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Abstract

Domain adaptation for question answering
(QA) has recently shown impressive results
for answering out-of-domain questions. Yet,
a common challenge is to build approaches
that are effective for niche domains with small
text corpora. In this paper, we propose a novel
framework called QADA for QA domain adap-
tation. QADA has two components: (1) A
question generation model is used to generate
synthetic question-answer samples from the tar-
get domain. Different from existing baselines,
we enrich the samples via a novel pipeline for
data augmentation: for questions, we intro-
duce token-level augmentation (i.e., synonym
replacement and token swapping), and, for con-
texts, we develop hidden-space augmentation
which learns to drop context spans via a cus-
tom attentive sampling strategy. (2) The QA
model is based on transformers. However, un-
like existing approaches, we propose to train it
via a novel attention-based contrastive adapta-
tion. Here, we use the attention weights to sam-
ple informative tokens for discrepancy estima-
tion that helps the QA model separate answers
and generalize across source and target domain.
To the best of our knowledge, our work is the
first in QA domain adaptation to leverage data
augmentation and attention-based contrastive
adaptation. Our evaluation shows that QADA
achieves considerable improvements over state-
of-the-art baselines for QA domain adaptation.

1 Introduction

Question answering (QA) is the task of finding

answers for a given context and a given question.

QA models are typically trained using data triplets
consisting of context, question and answer. In the
case of extractive QA, answers are represented as
subspans in the context defined by a start position
and an end position, while question and context
are given as running text (e.g., Chen et al., 2017;
Devlin et al., 2019; Seo et al., 2016; ?).

A common challenge in extractive QA is that QA

models often suffer from performance deterioration
upon deployment and thus make mistakes for user-
generated inputs. The underlying reason for such
deterioration can be traced back to the domain shift
between training data (from the source domain)
and test data (from the target domain) (Fisch et al.,
2019; Hazen et al., 2019; Miller et al., 2020).

Common approaches to address domain shifts
in extractive QA are as follows. One approach
is to include target data samples during training
(Daumé III, 2007; Kamath et al., 2020). Another
approach is to generate synthetic QA samples for
the target domain, which are the used additionally
during training (Lee et al., 2020; Shakeri et al.,
2020). However, these approaches typically re-
quire large amounts of target data. As such, they
tend to be ineffective in niche domains where cor-
pora sizes are limited (Fisch et al., 2019). Only
recently, a contrastive loss has been proposed to
handle domain adaptation in QA (Yue et al., 2021).

Several approaches have been used to address
issues related to insufficient data and generaliza-
tion in NLP tasks, yet outside of QA. For example,
token-level augmentation (e.g., token swapping)
has been to used for generating synthetic samples
(Kobayashi, 2018; Wei and Zou, 2019; Yu et al.,
2018). Another approach is data augmentation in
the hidden space, which is supposed to learn more
generalizable features (Chen et al., 2020, 2021;
Verma et al., 2019; ?). However, to the best of our
knowledge, no work has previously used data aug-
mentation for QA domain adaptation. For domain
adaptation, there are approaches that encourage the
model to learn domain-invariant features via fea-
ture discriminators (Chen et al., 2018; Lee et al.,
2019; Zhang et al., 2017), or adopt contrastive adap-
tation to regularize the discrepancy between source
and target domains (Kang et al., 2019; Yue et al.,
2021). However, to the best of our knowledge, no
work has integrated the attention mechanism into
contrastive adaptation for QA domain adaption.



In this paper, we propose a novel framework for
QA domain adaptation in the context of small text
corpora called QADA. Our QADA framework is
designed to handle domain shifts and should thus
answer out-of-domain questions. QADA has two
components, namely a question generation (QG)
model and a QA model: (1) The QG model is
used to generate synthetic question-answer sam-
ples from the target domain. Here, we integrate
novel pipeline for data augmentation to enrich the
samples. For questions, we introduce a token-level
augmentation (i.e., synonym replacement and to-
ken swapping), and, for contexts, we develop a
hidden-space augmentation which learns to drop
context spans via an attentive sampling strategy.
(2) The QA model is implemented via transformers.
Here, we propose to train the QA model via a novel
attention-based contrastive adaptation. Specifically,
we use the attention weights to sample informative
tokens that help the QA model separate answers
and generalize across source and target domain.

