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ABSTRACT

Sequential recommendation is a popular task in many real-world businesses. On
the one hand, conventional sequential recommenders learn collaborative signals
and temporal patterns solely from training interactions and do not generalize well
to new datasets. On the other hand, to better leverage textual metadata and user
reviews, LLM-based recommenders have recently been proposed; however, they
often incur high inference costs and may inherit limitations of language mod-
els, including limited multilingual generalization, social bias, and a tendency to
memorize data rather than to infer. To this end, we present SR-PFN, a sequen-
tial recommender that performs single-pass next-item prediction via in-context
inference after being pretrained on synthetic data — our method is the first at-
tempt for sequential recommendation under the regime of Prior-data Fitted Net-
works (PFNs). Our approach introduces a synthetic prior model tailored toward
sequential recommendation. After being pre-trained on synthetic data sampled
from the prior model, which reflects realistic sequential dynamics, SR-PFN learns
to approximate the posterior predictive distribution (PPD) for next-item predic-
tion at test time, enabling parameter update-free, single-pass inference. Across
sequential recommendation benchmarks, SR-PFN outperforms seven competitive
baselines, while offering substantially lower inference costs compared to those of
LLM-based models.

1 INTRODUCTION

Sequential recommendation (Wang et al., 2019; Fang et al., 2020) aims to predict the next item that
a target user will interact with based on their interaction history. Existing sequential recommender
systems learn embedding representations by extracting collaborative and sequential patterns directly
from observed user-item interaction histories to capture user preferences (Hidasi et al., 2015; Kang
& McAuley, 2018; Sun et al., 2019). More recently, large language model (LLM)-based approaches
(Geng et al., 2022; Bao et al., 2023) have emerged, where map items into a natural language embed-
ding space and model sequential dynamics using pretrained textual representations.

While user-item interaction histories provide the empirical basis for sequential recommendation,
relying only on such histories introduces practical challenges. These challenges restrict models to
learning rather simple patterns present in the training data, hindering their ability to generalize to
other datasets (Zhu et al., 2021; Zang et al., 2022). They also require dataset-specific retraining or
extensive re-tuning to transfer across domains, which raises operational costs. To better leverage
textual metadata and user reviews, recent attempts to utilize LLMs have shown promising accuracy
(Kong et al., 2024; Kim et al., 2025), but often incur prohibitive inference costs and latency, limiting
their practicality in real-world deployment scenarios. They may also inherit limitations of LLMs,
which primarily focus on English tasks (Zhang et al., 2020), and exhibit social bias (Gallegos et al.,
2024), as well as a tendency to memorize training data (Di Palma et al., 2025).

In this work, we propose SR-PFN — a new paradigm for sequential recommendation built on Prior-
Data Fitted Networks (PFNs; Müller et al., 2022). SR-PFN is pretrained once under synthetic data
sampled from a prior data distribution, then infers the posterior predictive distribution (PPD) of
each query from in-context examples without any parameter updates. Figure 1 shows how SR-PFN
differs from conventional sequential recommenders. During the pretraining stage of SR-PFN, the
model learns to infer based on a diverse spectrum of interaction patterns from in-context examples,
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Figure 1: Left: Conventional sequential recommenders are trained separately on each real dataset
(e.g., Luxury Beauty, Video Games) and can only be applied within the same domain, so their in-
ference remains confined to the training set. Right: SR-PFN is pretrained once on diverse synthetic
data that capture a wide range of interaction patterns, and then performs in-context inference on un-
seen datasets using only a few example sequences from the target domain — without any retraining
or fine-tuning. In all graphs, node size reflects item popularity.

thereby enabling it to make contextually relevant predictions on new tasks by processing examples
from real-world datasets in-context, without requiring data-specific training. While prior PFN re-
search has demonstrated strong performance in other areas such as tabular classification (TabPFN;
Hollmann et al., 2023) and time-series forecasting (ForecastPFN; Dooley et al., 2023), to the best
of our knowledge, SR-PFN represents the first attempt to extend PFNs to the domain of sequential
recommendation.

A core challenge of this paradigm is to design a prior that reflects the statistical properties ob-
served in real-world sequential recommendation data. Our prior model (see Section 3.2) works in
the following two steps: i) grounded in the observation that user-item interaction histories exhibit an
item-item co-occurrence structure with heavy-tailed degrees and a hierarchical community organiza-
tion (Yang & Leskovec, 2012; Abdollahpouri et al., 2019), we adopt a hierarchical degree-corrected
stochastic block model (hDCSBM; Karrer & Newman, 2011; Peixoto, 2014) prior as a parametric
prior of item graphs; ii) on top of the hDCSBM-generated item-item graph, we generate interac-
tion sequences using Personalized PageRank (PPR; Haveliwala, 2002), which serve as in-context
examples and queries for pretraining SR-PFN for the next-item prediction task.

The next challenge is the model architecture. For SR-PFN to capture interaction patterns, we first
propose a gated fusion encoder that integrates low-rank embeddings derived from the user–item
interaction matrix and the item–item transition matrix, constructed from user interactions sampled
from the same prior (see Section 4). On top of these representations, we design a prompt tailored
to in-context learning (Brown et al., 2020), consisting of k example blocks and one query block. A
block-aware attention mask is applied to the prompt, allowing for a query-to-example flow while
preventing cross-example and answer-to-query leakage, thereby preserving temporal causality and
block-wise independence.

Pretrained once under a synthetic prior, SR-PFN shows strong performance across standard sequen-
tial recommendation benchmarks. Even when existing recommenders are trained end-to-end on the
observed interactions to directly learn embeddings and relations, SR-PFN, without any parameter
updates, outperforms five ID-based and two LLM-based models while achieving 6x lower inference
cost than the LLM-based approaches (see Section 5). By being trained under a broad synthetic prior
that captures diverse interaction patterns, SR-PFN also demonstrates particular strength in cold-start
scenarios where user histories or item interactions are sparse.
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Contributions We make the following contributions:

• We introduce SR-PFN, a PFN-based paradigm for sequential recommendation that performs in-
context learning in a single forward pass, without any parameter updates.

• We design a controllable prior over item graphs via an hDCSBM coupled with PPR-based se-
quence generation, which captures salient statistics of sequence-derived co-occurrence graphs.

• We propose a gated fusion encoder that fuses low-rank embeddings from the user–item interaction
and item–item transition matrices, together with a prompt and block-aware attention mask that
learn sequential patterns from in-context examples and then transfers them to the query.

