

000 SR-PFN: YET ANOTHER SEQUENTIAL RECOMMEN- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SR-PFN: YET ANOTHER SEQUENTIAL RECOMMEN- DATION PARADIGM

Anonymous authors

Paper under double-blind review

ABSTRACT

Sequential recommendation is a popular task in many real-world businesses. On the one hand, conventional sequential recommenders learn collaborative signals and temporal patterns solely from training interactions and do not generalize well to new datasets. On the other hand, to better leverage textual metadata and user reviews, LLM-based recommenders have recently been proposed; however, they often incur high inference costs and may inherit limitations of language models, including limited multilingual generalization, social bias, and a tendency to memorize data rather than infer. To this end, we present SR-PFN, a sequential recommender that performs single-pass next-item prediction via in-context inference after being pretrained on synthetic data — our method is the first attempt for sequential recommendation under the regime of Prior-data Fitted Networks (PFNs). Our approach introduces a synthetic prior model tailored toward sequential recommendation. After being pre-trained on synthetic data sampled from the prior model, which reflects realistic sequential dynamics, SR-PFN learns to approximate the posterior predictive distribution (PPD) for next-item prediction at test time, enabling parameter update-free, single-pass inference. Across sequential recommendation benchmarks, SR-PFN outperforms seven competitive baselines, while offering substantially lower inference costs compared to those of LLM-based models.

1 INTRODUCTION

Sequential recommendation (Wang et al., 2019; Fang et al., 2020) aims to predict the next item that a target user will interact with based on their interaction history. Existing sequential recommender systems learn embedding representations by extracting collaborative and sequential patterns directly from observed user-item interaction histories to capture user preferences (Hidasi et al., 2015; Kang & McAuley, 2018; Sun et al., 2019). More recently, large language model (LLM)-based approaches (Geng et al., 2022; Bao et al., 2023) have emerged, where map items into a natural language embedding space and model sequential dynamics using pretrained textual representations.

While user-item interaction histories provide the empirical basis for sequential recommendation, relying only on such histories introduces practical challenges. These challenges restrict models to learning rather simple patterns present in the training data, hindering their ability to generalize to other datasets (Zhu et al., 2021; Zang et al., 2022). They also require dataset-specific retraining or extensive re-tuning to transfer across domains, which raises operational costs. To better leverage textual metadata and user reviews, recent attempts to utilize LLMs have shown promising accuracy (Kong et al., 2024; Kim et al., 2025), but often incur prohibitive inference costs and latency, limiting their practicality in real-world deployment scenarios. They may also inherit limitations of LLMs, which primarily focus on English tasks (Zhang et al., 2020), and exhibit social bias (Gallegos et al., 2024), as well as a tendency to memorize training data (Di Palma et al., 2025).

In this work, we propose **SR-PFN** — a new paradigm for sequential recommendation built on Prior-Data Fitted Networks (PFNs; Müller et al., 2022). SR-PFN is pretrained once under synthetic data sampled from a prior data distribution, then infers the posterior predictive distribution (PPD) of each query from in-context examples without any parameter updates. Figure 1 shows how SR-PFN differs from conventional sequential recommenders. During the pretraining stage of SR-PFN, the model learns to infer based on a diverse spectrum of interaction patterns from in-context examples,

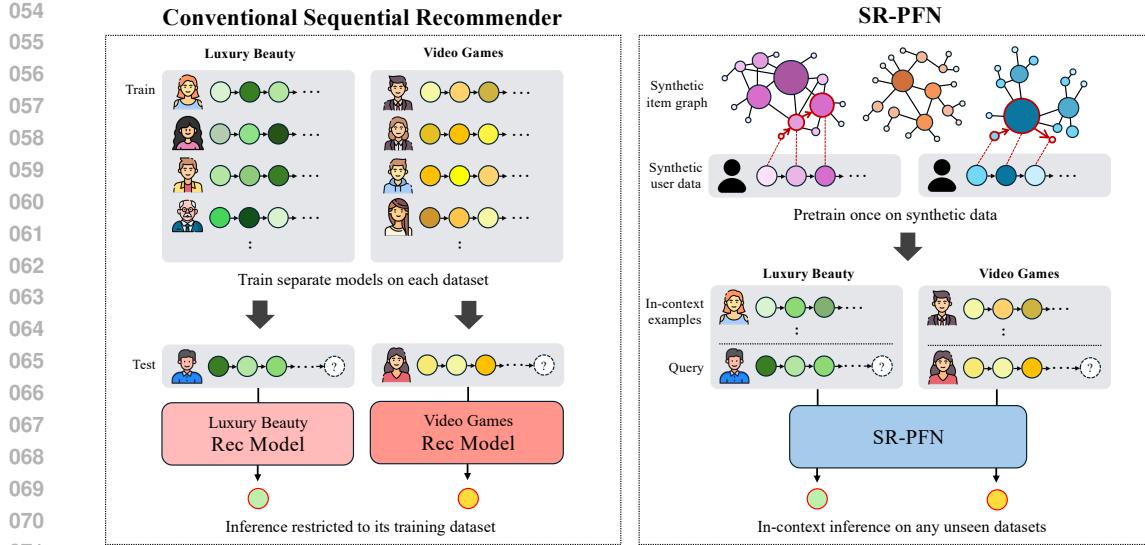


Figure 1: Left: Conventional sequential recommenders are trained separately on each real dataset (e.g., Luxury Beauty, Video Games) and can only be applied within the same domain, so their inference remains confined to the training set. Right: SR-PFN is pretrained once on diverse synthetic data that capture a wide range of interaction patterns, and then performs in-context inference on unseen datasets using only a few example sequences from the target domain — without any retraining or fine-tuning. In all graphs, node size reflects item popularity.

thereby enabling it to make contextually relevant predictions on new tasks by processing examples from real-world datasets in-context, without requiring data-specific training. While prior PFN research has demonstrated strong performance in other areas such as tabular classification (TabPFN; Hollmann et al., 2023) and time-series forecasting (ForecastPFN; Dooley et al., 2023), to the best of our knowledge, SR-PFN represents the first attempt to extend PFNs to the domain of sequential recommendation.

A core challenge of this paradigm is to design a prior that reflects the statistical properties observed in real-world sequential recommendation data. Our prior model (see Section 3.2) works in the following two steps: i) grounded in the observation that user-item interaction histories exhibit an item-item co-occurrence structure with heavy-tailed degrees and a hierarchical community organization (Yang & Leskovec, 2012; Abdollahpouri et al., 2019), we adopt a hierarchical degree-corrected stochastic block model (hDCSBM; Karrer & Newman, 2011; Peixoto, 2014) prior as a parametric prior of item graphs; ii) on top of the hDCSBM-generated item-item graph, we generate interaction sequences using Personalized PageRank (PPR; Haveliwala, 2002), which serve as in-context examples and queries for pretraining SR-PFN for the next-item prediction task.

The next challenge is the model architecture. For SR-PFN to capture interaction patterns, we first propose a gated fusion encoder that integrates low-rank embeddings derived from the user-item interaction matrix and the item-item transition matrix, constructed from user interactions sampled from the same prior (see Section 4). On top of these representations, we design a prompt tailored to in-context learning (Brown et al., 2020), consisting of k example blocks and one query block. A block-aware attention mask is applied to the prompt, allowing for a query-to-example flow while preventing cross-example and answer-to-query leakage, thereby preserving temporal causality and block-wise independence.

Pretrained once under a synthetic prior, SR-PFN shows strong performance across standard sequential recommendation benchmarks. Even when existing recommenders are trained end-to-end on the observed interactions to directly learn embeddings and relations, SR-PFN, without any parameter updates, outperforms five ID-based and two LLM-based models while achieving 6x lower inference cost than the LLM-based approaches (see Section 5). By being trained under a broad synthetic prior that captures diverse interaction patterns, SR-PFN also demonstrates particular strength in cold-start scenarios where user histories or item interactions are sparse.

108 **Contributions** We make the following contributions:

109

- 110 We introduce SR-PFN, a PFN-based paradigm for sequential recommendation that performs in-
111 context learning in a single forward pass, without any parameter updates.
- 112 We design a controllable prior over item graphs via an hDCSBM coupled with PPR-based se-
113 quence generation, which captures salient statistics of sequence-derived co-occurrence graphs.
- 114 We propose a gated fusion encoder that fuses low-rank embeddings from the user–item interaction
115 and item–item transition matrices, together with a prompt and block-aware attention mask that
116 learn sequential patterns from in-context examples and then transfers them to the query.
- 117 Our SR-PFN demonstrates strong accuracy against 5 ID-based and 2 LLM-based baselines, with
118 substantially lower inference cost than the LLM-based approaches.

120 **2 RELATED WORK**

122 **Sequential recommendation** Traditional sequential recommenders identify users and items with
123 unique IDs and learn embeddings from interaction sequences (Wang et al., 2019; Fang et al., 2020).
124 Early statistical approaches include matrix factorization (MF) methods (Koren et al., 2009), which
125 decompose the user–item interaction matrix to model collaborative signals, and Markov chain (MC)
126 methods, which treat user histories as ordered sequences (Rendle et al., 2009; 2010). The rise of
127 deep learning brought models such as GRU4Rec (Hidasi et al., 2015) and Caser (Tang & Wang,
128 2018), which leverage RNN and CNN architectures to model complex and nonlinear sequence pat-
129 terns (Guo et al., 2017; Yuan et al., 2019). The introduction of attention mechanisms further led
130 to models like SASRec (Kang & McAuley, 2018), which use self-attention to focus on the most
131 relevant items in long user histories (Sun et al., 2019; Xie et al., 2022). However, these ID-based ap-
132 proaches often lack semantic understanding, resulting in limited suboptimal personalization (Yuan
133 et al., 2023).

