewriting system108

for Portuguese, and Lerner and Grouin (2024) for109

French. Finally, Sun et al. (2021), Vanmassenhove110

et al. (2021) and He et al. (2021) created systems to111

neutralize gender in an English input sentence, but112

no such system exists for French. As part of this113

work and in order to accomodate a larger amount114

of languages and transformation types, we reframe115

the initial task definition given by Alhafni et al.116

(2022b) as “generating one or more alternative sen-117

tences that either neutralize gender, adopt inclusive118

forms, or switch to a different gender”.119

3 Gender in French120

In French, nouns (N) are classified as either mas-121

culine or feminine, and the gender of a noun in-122

fluences the form of determiners (D), adjectives123

(A) and past participle verbs (V) that are syntacti-124

cally related. Similarly, coreferent pronouns (P),125

that is pronouns that are used to refer to something126

3Code and data are made publicly available on GitHub, un-
der license CC BY-SA 4.0 https://github.com/REDACTED

which has already been mentioned previously, also 127

feature the same gender. Examples 1 (masculine) 128

and 2 (feminine) highlight the syntactic differences 129

that arise when using either a masculine unanimate 130

noun (“courrier”, mail) and a feminine unanimate 131

noun (“lettre”, letter). 132

(1)
D
Le

N
courrier

A

recommandé a été
V

écrit récem- 133

ment.
P
Il est

V

adressé à son mari. 134

(The registered letter [m.] has been recently written. It 135

[m.] is adressed to her husband.) 136

137

(2)
D
La

N
lettre

A

recommandée a été
V

écrite récem- 138

ment.
P

Elle est
V

adressée à son mari. 139

(The registered letter [f.] has been recently written. It 140

[f.] is adressed to her husband.) 141

The gender of human role nouns reflects the 142

sociological gender of the referent (for instance, 143

“danseuse” refers to a female dancer), while gender 144

of nouns referring to unanimated beings is arbitrary 145

(Watbled, 2012). 146

The masculine gender for human nouns is con- 147

sidered to be the “default” gender in French, and 148

can be used in a non-specific context (in the singu- 149

lar form, as in Example 34) or to refer to groups of 150

people composed of both men and women (in the 151

plural form, as in Example 4). 152

(3) Un professeur doit savoir faire preuve 153

d’autorité. 154

(A professor [m.] has to know how to show authority.) 155

(4) Les filles et les garçons sont partis. 156

(The girls and the boys left [m.].) 157

However, the use of masculine as the default 158

gender can lead to both gender biases and invisi- 159

bilizing women. While this also applies to other 160

languages featuring a semantic grammatical gen- 161

der system that classifies human nouns or pro- 162

nouns based on real-world distinctions, as it has 163

been demonstrated in studies conducted in German 164

(Stahlberg et al., 2001) and English (Jacobson and 165

Insko, 1985), when it comes to French in particu- 166

lar, a 2017 survey conducted by Harris Interactive 167

(2017) following a methodology close to that of 168

Stahlberg et al. (2001), found that when the mas- 169

culine generic form is used, respondents tend to 170

think of men. Similarly, according to Gabriel et al. 171

(2018), masculine generic human nouns are more 172

likely to be associated with male referents, and 173

4In this example, “professeur” is considered as a masculne
generics insofar as it does not refer to one specific male indi-
vidual, but to any individual serving as “professor”.
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specifically highlighting the generic nature of MG174