• Our SR-PFN demonstrates strong accuracy against 5 ID-based and 2 LLM-based baselines, with
substantially lower inference cost than the LLM-based approaches.

2 RELATED WORK

Sequential recommendation Traditional sequential recommenders identify users and items with
unique IDs and learn embeddings from interaction sequences (Wang et al., 2019; Fang et al., 2020).
Early statistical approaches include matrix factorization (MF) methods (Koren et al., 2009), which
decompose the user–item interaction matrix to model collaborative signals, and Markov chain (MC)
methods, which treat user histories as ordered sequences (Rendle et al., 2009; 2010). The rise of
deep learning brought models such as GRU4Rec (Hidasi et al., 2015) and Caser (Tang & Wang,
2018), which leverage RNN and CNN architectures to model complex and nonlinear sequence pat-
terns (Guo et al., 2017; Yuan et al., 2019). The introduction of attention mechanisms further led
to models like SASRec (Kang & McAuley, 2018), which use self-attention to focus on the most
relevant items in long user histories (Sun et al., 2019; Xie et al., 2022). However, these ID-based ap-
proaches often lack semantic understanding, resulting in limited suboptimal personalization (Yuan
et al., 2023).

Recent research has explored leveraging LLMs’ strong generalization and semantic understanding
for recommendation by reformulating tasks as text prompts (Geng et al., 2022). Early approaches
such as TALLRec (Bao et al., 2023) focused on fine-tuning with recommendation data to better align
LLMs with recommendation objectives (Zhang et al., 2025a). Later methods move beyond fine-
tuning by using hybrid prompting, which injects collaborative filtering embeddings into the LLM
input space, allowing the model to exploit CF signals when generating recommendations (Liao et al.,
2024; Kong et al., 2024; Zhang et al., 2025b; Kim et al., 2025). In-context learning (Brown et al.,
2020) adapts models to new tasks from a few examples without parameter updates.

Prior-data fitted networks Müller et al. (2022) showed that Prior-data Fitted Networks (PFNs)
approximate Bayesian posterior predictive inference from in-context examples, and subsequent the-
ory established why they succeed through bias–variance mechanisms (Nagler, 2023). Since then,
PFNs have been extended beyond tabular and time-series tasks (Hollmann et al., 2023; Dooley et al.,
2023) to domains such as biology (Ubbens et al., 2025; Scheuer et al., 2025), causal inference, and
anomaly detection (Shen et al., 2025; Ma et al., 2025), often by designing synthetic priors that cap-
ture domain-specific structures. Recent work further addresses PFNs’ in-context limitations through
improved context selection and ensemble methods, advancing their scalability and generalization
(Feuer et al., 2025; Wang et al., 2025; Müller et al., 2025).

3 PRIOR FOR SEQUENTIAL RECOMMENDATION

3.1 BACKGROUND ON PRIOR-DATA FITTED NETWORKS

Let Φ denote a hypothesis class of data-generating mechanisms. Each hypothesis ϕ ∈ Φ defines
a distribution over user–item interactions and thereby generates both (i) a dataset of in-context ex-
amples D = {(xi, yi)}ni=1, where xi is a user history sequence and yi its ground-truth next item,
and (ii) additional query pairs (xq, yq) drawn from the same mechanism. For evaluation, each query
user history sequence xq is accompanied by a candidate set Cq , constructed using a random negative
sampling policy ν(Cq | D,xq, yq). Let U−(D,xq) be the set of items not previously interacted with
by xq among the dataset D. We assume (i) Cq = {yq} ∪ Sq with Sq ⊆ U−(D,xq) \ {yq} and
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|Cq| = m fixed; (ii) conditional on (D,xq), Sq is sampled uniformly without replacement from
U−(D,xq) \ {yq}.

ν(C | D,xq, yq) =
1(|U−(D,xq)|−1

m−1

) .
Throughout, p(· | D,xq) denotes the Bayesian posterior predictive induced by a prior p(ϕ) over
mechanisms ϕ ∈ Φ:

p(yq | D,xq) =

∫
p(yq | xq, ϕ) p(ϕ | D) dϕ, p(ϕ | D) ∝ p(D | ϕ) p(ϕ).

For a query user history xq with candidate set Cq , the Bayesian posterior predictive distribution
conditioned on Cq is

p(yq | D,xq, Cq) =
p(yq | D,xq) ν(Cq | D,xq, yq)∑
c∈Cq

p(c | D,xq) ν(Cq | D,xq, c)
. (1)

If negatives are sampled uniformly without replacement from the items not seen by xq , then ν(Cq |
D,xq, y) is independent of which y ∈ Cq is the ground truth. In this case, the ν-factor cancels and
the conditional reduces to a simple renormalization:

p(yq | D,xq, Cq) =
p(yq | D,xq)∑
c∈Cq

p(c | D,xq)
, where yq ∈ Cq. (2)

Following the synthetic prior-fitting introduced in previous works (Müller et al., 2022; Adriaensen
et al., 2023), training SR-PFN with cross-entropy on synthetic tasks yields a predictor qθ that
matches this candidate-restricted conditional. For each prompt (D,xq, Cq),

Eyq∼p(·|D,xq,Cq)[− log qθ(yq | D,xq, Cq)] = H(p) + KL
(
p ∥ qθ

)
, (3)

so the unique minimizer is q⋆θ = p(· | D,xq, Cq). When negatives are sampled uniformly without
replacement from the unseen pool, that is, when the candidate set distribution follows the policy
ν(Cq | D,xq, y), the expression coincides with equation 2. For complete proofs and discussion, see
Appendix B.

3.2 GENERATING SYNTHETIC DATA FOR SEQUENTIAL RECOMMENDATION

The synthetic data generation mechanism ϕ∈Φ specifies (i) how to construct an item graph, (ii) how
to synthesize user sequences on that graph, and (iii) how to compute representation embeddings from
those sequences.

Common properties of real-world sequential interaction data Before discussing our frame-
work for synthetic data generation, we first examine the common properties of real-world sequential
interaction data.

• Heavy-tailed item popularity A small set of head items accounts for a disproportionately large
share of interactions, while the majority of items lie in the long tail. This skew can be quantified by
the degree exponent, estimated from the complementary cumulative distribution of item degrees,
which captures tail heaviness (Clauset et al., 2009; Yin et al., 2012).

• Head dominance Complementary to the exponent, the head fraction measures the proportion
of interactions accounted for by the top q fraction of items (e.g., q=10% of the catalog). This
statistic directly reflects the imbalance between head and tail usage (Abdollahpouri et al., 2017;
Klimashevskaia et al., 2024).