134 Recent research has explored leveraging LLMs’ strong generalization and semantic understanding
135 for recommendation by reformulating tasks as text prompts (Geng et al., 2022). Early approaches
136 such as TALLRec (Bao et al., 2023) focused on fine-tuning with recommendation data to better align
137 LLMs with recommendation objectives (Zhang et al., 2025a). Later methods move beyond fine-
138 tuning by using hybrid prompting, which injects collaborative filtering embeddings into the LLM
139 input space, allowing the model to exploit CF signals when generating recommendations (Liao et al.,
140 2024; Kong et al., 2024; Zhang et al., 2025b; Kim et al., 2025). In-context learning (Brown et al.,
141 2020) adapts models to new tasks from a few examples without parameter updates.

142 **Prior-data fitted networks** Müller et al. (2022) showed that Prior-data Fitted Networks (PFNs)
143 approximate Bayesian posterior predictive inference from in-context examples, and subsequent the-
144 ory established why they succeed through bias–variance mechanisms (Nagler, 2023). Since then,
145 PFNs have been extended beyond tabular and time-series tasks (Hollmann et al., 2023; Dooley et al.,
146 2023) to domains such as biology (Ubbens et al., 2025; Scheuer et al., 2025), causal inference, and
147 anomaly detection (Shen et al., 2025; Ma et al., 2025), often by designing synthetic priors that cap-
148 ture domain-specific structures. Recent work further addresses PFNs’ in-context limitations through
149 improved context selection and ensemble methods, advancing their scalability and generalization
150 (Feuer et al., 2025; Wang et al., 2025; Müller et al., 2025).

151 **3 PRIOR FOR SEQUENTIAL RECOMMENDATION**

152 **3.1 BACKGROUND ON PRIOR-DATA FITTED NETWORKS**

153 Let Φ denote a hypothesis class of data-generating mechanisms. Each hypothesis $\phi \in \Phi$ defines
154 a distribution over user–item interactions and thereby generates both (i) a dataset of in-context ex-
155 amples $D = \{(x_i, y_i)\}_{i=1}^n$, where x_i is a user history sequence and y_i its ground-truth next item,
156 and (ii) additional query pairs (x_q, y_q) drawn from the same mechanism. For evaluation, each query
157 user history sequence x_q is accompanied by a candidate set C_q , constructed using a random negative
158 sampling policy $\nu(C_q | D, x_q, y_q)$. Let $U^-(D, x_q)$ be the set of items not previously interacted with
159 by x_q among the dataset D . We assume (i) $C_q = \{y_q\} \cup S_q$ with $S_q \subseteq U^-(D, x_q) \setminus \{y_q\}$ and

162 $|C_q| = m$ fixed; (ii) conditional on (D, x_q) , S_q is sampled uniformly without replacement from
 163 $U^-(D, x_q) \setminus \{y_q\}$.

$$164 \quad \nu(C \mid D, x_q, y_q) = \frac{1}{\binom{|U^-(D, x_q)|-1}{m-1}}.$$

167 Throughout, $p(\cdot \mid D, x_q)$ denotes the Bayesian posterior predictive induced by a prior $p(\phi)$ over
 168 mechanisms $\phi \in \Phi$:

$$169 \quad p(y_q \mid D, x_q) = \int p(y_q \mid x_q, \phi) p(\phi \mid D) d\phi, \quad p(\phi \mid D) \propto p(D \mid \phi) p(\phi).$$

172 For a query user history x_q with candidate set C_q , the Bayesian posterior predictive distribution
 173 conditioned on C_q is

$$175 \quad p(y_q \mid D, x_q, C_q) = \frac{p(y_q \mid D, x_q) \nu(C_q \mid D, x_q, y_q)}{\sum_{c \in C_q} p(c \mid D, x_q) \nu(C_q \mid D, x_q, c)}. \quad (1)$$

177 If negatives are sampled uniformly without replacement from the items not seen by x_q , then $\nu(C_q \mid$
 178 $D, x_q, y)$ is independent of which $y \in C_q$ is the ground truth. In this case, the ν -factor cancels and
 179 the conditional reduces to a simple renormalization:

$$180 \quad p(y_q \mid D, x_q, C_q) = \frac{p(y_q \mid D, x_q)}{\sum_{c \in C_q} p(c \mid D, x_q)}, \quad \text{where } y_q \in C_q. \quad (2)$$

183 Following the *synthetic prior-fitting* introduced in previous works (Müller et al., 2022; Adriaensen
 184 et al., 2023), training SR-PFN with cross-entropy on synthetic tasks yields a predictor q_θ that
 185 matches this candidate-restricted conditional. For each prompt (D, x_q, C_q) ,

$$187 \quad \mathbb{E}_{y_q \sim p(\cdot \mid D, x_q, C_q)}[-\log q_\theta(y_q \mid D, x_q, C_q)] = H(p) + \text{KL}(p \parallel q_\theta), \quad (3)$$

188 so the unique minimizer is $q_\theta^* = p(\cdot \mid D, x_q, C_q)$. When negatives are sampled uniformly without
 189 replacement from the unseen pool, that is, when the candidate set distribution follows the policy
 190 $\nu(C_q \mid D, x_q, y)$, the expression coincides with equation 2. For complete proofs and discussion, see
 191 Appendix B.

193 3.2 GENERATING SYNTHETIC DATA FOR SEQUENTIAL RECOMMENDATION

195 The synthetic data generation mechanism $\phi \in \Phi$ specifies (i) how to construct an item graph, (ii) how
 196 to synthesize user sequences on that graph, and (iii) how to compute representation embeddings from
 197 those sequences.

198 **Common properties of real-world sequential interaction data** Before discussing our frame-
 199 work for synthetic data generation, we first examine the common properties of real-world sequential
 200 interaction data.

- 202 • **Heavy-tailed item popularity** A small set of head items accounts for a disproportionately large
 203 share of interactions, while the majority of items lie in the long tail. This skew can be quantified by
 204 the *degree exponent*, estimated from the complementary cumulative distribution of item degrees,
 205 which captures tail heaviness (Clauset et al., 2009; Yin et al., 2012).
- 206 • **Head dominance** Complementary to the exponent, the *head fraction* measures the proportion
 207 of interactions accounted for by the top q fraction of items (e.g., $q=10\%$ of the catalog). This
 208 statistic directly reflects the imbalance between head and tail usage (Abdollahpouri et al., 2017;
 209 Klimashevskaya et al., 2024).

210 Both quantities are dataset-dependent, and our synthetic prior exposes them as explicit parameters,
 211 enabling faithful reproduction of the skew observed in real domains.

213 **Hierarchical degree-corrected stochastic block model** To model these properties, we adopt a
 214 hierarchical degree-corrected stochastic block model (hDCSBM; Karrer & Newman, 2011; Peixoto,
 215 2014) as the backbone of our synthetic prior. The degree-correction mechanism enables us to im-
 pose long-tailed popularity directly. Each item is assigned a propensity drawn from a truncated

power law, resulting in a controllable degree exponent and head fraction. In parallel, the hierarchical structure organizes items at two levels of granularity: macro-communities (coarse groups) and micro-communities (finer subgroups). Each community is defined as a set of items that co-occur more frequently with one another than with the rest of the catalog. By organizing items into such communities with hierarchy, hDCSBM can mimic the hierarchical grouping observed in real datasets (e.g., product hierarchies or genres) while retaining explicit control over popularity skew. See Appendix C.1 for a detailed explanation of how we modeled community structures.

Random walk with restarts (Personalized PageRank) On top of the weighted adjacency matrix generated by the hDCSBM, we row-normalize it to obtain a Markov kernel K , which specifies a random walk on the item graph. On K , we generate a synthetic interaction sequence for each user u using Personalized PageRank (PPR; Haveliwala, 2002) — a user-conditioned random walk with restart that follows outgoing edges with probability α and teleports to a personalization distribution π_u with probability $1 - \alpha$, where π_u is a probability vector specifying the restart locations. We then draw a sequence length ℓ_u from a truncated power law to reflect heavy-tailed user activity. The user-specific PPR vector p_u is the unique fixed point $p_u = \alpha K^\top p_u + (1 - \alpha) \pi_u$ interpreted as the stationary distribution of a restart random walk.

Matching skew statistics in practice To assess how well the synthetic prior matches real-world data, Figure 2 compares two statistics between real datasets (colored markers) and our synthetic prior (gray boxplots): the *degree exponent* and the *head fraction*. For each of the five datasets from the Amazon 2018 corpus¹, we compute these statistics directly from their user sequences. For the synthetic side, we generate 100 independent catalogs by sampling an hDCSBM and then producing user sequences via the PPR. The gray boxplots summarize the resulting values across runs (the red line indicates the median). The synthetic distribution covers the empirical markers from real datasets, indicating that the hDCSBM-based mechanism can tune both statistics in a controlled manner, matching dataset-specific skew without overfitting to any single catalog. Detailed steps and hyperparameters for generating synthetic data for sequential recommendation are described in Appendix C.

Low-rank representations of interactions and transitions Having specified the synthetic generative mechanism, we now derive low-rank representations that serve as inputs to SR-PFN. For each synthetic sequence $x_u = (i_{u,1}, \dots, i_{u,\ell_u})$, we hold out the last item i_{u,ℓ_u} and use the history prefix $H_u = x_u[: -1]$ to construct two matrices. First, the user-item interaction matrix is defined as $X_{u,i} = \mathbb{I}\{i \in H_u\}$, where \mathbb{I} is the indicator function. Second, the item-item transition matrix R is built from row-normalized bigram counts: for each pair (i, j) , we count how often $i \rightarrow j$ appears in H_u across all users to form B_{ij} , then normalize rows to obtain $R = D_R^{-1}B$ with $D_R = \text{diag}(B1)$. Because R is row-stochastic, each entry R_{ij} can be interpreted as the conditional probability $P(j | i)$, naturally aligning the representation with next-item prediction and improving numerical stability across tasks. Finally, we compute truncated SVDs of X and R and use the resulting low-rank user/item embeddings (u, i) from X and row/column embeddings (r, c) from R as model inputs.