does not have an effect on the biased perception of175

survey participants (Gygax et al., 2012).176

Consequently, two main types of writing tech-177

niques can be used to avoid the use of MG: visibi-178

lization techniques and neutralization techniques.179

Visibilization techniques seek to highlight the180

feminine ending of words by separating the mas-181

culine ending from the feminine one through the182

use of specific symbols (asterisk, interpunct: pro-183

fesseur·e, as in Example 5) or by affecting the184

feminine ending directly (using capital or bold let-185

ters). Neutralization techniques, on the other hand,186

mainly revolve around different types of words:187

epicene words, that is words whose form is the188

same for masculine and feminine, whether they189

may have a generic (e.g. “personne”, person, as in190

Example 6) meaning or a specific (e.g. “spécial-191

iste”, specialist) one, or words that refer to groups192

of people, such as CNs (e.g. “lectorat”, readership),193

these having a fixed gender which is not associated194

with the gender of the people within that group.195

(5) Un·e professeur·e doit savoir faire preuve196

d’autorité.197

(A [m./f.] professor [m./f.] has to know how to show198

authority.)199

200

(6) Une personne professeure doit savoir faire201

preuve d’autorité.202

(A person teaching has to know how to show authority.)203

204

Given the impact of inclusive formulations on205

mitigating gender biases, developing a system ca-206

pable of automatically rewriting text to reduce the207

prevalence of MG could be a valuable tool for data208

augmentation. Notably, to the best of our knowl-209

edge, no such system has been developed specifi-210

cally for the French language, making this a pio-211

neering effort in the field. By focusing on gender212

neutralization, our work aims to fill this gap and213

explore the potential of CNs and epicene words in214

promoting more inclusive language. We specifi-215

cally chose to focus on gender neutralization due216

to it being a less explored issue in research compar-217

atively to visibilization techniques. While works218

on gender neutralization and its application to NLP219

tools exist in Italian (Piergentili et al., 2023) and220

German (Lardelli and Gromann, 2023), no such ef-221

forts have been pursued for French. By specifically222

focusing on the use of CNs for gender neutraliza-223

tion, we aim to see how effective they can be as224

their usage in everyday language is still restricted 225

to a few words and their full potential has not yet 226

been explored. 227

Moreover, by focusing on gender neutralization, 228

our work targets a writing technique that, com- 229

pared to visibilization, tends to be less contentious 230

among native French speakers, as it does not alter 231

the spelling of existing words nor does it intro- 232

duce non-standard or new punctuation marks to 233

separate the feminine suffix from the base word 234

form (Burnett and Pozniak, 2021). Finally, gender- 235

neutralization challenges the binary male/female 236

gender dichotomy and is better adapted for peo- 237

ple whose gender falls outside of the traditional 238

categories. 239

4 Methodology 240

To build our automatic gender-neutralization sys- 241

tem, we propose three different approaches: a rule- 242

based approach, a model fine-tuning approach, and 243

an instruction model approach. To build the re- 244

sources used for these systems, we first create a 245

dictionary of French CNs and their member noun 246

counterparts, which we describe in Section 4.1. In 247

Section 4.2, we then give details about the datasets 248

that we extracted sentences from for the devel- 249

opment of our rule-based system, large language 250

model (LLM) fine-tuning and evaluation. Finally, 251

in Section 4.3, we explain our experimental design 252

with the aforementioned model types. While our 253

work focuses specifically on French, the method- 254

ology presented below is applicable to any lan- 255

guage which can use collective nouns as a gender- 256

neutralizing technique (e.g., Spanish) given a dic- 257

tionary of human-member nouns. When it comes 258

to syntactic changes, especially considering gender 259

and number, those would be very similar in other 260

romance languages such as Spanish, Italian or Por- 261

tuguese. As a result, the amount of work needed to 262

adapt our methodology to these languages specifi- 263

cally would be much lower compared to syntacti- 264

cally or morphologically more complex languages. 265

4.1 Dictionary 266

First, we manually created a dictionary with French 267

CNs and their member noun counterparts. Three 268

approaches were used to fill this dictionary: litera- 269

ture review, manual collecting and semi-automatic 270

collecting. 271

Literature review. French CNs have been exten- 272

sively studied in the linguistic literature. We 273
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drew on the list of 138 CNs by Lecolle (2019),274

the most exhaustive list of French CNs to our275

knowledge, which provided a comprehensive276

starting point for our dictionary. Some nouns277

were excluded from our dictionary due to their278

polysemy or restrictive semantics. For ex-279

ample, the CN “troupe” has multiple mean-280

ings (troop, troupe), and its use would require281

specifying the associated subdomain or group282

members to avoid confusion. Similarly, the283

semantics of nouns like “trio” have a too re-284

strictive semantics, only applying to groups of285

exactly three people. After careful selection,286

we retained 105 entries from Lecolle’s list.287

Manual collecting. We empirically collected CNs288

from media and Internet sources over an ex-289

tended period. This approach allowed us to290

identify nouns not presented in the literature291

on CNs, providing a complementary perspec-292

tive to the literature review. With this ap-293

proach, we added 46 entries to our dictionary.294

Semi-automatic collecting. We scraped the295

French version of Wiktionary5 to retrieve296

CNs with the suffix “-phonie”, which refer to297

speakers of a language (e.g. “anglophonie”,298

English-speaking world). We developed a299

Python script to generate equivalent CNs by300

replacing the suffix “-phonie” with “-phone”301

(e.g. “anglophone”). This approach enabled302

us to efficiently collect a set of nouns that303

follow a specific pattern, adding 164 entries,304

manually checked.305

In total, our dictionary thus contains 315 entries.306

Table 1 contains a few examples of entries in our307

dictionary.308

4.2 Datasets309

Using our dictionary, we searched for occurrences310

of masculine plural member nouns in a French311

Wikipedia dataset with 1.58 million texts (graelo,312

2023)6. We extracted 292,076 sentences containing313

such nouns. In addition, we also extracted French314

sentences from the Europarl EN-FR corpus (Koehn,315

2005), a corpus created from the proceedings of the316

European Parliament and available in 21 languages,317

including English and French. This corpus was fil-318

tered to include French sentences only, and 106,878319

5https://fr.wiktionary.org/wiki/
6Dataset made available here: https://huggingface.

co/datasets/graelo/wikipedia. License: CC-BY-SA-3.0

Collective noun Member noun (masc. plural)
académie
(academy)

académiciens
(academicians)

armée
(army)

soldats
(soldiers)

milice
(militia)

miliciens
(militiamen/women)

artillerie
(artillery)

artilleurs
(artillerists)

auditoire
(listenership)

auditeurs
(listeners)

ballet
(ballet)

danseurs
(dancers)

police
(police)

policiers
(police officers)

Table 1: Collective noun-member noun dictionary
overview

additional sentences were extracted for model fine- 320

tuning and evaluation (total 398,954). Both of these 321

corpora are made available for research purposes. 322

For the rule-based system specifically, tags were 323

automatically added at the beginning and at the 324

end of each member phrase in the extracted sen- 325

tences, with the ID of the entry in the dictionary. 326

This was done because member nouns may have 327

several CN counterparts, leading to several differ- 328

ent sentences being generated in addition to the 329

main one. For instance, the member noun “sol- 330

dats” (soldiers) could well be replaced with CNs 331

“armée” (army) “bataillon” (battalion), “infanterie” 332

(infantry) or “régiment” (regiment). As we used 333

data generated by our rule-based system for model 334

fine-tuning (see Section 4.3.2), this was especially 335

useful to generate all the possible variations of the 336

input sentence, and thus increase the number of 337

examples the models were trained on. Moreover, 338

the use of tags also helps ensure the member nouns 339

to be replaced in the input sentence, as only those 340

that are between tags will be taken into account. 341

Example 7 shows how these tags are used. 342

(7) Un historique permet de lister <n-126>les au- 343

teurs</n> et de consulter les modifications 344

successives de l’article par <n-68>ses rédac- 345

teurs</n>. 346

(A history allows one to list <n-126>the authors</n> 347

and view successive modifications to the article by <n- 348

68>its editors</n>.) 349

Finally, we created a corpus-specific evalua- 350

tion dataset comprised of 250 sentences from 351

each corpus (total 500), and we manually gender- 352

4
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neutralized each sentence to have gold sentences.353