Both quantities are dataset-dependent, and our synthetic prior exposes them as explicit parameters,
enabling faithful reproduction of the skew observed in real domains.

Hierarchical degree-corrected stochastic block model To model these properties, we adopt a
hierarchical degree-corrected stochastic block model (hDCSBM; Karrer & Newman, 2011; Peixoto,
2014) as the backbone of our synthetic prior. The degree-correction mechanism enables us to im-
pose long-tailed popularity directly. Each item is assigned a propensity drawn from a truncated
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power law, resulting in a controllable degree exponent and head fraction. In parallel, the hierar-
chical structure organizes items at two levels of granularity: macro-communities (coarse groups)
and micro-communities (finer subgroups). Each community is defined as a set of items that co-
occur more frequently with one another than with the rest of the catalog. By organizing items into
such communities with hierarchy, hDCSBM can mimic the hierarchical grouping observed in real
datasets (e.g., product hierarchies or genres) while retaining explicit control over popularity skew.
See Appendix C.1 for a detailed explanation of how we modeled community structures.

Random walk with restarts (Personalized PageRank) On top of the weighted adjacency matrix
generated by the hDCSBM, we row-normalize it to obtain a Markov kernel K, which specifies a
random walk on the item graph. On K, we generate a synthetic interaction sequence for each user
u using Personalized PageRank (PPR; Haveliwala, 2002) — a user-conditioned random walk with
restart that follows outgoing edges with probability α and teleports to a personalization distribution
πu with probability 1 − α, where πu is a probability vector specifying the restart locations. We
then draw a sequence length ℓu from a truncated power law to reflect heavy-tailed user activity. The
user-specific PPR vector pu is the unique fixed point pu = αK⊤pu + (1− α)πu interpreted as the
stationary distribution of a restart random walk.

0.8

0.9

1.0

1.1

1.2

1.3
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0.5
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Toys & Games
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Figure 2: Matching skew statistics. Left: degree
exponent estimated from the CCDF of item de-
grees; Right: head fraction (share of interactions
explained by the top 10% most popular items).

Matching skew statistics in practice To as-
sess how well the synthetic prior matches real-
world data, Figure 2 compares two statistics be-
tween real datasets (colored markers) and our
synthetic prior (gray boxplots): the degree ex-
ponent and the head fraction. For each of the
five datasets from the Amazon 2018 corpus1,
we compute these statistics directly from their
user sequences. For the synthetic side, we gen-
erate 100 independent catalogs by sampling an
hDCSBM and then producing user sequences
via the PPR. The gray boxplots summarize the
resulting values across runs (the red line indi-
cates the median). The synthetic distribution
covers the empirical markers from real datasets,
indicating that the hDCSBM-based mechanism
can tune both statistics in a controlled manner, matching dataset-specific skew without overfitting to
any single catalog. Detailed steps and hyperparameters for generating synthetic data for sequential
recommendation are described in Appendix C.

Low-rank representations of interactions and transitions Having specified the synthetic gen-
erative mechanism, we now derive low-rank representations that serve as inputs to SR-PFN. For
each synthetic sequence xu = (iu,1, . . . , iu,ℓu), we hold out the last item iu,ℓu and use the his-
tory prefix Hu = xu[: −1] to construct two matrices. First, the user–item interaction matrix is
defined as Xu,i = I{ i ∈ Hu }, where I is the indicator function. Second, the item–item transi-
tion matrix R is built from row-normalized bigram counts: for each pair (i, j), we count how often
i→ j appears in Hu across all users to form Bij , then normalize rows to obtain R = D−1

R B with
DR = diag(B1). Because R is row-stochastic, each entry Rij can be interpreted as the conditional
probability P (j | i), naturally aligning the representation with next-item prediction and improving
numerical stability across tasks. Finally, we compute truncated SVDs of X and R and use the re-
sulting low-rank user/item embeddings (u, i) from X and row/column embeddings (r, c) from R as
model inputs.

4 SR-PFN: PFN FOR SEQUENTIAL RECOMMENDATION

SR-PFN operationalizes PFN-style inference for sequences via three parts: (i) a prompt that orga-
nizes in-context examples and a query under candidate lists, (ii) a block-aware attention mask that
regulates information flow, and (iii) a lightweight encoder that fuses low-rank embeddings.

1https://cseweb.ucsd.edu/˜jmcauley/datasets/amazon_v2/
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EXAMPLE_START EXAMPLE_ENDINTERACTION CONTEXT_END CANDIDATE_START CANDIDATE ANSWER POS_ITEM… …

EXAMPLE_START EXAMPLE_ENDINTERACTION CONTEXT_END CANDIDATE_START CANDIDATE ANSWER POS_ITEM… …

QUERY_START QUERY_ENDINTERACTION CONTEXT_END CANDIDATE_START CANDIDATE CANDIDATE POS_ITEM… …

Example 1, Block ID=1

…

EXAMPLE_START EXAMPLE_ENDINTERACTION CONTEXT_END CANDIDATE_START CANDIDATEANSWER POS_ITEM… …

Example 2, Block ID=2

…

Example k, Block ID=k

Query, Block ID=k+1

Figure 3: Prompt visualization with k in-context example blocks followed by one query block.

4.1 PROMPT CONSTRUCTION

We serialize the demonstrations and the query into block-structured text so that the model can
read the examples and answer a candidate-restricted query. Figure 3 shows serialization of k in-
context example blocks followed by a single query block. A block spans from EXAMPLE START
or QUERY START token to EXAMPLE END or QUERY END token. Within each block, the user’s
history is a sequence of INTERACTION tokens; CONTEXT END then marks the boundary to the
candidate list, which begins at CANDIDATE START. The single positive in each candidate set is the
penultimate item of the underlying sequence, for example, and the final item for the query. Within
example blocks only, we insert ANSWER immediately before the positive item, which is marked as
POS ITEM in Figure 3. The remaining C−1 candidates are sampled as uniform negatives with-
out replacement. See Appendix D.1 for the full token summary and roles. In this work, we select
k ∈ {0, 1, 2, 4, 8} in-context examples. This choice is supported by prior findings showing that using
only a subset of context examples most similar to the query can yield comparable or even better per-
formance (Thomas et al., 2024; Ye et al., 2025). A detailed algorithm is provided in Appendix D.2,
and the ablation study on the number of in-context examples is given in Appendix H.2.