Main contributions of our work are:!

1. We propose a novel framework called QADA
for domain adaptation in QA. QADA aims at
answering out-of-domain question and should
thus handle the domain shift upon deployment.
Moreover, QADA is specifically designed for
niche domains with small text corpora.

2. To the best of our knowledge, QADA is the first
work in QA domain adaptation that (i) leverages
data augmentation on token-level and in the
hidden space; (ii) integrates an attention-based
feature sampling in contrastive adaptation.

3. We demonstrate the effectiveness of QADA in
settings where corpora are of limited size. Here,
QADA achieves a considerably better perfor-
mance than state-of-the-art baselines for QA
domain adaptation.

2 Related Work

Extractive QA has achieved impressive progress in
recent years (Devlin et al., 2019; Kratzwald et al.,
2019; Lan et al., 2019; Zhang et al., 2020). Yet the
accuracy of QA models can drop drastically under
domain shifts; that is, when deployed in an unseen
domain that differs from the training distribution
(Fisch et al., 2019; Talmor and Berant, 2019).

To overcome the above challenge, various ap-
proaches for QA domain adaptation have been

'The code for our QADA framework is in the supplements.
Upon publication, we will make it publicly available.

proposed, which can be categorized as follows.
(1) (Semi-)supervised adaptation uses partially la-
beled data from the target distribution for train-
ing (Kratzwald and Feuerriegel, 2019; Yang et al.,
2017). (2) Unsupervised adaptation has access
to context and question information from the tar-
get domain, whereas answers are unavailable (Cao
et al., 2020; Chung et al., 2018). (3) Unsupervised
adaptation with question generation refers to set-
tings where only context paragraphs in the target
domain are available, but QA samples have to be
generated separately to train the QA model (Shak-
eri et al., 2020; Yue et al., 2021). In this paper, we
focus on the third category and study the problem
of QA domain adaptation via question generation.

Question generation for QA: Several ap-
proaches for QG have been developed to generate
synthetic questions in an end-to-end fashion (i.e.,
seq2seq) (Du et al., 2017; Sun et al., 2018). Com-
bining both QG and QA can leverage the similarity
among both tasks and thus improve the QA per-
formance (Golub et al., 2017; Tang et al., 2017,
2018). Advanced QG models build upon hierar-
chical variational autoencoders and transformers
(Lee et al., 2020; Shakeri et al., 2020). For ex-
ample, QAGen-T5 (Raffel et al., 2019; Yue et al.,
2021) extends two TS5 transformers for generating
question-answer pairs. We later use the aforemen-
tioned QG models as part of our baselines.

Data augmentation for NLP: Data augmenta-
tion for NLP aims at improving the language under-
standing with diverse data samples. One approach
is to apply token-level augmentation and enrich
the training data with simple techniques (e.g., syn-
onym replacement, token swapping, etc.) (Wei and
Zou, 2019) or custom heuristics (McCoy et al.,
2019). Alternatively, augmentation can be done in
the hidden space of the underlying model (Chen
et al., 2020). For example, one can drop (i.e., cut-
off) partial spans hidden layers in hidden space,
which aids generalization performance under distri-
butional shifts (Chen et al., 2021) but in NLP tasks
outside of QA. To the best of our knowledge, we
are the first to propose an augmentation pipeline
for QA data in which both token-level and hidden-
space augmentation are combined.

Contrastive learning for domain adaptation:
Contrastive learning is used to minimize distances
of same-class samples and maximize discrepancy
among classes (Hadsell et al., 2006). For this, dif-
ferent metrics are adopted to measure pair-wise



distances (e.g., triplet loss) or domain distances
with the maximum mean discrepancy (Cheng et al.,
2016; Schroff et al., 2015). Contrastive learning
can also be used for domain adaptation by reduc-
ing the domain discrepancy: this “pulls together”
intra-class features and “pushes apart” inter-class
representations. Here, several applications are in
computer vision Kang et al. (2019). In QA do-
main adaptation, contrastive learning was applied
with averaged token features in order to separate
answer tokens and minimize the discrepancy be-
tween source and target domain (Yue et al., 2021).
However, our work is different in that we introduce
a novel attention-based sampling strategy for con-
trastive adaptation and in that we propose a finer
contrastive loss (see details in Section 4.3).