4.3 Models354

In this section, we present three different model355

types for gender-neutral rewriting: a rule-based356

model, two fine-tuned language models, and an357

instruct-based language model. Each model takes358

a different approach to the task, allowing us to359

compare their performance.360

4.3.1 Rule-based model361

We developed a rule-based system (RBS) to auto-362

matically apply the correct syntactic rules when363

converting a member noun into a CN, which leads364

to number and gender changes in the sentence.365

The RBS consists of two main components: a366

syntactic dependency detection component and a367

generation component.368

The dependency detection component primarily369

relies on spaCy (Montani et al., 2024) with the370

fr_core_news_sm pipeline as well as a set of rules371

to detect the words that are syntactically related to372

the member noun that needs to be replaced.373

The generation component replaces each mem-374

ber noun in the sentence with its CN counter-375

part found in the dictionary, adjusting the deter-376

miner, handling elision, and reinflecting the de-377

tected dependencies using inflecteur (Chuttars-378

ing, 2021), a Python module leveraging the De-379

laf French morphological dictionary7 and french-380

camembert-postag-model8, a CamemBERT-based381

(Martin et al., 2020) part of speech (POS) tagging382

model for French. Our RBS also makes additional383

replacements for past participles and object pro-384

nouns as these are not always being well handled by385

the inflecteur Python module. If no member nouns386

are detected in the sentence, the original sentence387

will be returned instead as it is already considered388

gender-neutral. Figure 1 shows an overview of the389

rule-based model pipeline.390

4.3.2 Fine-tuned models391

Previous research on gender rewriting has focused392

on training neural models as well as fine-tuning393

large language models using data generated by394

RBS to improve task-specific performance. While395

some studies (Sun et al., 2021; Veloso et al., 2023)396

showed a decrease in performance compared to397

RBS, Vanmassenhove et al. (2021) found a notable398

7https://uclouvain.be/fr/instituts-recherche/
ilc/cental/delaf-2-0.html

8https://huggingface.co/gilf/
french-camembert-postag-model

Tokenization

Member Noun
Detection

Syntactic
Dependencies

Extraction

Determiner
Replacement

Member Noun
Replacement with

Collective Equivalent

Applying
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Correction
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Correction
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"Les soldats sont partis."
("The soldiers [member n., masc. pl.] left.")

"L'armée est partie."
("The army [coll. n., fem. sg.] left.")

Figure 1: Rule-based model replacement pipeline
overview

improvement of 0.27 in WER. We aim to investi- 399

gate whether fine-tuning large language models can 400

significantly improve the results of RBS, hypoth- 401

esizing that the linguistic knowledge acquired by 402

these models during training on large text corpora 403

will help resolve errors in the training corpus and 404

enhance results. 405

Two Seq2seq LLMs, t5-small (Raffel et al., 406

2020) and m2m100_418M (Fan et al., 2020), were 407

selected for the experiments. Those models were 408

chosen for their great text-to-text performance and 409

their relatively small size, making the training pro- 410

cess easier. Furthermore, as m2m100_418M had 411

already been used by Veloso et al. (2023), we 412

want to compare the results we can get for our 413

specific task. Both models were fine-tuned using 414

our two RBS-generated corpora (Wikipedia and 415

Europarl) containing gender-neutralized and non- 416

gender-neutralized sentence pairs. The training 417

dataset for each model consisted of 60,000 sen- 418

tence pairs per corpus, and the validation dataset 419

had 6,000 (10%). Hyperparameters used for train- 420

ing are available in Appendix A. 421
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Type WER (↓) BLEU (↑) Cos. sim. (↑)
Baseline (unchanged) 13.35% 80.55 0.914
GeNRe-RBS 3.40% 93.43 0.982
GeNRe-T5 5.11% 90.68 0.968
GeNRe-M2M-100 5.40% 90.17 0.967
Claude 3 Opus-BASE 12.16% 82.98 0.925
Claude 3 Opus-DICT 3.75% 93.64 0.975
Claude 3 Opus-CORR 10.17% 85.13 0.95

Table 2: Results by model type. Bold indicates the best results overall.