4 SR-PFN: PFN FOR SEQUENTIAL RECOMMENDATION

SR-PFN operationalizes PFN-style inference for sequences via three parts: (i) a prompt that organizes in-context examples and a query under candidate lists, (ii) a block-aware attention mask that regulates information flow, and (iii) a lightweight encoder that fuses low-rank embeddings.

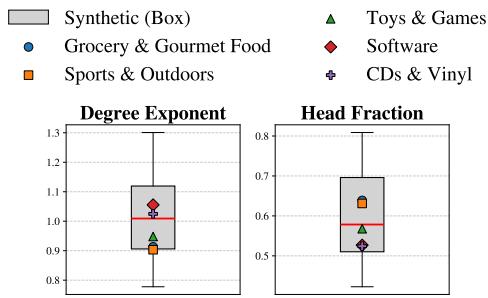
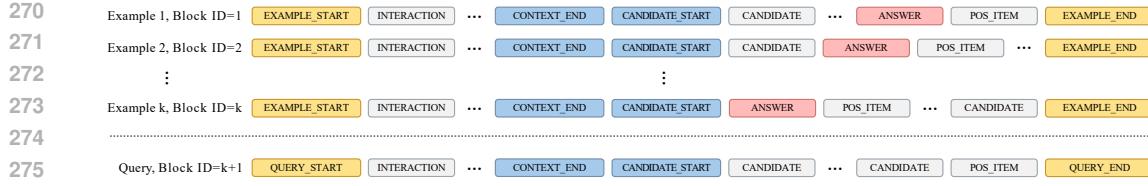


Figure 2: Matching skew statistics. Left: degree exponent estimated from the CCDF of item degrees; Right: head fraction (share of interactions explained by the top 10% most popular items).

matching dataset-specific skew without overfitting to any single catalog. Detailed steps and hyperparameters for generating synthetic data for sequential recommendation are described in Appendix C.

¹https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/

Figure 3: Prompt visualization with k in-context example blocks followed by one query block.

4.1 PROMPT CONSTRUCTION

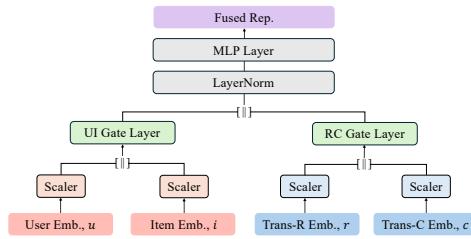
We serialize the demonstrations and the query into block-structured text so that the model can read the examples and answer a candidate-restricted query. Figure 3 shows serialization of k in-context example blocks followed by a single query block. A block spans from EXAMPLE_START or QUERY_START token to EXAMPLE-END or QUERY-END token. Within each block, the user’s history is a sequence of INTERACTION tokens; CONTEXT-END then marks the boundary to the candidate list, which begins at CANDIDATE-START. The single positive in each candidate set is the penultimate item of the underlying sequence, for example, and the final item for the query. Within example blocks only, we insert ANSWER immediately before the positive item, which is marked as POS-ITEM in Figure 3. The remaining $C - 1$ candidates are sampled as uniform negatives without replacement. See Appendix D.1 for the full token summary and roles. In this work, we select $k \in \{0, 1, 2, 4, 8\}$ in-context examples. This choice is supported by prior findings showing that using only a subset of context examples most similar to the query can yield comparable or even better performance (Thomas et al., 2024; Ye et al., 2025). A detailed algorithm is provided in Appendix D.2, and the ablation study on the number of in-context examples is given in Appendix H.2.

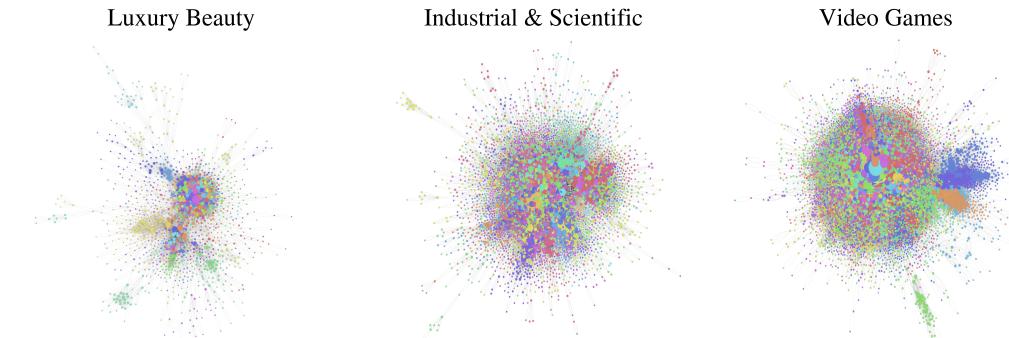
4.2 BLOCK-AWARE ATTENTION MASK

To align attention with the prompt semantics while preventing leakage of query information to examples, we introduce a block-aware attention mask. Each token is assigned a block ID, which is incremented at every EXAMPLE_START or QUERY_START. Figure 3 illustrates this layout. The mask operates at two levels: inter-block and intra-block. For the inter-block policy, tokens in example blocks may attend only to their own and earlier blocks (no look-ahead across examples), whereas tokens in the query block may attend to all blocks. For the intra-block policy, we split each block into a history region and a candidate region at the CONTEXT-END token. History tokens use a left-to-right causal mask and cannot attend to candidates. CANDIDATE tokens have full attention within the same block (they may attend to the block’s history and to other candidates) but never across blocks. The final attention mask is the intersection of the inter- and intra-block masks. Scoring and loss are computed only for the query candidates. See Appendix D.3 for visualization and description of the attention mask.

4.3 ENCODER

To integrate low-rank embeddings, we introduce an encoder that jointly fuses user, item embeddings (u, i) derived from the interaction matrix and row, column embeddings (r, c) obtained from the transition matrix. Figure 4 shows the overall architecture of the encoder, where boxes with black borders denote learnable components. Each embedding component is first rescaled by a learnable scalar weight, yielding u', i', r', c' , which allows amplification or attenuation of signals from the original embeddings. Each gate layer takes as input the concatenation of the two rescaled embeddings, e.g., $[u' \parallel i']$ or $[r' \parallel c']$, and processes them through a small network to generate feature-wise weights. Then these weights are applied element-wise (\odot) to the corresponding multiplicative views $u' \odot i'$ and $r' \odot c'$, producing

Figure 4: Architecture of the encoder. Here, $[\parallel]$ denotes concatenation along the feature dimension.

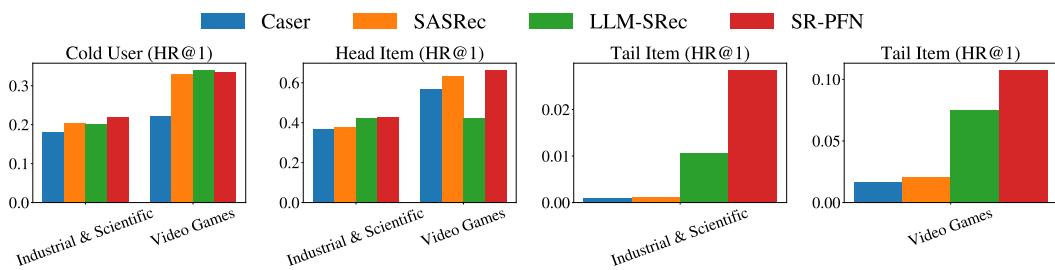
324
325
326
327
328
329
330
331
332
333
334
335336 Figure 5: Qualitative visualization of item co-occurrence graphs. All panels share a common ori-
337 entation and scale; nodes are items (colored by SBM communities), and edges are weighted co-
338 occurrences (thresholded).339
340 gated interaction terms. This design implements a two-stream variant of low-rank bilinear pooling
341 (MLB; Kim et al., 2017), which efficiently approximates full bilinear models and aligns with clas-
342 sical multiplicative interactions in recommender systems (Rendle et al., 2010; Guo et al., 2017).
343 Feature-wise gates provide selective, context-dependent modulation (Perez et al., 2018), enabling
344 adaptive reweighting rather than fixed multiplicative features. The gated outputs from both streams
345 are concatenated, normalized by LayerNorm, and passed through an MLP with GELU activation to
346 yield the final fused representation.347
348

5 EXPERIMENTS

349
350 **Datasets** We evaluate on three datasets from the Amazon 2018 corpus¹: Luxury Beauty, Indus-
351 trial & Scientific, and Video Games. While previous approaches have typically selected datasets
352 solely based on their scale (e.g., the number of users or items), we deliberately choose datasets that
353 differ not only in scale but also in the structural properties of their co-occurrence graphs. Figure 5
354 visually compares the item co-occurrence graphs across the three datasets. These structural con-
355 trasts highlight distinct topological patterns that are likely to reflect varying dataset difficulty and
356 distributional characteristics. Qualitative and quantitative analyses of the co-occurrence graph built
357 by each dataset are summarized in Appendix E. Across all datasets, we convert the data to implicit
358 feedback by treating ratings ≥ 3 as positive interactions, and we remove users/items with fewer than
359 5 interactions.360
361 **Baselines** We compare SR-PFN against five representative ID-based and two large language model
362 (LLM)-based sequential recommenders. For ID-based baselines, we include FPMC (Rendle et al.,
363 2010), GRU4Rec (Hidasi et al., 2015), NextItNet (Yuan et al., 2019), Caser (Tang & Wang, 2018),
364 and SASRec (Kang & McAuley, 2018). For LLM-based baselines, we adopt CTRL (Li et al., 2025)
365 and LLM-SRec (Kim et al., 2025). While most LLM-based recommenders focus on text generation,
366 these two emphasize learning representations for recommendation, making them directly compara-
367 ble to our ranking-based setting. Further details of each baseline are provided in the Appendix F.368
369 **Evaluation protocol** We adopt the widely used *leave-one-out* evaluation protocol (Kang &
370 McAuley, 2018; Sun et al., 2019) for sequential recommendation. For each user sequence, we
371 take all but the last two items for training, the penultimate item for validation, and the final item
372 for testing. Following prior work (Kim et al., 2024; Zhang et al., 2025b), we form the candidate
373 set by including the ground-truth positive item together with 19 randomly sampled negative items
374 that the user has not interacted with. For evaluation, we measure performance using the HR@1 and
375 NDCG@5 metrics to capture both strict top-1 accuracy and position-sensitive ranking quality within
376 the top-5 results. Specifically, HR@1 measures the fraction of cases where the ground-truth next
377 item is ranked first among the candidates, and NDCG@5 evaluates whether it appears within the
top-5 while giving higher credit to higher-ranked positions. The maximum sequence length is fixed
to 50 for all baselines and our model to ensure a comparable protocol.