3 Setup

We consider the following problem setup. As
in (Shakeri et al., 2020; Yue et al., 2021), we study
domain adaptation for QA with question genera-
tion. We further assume a setting with limited text
corpora. For notation, we denote the QG model via
fqg» and the QA model via f.

Training: Our research focuses on question an-
swering under domain shift. Let D, denote the
source domain, and let D; denote the (different)
target domain. Then, labeled data from the source
domain can be used for training, while, upon de-
ployment, it should perform well on the data from
the target domain. Specifically, training is two-fold:
we first train a QG model and, following this, a QA
model. The input data to each is as follows:

* Labeled QA data: Training data is provided by
labeled QA data X, from 'the source domain
D;. Here, each sample mgz) € X is a triplet

(4)

comprising a question :cgg, a context xs ¢, and
an answer acgzl As we consider extractive QA,
the answer is represented by the start and end

position in the context.

* Unlabeled target contexts: We assume partial
access to data from the target domain D, that
is, only unlabeled contexts. The contexts are
used later for question generation. Formally, we
refer to the contexts via mglg (with :L',Ei) c X,
where X ; is the data from the target domain). We
further assume that the corpus of target contexts
is of limited size (i.e., | X | is limited).

Objective: Upon deployment, our goal is to max-

imize the model performance on X, in the target
domain D;. Mathematically, this corresponds to
the optimization problem

= argmj}nﬁce(f,Xt), 6]

where L. is the cross entropy loss and f represents
the QA model.

4 The QADA Framework

4.1 Overview

Our proposed QADA framework has two major
components (see Figure 1): (1) question genera-
tion model with augmentation to enrich learning
with synthetic target samples; and a (2) QA model.
The QA model is trained with attention-based con-
trastive adaptation.

To address a domain shift upon deployment, we
use the two components for QA domain adapta-
tion as follows. In the first component (Sec. 4.2),
we use the unlabeled target data Xt/ and add syn-
thetic labels (QA pairs) via a QG model. Here, we
enrich the set of synthetic data via data augmen-
tation. In the second component (Sec. 4.3), we
train the QA model using both the source and the
synthetic target data with our attention-based con-
trastive adaptation, such that the learned features
should generalize across the source domain and the
target domain.

1. Question generation (with augmentation): We
use the unlabeled target contexts X;, based on
which we build synthetic target data X;. For-

mally, we generate QA pairs wgg, 331% using foe.

Each sample mgi) € X now contains the origi-
nal context and a pair of a synthetic question and
a synthetic answer. We additionally apply data

augmentation to enrich the target data.

2. QA model (with attention-based contrastive

adaptation): The QA model f takes the context
and question as input and outputs the answer, i.e.,
it predicts :rgf) =f (xg), :c((f) ). We train the QA
model f with the source data X ¢ from the source
domain D, and the synthetic target data X; from
the previous step. We impose regularization on
the answer extraction and further minimize the
discrepancy between source and target domain,
so that the learned features generalize well to the
target domain.
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Figure 1: Overview of our proposed QADA framework. A question generation model is used to generate QA pairs,
which are then augmented to enrich the synthetic data. The QA model is trained with attentive contrastive loss
designed to improve accuracy on the target domain upon deployment.

4.2 Question Generation (with Augmentation)

QG model: We adopt QAGen-T5 (Yue et al., 2021)
and use two separate T5 transformer models (Raf-
fel et al., 2019) for question generation and an-
swer generation. As in (Shakeri et al., 2020; Yue
et al., 2021), QAGen-T5 takes a context x. as in-
put. Then, it first generates a question x4, and then
generates an answer &, conditioned on x. and x,.