4.3.3 Instruction model422

The rapid development of LLMs and advances in423

NLP have demonstrated the ability to manipulate424

language models’ behavior to predict text continu-425

ations and perform specific tasks without explicit426

training, leading to instruction models such as In-427

structGPT (Ouyang et al., 2022), or, more recently,428

Llama 3 (Grattafiori et al., 2024) or DeepSeek-429

V3 (DeepSeek-AI et al., 2024). This is primar-430

ily achieved through the use of “prompts” or in-431

structions given to the language model (Liu et al.,432

2021). While some studies have briefly mentioned433

the potential of instruction models to reduce gender434

biases in automatically generated texts, and have435

occasionally experimented with such models,9 no436

gender rewriting study has yet analyzed their ca-437

pabilities for this specific task. We chose Claude438

3 Opus claude-3-opus-20240229 due to its best439

text generation performance at the time of the ex-440

periments (Anthropic, 2024) and its API being free441

to use during the period the experiments were con-442

ducted.10443

To comprehensively evaluate the performance of444

Claude 3 Opus, we designed three distinct types445

of instructions to test its ability to generate gender-446

neutral texts. Corresponding prompts are available447

in Appendix B.448

• The “BASE” instruction provides a basic task449

description, asking the model to make the sen-450

tence inclusive by replacing MG with their451

CN equivalents, without explicitly specifying452

the replacement word.453

9For instance, Veloso et al. (2023) tried to make use of
OpenAI’s ChatGPT to generate gender-inclusive sentences in
Portuguese, and suggested that the use of instruction models
could prove useful to automatically create gender-inclusive
datasets.

10For the announcement, see https://www.anthropic.
com/news/claude-3-family; for API usage, see https:
//docs.anthropic.com/en/docs/about-claude/models

• The “DICT” instruction leverages our collec- 454

tive noun dictionary and asks the model to re- 455

place MG with their corresponding CNs, those 456

being explicitely mentioned. There are two 457

different versions for the “DICT” instruction: 458

“DICT-SG”, used when only one generic mas- 459

culine noun with a matching CN was found in 460

the sentence, and “DICT-PL”, used when sev- 461

eral generic masculine nouns with matching 462

CNs were found. 463

• The “CORR” instruction takes sentences gen- 464

erated by our RBS as input and tasks the 465

model with correcting potential errors, such as 466

mismatches between verb and adjective num- 467

bers and genders. 468

5 Results 469

To evaluate the performance of our different rewrit- 470

ing models, we leverage two evaluation metrics 471

commonly used for the task of gender rewriting: 472

Word Error Rate (WER) and BLEU (Papineni et al., 473

2002). JiWER 3.0.311 and sacrebleu 2.4.212 Python 474

packages were used with default parameters. We 475

also provide cosine similarity, an additional metric 476

not used for previous gender rewriting works. 477

Average results of each model on the two corpora 478

are available in Table 2. 479

The RBS and Claude 3 Opus-DICT achieved 480

the best results in our experiments, with the RBS 481

achieving 3.40% WER and 0.982 cosine similarity, 482

and Claude 3 Opus-DICT achieving 93.64 BLEU. 483

The fine-tuned models also showed mostly promis- 484

ing results, even though lower than the RBS and 485

Claude 3 Opus DICT (5.11% WER, 90.68 BLEU 486

and 0.968 cosine similarity for T5; 5.40% WER, 487

90.17 BLEU and 0.967 cosine similarity for M2M- 488

100). Comparing the two of them, they achieved 489

11https://pypi.org/project/jiwer/
12https://pypi.org/project/sacrebleu/
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similar results, with the T5 model slightly outper-490

forming M2M-100. However, both models showed491

a minor decrease in performance compared to the492

RBS. As a result, similarly to Veloso et al. (2023)493

and in contrast with the findings of Vanmassenhove494

et al. (2021), we do not find a significant improve-495

ment compared to our RBS following fine-tuning.496

6 Discussion497

We provide the distribution of errors made by the498

models in Figure 2. For GeNRe-RBS, GeNRe-499

T5 and GeNRe-M2M-100 models, errors were500

manually annotated for the Europarl corpus13 and501

agreed upon by two annotators based on previ-502

ously defined error type descriptions and hypothet-503

ical examples. Error types are divided into three504

main categories: POS (ADJ, DET, DET_COREF,505

PRON_COREF, VERB), text generation (CASE,506

GEN_FAILURE, SPECIAL_CHAR) and other507

(ELISION, MISID_NOUN, PUNCT, SEM, UNRE-508

PLACED). Error categories were first created by509

looking at the sentences generated by the RBS and510

the fine-tuned models, and were then applied for511

each sentence and each model (500 sentences × 3).512

Multiple error types may be applied to one sen-513

tence. We provide a description of each error type514

in Table 6. Text generation errors, labeled with (N)515

both in Figure 2 and Table 6, are strictly specific to516

the fine-tuned models.517

Since the text generated by instruction models518

is much less deterministic than what can be found519

in sentences modified by the RBS or the fine-tuned520

models, we have leveraged GPT-4o mini (Ope-521

nAI, 2024) and in-context learning (Brown et al.,522

2020) to generate error labels specific to the instruc-523

tion model outputs. This was done in three steps:524

first, we asked GPT-4o mini to compare golden525

sentences and Claude 3 Opus-generated sentences526

for each instruction (BASE, DICT, CORR), and527

generate a short explanation of the errors. Sec-528

ond, these explanations were used to query the529

model once again (with the same previous con-530

text and sentences), this time asking it to gener-531

ate error labels. Previously generated error labels532

were automatically added to the prompt as they533

were generated and the model was instructed to534

reuse any existing label if any matched the error535

type. Prompts and hyperparameters are available536

in Appendix E. Finally, we manually merged out-537

put labels with existing labels already applied for538

13Human annotation for the Wikipedia corpus is ongoing.