4.2 BLOCK-AWARE ATTENTION MASK

To align attention with the prompt semantics while preventing leakage of query information to ex-
amples, we introduce a block-aware attention mask. Each token is assigned a block ID, which is
incremented at every EXAMPLE START or QUERY START. Figure 3 illustrates this layout. The
mask operates at two levels: inter-block and intra-block. For the inter-block policy, tokens in exam-
ple blocks may attend only to their own and earlier blocks (no look-ahead across examples), whereas
tokens in the query block may attend to all blocks. For the intra-block policy, we split each block
into a history region and a candidate region at the CONTEXT END token. History tokens use a left-
to-right causal mask and cannot attend to candidates. CANDIDATE tokens have full attention within
the same block (they may attend to the block’s history and to other candidates) but never across
blocks. The final attention mask is the intersection of the inter- and intra-block masks. Scoring and
loss are computed only for the query candidates. See Appendix D.3 for visualization and description
of the attention mask.

4.3 ENCODER

Item Emb., 𝑖 Trans-R Emb., 𝑟 Trans-C Emb., 𝑐User Emb., 𝑢

Scaler

UI Gate Layer RC Gate Layer

MLP Layer

Fused Rep.

Scaler Scaler Scaler

[ || ]

LayerNorm

[ || ] [ || ]

Figure 4: Architecture of the encoder. Here,
[ ∥ ] denotes concatenation along the feature
dimension.

To integrate low-rank embeddings, we introduce an
encoder that jointly fuses user, item embeddings
(u, i) derived from the interaction matrix and row,
column embeddings (r, c) obtained from the transi-
tion matrix. Figure 4 shows the overall architecture
of the encoder, where boxes with black borders de-
note learnable components. Each embedding com-
ponent is first rescaled by a learnable scalar weight,
yielding u′, i′, r′, c′, which allows amplification or
attenuation of signals from the original embeddings.
Each gate layer takes as input the concatenation of
the two rescaled embeddings, e.g., [u′∥i′] or [r′∥c′],
and processes them through a small network to gen-
erate feature-wise weights. Then these weights are
applied element-wise (⊙) to the corresponding multiplicative views u′ ⊙ i′ and r′ ⊙ c′, producing
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Figure 5: Qualitative visualization of item co-occurrence graphs. All panels share a common ori-
entation and scale; nodes are items (colored by SBM communities), and edges are weighted co-
occurrences (thresholded).

gated interaction terms. This design implements a two-stream variant of low-rank bilinear pooling
(MLB; Kim et al., 2017), which efficiently approximates full bilinear models and aligns with clas-
sical multiplicative interactions in recommender systems (Rendle et al., 2010; Guo et al., 2017).
Feature-wise gates provide selective, context-dependent modulation (Perez et al., 2018), enabling
adaptive reweighting rather than fixed multiplicative features. The gated outputs from both streams
are concatenated, normalized by LayerNorm, and passed through an MLP with GELU activation to
yield the final fused representation.

5 EXPERIMENTS

Datasets We evaluate on three datasets from the Amazon 2018 corpus1: Luxury Beauty, Indus-
trial & Scientific, and Video Games. While previous approaches have typically selected datasets
solely based on their scale (e.g., the number of users or items), we deliberately choose datasets that
differ not only in scale but also in the structural properties of their co-occurrence graphs. Figure 5
visually compares the item co-occurrence graphs across the three datasets. These structural con-
trasts highlight distinct topological patterns that are likely to reflect varying dataset difficulty and
distributional characteristics. Qualitative and quantitative analyses of the co-occurrence graph built
by each dataset are summarized in Appendix E. Across all datasets, we convert the data to implicit
feedback by treating ratings≥3 as positive interactions, and we remove users/items with fewer than
5 interactions.

Baselines We compare SR-PFN against five representative ID-based and two large language model
(LLM)-based sequential recommenders. For ID-based baselines, we include FPMC (Rendle et al.,
2010), GRU4Rec (Hidasi et al., 2015), NextItNet (Yuan et al., 2019), Caser (Tang & Wang, 2018),
and SASRec (Kang & McAuley, 2018). For LLM-based baselines, we adopt CTRL (Li et al., 2025)
and LLM-SRec (Kim et al., 2025). While most LLM-based recommenders focus on text generation,
these two emphasize learning representations for recommendation, making them directly compara-
ble to our ranking-based setting. Further details of each baseline are provided in the Appendix F.

Evaluation protocol We adopt the widely used leave-one-out evaluation protocol (Kang &
McAuley, 2018; Sun et al., 2019) for sequential recommendation. For each user sequence, we
take all but the last two items for training, the penultimate item for validation, and the final item
for testing. Following prior work (Kim et al., 2024; Zhang et al., 2025b), we form the candidate
set by including the ground-truth positive item together with 19 randomly sampled negative items
that the user has not interacted with. For evaluation, we measure performance using the HR@1 and
NDCG@5 metrics to capture both strict top-1 accuracy and position-sensitive ranking quality within
the top-5 results. Specifically, HR@1 measures the fraction of cases where the ground-truth next
item is ranked first among the candidates, and NDCG@5 evaluates whether it appears within the
top-5 while giving higher credit to higher-ranked positions. The maximum sequence length is fixed
to 50 for all baselines and our model to ensure a comparable protocol.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Results of SR-PFN compared with sequential recommender models. The bold indicates the
best performance.

Dataset Metric ID-based LLM-based PFN-based

FPMC GRU4Rec NextItNet Caser SASRec CTRL LLM-SRec SR-PFN

Luxury Beauty HR@1 0.2779 0.4005 0.4102 0.4314 0.5035 0.2754 0.5055 0.5222
NDCG@5 0.3658 0.5336 0.5293 0.5543 0.5981 0.4156 0.6412 0.6509

Ind. & Sci. HR@1 0.1180 0.2132 0.2056 0.2542 0.2695 0.1965 0.2613 0.2894
NDCG@5 0.2069 0.3684 0.3490 0.4014 0.4075 0.3317 0.4395 0.4244

Video Games HR@1 0.2565 0.4184 0.4180 0.4551 0.5191 0.3134 0.5238 0.5463
NDCG@5 0.4251 0.5898 0.5796 0.6209 0.6693 0.4931 0.6735 0.6672

Industrial & Scientific
Video Games0.0

0.1

0.2

0.3

Cold User (HR@1)

Industrial & Scientific
Video Games0.0

0.2

0.4

0.6
Head Item (HR@1)

Industrial & Scientific
0.00

0.01

0.02

Tail Item (HR@1)

Video Games0.00

0.05

0.10
Tail Item (HR@1)

Caser SASRec LLM-SRec SR-PFN

Figure 6: Cold-user and head/tail item performance comparison (HR@1). Results are reported for
Industrial & Scientific and Video Games.