378
 379 Table 1: Results of SR-PFN compared with sequential recommender models. The bold indicates the
 380 best performance.

Dataset	Metric	ID-based					LLM-based		PFN-based
		FPMC	GRU4Rec	NextItNet	Caser	SASRec	CTRL	LLM-SRec	SR-PFN
Luxury Beauty	HR@1	0.2779	0.4005	0.4102	0.4314	0.5035	0.2754	0.5055	0.5222
	NDCG@5	0.3658	0.5336	0.5293	0.5543	0.5981	0.4156	0.6412	0.6509
Ind. & Sci.	HR@1	0.1180	0.2132	0.2056	0.2542	0.2695	0.1965	0.2613	0.2894
	NDCG@5	0.2069	0.3684	0.3490	0.4014	0.4075	0.3317	0.4395	0.4244
Video Games	HR@1	0.2565	0.4184	0.4180	0.4551	0.5191	0.3134	0.5238	0.5463
	NDCG@5	0.4251	0.5898	0.5796	0.6209	0.6693	0.4931	0.6735	0.6672



400
 401 Figure 6: Cold-user and head/tail item performance comparison (HR@1). Results are reported for
 402 Industrial & Scientific and Video Games.

403 5.1 MAIN RESULTS

404 As shown in Table 1, across all three datasets, SR-PFN achieves state-of-the-art performance once
 405 pretrained with synthetic priors, consistently surpassing strong ID-based baselines such as SASRec
 406 and also outperforming LLM-based methods in terms of top-1 accuracy (HR@1). For instance, on
 407 Luxury Beauty, SR-PFN improves over SASRec (0.5222 vs. 0.5035), and on Video Games it sur-
 408 passes LLM-SRec (0.5463 vs. 0.5238). These gains are notable since SR-PFN is pretrained once
 409 in synthetic priors and requires no retraining on the evaluation datasets. Importantly, the main
 410 results are reported with in-context examples $k = 4$, which we identified as a sweet spot balancing
 411 accuracy and efficiency. In terms of ranking quality, NDCG@5, SR-PFN remains highly competi-
 412 tive, although LLM-SRec occasionally attains slightly higher scores. Overall, these results highlight
 413 that once pretrained with synthetic priors, SR-PFN can do inference effectively to unseen datasets
 414 only with a small set of examples, offering strong next-item accuracy while maintaining competitive
 415 top- k ranking quality, all without the need for billion-scale LLMs.

417 5.2 COLD USER AND HEAD/TAIL ITEM SCENARIOS

418 **Cold user scenario** We evaluate our approach in the cold-user setting, where models must gen-
 419 eralize to users with very limited interaction history. To this end, we construct a test split by selecting
 420 users with sequence length exactly three and treat the final interaction as the held-out target item.
 421 The results are illustrated in the leftmost panel of Figure 6. On Industrial & Scientific, SR-PFN
 422 attains higher HR@1 compared with baselines (Caser, SASRec, and LLM-SRec), while on Video
 423 Games, its performance is comparable to the best baseline. These results suggest that the inference
 424 mechanism of SR-PFN can leverage structural priors to improve recommendations for cold users,
 425 whereas conventional sequential models are less effective in this regime.

426 **Head/tail item scenario** We further evaluate model behavior with respect to item popularity by
 427 reporting performance on head and tail items separately. Items are partitioned based on their em-
 428 pirical popularity in the training data: the top 30% most frequently interacted items are categorized
 429 as heads, while the bottom 30% constitute the tails. While SR-PFN is explicitly trained with priors
 430 that model the nature of heavy-tailed popularity distributions with head dominance, it exhibits lower

432 popularity bias than baseline models. As shown in Figure 6, SR-PFN matches or surpasses base-
 433 lines on head items and yields substantial improvements on tail items, particularly for the Industrial
 434 & Scientific dataset. These results suggest that SR-PFN not only adapts to the head-dominated dis-
 435 tribution of real-world recommendation data but also preserves accuracy on rare items, exhibiting
 436 less popularity bias compared with strong baselines.
 437

438 5.3 INFERENCE SPEED

440 While LLMs have recently demonstrated strong
 441 performance in recommendation tasks, their ap-
 442 plication typically requires long prompts that in-
 443 incorporate task instructions, user interaction his-
 444 tories, candidate items, and auxiliary context (Wu
 445 et al., 2024). This substantially increases infer-
 446 ence cost and latency, and the effect is further am-
 447 plified by model scale, as LLMs used for recom-
 448 mendation generally exceed 3B parameters (Kim
 449 et al., 2025). In contrast, SR-PFN is a lightweight
 450 168M-parameter model that provides more com-
 451 putationally efficient inference. To quantify this,
 452 we measured inference speed as the number of
 453 queries processed per second with a batch size of 16. Under our basic setting ($k = 4$), SR-PFN
 454 achieves $6.69 \times$ higher throughput than the LLM-SRec baseline (Table 2), while maintaining com-
 455 parable performance. In the zero-shot scenario, SR-PFN achieves a throughput of $26 \times$ higher than
 456 LLM-SRec, even performing better on Industrial & Scientific and Video Games datasets (see Ap-
 457 pendix H.2) — making it more efficient for massive user traffic or strict real-time scenarios where
 458 speed and efficiency are critical.
 459

460 6 CONCLUSION AND FUTURE WORK

461 In this work, we introduce SR-PFN, a first attempt to adopt PFNs into the sequential recom-
 462 mendation task. Our key contributions are (i) a controllable synthetic prior that couples an hDCSBM item
 463 graph with PPR-based sequence generation, and (ii) an architectural design that extracts sequential
 464 patterns from a few example blocks and transfers them to the query. Trained once on diverse syn-
 465 thetic tasks, SR-PFN generalizes across datasets without re-training. It achieves strong accuracy
 466 against notable sequential recommender baselines and shows robust performance on cold users, a
 467 long-standing challenge for conventional models. Moreover, SR-PFN mitigates popularity bias by
 468 producing more balanced recommendations across head and tail items, while also delivering sub-
 469 stantially high-throughput inference, making it more suitable for efficient large-scale deployment
 470 than LLM-based models.
 471

472 While our pretraining tasks implicitly emphasize positive interactions, SR-PFN does not explic-
 473 itely encode negative preferences or avoidance signals. Also, as with other PFN-based approaches,
 474 SR-PFN is sensitive to prior misspecification, where its effectiveness depends on how closely the
 475 synthetic prior reflects the structure of real-world interactions, and systematic robustness to devia-
 476 tions remains an open question. Finally, although we validated SR-PFN on datasets of up to 50,000
 477 users, scaling to substantially larger catalogs and user bases remains for future work.
 478

479 ETHICS STATEMENTS

480 This work focuses on methodological contributions to the sequential recommendation task. All real-
 481 world evaluation datasets used in this study are publicly available subsets of the Amazon product
 482 review corpus, which contain no personally identifiable information beyond anonymized user and
 483 item identifiers. In terms of computational impact, SR-PFN is substantially more efficient at infer-
 484 ence than large language model (LLM)-based recommenders, leading to lower energy consumption
 485 per prediction.

Table 2: Inference throughput (higher is better). k denotes the number of in-context exam-
 ples.

Model	Throughput (queries s^{-1})
LLM-SRec	18.91
SR-PFN ($k = 8$)	84.97
SR-PFN ($k = 4$)	126.46
SR-PFN ($k = 2$)	200.90
SR-PFN ($k = 1$)	308.03
SR-PFN ($k = 0$)	491.88