the RBS and fine-tuned models, and created high- 539

level error label categories to have better visibil- 540

ity (e.g., “GENDER_AGREEMENT” and “NUM- 541

BER_AGREEMENT” error types were merged 542

into a single “AGREEMENT” high-level label). 543

Across the RBS and the fine-tuned models, the 544

most prominent error types are related to verbs and 545

noun cases. Verbs account for 26.6% of errors for 546

GeNRe-RBS, 21.1% for GeNRe-T5, and 22.9% for 547

GeNRe-M2M-100. On the other hand, adjectives 548

account for 24.2% of errors for GeNRe-RBS, and 549

20.1% for both GeNRe-T5 and GeNRe-M2M-100. 550

The M2M-100 model is highly prone to making 551

token-specific generation errors (14.7%), this type 552

of error being strictly specific to this model. Simi- 553

larly, we find that the T5 model also makes specific 554

errors related to the handling of special characters. 555

We discuss these issues more in detail in Section 6. 556

When it comes to instruction models, most er- 557

rors are related to semantics (SEM) and agree- 558

ment. SEM is the first error type for the BASE 559

(25.5%; 214 occurrences) and CORR (17%; 115 560

occurrences) instruction types, and the second 561

for the DICT instruction type (29.4%; 91 occur- 562

rences). AGREEMENT is the error type most 563

found in the DICT instruction type (29.7%; 92 oc- 564

currences), and is the third most frequent error type 565

for the BASE (14.2%; 119 occurrences) and CORR 566

(14.8%; 100 occurrences) instruction types. Inter- 567

estingly, the INVALID_COLLNOUN error type, 568

which occurs when the corresponding MG member 569

noun has not been replaced or the chosen/specified 570

collective noun is not in accordance with the con- 571

text, is the second most frequent error for the BASE 572

instruction type. This may be due to the prompt 573

being the least specific and leading to some nouns 574

being incorrectly replaced by some collective noun 575

equivalent, or left unreplaced. 576

A qualitative analysis of the generated sentences 577

revealed that the RBS was making most of its errors 578

when modifying adjectives and verbs. This is not 579

surprising given that these two part-of-speech cate- 580

gories are the ones which require the most complex 581

changes when transitioning from a member noun 582

to a CN. Indeed, in French, adjectives undergo a 583

certain number of changes when changing number 584

or gender. Verbs can also have these same changes 585

when used as past participles; otherwise, only num- 586

ber change will affect them. For instance, in Exam- 587

ple F8, the verb “seront” (pl., will be) should have 588

been changed to “sera” (sg.) to match with the new 589

CN “citoyenneté” (citizenry). 590
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Figure 2: Error distribution for RBS, neutral and instruction models