5.1 MAIN RESULTS

As shown in Table 1, across all three datasets, SR-PFN achieves state-of-the-art performance once
pretrained with synthetic priors, consistently surpassing strong ID-based baselines such as SASRec
and also outperforming LLM-based methods in terms of top-1 accuracy (HR@1). For instance, on
Luxury Beauty, SR-PFN improves over SASRec (0.5222 vs. 0.5035), and on Video Games it sur-
passes LLM-SRec (0.5463 vs. 0.5238). These gains are notable since SR-PFN is pretrained once
in synthetic priors and requires no retraining on the evaluation datasets. Importantly, the main re-
sults are reported with in-context examples k = 4, which we identified as a sweet spot balancing
accuracy and efficiency. In terms of ranking quality, NDCG@5, SR-PFN remains highly competi-
tive, although LLM-SRec occasionally attains slightly higher scores. Overall, these results highlight
that once pretrained with synthetic priors, SR-PFN can do inference effectively to unseen datasets
only with a small set of examples, offering strong next-item accuracy while maintaining competitive
top-k ranking quality, all without the need for billion-scale LLMs.

5.2 COLD USER AND HEAD/TAIL ITEM SCENARIOS

Cold user scenario We evaluate our approach in the cold-user setting, where models must gener-
alize to users with very limited interaction history. To this end, we construct a test split by selecting
users with sequence length exactly three and treat the final interaction as the held-out target item.
The results are illustrated in the leftmost panel of Figure 6. On Industrial & Scientific, SR-PFN
attains higher HR@1 compared with baselines (Caser, SASRec, and LLM-SRec), while on Video
Games, its performance is comparable to the best baseline. These results suggest that the inference
mechanism of SR-PFN can leverage structural priors to improve recommendations for cold users,
whereas conventional sequential models are less effective in this regime.

Head/tail item scenario We further evaluate model behavior with respect to item popularity by
reporting performance on head and tail items separately. Items are partitioned based on their em-
pirical popularity in the training data: the top 30% most frequently interacted items are categorized
as heads, while the bottom 30% constitute the tails. While SR-PFN is explicitly trained with priors
that model the nature of heavy-tailed popularity distributions with head dominance, it exhibits lower
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popularity bias than baseline models. As shown in Figure 6, SR-PFN matches or surpasses base-
lines on head items and yields substantial improvements on tail items, particularly for the Industrial
& Scientific dataset. These results suggest that SR-PFN not only adapts to the head-dominated dis-
tribution of real-world recommendation data but also preserves accuracy on rare items, exhibiting
less popularity bias compared with strong baselines.

5.3 INFERENCE SPEED

Table 2: Inference throughput (higher is bet-
ter). k denotes the number of in-context exam-
ples.

Model Throughput (queries s−1)

LLM-SRec 18.91
SR-PFN (k = 8) 84.97
SR-PFN (k = 4) 126.46
SR-PFN (k = 2) 200.90
SR-PFN (k = 1) 308.03
SR-PFN (k = 0) 491.88

While LLMs have recently demonstrated strong
performance in recommendation tasks, their ap-
plication typically requires long prompts that in-
corporate task instructions, user interaction histo-
ries, candidate items, and auxiliary context (Wu
et al., 2024). This substantially increases infer-
ence cost and latency, and the effect is further am-
plified by model scale, as LLMs used for recom-
mendation generally exceed 3B parameters (Kim
et al., 2025). In contrast, SR-PFN is a lightweight
168M-parameter model that provides more com-
putationally efficient inference. To quantify this,
we measured inference speed as the number of
queries processed per second with a batch size of 16. Under our basic setting (k = 4), SR-PFN
achieves 6.69× higher throughput than the LLM-SRec baseline (Table 2), while maintaining com-
parable performance. In the zero-shot scenario, SR-PFN achieves a throughput of 26× higher than
LLM-SRec, even performing better on Industrial & Scientific and Video Games datasets (see Ap-
pendix H.2) — making it more efficient for massive user traffic or strict real-time scenarios where
speed and efficiency are critical.

6 CONCLUSION AND FUTURE WORK

In this work, we introduce SR-PFN, a first attempt to adopt PFNs into the sequential recommenda-
tion task. Our key contributions are (i) a controllable synthetic prior that couples an hDCSBM item
graph with PPR-based sequence generation, and (ii) an architectural design that extracts sequential
patterns from a few example blocks and transfers them to the query. Trained once on diverse syn-
thetic tasks, SR-PFN generalizes across datasets without re-training. It achieves strong accuracy
against notable sequential recommender baselines and shows robust performance on cold users, a
long-standing challenge for conventional models. Moreover, SR-PFN mitigates popularity bias by
producing more balanced recommendations across head and tail items, while also delivering sub-
stantially high-throughput inference, making it more suitable for efficient large-scale deployment
than LLM-based models.

While our pretraining tasks implicitly emphasize positive interactions, SR-PFN does not explic-
itly encode negative preferences or avoidance signals. Also, as with other PFN-based approaches,
SR-PFN is sensitive to prior misspecification, where its effectiveness depends on how closely the
synthetic prior reflects the structure of real-world interactions, and systematic robustness to devia-
tions remains an open question. Finally, although we validated SR-PFN on datasets of up to 50,000
users, scaling to substantially larger catalogs and user bases remains for future work.

ETHICS STATEMENTS

This work focuses on methodological contributions to the sequential recommendation task. All real-
world evaluation datasets used in this study are publicly available subsets of the Amazon product
review corpus, which contain no personally identifiable information beyond anonymized user and
item identifiers. In terms of computational impact, SR-PFN is substantially more efficient at infer-
ence than large language model (LLM)-based recommenders, leading to lower energy consumption
per prediction.
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REPRODUCIBILITY STATEMENT

The source code of SR-PFN is available at https://sites.google.com/view/
srpfn-iclr2026/. Here, we provide an environment.yml file to fully specify the soft-
ware environment. The synthetic data generation process and all associated hyperparameters are
documented in detail (see Section 3.2, Appendix C, D). We also report the model architecture, pa-
rameter counts, and all training hyperparameters to ensure full reproducibility along with hardware
specifications and compute time required for our experiments (see Appendix G).
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A USE OF LLMS

For our work, we used LLMs to polish the writing and to assist coding.

B PROOF OF POSTERIOR PREDICTIVE OPTIMALITY FOR SR-PFN

We show that SR-PFN trained with the candidate-restricted cross-entropy converges to the
(candidate-restricted) Bayesian posterior predictive distribution (PPD).