486 REPRODUCIBILITY STATEMENT
487488 The source code of SR-PFN is available at [https://sites.google.com/view/](https://sites.google.com/view/srpfn-iclr2026/)
489 `srpfn-iclr2026/`. Here, we provide an `environment.yml` file to fully specify the soft-
490 ware environment. The synthetic data generation process and all associated hyperparameters are
491 documented in detail (see Section 3.2, Appendix C, D). We also report the model architecture, pa-
492 rameter counts, and all training hyperparameters to ensure full reproducibility along with hardware
493 specifications and compute time required for our experiments (see Appendix G).494
495 REFERENCES
496497 Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Controlling popularity bias in
498 learning-to-rank recommendation. In *Proceedings of the Eleventh ACM Conference on Rec-
499 ommender Systems*, RecSys '17, pp. 42–46, New York, NY, USA, 2017. Association for Com-
500 puting Machinery. ISBN 9781450346528. doi: 10.1145/3109859.3109912. URL <https://doi.org/10.1145/3109859.3109912>.502
503 Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. Managing popularity bias in rec-
504 ommender systems with personalized re-ranking, 2019. URL [https://arxiv.org/abs/](https://arxiv.org/abs/1901.07555)
505 `1901.07555`.506 Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. Efficient bayesian
507 learning curve extrapolation using prior-data fitted networks. In *Proceedings of the 37th Interna-
508 tional Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA,
509 2023. Curran Associates Inc.511 Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. Tallrec: An
512 effective and efficient tuning framework to align large language model with recommendation. In
513 *Proceedings of the 17th ACM Conference on Recommender Systems*, RecSys '23, pp. 1007–1014,
514 New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400702419. doi:
515 10.1145/3604915.3608857. URL <https://doi.org/10.1145/3604915.3608857>.516 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
517 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
518 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
519 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
520 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
521 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
522 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
523 ral Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc.,
524 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfc4967418bfb8ac142f64a-Paper.pdf.526
527 Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical
528 data. *SIAM Rev.*, 51(4):661–703, November 2009. ISSN 0036-1445. doi: 10.1137/070710111.
529 URL <https://doi.org/10.1137/070710111>.530 Dario Di Palma, Felice Antonio Merra, Maurizio Sfilio, Vito Walter Anelli, Fedelucio Narducci,
531 and Tommaso Di Noia. Do llms memorize recommendation datasets? a preliminary study on
532 movielens-1m. In *Proceedings of the 48th International ACM SIGIR Conference on Research and
533 Development in Information Retrieval*, SIGIR '25, pp. 2582–2586, New York, NY, USA, 2025.
534 Association for Computing Machinery. ISBN 9798400715921. doi: 10.1145/3726302.3730178.
535 URL <https://doi.org/10.1145/3726302.3730178>.536
537 Samuel Dooley, Gurnoor Singh Khurana, Chirag Mohapatra, Siddartha Venkat Naidu, and Colin
538 White. ForecastPFN: Synthetically-trained zero-shot forecasting. In *Thirty-seventh Confer-
539 ence on Neural Information Processing Systems*, 2023. URL [https://openreview.net/](https://openreview.net/forum?id=tScBQRNgjk)
540 `forum?id=tScBQRNgjk`.

540 Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. Deep learning for sequential recommendation:
 541 Algorithms, influential factors, and evaluations. *ACM Trans. Inf. Syst.*, 39(1), November 2020.
 542 ISSN 1046-8188. doi: 10.1145/3426723. URL <https://doi.org/10.1145/3426723>.

544 Benjamin Feuer, Robin Tibor Schirrmeister, Valeria Cherepanova, Chinmay Hegde, Frank Hutter,
 545 Micah Goldblum, Niv Cohen, and Colin White. Tunetables: context optimization for scalable
 546 prior-data fitted networks. In *Proceedings of the 38th International Conference on Neural Infor-*
 547 *mation Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN
 548 9798331314385.

550 Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Der-
 551 noncourt, Tong Yu, Ruiyi Zhang, and Nesreen K. Ahmed. Bias and fairness in large language
 552 models: A survey. *Computational Linguistics*, 50(3):1097–1179, 09 2024. ISSN 0891-2017. doi:
 553 10.1162/coli_a_00524. URL https://doi.org/10.1162/coli_a_00524.

554 Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. Recommendation as
 555 language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5). In
 556 *Proceedings of the 16th ACM Conference on Recommender Systems*, RecSys '22, pp. 299–315,
 557 New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392785. doi:
 558 10.1145/3523227.3546767. URL <https://doi.org/10.1145/3523227.3546767>.

559 Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
 560 machine based neural network for ctr prediction. In *Proceedings of the 26th International*
 561 *Joint Conference on Artificial Intelligence*, IJCAI'17, pp. 1725–1731. AAAI Press, 2017. ISBN
 562 9780999241103.

564 Taher H. Haveliwala. Topic-sensitive pagerank. In *Proceedings of the 11th International Con-*
 565 *ference on World Wide Web*, WWW '02, pp. 517–526, New York, NY, USA, 2002. Associa-
 566 tion for Computing Machinery. ISBN 1581134495. doi: 10.1145/511446.511513. URL
 567 <https://doi.org/10.1145/511446.511513>.

568 Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based rec-
 569 ommendations with recurrent neural networks. *CoRR*, abs/1511.06939, 2015. URL <https://api.semanticscholar.org/CorpusID:260446846>.

571 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
 572 that solves small tabular classification problems in a second. In *The Eleventh International Con-*
 573 *ference on Learning Representations*, 2023. URL https://openreview.net/forum?id=cp5PvcI6w8_.

576 Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. *2018 IEEE*
 577 *International Conference on Data Mining (ICDM)*, pp. 197–206, 2018. URL <https://api.semanticscholar.org/CorpusID:52127932>.

580 Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks.
 581 *Physical Review E*, 83(1), January 2011. ISSN 1550-2376. doi: 10.1103/physreve.83.016107.
 582 URL <http://dx.doi.org/10.1103/PhysRevE.83.016107>.

583 Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee Kim, Jung-Woo Ha, and Byoung-Tak
 584 Zhang. Hadamard product for low-rank bilinear pooling. In *International Conference on Learning*
 585 *Representations*, 2017. URL <https://openreview.net/forum?id=r1rhWnZkg>.

586 Sein Kim, Hongseok Kang, Seungyoon Choi, Donghyun Kim, Minchul Yang, and Chanyoung
 587 Park. Large language models meet collaborative filtering: An efficient all-round llm-based
 588 recommender system. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge*
 589 *Discovery and Data Mining*, KDD '24, pp. 1395–1406, New York, NY, USA, 2024. Associa-
 590 tion for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671931. URL
 591 <https://doi.org/10.1145/3637528.3671931>.

593 Sein Kim, Hongseok Kang, Kibum Kim, Jiwan Kim, Donghyun Kim, Minchul Yang, Kwangjin Oh,
 Julian McAuley, and Chanyoung Park. Lost in sequence: Do large language models understand

594 sequential recommendation? In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining* V.2, KDD '25, pp. 1160–1171, New York, NY, USA, 2025.
 595 Association for Computing Machinery. ISBN 9798400714542. doi: 10.1145/3711896.3737035.
 596 URL <https://doi.org/10.1145/3711896.3737035>.

597

598 Anastasiia Klimashevskaia, Dietmar Jannach, Mehdi Elahi, and Christoph Trattner. A survey on
 599 popularity bias in recommender systems. *User Modeling and User-Adapted Interaction*, 34(5):
 600 1777–1834, Nov 2024. ISSN 1573-1391. doi: 10.1007/s11257-024-09406-0. URL <https://doi.org/10.1007/s11257-024-09406-0>.

601

602

603 Xiaoyu Kong, Jiancan Wu, An Zhang, Leheng Sheng, Hui Lin, Xiang Wang, and Xiangnan He.
 604 Customizing language models with instance-wise LoRA for sequential recommendation. In
 605 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 606 <https://openreview.net/forum?id=isZ8XRe3De>.

607

608 Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
 609 systems. *Computer*, 42(8):30–37, 2009. doi: 10.1109/MC.2009.263.

610

611 Xiangyang Li, Bo Chen, Lu Hou, and Ruiming TANG. Ctrl: Connect collaborative and language
 612 model for ctr prediction. *ACM Trans. Recomm. Syst.*, February 2025. doi: 10.1145/3713080.
 613 URL <https://doi.org/10.1145/3713080>. Just Accepted.

614

615 Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang, and Xiangnan
 616 He. Llara: Large language-recommendation assistant. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, SIGIR
 617 '24, pp. 1785–1795, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
 618 9798400704314. doi: 10.1145/3626772.3657690. URL <https://doi.org/10.1145/3626772.3657690>.

619

620 Yuchen Ma, Dennis Frauen, Emil Javurek, and Stefan Feuerriegel. Foundation models for causal
 621 inference via prior-data fitted networks, 2025. URL <https://arxiv.org/abs/2506.10914>.

622

623 Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
 624 formers can do bayesian inference. In *International Conference on Learning Representations*,
 625 2022. URL <https://openreview.net/forum?id=KSugKcbNf9>.

626

627 Samuel Müller, Arik Reuter, Noah Hollmann, David Rügamer, and Frank Hutter. Position: The
 628 future of bayesian prediction is prior-fitted, 2025. URL <https://arxiv.org/abs/2505.23947>.

629

630 Thomas Nagler. Statistical foundations of prior-data fitted networks. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.

631

632

633 Tiago P. Peixoto. Hierarchical block structures and high-resolution model selection in large net-
 634 works. *Phys. Rev. X*, 4:011047, Mar 2014. doi: 10.1103/PhysRevX.4.011047. URL <https://link.aps.org/doi/10.1103/PhysRevX.4.011047>.

635

636 Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: vi-
 637 sual reasoning with a general conditioning layer. In *Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence*, AAAI'18/IAAI'18/EAAI'18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

638

639

640

641 Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
 642 personalized ranking from implicit feedback. In *Proceedings of the Twenty-Fifth Conference on
 643 Uncertainty in Artificial Intelligence*, UAI '09, pp. 452–461, Arlington, Virginia, USA, 2009.
 644 AUAI Press. ISBN 9780974903958.

645

646 Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
 647 markov chains for next-basket recommendation. In *The Web Conference*, 2010. URL <https://api.semanticscholar.org/CorpusID:207178809>.

648 Dominik Scheuer, Frederic Runge, Jörg K.H. Franke, Michael T. Wolfinger, Christoph Flamm, and
 649 Frank Hutter. Kinpfn: Bayesian approximation of rna folding kinetics using prior-data fitted
 650 networks. *bioRxiv*, 2025. doi: 10.1101/2024.10.15.618378. URL <https://www.biorxiv.org/content/early/2025/03/18/2024.10.15.618378>.

651

652 Yuchen Shen, Haomin Wen, and Leman Akoglu. Fomo-0d: A foundation model for zero-shot
 653 outlier detection. In *1st ICML Workshop on Foundation Models for Structured Data*, 2025. URL
 654 <https://openreview.net/forum?id=DDah34cEtK>.

655

656 Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequent-
 657 ial recommendation with bidirectional encoder representations from transformer. In *Proceed-
 658 ings of the 28th ACM International Conference on Information and Knowledge Management*,
 659 CIKM '19, pp. 1441–1450, New York, NY, USA, 2019. Association for Computing Machinery.
 660 ISBN 9781450369763. doi: 10.1145/3357384.3357895. URL <https://doi.org/10.1145/3357384.3357895>.