Similarly, in Example F9, the adjective “chargés”591

(pl., in charge of ) should match the new singular592

CN “parlement” (parliament) and be changed to593

“chargé”.594

When it comes to the fine-tuned models (T5 and595

M2M-100), analysis shows that they were able to596

generalize linguistic rules and correct dependen-597

cies that were not properly modified by the RBS,598

especially verbs and adjectives, slightly reducing599

the number of errors for these POS. As a result, in600

spite of their lower results compared to the RBS,601

fine-tuned models may still prove useful in certain602

scenarios where the RBS struggles to apply lin-603

guistic rules correctly, such as in sentences with604

complex dependencies or nuanced contextual re-605

lationships. Example F10 shows a case where the606

verb “vouloir” (want) is correctly inflected by the607

fine-tuned model.608

Additionally, the fine-tuned models were capa-609

ble of utilizing different CN equivalents from the610

dictionary (some CNs being associated to the same611

member noun).612

Errors observed in the fine-tuned models and613

different from the RBS included token generation614

failures (M2M-100, Example F11, where “Neb-615

ski” was generated instead of “Zemski”), and in-616

correct generation of special characters (T5, as in617

Example F12 where “main-d’uvre” was generated618

instead of “main-d’œuvre” [labour]). The first er-619

ror might come from the multilingual aspect of the620

model, as it may generate words or mix tokens621

from other languages, while the second error is622

probably due to the model being mostly trained on623

English data. For both models, we also found cases624

where words were not uppercased correctly, as in625

Example F13.626

As far as the instruction model is concerned,627

Claude 3 Opus-BASE and CORR were found to628

be highly prone to altering the formulation of sen- 629

tences, as shown in Example F14. Claude 3 Opus- 630

DICT was found to have a similar effect, but to 631

a much lesser extent, likely due to the increased 632

precision of the prompt. 633

Notably, the DICT prompt was observed to gen- 634

erate sentences with correct verbs and adjectives, 635

indicating its ability to effectively leverage the CN 636

dictionary to produce grammatically accurate sen- 637

tences. We give such an example in Example F15. 638

Nonetheless, among the errors made by Claude 3 639

Opus-DICT, we identified instances of unreplaced 640

nouns, where the model failed to substitute the MG 641

with their corresponding CN equivalents, such as 642

in Example F16. 643

7 Conclusion 644

Our work represents a step towards addressing 645

gender-biased textual data in French. We make 646

three key contributions to the task of gender rewrit- 647

ing in NLP: 1) a dictionary of French CNs and their 648

corresponding member nouns, which serves as a 649

resource for future research in this area; 2) a dataset 650

of gender-neutralized and non-gender-neutralized 651

sentences; and 3) a rule-based system that effec- 652

tively gender-neutralizes French sentences using 653

CNs, laying groundwork for further advancements 654

for this task in that language. Our experiment 655

combining our manually created dictionary with 656

the Claude 3 Opus instruction model also shows 657

promise for the use of such models for the task 658

of gender rewriting. We strongly believe that fu- 659

ture research further exploring the capabilities of 660

these models for that task could lead to the devel- 661

opment of effective solutions for mitigating gender 662

bias in other languages with collective nouns (such 663

as Spanish) or similar gender-neutralization tech- 664

niques. 665
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Limitations666

French CNs adhere to specific semantic rules,667

which means that their usage may not be univer-668

sally applicable to all sentences, sometimes result-669

ing in constructions that appear asemantic. This670

limitation is further compounded by the fact that671

only a small subset of these nouns is actively em-672

ployed in everyday language by native speakers,673

which restricts their versatility and adaptability in674

various linguistic contexts. We however believe675

that they are good candidates for gender neutraliza-676

tion, and the development of our system may help677

promote a broader use of such nouns. In addition,678

combining our system with a contextual or seman-679

tic analysis framework could help address these680

issues by ensuring that the CN equivalents are both681

contextually relevant and semantically appropriate.682

Furthermore, even though collective nouns have683

not been tested specifically, recent research works684

from Spinelli et al. (2023) and Tibblin et al. (2023)685

showed that gender-neutralization appears to be686

less effective to counter gender biases induced by687

the use of MG. As previously stated, however, this688

writing technique is less contentious among the689

general population compared to others which ex-690

plicitly highlight the feminine ending of words or691

separate it from the masculine ending.692

Finally, this work is limited to the French lan-693

guage only, and the methodology we resorted to can694

only be used by languages with collective nouns695

acting as gender neutralizers (e.g., Spanish) and696

requires the creation of a language-specific human-697

member noun dictionary.698

Ethics Statement699

We did not filter the datasets that were used for the700

development of the RBS and for fine-tuning mod-701

els for harmful, hateful, inappropriate or personal702

content. Considering the sources used to constitute703

these datasets (Wikipedia and Europarl), we be-704

lieve it very unlikely for those to display such type705

of content. Similarly, when it comes to output sen-706

tences generated by the fine-tuned models, since707

those were trained on replacing specific words in708

sentences, the generation of such content seems709

unlikely. As discussed in the paper, instruction710

models are more prone to reformulating input sen-711

tences: while we did not find any inappropriate712

content in the Claude 3 Opus-generated sentences713

we evaluated, LLMs may be trained on such data,714

which might lead to the generation of harmful or715

hateful content. 716
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A Fine-Tuning Details1177

Models were trained on a single NVIDIA RTX1178

4090 GPU. Training time took approximately 31179

hours for each model.1180

A.1 GeNRe-T51181

BATCH_SIZE = 481182

NUM_PROCS = 161183

EPOCHS = 51184

LEARNING_RATE = 0.00051185

WEIGHT_DECAY = 0.021186

A.2 GeNRe-M2M-1001187

BATCH_SIZE = 81188

NUM_PROCS = 161189

EPOCHS = 51190

LEARNING_RATE = 0.00051191

WEIGHT_DECAY = 0.021192

B Instruction Details1193

B.1 Instruction Model Hyperparameters1194

model="claude-3-opus-20240229",1195

temperature=0,1196

messages=[1197

{"role": "user",1198

"content": f"{message}"},1199

{"role": "assistant",1200

"content": "Here is the1201

output sentence:"}1202

]1203

B.2 Types of Instructions1204

Table 3 contains the different types of instructions1205

given to Claude 3 Opus as well as their respective1206

content.1207

“EXAMPLES” refers to the few-shot sentences1208

given to the instruction model. See Tables 4 and 51209

for more information.1210

“ORIGINAL SENTENCE” is replaced with1211

the sentence containing one or several masculine1212

generic nouns that we want to replace with their1213

collective counterparts. It is part of the prompt in1214

a similar way to the example sentences so that the1215

instruction model is guided towards generating the1216

final, gender-neutralized sentence.1217

C Few-shot sentences given to Claude 31218

Opus1219

Tables 4 and 5 contain the few-shot sentences used1220

respectively for the “BASE” and “DICT” instruc-1221

tions, and the “CORR” instruction. They were1222

Instruction Type Content

BASE

Make this French sentence inclusive
by replacing generic masculine nouns

with their French collective noun equivalents.
Generate the final sentence only
without any comments nor notes.

{EXAMPLES}
{ORIGINAL SENTENCE} →

DICT-SG

Make this French sentence inclusive
by replacing generic masculine noun {NM}

with its respective French collective noun equivalent {NCOLL}.
Generate the final sentence only
without any comments nor notes.

{EXAMPLES}
{ORIGINAL SENTENCE} →

DICT-PL

Make this French sentence inclusive
by replacing generic masculine nouns {NM1, NM2, . . . }

with their respective French collective noun equivalents {NCOLL1, NCOLL2, . . . }.
Generate the final sentence only
without any comments nor notes.

{EXAMPLES}
{ORIGINAL SENTENCE} →

CORR

Correct grammar in this French sentence.
Generate the final sentence only
without any comments nor notes.

{EXAMPLES}
{ORIGINAL SENTENCE} →

Table 3: Content of instructions per type given to Claude
3 Opus

formatted as such in the prompt: 1223

[Sentence with masculine generic] → [Gender- 1224

neutralized sentence]. 1225

Sentence with masculine generic Gender-neutralized sentence

Le président de la FIFA Sepp Blatter
rejette les accusations des manifestants

en les accusant d’opportunisme.
(FIFA President Sepp Blatter

dismisses the protesters’
accusatations as opportunism.)

Le président de la FIFA Sepp Blatter
rejette les accusations de la manifestation

en l’accusant d’opportunisme.
(FIFA President Sepp Blatter

dismisses the protest’s
accusatations as opportunism.)

Les auteurs et les spectateurs
ont été satisfaits des réponses

des représentants.
(Authors and spectators

were pleased with the
representatives’ responses.)

L’autorat et le public
ont été satisfaits des réponses

de la représentation.
(The authorship and the audience

were pleased with the
representation’s responses.)