B.1 PROBLEM SETUP

Let Φ be a hypothesis class with prior p(ϕ). Given ϕ, draw a support set of in-context examples
D = {(xi, yi)}ni=1 ∼ p(D | ϕ) and a query (xq, yq) ∼ p(xq, yq | ϕ) (independence is not required).
Thus (D,xq, yq) ∼

∫
p(D,xq, yq | ϕ) p(ϕ) dϕ. For evaluation, each query xq is scored over a finite

candidate set Cq ⊂ Y drawn by a negative-sampling policy ν(Cq | D,xq, yq) that always includes
yq .

Candidate policy (uniform negatives over the unseen pool) Let U−(D,xq) be the set of items
not previously interacted with by xq among the dataset D. We assume (i) Cq = {yq} ∪ Sq with
Sq ⊆ U−(D,xq) \ {yq} and |Cq| = m fixed; (ii) conditional on (D,xq), Sq is sampled uniformly
without replacement from U−(D,xq) \ {yq}. Equivalently, for any fixed C of size m and any
y′, y′′ ∈ C,

ν(C | D,xq, y
′) = ν(C | D,xq, y

′′) =
1(|U−(D,xq)|−1

m−1

) .
B.2 CANDIDATE-RESTRICTED PPD

Condition on Z = (D,xq, Cq). By Bayes’ rule and the inclusion of y in Cq ,
p(y | Z) ∝ 1{y ∈ Cq} p(y | D,xq) ν(Cq | D,xq, y), (4)

which normalizes to

p(y | D,xq, Cq) =
p(y | D,xq) ν(Cq | D,xq, y)∑

c∈Cq
p(c | D,xq) ν(Cq | D,xq, c)

. (5)

Under uniform negatives (above), ν(Cq | D,xq, y) is constant in y ∈ Cq and cancels, yielding the
renormalized form

p(y | D,xq, Cq) =
p(y | D,xq)∑

c∈Cq
p(c | D,xq)

(y ∈ Cq), p(·) = 0 on Y \ Cq. (6)

B.3 TRAINING OBJECTIVE

SR-PFN is trained by the candidate-restricted cross-entropy
LSR(θ) = E(D,xq,yq), Cq

[
− log qθ(yq | D,xq, Cq)

]
, (7)

with (D,xq, yq) ∼
∫
p(· | ϕ)p(ϕ) dϕ and Cq ∼ ν(· | D,xq, yq), matching the training interface

used at test time.

B.4 OPTIMALITY WITH INTRA-QUERY CANDIDATE ATTENTION

Allowing full attention among candidate tokens within the query block only changes the available
conditioning set Z; it does not affect the probabilistic identity below. History tokens remain causally
masked; ground-truth labels are never input tokens.

Lemma 1 (CE–KL identity). For any fixed Z = (D,xq, Cq), letting p(· | Z) denote equation 5,

Ey∼p(·|Z)[− log qθ(y | Z)] = H
(
p(· | Z)

)
+KL

(
p(· | Z) ∥ qθ(· | Z)

)
.

Hence EZ [·] of the left-hand side is minimized iff qθ(· | Z) = p(· | Z) almost surely.
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Proposition 1 (Candidate-restricted optimality). For each prompt Z = (D,xq, Cq), the minimizer
of equation 7 over distributions supported on Cq is the true conditional p(· | Z) in equation 5.
Under uniform negatives, this reduces to the renormalized form equation 6.

Corollary 1 (Top-1 Bayes decision within Cq). If yq ∈ Cq almost surely, then

argmax
c∈Cq

q⋆θ(c | D,xq, Cq) = argmax
c∈Cq

p(c | D,xq, Cq) = argmax
c∈Cq

p(c | xq, D).

Remarks The uniform-without-replacement policy over the unseen pool leaves the relative rank-
ing by the unconditional predictive p(· | D,xq) untouched inside Cq . But if the mining policy is
popularity-biased or hard-negative (e.g., nearest-neighbor or model-driven mining), the implicit tar-
get becomes a reweighted conditional that favors items more likely under the mining policy. This can
be desirable for certain head-heavy objectives, but it no longer coincides with the unbiased posterior
predictive unless one compensates during training (e.g., by importance weighting or by restoring
uniform negatives at training time).

C SYNTHETIC DATA GENERATION AND HYPERPARAMETERS

C.1 HIERARCHICAL COMMUNITY STRUCTURES

Here, we explain how we modeled a hierarchical community structure. We split the item set
into a small number of macro-communities, each of which is further divided into several micro-
communities. In what follows, the term community refers to a micro-community. We choose the
sizes of macros first, and then the sizes of micros within each macro. Both sets of sizes are drawn
from power-law distributions so that some groups are significantly larger than others. This allows us
to have controllable, imbalanced group sizes. To control how strongly items are linked, we use three
block affinities, ordered from strongest to weakest: (i) within the same micro-community, (ii) be-
tween different micros of the same macro, and (iii) across different macros. Practically, we sample
three nonnegative weights, sort them in descending order, and assign them to these three regimes to
enforce the hierarchy by construction. Each item receives its own out-degree and in-degree propen-
sity, drawn from a power-law distribution. The expected connection strength between two items is
then determined by (a) their propensities and (b) the affinity between their communities. Using the
expected connection strengths, we construct a sparse weighted adjacency matrix and normalize its
rows to obtain a Markov transition kernel.

C.2 STICKINESS

To model stickiness — the tendency of users to remain at the same item — we modify the transition
matrix by injecting self-loops. Concretely, we add a self-loop weight to each node in proportion
to its degree, controlled by a global coefficient s. This makes popular items more likely to exhibit
persistence, reflecting the fact that highly connected items are harder to leave. After adding these
degree-scaled self-loops, we normalize each row of the matrix so that it defines a valid probability
distribution. The resulting transition kernel therefore captures not only the popularity skew and
community structure encoded in the original graph, but also a controllable persistence effect that
models users staying on the current item.

C.3 HYPERPARAMETERS

Table 3 summarizes the ranges and distributions of random-sampled hyperparameters used in our
synthetic prior construction. These values are re-sampled for each epoch, ensuring diverse graph
topologies and sequence statistics. Here, Uniform(a, b) denotes a continuous uniform draw on
[a, b], and UniformInt(a, b) denotes a discrete uniform draw on the integers {a, . . . , b} (inclusive).
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Table 3: Hyperparameters used in the synthetic graph prior and sequence generation.