661

662 Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
 663 embedding. In *Proceedings of the Eleventh ACM International Conference on Web Search and*
 664 *Data Mining*, WSDM '18, pp. 565–573, New York, NY, USA, 2018. Association for Computing
 665 Machinery. ISBN 9781450355810. doi: 10.1145/3159652.3159656. URL <https://doi.org/10.1145/3159652.3159656>.

666

667 Valentin Thomas, Junwei Ma, Rasa Hosseinzadeh, Keyvan Golestan, Guangwei Yu, Maksims
 668 Volkovs, and Anthony L. Caterini. Retrieval & fine-tuning for in-context tabular models. In
 669 *ICML 2024 Workshop on In-Context Learning*, 2024. URL <https://openreview.net/forum?id=LN5X5rd1b3>.

670

671 Jordan Ubbens, Ian Stavness, and Andrew G. Sharpe. Gpfn: Prior-data fitted networks for genomic
 672 prediction. *IEEE Transactions on Computational Biology and Bioinformatics*, pp. 1–8, 2025. doi:
 673 10.1109/TCBBIO.2025.3596744.

674

675 Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z. Sheng, and Mehmet Orgun. Sequential
 676 recommender systems: Challenges, progress and prospects. In *Proceedings of the Twenty-Eighth*
 677 *International Joint Conference on Artificial Intelligence, IJCAI-19*, pp. 6332–6338. International
 678 Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/883.
 679 URL <https://doi.org/10.24963/ijcai.2019/883>.

680

681 Yuxin Wang, Botian Jiang, Yiran Guo, Quan Gan, David Wipf, Xuanjing Huang, and Xipeng Qiu.
 682 Prior-fitted networks scale to larger datasets when treated as weak learners. In Yingzhen Li,
 683 Stephan Mandt, Shipra Agrawal, and Emtiyaz Khan (eds.), *Proceedings of The 28th International*
 684 *Conference on Artificial Intelligence and Statistics*, volume 258 of *Proceedings of Machine Learn-
 685 ing Research*, pp. 1090–1098. PMLR, 03–05 May 2025. URL <https://proceedings.mlr.press/v258/wang25d.html>.

686

687 Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
 688 Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models
 689 for recommendation, 2024. URL <https://arxiv.org/abs/2305.19860>.

690

691 Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin Ding, and Bin
 692 Cui. Contrastive learning for sequential recommendation. In *2022 IEEE 38th International Con-
 693 ference on Data Engineering (ICDE)*, pp. 1259–1273, 2022. doi: 10.1109/ICDE53745.2022.
 694 00099.

695

696 Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-
 697 truth. In *Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics*, MDS '12,
 698 New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450315463. doi:
 699 10.1145/2350190.2350193. URL <https://doi.org/10.1145/2350190.2350193>.

700

701 Han-Jia Ye, Huai-Hong Yin, De-Chuan Zhan, and Wei-Lun Chao. Revisiting nearest neighbor
 702 for tabular data: A deep tabular baseline two decades later. In *The Thirteenth International*
 703 *Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=JytL2Mr1LT>.

702 Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. Challenging the long tail recommendation.
 703 *Proc. VLDB Endow.*, 5(9):896–907, May 2012. ISSN 2150-8097. doi: 10.14778/2311906.
 704 2311916. URL <https://doi.org/10.14778/2311906.2311916>.

705 Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xiangnan He. A sim-
 706 ple convolutional generative network for next item recommendation. In *Proceedings of the Twelfth*
 707 *ACM International Conference on Web Search and Data Mining*, WSDM ’19, pp. 582–590, New
 708 York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450359405. doi:
 709 10.1145/3289600.3290975. URL <https://doi.org/10.1145/3289600.3290975>.

710 Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen Fu, Fei Yang, Yunzhu Pan, and Yongxin
 711 Ni. Where to go next for recommender systems? id- vs. modality-based recommender models
 712 revisited. In *Proceedings of the 46th International ACM SIGIR Conference on Research and*
 713 *Development in Information Retrieval*, SIGIR ’23, pp. 2639–2649, New York, NY, USA, 2023.
 714 Association for Computing Machinery. ISBN 9781450394086. doi: 10.1145/3539618.3591932.
 715 URL <https://doi.org/10.1145/3539618.3591932>.

716 Tianzi Zang, Yanmin Zhu, Haobing Liu, Ruohan Zhang, and Jiadi Yu. A survey on cross-domain
 717 recommendation: Taxonomies, methods, and future directions. *ACM Trans. Inf. Syst.*, 41(2),
 718 December 2022. ISSN 1046-8188. doi: 10.1145/3548455. URL <https://doi.org/10.1145/3548455>.

719 Biao Zhang, Philip Williams, Ivan Titov, and Rico Sennrich. Improving massively multilingual neu-
 720 ral machine translation and zero-shot translation. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
 721 and Joel Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the Association for Compu-
 722 tational Linguistics*, pp. 1628–1639, Online, July 2020. Association for Computational Linguis-
 723 tics. doi: 10.18653/v1/2020.acl-main.148. URL [https://aclanthology.org/2020.acl-main.148/](https://aclanthology.org/2020.acl-main.148).

724 Junjie Zhang, Ruobing Xie, Yupeng Hou, Xin Zhao, Leyu Lin, and Ji-Rong Wen. Recommendation
 725 as instruction following: A large language model empowered recommendation approach. *ACM*
 726 *Trans. Inf. Syst.*, 43(5), July 2025a. ISSN 1046-8188. doi: 10.1145/3708882. URL <https://doi.org/10.1145/3708882>.

727 Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He. Collm: Integrating
 728 collaborative embeddings into large language models for recommendation. *IEEE Transactions on*
 729 *Knowledge and Data Engineering*, 37(5):2329–2340, 2025b. doi: 10.1109/TKDE.2025.3540912.

730 Feng Zhu, Yan Wang, Chaochao Chen, Jun Zhou, Longfei Li, and Guanfeng Liu. Cross-domain
 731 recommendation: Challenges, progress, and prospects. In Zhi-Hua Zhou (ed.), *Proceedings of*
 732 *the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21*, pp. 4721–4728.
 733 International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/
 734 ijcai.2021/639. URL <https://doi.org/10.24963/ijcai.2021/639>. Survey Track.

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A USE OF LLMs**
757758 For our work, we used LLMs to polish the writing and to assist coding.
759760 **B PROOF OF POSTERIOR PREDICTIVE OPTIMALITY FOR SR-PFN**
761762 We show that SR-PFN trained with the candidate-restricted cross-entropy converges to the
763 (candidate-restricted) Bayesian posterior predictive distribution (PPD).
764765 **B.1 PROBLEM SETUP**
766767 Let Φ be a hypothesis class with prior $p(\phi)$. Given ϕ , draw a support set of in-context examples
768 $D = \{(x_i, y_i)\}_{i=1}^n \sim p(D | \phi)$ and a query $(x_q, y_q) \sim p(x_q, y_q | \phi)$ (independence is not required).
769 Thus $(D, x_q, y_q) \sim \int p(D, x_q, y_q | \phi) p(\phi) d\phi$. For evaluation, each query x_q is scored over a finite
770 candidate set $C_q \subset \mathcal{Y}$ drawn by a negative-sampling policy $\nu(C_q | D, x_q, y_q)$ that always includes
771 y_q .
772773 **Candidate policy (uniform negatives over the unseen pool)** Let $U^-(D, x_q)$ be the set of items
774 not previously interacted with by x_q among the dataset D . We assume (i) $C_q = \{y_q\} \cup S_q$ with
775 $S_q \subseteq U^-(D, x_q) \setminus \{y_q\}$ and $|C_q| = m$ fixed; (ii) conditional on (D, x_q) , S_q is sampled uniformly
776 without replacement from $U^-(D, x_q) \setminus \{y_q\}$. Equivalently, for any fixed C of size m and any
777 $y', y'' \in C$,

778
$$\nu(C | D, x_q, y') = \nu(C | D, x_q, y'') = \frac{1}{\binom{|U^-(D, x_q)|-1}{m-1}}.$$

779

780 **B.2 CANDIDATE-RESTRICTED PPD**
781782 Condition on $Z = (D, x_q, C_q)$. By Bayes' rule and the inclusion of y in C_q ,
783

784
$$p(y | Z) \propto \mathbf{1}\{y \in C_q\} p(y | D, x_q) \nu(C_q | D, x_q, y), \quad (4)$$

785 which normalizes to

786
$$p(y | D, x_q, C_q) = \frac{p(y | D, x_q) \nu(C_q | D, x_q, y)}{\sum_{c \in C_q} p(c | D, x_q) \nu(C_q | D, x_q, c)}. \quad (5)$$

787

788 Under uniform negatives (above), $\nu(C_q | D, x_q, y)$ is constant in $y \in C_q$ and cancels, yielding the
789 renormalized form

790
$$p(y | D, x_q, C_q) = \frac{p(y | D, x_q)}{\sum_{c \in C_q} p(c | D, x_q)} \quad (y \in C_q), \quad p(\cdot) = 0 \text{ on } \mathcal{Y} \setminus C_q. \quad (6)$$

791

792 **B.3 TRAINING OBJECTIVE**
793

794 SR-PFN is trained by the candidate-restricted cross-entropy

795
$$\mathcal{L}_{\text{SR}}(\theta) = \mathbb{E}_{(D, x_q, y_q), C_q} [-\log q_\theta(y_q | D, x_q, C_q)], \quad (7)$$

796

797 with $(D, x_q, y_q) \sim \int p(\cdot | \phi) p(\phi) d\phi$ and $C_q \sim \nu(\cdot | D, x_q, y_q)$, matching the training interface
798 used at test time.
799800 **B.4 OPTIMALITY WITH INTRA-QUERY CANDIDATE ATTENTION**
801802 Allowing full attention among *candidate tokens within the query block* only changes the available
803 conditioning set Z ; it does not affect the probabilistic identity below. History tokens remain causally
804 masked; ground-truth labels are never input tokens.
805806 **Lemma 1** (CE–KL identity). *For any fixed $Z = (D, x_q, C_q)$, letting $p(\cdot | Z)$ denote equation 5,*
807

808
$$\mathbb{E}_{y \sim p(\cdot | Z)} [-\log q_\theta(y | Z)] = H(p(\cdot | Z)) + \text{KL}(p(\cdot | Z) \| q_\theta(\cdot | Z)).$$

809 Hence $\mathbb{E}_Z[\cdot]$ of the left-hand side is minimized iff $q_\theta(\cdot | Z) = p(\cdot | Z)$ almost surely.