Le vicaire général proposa de disperser
les religieux dans d’autres maisons de l’ordre

et de procéder à la réfection des bâtiments.
(The vicar general suggested to disperse

religious people to other houses of the order
to repair the buildings.)

Le vicaire général proposa de disperser
le couvent dans d’autres maisons de l’ordre
et de procéder à la réfection des bâtiments.

(The vicar general suggested to disperse
the convent to other houses of the order

to repair the buildings.)

Table 4: Few-shot sentences for “BASE” and “DICT”
instructions. Bold indicates the differences between
sentences with MG and gender-neutralized sentences.

RBS-generated sentence with errors Manual sentence

Le président de la FIFA Sepp Blatter
rejette les accusations de la manifestation

en les accusant d’opportunisme.

Le président de la FIFA Sepp Blatter
rejette les accusations de la manifestation

en l’accusant d’opportunisme.
L’autorat et le public

a été satisfaits des réponses
des la représentation.

L’autorat et le public
ont été satisfaits des réponses

de la représentation.
Le vicaire générale proposa de disperser

le couvent dans d’autres maisons de l’ordre
et de procéder à la réfection des bâtiments.

Le vicaire général proposa de disperser
le couvent dans d’autres maisons de l’ordre
et de procéder à la réfection des bâtiments.

Table 5: Few-shot sentences for “CORR” instruc-
tion. Bold indicates the differences between the RBS-
generated ssentences with error and the manual, correct
sentences.

D Error Types Labels 1226

We give additional information about some of the 1227

error types below. 1228
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Error Type Description

ADJ Errors related to adjective agreement with the modified noun. Past participles used as adjectives are included in this category.

CASE (N) Errors related to an incorrect use of lowercase/uppercase characters.

DET Errors related to determiner agreement with the modified noun.

DET_COREF Errors related to coreferent possessive determiner agreement with the modified noun.

ELISION Errors related to elision.

GEN_FAILURE (N) Errors related to incorrect text-to-text model generation, most particularly with proper nouns or words that are not part of the model’s vocabulary.

MISID_NOUN
Errors occurring when a member noun’s form in the collective-member noun dictionary was wrongly detected as a noun in the original sentence,
and was thus incorrectly changed into a CN.

PREP Errors related to preposition usage.

PRON_COREF Errors related to coreferent pronoun agreement with the modified noun.

PUNCT Errors related to punctuation (e.g. missing or double spaces).

SEM Errors occurring when changing the member noun into its CN counterpart leads to an asemantic sentence.

SPECIAL_CHAR (N) Errors related to special characters (e.g. accents).

UNREPLACED Errors occurring when the member noun was not replaced with its CN counterpart.

VERB Errors related to verb or auxiliary agreement.

Table 6: Error types and descriptions for the RBS and fine-tuned models

The ELISION error is related to how elision1229

works in French: in the sentences that we are mod-1230

ifying, the masculine determiner “le” and the fem-1231

inine determiner “la” (the) should be elided and1232

written as “l’” when the word that follows begins1233

with a vowel or a mute “h”.1234

The MISID_NOUN error may occur when the1235

form of a member noun shares several different1236

grammatical categories. For example, “jeunes”1237

(young), the member noun’s form of the CN “je-1238

unesse” (youth), can be both a noun and an adjec-1239

tive. When the adjective form was wrongly de-1240

tected as a noun, it was included in our dataset and1241

produced an ungrammatical result sentence.1242

Finally, when it comes to the SEM error type,1243

as discussed by Lecolle (2019), CNs in French,1244

and more specifically human CNs, feature spe-1245

cific semantic characteristics due to how they are1246

used to group human beings under a common de-1247

nomination, based for example on their profession1248

(“le professorat” [professorate]), their social status1249

(“l’aristocratie” [the aristocracy]), or their political1250

leaning (“la gauche” [the left]). Combining human1251

CNs with specific verbs or contexts may thus not1252

be considered semantically correct, and may occur1253

when transforming a sentence. We labeled such1254

transformed sentences with this error.1255

E GPT 4o-mini Automatic Error Type1256

Labelling1257

F Generation Examples1258

(F8) a. Cette démarche fera progresser les droits1259

des citoyens, car, par l’intermédiaire du1260

Parlement, les citoyens seront en con- 1261

tact direct avec la Commission, ce qui 1262

lui confèrera une légitimité considérable. 1263

[original sent.] 1264

(This approach will increase citizens’ [masc.] 1265

rights, because, through the Parliament, citizens 1266

will [pl.] have a direct line to the Commission 1267

thereby generating considerable legitimacy.) 1268

b. Cette démarche fera progresser les droits 1269

de la citoyenneté, car, par l’intermédiaire 1270

du Parlement, la citoyenneté seront en 1271

contact direct avec la Commission, ce qui 1272

lui confèrera une légitimité considérable. 1273

[GeNRe-RBS] 1274

(This approach will increase the rights of the citi- 1275

zenry, because, through the Parliament, the citi- 1276

zenry will [pl.] have a direct line to the Commis- 1277

sion thereby generating considerable legitimacy.) 1278

c. Cette démarche fera progresser les droits 1279

de la citoyenneté, car, par l’intermédiaire 1280

du Parlement, la citoyenneté sera en con- 1281

tact direct avec la Commission, ce qui 1282

lui confèrera une légitimité considérable. 1283

[manual sent.] 1284

(This approach will increase the rights of the citi- 1285

zenry, because, through the Parliament, the citi- 1286

zenry will [sg.] have a direct line to the Commis- 1287

sion thereby generating considerable legitimacy.) 1288

(F9) a. Je vous invite à informer les députés eu- 1289

ropéens chargés des dossiers agricoles 1290

de l’avancement des négociations. [origi- 1291

nal sent.] 1292

(I urge you to inform the Members of European 1293

Parliament [masc] in charge of [pl.] the agricul- 1294
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tural issues about the progress of negotiations.)1295