Parameter Sampling dist. Min Max

hDCSBM
Number of items (M ) Uniform() 3,200 25,600
Number of macro blocks (Kmacro) UniformInt() 4 12
Number of micro-blocks per macro (mj) UniformInt() 2 8
Avg. degree (d̄) UniformInt() 32 128
Degree exponent γdeg Uniform() 2.0 5.0
Within-micro connection weight (w)† Uniform() 6.0 12.0
Within-macro connection weight (w)† Uniform() 1.0 4.0
Cross-macro connection weight (w)† Uniform() 0.05 0.40
Macro-level size exponent (τmacro) Uniform() 1 5
Micro-level size exponent (τmicro) Uniform() 1 5

Sequence generation
Number of synthetic users (Usynth) max{16000, ⌈M ·Uniform(1, 5)⌉} 16,000 5M
Max sequence-length factor (flen) Uniform() 0.1 1.0
Sequence length power-law exponent (αlen) Uniform() 1.0 2.0
Candidate pool ratio (rpool) Uniform() 0.001 0.01
PPR restart probability (α) Uniform() 0.01 0.99

†

Independently sampled, then sorted (descending) and assigned to (within micro, within macro, cross macro).

Table 4: Special tokens used by SR-PFN.

Token ID Role (summary)

PAD 0 Padding token (unused positions)
EXAMPLE START 1 Start of an in-context example block
CONTEXT END 2 Boundary between history and candidates
CANDIDATE START 3 Start of candidate list (attention confined within the block)
ANSWER 4 Marks the correct candidate inside examples only (never in queries)
EXAMPLE END 5 End of example block
QUERY START 6 Start of query block
QUERY END 7 End of query block
INTERACTION -1 Placeholder for interaction

D IMPLEMENTATION DETAILS

D.1 SPECIAL TOKENS

The role and summary of each token are given in Table 4. EXAMPLE START/EXAMPLE END
and QUERY START/QUERY END delimit example and query blocks; CONTEXT END marks the
end of the user history and CANDIDATE START begins the candidate list. ANSWER is inserted
immediately before the true positive only inside examples and never appears in queries. PAD is used
solely for batching and is fully masked out. INTERACTION is a placeholder that serializes to actual
item IDs at write time (i.e., it is not a fixed special token). During training and evaluation, scores
and loss are computed only over the query’s candidates. To prevent information leakage, the true
query item yq never appears as ANSWER, and items that will later serve as query ground truth are
excluded when constructing interaction/transition matrices and graphs.

D.2 IN-CONTEXT EXAMPLE SELECTION ALGORITHM

For a query user q, we form a candidate user pool Uq that might be potentially selected as in-context
examples. We represent q and each candidate user i ∈ Uq by ℓ2-normalized embeddings uq and ui,
and define their relevance score as ri = ⟨uq,ui⟩. By selecting the most relevant candidate user as
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Figure 7: Visualization of the attention mask with two examples and one query.

the first example, we iteratively select at step t,

i⋆ = arg max
i∈Uq\St−1

{
λ ri − (1− λ) di

}
,

where di = maxj∈St−1⟨ui,uj⟩ encodes how redundant candidate i is with the already–chosen
exemplars. After adding i⋆ to the set (St ← St−1 ∪{i⋆}), we update the penalties for the remaining
candidates as

di ← max
{
di, ⟨ui,ui⋆⟩

}
for all i ∈ Uq \ St.

In this way, ri measures how well candidate i matches the query user q, while di reflects how
redundant it is with the current exemplar set. The trade-off parameter λ ∈ [0, 1] balances the two:
λ = 1 selects purely by relevance (top-k by ri), while λ = 0 enforces maximal diversity (farthest-
first sampling). Iterating this procedure until k exemplars are chosen yields a set that is both relevant
to the query and diverse among themselves, thereby providing richer in-context information without
unnecessary repetition. In this work, the hyperparameter λ is fixed to 0.5.

D.3 VISUALIZATION OF ATTENTION MASK

Figure 7 shows a attention mask represented as binary matrix M ∈{0, 1}T×T for a prompt with two
example blocks and one query block, each having a history of length 5 and a candidate list of size 3
(allowed attention = yellow; disallowed = dark).

We construct M as the conjunction of an inter-block and an intra-block policy: (i) Inter-block:
tokens inside example blocks may attend only within their own and earlier example blocks (no look-
ahead across examples), while tokens inside the query block may attend to all preceding blocks as
well as within the query block. (ii) Intra-block: each block is split at CONTEXT END into a history
region and a candidate region. History tokens use a left-to-right causal mask, hence the triangular
pattern inside each history segment. Candidate tokens have full attention within the same block
(rectangular patches), so they can attend to the block’s history and to other candidates, but never
across blocks.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Dataset statistics after preprocessing (5-core).

Dataset #Users #Items Avg. Seq. Len.

Luxury Beauty 5,198 5,120 8.54
Ind. & Sci. 24,831 26,109 6.56
Video Games 52,944 30,355 9.50

Table 6: Topology of item co-occurrence graphs.

Dataset N (items) E (edges) Density d̄ Transitivity Hub dom. Non-GC frac.

Luxury Beauty 5,120 23,416 1.79×10−3 9.15 0.266 11.6% 0.666
Ind. & Sci. 26,109 19,710 5.78×10−5 1.51 0.110 2.3% 0.804
Video Games 30,355 452,353 9.82×10−4 29.80 0.208 6.8% 0.430

Formally, Mab = M inter
ab ∧ M intra

ab . We additionally maintain a binary indicator mqc ∈ {0, 1}T
that restricts scoring and loss computation only to the candidate span in the query block; example
candidates are never scored.

E DATASET STATISTICS AND CO-OCCURRENCE ANALYSIS

E.1 SEQUENCE-LEVEL STATISTICS

Table 5 reports the number of users and items and the average sequence length (including the held-
out validation/test item) after 5-core filtering. Concretely, Video Games has the longest sequences on
average (9.50) and the largest user base (52,944), whereas Industrial & Scientific offers the shortest
sequences (6.56) with a mid-sized catalog (26,109 items); Luxury Beauty sits in between in terms
of length (8.54) but with the smallest catalog (5,120 items).