810
Proposition 1 (Candidate-restricted optimality). *For each prompt $Z = (D, x_q, C_q)$, the minimizer
 811 of equation 7 over distributions supported on C_q is the true conditional $p(\cdot \mid Z)$ in equation 5.
 812 Under uniform negatives, this reduces to the renormalized form equation 6.*

813
 814
Corollary 1 (Top-1 Bayes decision within C_q). *If $y_q \in C_q$ almost surely, then*

815
 816
$$\arg \max_{c \in C_q} q_\theta^*(c \mid D, x_q, C_q) = \arg \max_{c \in C_q} p(c \mid D, x_q, C_q) = \arg \max_{c \in C_q} p(c \mid x_q, D).$$

817
 818
Remarks The uniform-without-replacement policy over the unseen pool leaves the relative ranking
 819 by the unconditional predictive $p(\cdot \mid D, x_q)$ untouched inside C_q . But if the mining policy is
 820 popularity-biased or hard-negative (e.g., nearest-neighbor or model-driven mining), the implicit target
 821 becomes a reweighted conditional that favors items more likely under the mining policy. This can
 822 be desirable for certain head-heavy objectives, but it no longer coincides with the unbiased posterior
 823 predictive unless one compensates during training (e.g., by importance weighting or by restoring
 824 uniform negatives at training time).

825 C SYNTHETIC DATA GENERATION AND HYPERPARAMETERS

826 C.1 HIERARCHICAL COMMUNITY STRUCTURES

827
 828 Here, we explain how we modeled a hierarchical community structure. We split the item set
 829 into a small number of macro-communities, each of which is further divided into several micro-
 830 communities. In what follows, the term community refers to a micro-community. We choose the
 831 sizes of macros first, and then the sizes of micros within each macro. Both sets of sizes are drawn
 832 from power-law distributions so that some groups are significantly larger than others. This allows us
 833 to have controllable, imbalanced group sizes. To control how strongly items are linked, we use three
 834 block affinities, ordered from strongest to weakest: (i) within the same micro-community, (ii) be-
 835 tween different micros of the same macro, and (iii) across different macros. Practically, we sample
 836 three nonnegative weights, sort them in descending order, and assign them to these three regimes to
 837 enforce the hierarchy by construction. Each item receives its own out-degree and in-degree propen-
 838 sity, drawn from a power-law distribution. The expected connection strength between two items is
 839 then determined by (a) their propensities and (b) the affinity between their communities. Using the
 840 expected connection strengths, we construct a sparse weighted adjacency matrix and normalize its
 841 rows to obtain a Markov transition kernel.

842 C.2 STICKINESS

843 To model stickiness — the tendency of users to remain at the same item — we modify the transition
 844 matrix by injecting self-loops. Concretely, we add a self-loop weight to each node in proportion
 845 to its degree, controlled by a global coefficient s . This makes popular items more likely to exhibit
 846 persistence, reflecting the fact that highly connected items are harder to leave. After adding these
 847 degree-scaled self-loops, we normalize each row of the matrix so that it defines a valid probability
 848 distribution. The resulting transition kernel therefore captures not only the popularity skew and
 849 community structure encoded in the original graph, but also a controllable persistence effect that
 850 models users staying on the current item.

851 C.3 HYPERPARAMETERS

852 Table 3 summarizes the ranges and distributions of random-sampled hyperparameters used in our
 853 synthetic prior construction. These values are re-sampled for each epoch, ensuring diverse graph
 854 topologies and sequence statistics. Here, $\text{Uniform}(a, b)$ denotes a continuous uniform draw on
 855 $[a, b]$, and $\text{UniformInt}(a, b)$ denotes a discrete uniform draw on the integers $\{a, \dots, b\}$ (inclusive).

864

865

Table 3: Hyperparameters used in the synthetic graph prior and sequence generation.

866

867

Parameter	Sampling dist.	Min	Max
hDCSBM			
Number of items (M)	Uniform()	3,200	25,600
Number of macro blocks (K_{macro})	UniformInt()	4	12
Number of micro-blocks per macro (m_j)	UniformInt()	2	8
Avg. degree (\bar{d})	UniformInt()	32	128
Degree exponent γ_{deg}	Uniform()	2.0	5.0
Within-micro connection weight (w) [†]	Uniform()	6.0	12.0
Within-macro connection weight (w) [†]	Uniform()	1.0	4.0
Cross-macro connection weight (w) [†]	Uniform()	0.05	0.40
Macro-level size exponent (τ_{macro})	Uniform()	1	5
Micro-level size exponent (τ_{micro})	Uniform()	1	5
<i>Sequence generation</i>			
Number of synthetic users (U_{synth})	$\max\{16000, \lceil M \cdot \text{Uniform}(1, 5) \rceil\}$	16,000	$5M$
Max sequence-length factor (f_{len})	Uniform()	0.1	1.0
Sequence length power-law exponent (α_{len})	Uniform()	1.0	2.0
Candidate pool ratio (r_{pool})	Uniform()	0.001	0.01
PPR restart probability (α)	Uniform()	0.01	0.99

878

Independently sampled, then sorted (descending) and assigned to (within micro, within macro, cross macro).

884

885

886

Table 4: Special tokens used by SR-PFN.

887

Token	ID	Role (summary)
PAD	0	Padding token (unused positions)
EXAMPLE_START	1	Start of an in-context example block
CONTEXT_END	2	Boundary between history and candidates
CANDIDATE_START	3	Start of candidate list (attention confined within the block)
ANSWER	4	Marks the correct candidate <i>inside examples only</i> (never in queries)
EXAMPLE_END	5	End of example block
QUERY_START	6	Start of query block
QUERY_END	7	End of query block
INTERACTION	-1	Placeholder for interaction

898

899

D IMPLEMENTATION DETAILS

900

D.1 SPECIAL TOKENS

903

The role and summary of each token are given in Table 4. EXAMPLE_START/EXAMPLE_END and QUERY_START/QUERY_END delimit example and query blocks; CONTEXT_END marks the end of the user history and CANDIDATE_START begins the candidate list. ANSWER is inserted immediately before the true positive *only inside examples* and never appears in queries. PAD is used solely for batching and is fully masked out. INTERACTION is a placeholder that serializes to actual item IDs at write time (i.e., it is not a fixed special token). During training and evaluation, scores and loss are computed *only* over the query’s candidates. To prevent information leakage, the true query item y_q never appears as ANSWER, and items that will later serve as query ground truth are excluded when constructing interaction/transition matrices and graphs.

912

913

D.2 IN-CONTEXT EXAMPLE SELECTION ALGORITHM

915

916

917

For a query user q , we form a candidate user pool \mathcal{U}_q that might be potentially selected as in-context examples. We represent q and each candidate user $i \in \mathcal{U}_q$ by ℓ_2 -normalized embeddings \mathbf{u}_q and \mathbf{u}_i , and define their *relevance score* as $r_i = \langle \mathbf{u}_q, \mathbf{u}_i \rangle$. By selecting the most relevant candidate user as

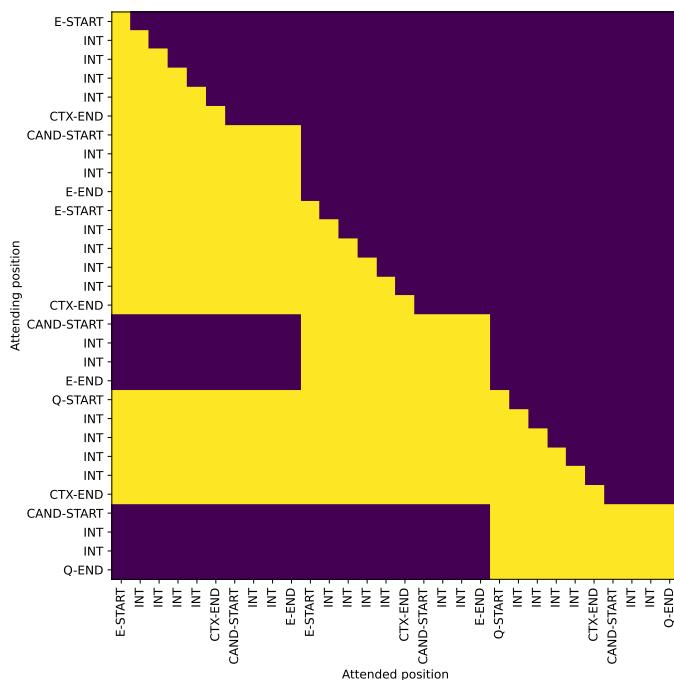


Figure 7: Visualization of the attention mask with two examples and one query.

the first example, we iteratively select at step t ,

$$i^* = \arg \max_{i \in \mathcal{U}_q \setminus S_{t-1}} \left\{ \lambda r_i - (1 - \lambda) d_i \right\},$$

where $d_i = \max_{j \in S_{t-1}} \langle \mathbf{u}_i, \mathbf{u}_j \rangle$ encodes how redundant candidate i is with the already-chosen exemplars. After adding i^* to the set $(S_t \leftarrow S_{t-1} \cup \{i^*\})$, we update the penalties for the remaining candidates as

$$d_i \leftarrow \max\{d_i, \langle \mathbf{u}_i, \mathbf{u}_{i^*} \rangle\} \quad \text{for all } i \in \mathcal{U}_g \setminus S_t.$$

In this way, r_i measures how well candidate i matches the query user q , while d_i reflects how redundant it is with the current exemplar set. The trade-off parameter $\lambda \in [0, 1]$ balances the two: $\lambda = 1$ selects purely by relevance (top- k by r_i), while $\lambda = 0$ enforces maximal diversity (farthest-first sampling). Iterating this procedure until k exemplars are chosen yields a set that is both relevant to the query and diverse among themselves, thereby providing richer in-context information without unnecessary repetition. In this work, the hyperparameter λ is fixed to 0.5.