b. Je vous invite à informer le parlement eu-1296

ropéen chargés des dossiers agricoles de1297

l’avancement des négociations. [GeNRe-1298

RBS]1299

(I urge you to inform the European parliament1300

in charge of [pl.] the agricultural issues about the1301

progress of negotiations.)1302

c. Je vous invite à informer le parlement1303

européen chargé des dossiers agricoles1304

de l’avancement des négociations. [man-1305

ual sent.]1306

(I urge you to inform the European parliament1307

in charge of [sg.] the agricultural issues about the1308

progress of negotiations.)1309

(F10) a. Un deuxième élément concerne le soutien1310

apporté à la Commission à l’actorat local1311

qui veulent participer à ces programmes1312

afin d’avoir accès aux sources de finance-1313

ment correspondantes. [GeNRe-RBS]1314

(A second factor is the Commission’s support for1315

local actors [coll. sg.] who want [pl.] to take part1316

in these programmes, so that they can access the1317

corresponding funding mechanisms.)1318

b. Un deuxième élément concerne le soutien1319

apporté à la Commission à l’actorat lo-1320

cal qui veut participer à ces programmes1321

afin d’avoir accès aux sources de fi-1322

nancement correspondantes. [GeNRe-FT-1323

M2M-100]1324

(A second factor is the Commission’s support for1325

local actors [coll. sg.] who want [sg.] to take part1326

in these programmes, so that they can access the1327

corresponding funding mechanisms.)1328

(F11) a. Juin, Russie : le Nebski sobor prend1329

des décisions importantes. [GeNRe-FT-1330

M2M-100]1331

(June, Russia: the Nebski Sobor makes important1332

decisions.)1333

(F12) a. Il est allé à Cologne, où il est devenu1334

président de l’association de la main-1335

d’uvre et a aidé à propager les idées1336

marxistes parmi ses membres. [GeNRe-1337

FT-T5]1338

(He went to Cologne, where he became presi-1339

dent of the labour organization and helped spread1340

Marxist ideas among its members.)1341

(F13) a. l’armée arriva avec une lance à eau pour1342

disperser les détenus. [GeNRe-FT-T5]1343

(the army arrived with a water hose to disperse the1344

prisoners.)1345

(F14) a. Dans une lettre à la famille datée du 13 1346

juin 1861, Zeng Guofan a ordonné à ses 1347

propres navires de surveiller les navires 1348

commerciaux britanniques après avoir 1349

remarqué que des marchands étrangers 1350

déchargeaient du riz à la rébellion à An- 1351

qing. [GeNRe-RBS] 1352

(In a letter addressed to the family and dated June 1353

13, 1861, Zeng Guofan ordered his own vessels to 1354

monitor British commercial vessels after noticing 1355

that foreign sellers were giving rice to the rebel- 1356

lion in Anqing.) 1357

b. Dans une lettre à la parenté datée du 1358

13 juin 1861, Zeng Guofan a ordonné à 1359

sa propre flotte de surveiller les navires 1360

commerciaux britanniques après avoir 1361

remarqué que des marchands étrangers 1362

déchargeaient du riz aux rebelles à An- 1363

qing. [Claude 3 Opus-BASE] 1364

(In a letter addressed to the kinfolk and dated June 1365

13, 1861, Zeng Guofan ordered his own fleet to 1366

monitor British commercial vessels after noticing 1367

that foreign sellers were giving rice to rebels in 1368

Anqing.) 1369

(F15) a. Mais l’armée protestante, toujours agres- 1370

sive, restaient à la charge des habi- 1371

tants et constituaient une lourde charge. 1372

[GeNRe-RBS] 1373

(But the Protestant army, still aggressive, re- 1374

mained [pl.] in the care of the local people and 1375

constituted [pl.] a heavy burden.) 1376

b. Mais l’armée protestante, toujours agres- 1377

sive, restait à la charge des habitants et 1378

constituait une lourde charge. [Claude 3 1379

Opus-DICT] 1380

(But the Protestant army, still aggressive, re- 1381

mained [sg.] in the care of the local people and 1382

constituted [sg.] a heavy burden.) 1383

(F16) a. Paradoxalement, cette progression en 1384

voix s’accompagne d’un recul en nombre 1385

d’élus, du fait de la poussée des candi- 1386

dats indépendants (pour la plupart de la 1387

représentation de la communauté kurde) 1388

et du CHP. [GeNRe-RBS] 1389

(Paradoxically, this increase in votes paralleled a 1390

decrease in the number of elected representatives 1391

due to better results for the independent candidates 1392

(most of them coming from the representation 1393

of the Kurdish community) and CHP. 1394

b. Paradoxalement, cette progression en 1395

voix s’accompagne d’un recul en nom- 1396
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bre d’élus, du fait de la poussée des can-1397

didats indépendants (pour la plupart des1398

représentants de la communauté kurde)1399

et du CHP. [Claude 3 Opus-DICT]1400

(Paradoxically, this increase in votes paralleled a1401

decrease in the number of elected representatives1402

due to better results for the independent candidates1403

(most of them being representatives of the Kur-1404

dish community) and CHP.1405
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