E.2 QUALITATIVE INTERPRETATION OF CO-OCCURRENCE GRAPHS

Figure 5 visually compares the item co-occurrence graphs across the three datasets. Luxury Beauty
exhibits a clear hub-and-spoke structure centered on a dominant core, accompanied by several
medium-sized communities connected through bridges. Industrial & Scientific appears more dif-
fuse, characterized by a compact giant component but weaker modularity. In contrast, Video Games
presents the densest core with pronounced hub dominance and elongated filamentary connections.
These structural contrasts anticipate the quantitative differences reported in Table 6, highlighting
distinct topological patterns that reflect varying dataset difficulty and distributional characteristics.

E.3 QUANTITATIVE INTERPRETATION OF CO-OCCURRENCE GRAPHS

Metrics On the co-occurrence graph built by each dataset, we report:

• Density =
2E

N(N − 1)
— share of realized item–item links (∈ [0, 1]).

• Average degree d̄ =
2E

N
— typical # of co-occurring neighbors per item.

• Transitivity (global clustering) — fraction of closed triads; higher means stronger local closure.

• Hub dominance =
kmax

N − 1
— largest hub’s reach as a share of items.

• Fragmentation = 1− fGC — fraction of items outside the giant component.

As shown in Table 6, Industrial & Scientific is very sparse and fragmented, having low density and
average degree with high non–GC fraction. Meanwhile, Luxury Beauty is more connected with
stronger local closure (higher transitivity) and a more pronounced single hub. Video Games has a
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Table 7: Model configuration of SR-PFN.

Parameter Value

Embedding dimension (d) 1024
Number of layers 12
Hidden dimension (4d) 4096
Number of attention heads 16
Dropout rate 0.1
Activation function GELU
Input normalization True

large, dense giant component (the highest d̄ here) with moderate hub concentration and the least
fragmentation among the three. Together, these results show that the datasets differ not only in
sequence volume but also in connectivity patterns, motivating models that remain reliable across
diverse graph regimes.

F BASELINES

We compare SR-PFN against five representative ID-based and two language model(LM)-based se-
quential recommenders that leverage semantic information beyond ID representations. FPMC (Ren-
dle et al., 2010) factorizes user-item preferences while coupling them with a first-order Markov
chain to capture short-term transitions. GRU4Rec (Hidasi et al., 2015) models sequences with gated
recurrent units and ranking-oriented losses for session-based recommendation. NextItNet (Yuan
et al., 2019) replaces recurrence with deep stacks of dilated causal convolutions to encode long-
range dependencies. Caser (Tang & Wang, 2018) uses horizontal and vertical convolutional filters
to extract union-level and point-level sequential patterns. SASRec (Kang & McAuley, 2018) ap-
plies unidirectional self-attention to learn variable-order item dependencies. CTRL (Li et al., 2025)
reformulates the recommendation task as a text-prompt and aligns semantic representations with a
CF model. Most recent LLM-based recommenders are formulated as generative tasks that output a
single target item, making them unsuitable for direct comparison with our ranking-based setting. We
therefore adopt LLM-SRec (Kim et al., 2025) as our LLM baseline, which distills representations
from a sequential CF model to better capture user preferences.

G TRAINING SETUP AND HYPERPARAMETERS

G.1 TRAINING SR-PFN

The model configuration of SR-PFN is summarized in Table 7. In total, the model contains approxi-
mately 168M trainable parameters when the the SVD dimension is set to 1024. We trained SR-PFN
for a total of 500 epochs, each epoch comprising up to 1,000 steps (500,000 steps in total) with a
batch size of 16. For each epoch, a new synthetic graph was generated; if the graph did not contain
sufficient sequences to fill 1,000 steps, additional graphs were sampled to complete the epoch. For
Table 1, we set the learning rate to 3×10−5, the number of in-context examples k to 4, and the SVD
dimension to 1024. The total training required approximately 60 GPU hours on a single NVIDIA
RTX A6000.

G.2 OPTIMIZATION DETAILS

To stabilize optimization, we use the AdamW optimizer with gradient clipping, and control the
learning rate through a cosine scheduler with warmup. The global gradient norm is clipped to 10 at
each update step. Given 500 epochs and 1,000 steps per epoch with gradient accumulation of 16,
the total number of optimizer updates is approximately 31,250. The learning rate is linearly warmed
up during the first 25 epochs (1,562 updates), and subsequently decays following a cosine schedule
down to 10% of the peak value. This schedule enables stable convergence while mitigating sharp
drops in training loss. The complete set of training hyperparameters is summarized in Table 8.
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Table 8: Training hyperparameters for SR-PFN.

Hyperparameter Value

Epochs 500
Steps per epoch 1,000
Batch size 16
Gradient accumulation 16
Learning rate {3× 10−5, 5× 10−5, 1× 10−4}
Warmup epochs 25
Weight decay 1× 10−4

Optimizer AdamW
Scheduler Cosine annealing with linear warmup
Minimum LR ratio 0.1 (relative to peak LR)
Gradient clipping 10.0 (global norm)
Mixed precision (AMP) Enabled

Table 9: Ablation on the embedding dimension d (HR@1).

d=256 d=512 d=1024

Luxury Beauty 0.4900 0.5077 0.5222
Industrial & Scientific 0.2777 0.2867 0.2894
Video Games 0.5445 0.5417 0.5463

H ABLATION STUDIES

H.1 ABLATION ON EMBEDDING DIMENSION

We vary d ∈ {256, 512, 1024} under an otherwise identical training setup (only the SVD rank /
embedding size changes). Larger d yields small but consistent gains on Luxury Beauty and Industrial
& Scientific, and Video Games also attains its best performance at d=1024 with only a marginal
improvement over smaller dimensions. We adopt d=1024 for the main results: it is best or near-best
across all datasets and offers a reasonable trade-off between accuracy and capacity.

H.2 ABLATION ON NUMBER OF IN-CONTEXT EXAMPLES

Table H.2 reports the ablation results with varying numbers of in-context examples k. Interestingly,
the model already demonstrates non-trivial performance even when k = 0, showing that the pre-
trained prior itself captures substantial sequential patterns without the aid of examples. The sweet
spot is observed at k = 4, where the model achieves the best performance in two out of three
datasets, suggesting that a moderate number of examples provides sufficient guidance without over-
whelming the model. In contrast, using too many examples (k = 8) slightly degrades performance,
implying that excessive context introduces noise or redundancy that hinders effective generalization.
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Table 10: Ablation on the number of in-context examples k (HR@1).

Dataset k = 0 k = 1 k = 2 k = 4 k = 8

Luxury Beauty 0.5044 0.5144 0.5123 0.5222 0.5144
Ind. & Sci. 0.2917 0.2952 0.2930 0.2894 0.2885
Video Games 0.5445 0.5332 0.5376 0.5463 0.5452
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