D.3 VISUALIZATION OF ATTENTION MASK

Figure 7 shows a attention mask represented as binary matrix $M \in \{0, 1\}^{T \times T}$ for a prompt with two *example* blocks and one *query* block, each having a history of length 5 and a candidate list of size 3 (allowed attention = yellow; disallowed = dark).

We construct M as the conjunction of an inter-block and an intra-block policy: (i) *Inter-block*: tokens inside example blocks may attend only within their own and earlier example blocks (no look-ahead across examples), while tokens inside the query block may attend to all preceding blocks as well as within the query block. (ii) *Intra-block*: each block is split at `CONTEXT-END` into a history region and a candidate region. History tokens use a left-to-right causal mask, hence the triangular pattern inside each history segment. Candidate tokens have full attention *within the same block* (rectangular patches), so they can attend to the block's history and to other candidates, but never across blocks.

972

973

974

975

Table 5: Dataset statistics after preprocessing (5-core).

Dataset	#Users	#Items	Avg. Seq. Len.
Luxury Beauty	5,198	5,120	8.54
Ind. & Sci.	24,831	26,109	6.56
Video Games	52,944	30,355	9.50

976

977

978

979

980

981

Table 6: Topology of item co-occurrence graphs.

Dataset	N (items)	E (edges)	Density	\bar{d}	Transitivity	Hub dom.	Non-GC frac.
Luxury Beauty	5,120	23,416	1.79×10^{-3}	9.15	0.266	11.6%	0.666
Ind. & Sci.	26,109	19,710	5.78×10^{-5}	1.51	0.110	2.3%	0.804
Video Games	30,355	452,353	9.82×10^{-4}	29.80	0.208	6.8%	0.430

982

983

984

985

986

987

988

989

990

991

992

993

E DATASET STATISTICS AND CO-OCCURRENCE ANALYSIS

994

995

E.1 SEQUENCE-LEVEL STATISTICS

996

997

998

999

1000

1001

1002

1003

Table 5 reports the number of users and items and the average sequence length (including the held-out validation/test item) after 5-core filtering. Concretely, Video Games has the longest sequences on average (9.50) and the largest user base (52,944), whereas Industrial & Scientific offers the shortest sequences (6.56) with a mid-sized catalog (26,109 items); Luxury Beauty sits in between in terms of length (8.54) but with the smallest catalog (5,120 items).

1004

1005

1006

1007

1008

1009

1010

1011

E.2 QUALITATIVE INTERPRETATION OF CO-OCCURRENCE GRAPHS

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

Figure 5 visually compares the item co-occurrence graphs across the three datasets. Luxury Beauty exhibits a clear hub-and-spoke structure centered on a dominant core, accompanied by several medium-sized communities connected through bridges. Industrial & Scientific appears more diffuse, characterized by a compact giant component but weaker modularity. In contrast, Video Games presents the densest core with pronounced hub dominance and elongated filamentary connections. These structural contrasts anticipate the quantitative differences reported in Table 6, highlighting distinct topological patterns that reflect varying dataset difficulty and distributional characteristics.

1015

1016

1017

1018

1019

1020

1021

1022

1023

E.3 QUANTITATIVE INTERPRETATION OF CO-OCCURRENCE GRAPHS

Metrics On the co-occurrence graph built by each dataset, we report:

- **Density** = $\frac{2E}{N(N-1)}$ — share of realized item–item links ($\in [0, 1]$).
- **Average degree** \bar{d} = $\frac{2E}{N}$ — typical # of co-occurring neighbors per item.
- **Transitivity** (global clustering) — fraction of closed triads; higher means stronger local closure.
- **Hub dominance** = $\frac{k_{\max}}{N-1}$ — largest hub’s reach as a share of items.
- **Fragmentation** = $1 - f_{\text{GC}}$ — fraction of items outside the giant component.

1024

1025

As shown in Table 6, Industrial & Scientific is very sparse and fragmented, having low density and average degree with high non-GC fraction. Meanwhile, Luxury Beauty is more connected with stronger local closure (higher transitivity) and a more pronounced single hub. Video Games has a

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

large, dense giant component (the highest \bar{d} here) with moderate hub concentration and the least fragmentation among the three. Together, these results show that the datasets differ not only in sequence volume but also in connectivity patterns, motivating models that remain reliable across diverse graph regimes.

1042

1043

1044

F BASELINES

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

We compare SR-PFN against five representative ID-based and two language model(LM)-based sequential recommenders that leverage semantic information beyond ID representations. FPMC (Rendle et al., 2010) factorizes user-item preferences while coupling them with a first-order Markov chain to capture short-term transitions. GRU4Rec (Hidasi et al., 2015) models sequences with gated recurrent units and ranking-oriented losses for session-based recommendation. NextItNet (Yuan et al., 2019) replaces recurrence with deep stacks of dilated causal convolutions to encode long-range dependencies. Caser (Tang & Wang, 2018) uses horizontal and vertical convolutional filters to extract union-level and point-level sequential patterns. SASRec (Kang & McAuley, 2018) applies unidirectional self-attention to learn variable-order item dependencies. CTRL (Li et al., 2025) reformulates the recommendation task as a text-prompt and aligns semantic representations with a CF model. Most recent LLM-based recommenders are formulated as generative tasks that output a single target item, making them unsuitable for direct comparison with our ranking-based setting. We therefore adopt LLM-SRec (Kim et al., 2025) as our LLM baseline, which distills representations from a sequential CF model to better capture user preferences.

1059

1060

G TRAINING SETUP AND HYPERPARAMETERS

1061

1062

G.1 TRAINING SR-PFN

1063

The model configuration of SR-PFN is summarized in Table 7. In total, the model contains approximately 168M trainable parameters when the the SVD dimension is set to 1024. We trained SR-PFN for a total of 500 epochs, each epoch comprising up to 1,000 steps (500,000 steps in total) with a batch size of 16. For each epoch, a new synthetic graph was generated; if the graph did not contain sufficient sequences to fill 1,000 steps, additional graphs were sampled to complete the epoch. For Table 1, we set the learning rate to 3×10^{-5} , the number of in-context examples k to 4, and the SVD dimension to 1024. The total training required approximately 60 GPU hours on a single NVIDIA RTX A6000.

1071

1072

1073

G.2 OPTIMIZATION DETAILS

1074

1075

1076

1077

1078

1079

To stabilize optimization, we use the AdamW optimizer with gradient clipping, and control the learning rate through a cosine scheduler with warmup. The global gradient norm is clipped to 10 at each update step. Given 500 epochs and 1,000 steps per epoch with gradient accumulation of 16, the total number of optimizer updates is approximately 31,250. The learning rate is linearly warmed up during the first 25 epochs (1,562 updates), and subsequently decays following a cosine schedule down to 10% of the peak value. This schedule enables stable convergence while mitigating sharp drops in training loss. The complete set of training hyperparameters is summarized in Table 8.

Table 7: Model configuration of SR-PFN.

Parameter	Value
Embedding dimension (d)	1024
Number of layers	12
Hidden dimension ($4d$)	4096
Number of attention heads	16
Dropout rate	0.1
Activation function	GELU
Input normalization	True

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

H ABLATION STUDIES

1105

1106

H.1 ABLATION ON EMBEDDING DIMENSION

1107

We vary $d \in \{256, 512, 1024\}$ under an otherwise identical training setup (only the SVD rank / embedding size changes). Larger d yields small but consistent gains on Luxury Beauty and Industrial & Scientific, and Video Games also attains its best performance at $d=1024$ with only a marginal improvement over smaller dimensions. We adopt $d=1024$ for the main results: it is best or near-best across all datasets and offers a reasonable trade-off between accuracy and capacity.

1112

1113

H.2 ABLATION ON NUMBER OF IN-CONTEXT EXAMPLES

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Table 8: Training hyperparameters for SR-PFN.

Hyperparameter	Value
Epochs	500
Steps per epoch	1,000
Batch size	16
Gradient accumulation	16
Learning rate	$\{3 \times 10^{-5}, 5 \times 10^{-5}, 1 \times 10^{-4}\}$
Warmup epochs	25
Weight decay	1×10^{-4}
Optimizer	AdamW
Scheduler	Cosine annealing with linear warmup
Minimum LR ratio	0.1 (relative to peak LR)
Gradient clipping	10.0 (global norm)
Mixed precision (AMP)	Enabled

Table 9: Ablation on the embedding dimension d (HR@1).

	$d=256$	$d=512$	$d=1024$
Luxury Beauty	0.4900	0.5077	0.5222
Industrial & Scientific	0.2777	0.2867	0.2894
Video Games	0.5445	0.5417	0.5463

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158

Table 10: Ablation on the number of in-context examples k (HR@1).

Dataset	$k = 0$	$k = 1$	$k = 2$	$k = 4$	$k = 8$
Luxury Beauty	0.5044	0.5144	0.5123	0.5222	0.5144
Ind. & Sci.	0.2917	0.2952	0.2930	0.2894	0.2885
Video Games	0.5445	0.5332	0.5376	0.5463	0.5452

1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187