QAGen-T5 is trained on the source dataset with
a negative log-likelihood loss using separate output
probabilities in each step, i.e.,

| X|
Las(X) = 3~ —logpns (wou| =), @)
i=1
where :1352 and mgt refer to the input and output of

each QG step, respectively. To select diverse and
consistent QA pairs from QAGen-T5, we adopt
LM filtering (Shakeri et al., 2020) to select the best
k QA pairs for each context (we use k = 5 with
10k context paragraphs in our experiments).

Data augmentation: We design a data augmen-
tation pipeline to further enrich the training data
based on the generated QA pairs. The augmen-
tation pipeline is divided into two parts (see Fig-
ure 2): (i) question augmentation and (ii) context
augmentation. The former is done via token-level
augmentation, while the latter is done via hidden-
space augmentation as described below.

Question augmentation: To perform augmenta-
tion of questions, we use synonym replacement and
random swaps on certain proportion of tokens. Syn-
onyms are randomly picked from a synonym dictio-
nary (i.e., WordNet; Miller, 1995), while swapping
is applied on two randomly chosen words in the
question. This simple augmentation is introduced
in order to provide syntactically diverse questions.
At the same time, by adding noise, it should encour-
age the QA model to capture robust information
in questions (see Wei and Zou, 2019). We control
the question augmentation by a token augmentation
ratio as a hyperparameter. It determines the percent-
age of tokens within questions that are changed.

We considered to use the above token-level aug-
mentation also for answers and/or contexts but
eventually discarded this idea: (1) token-level aug-
mentation undermines the original text style and
the underlying domain characteristics; (2) token
changes for contexts are likely to cause shifts
among answer spans.

Context augmentation: For context, we adopt
augmentation in the hidden space instead of token-
level augmentation. Here, we propose to use an
attentive context cutoff in the hidden space. Specif-
ically, we zero out sampled context spans in the
hidden space after each transformer layer in the
QA model. This is illustrated in Figure 2, where all
hidden states in the selected span along the input



length are dropped (i.e., setting values to zero as
shown by the white color). Thereby, our cutoff
forces the QA model to attend to context informa-
tion that is particularly relevant across all input
positions and thus hinders it from learning redun-
dant domain information.

Formally,our attentive sampling strategy learns
to select cutoff spans: we compute a probability
distribution and sample a start position using the
attention weights A € RH*EexLe i the context
span from the previous transformer layer in the QA
model. The probability of the i-th position as start
position is computed via

e (hE(E),

where H is the number of attention heads, L.. is the
context length, and o denotes the softmax function.
We compute the softmax of the averaged weights.
We introduce a cutoff context ratio as a hyperpa-
rameter. It determines the length of the cutoff (as
compared to length of the original context).

Eventually, the above procedure of question and
context augmentation should improve the model
capacity in question understanding and “cut off”
spans in the hidden space. This thus encourages
the QA model to reduce redundancy and capture
relevant information for QA, i.e., from other posi-
tions using self-attention.

4.3 QA Model (with Attention-Based
Contrastive Adaptation)

For our QA model, we use BERT-QA, a trans-
former with the self-attention (Devlin et al., 2019).
To train it, we integrate a tailored attention-based
contrastive adaptation. The idea is to measure the
discrepancy between class features and then reduce
the intra-class discrepancy between source and tar-
get domains. Unlike domain adaptation in previous
work (Kang et al., 2019; Yue et al., 2021), we con-
sider the three sets of tokens (i.e., context, question,
and answer) as different classes.

Loss: We perform contrastive adaptation to re-
duce the intra-class distances between source and
target domains. We also maximize the inter-class
distances between answer tokens and the other to-
kens to improve answer extraction. For a mixed
batch X with X, and X, representing the subset
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Figure 2: Overview of the proposed augmentation
pipeline in QADA. Before feeding the input to QA
model, we perform (1) token-level augmentation for
questions and (2) hidden-space augmentation for con-
texts. The latter is done via an attentive context cutoff
that is performed in the hidden space after every trans-
former layer.
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where X, represents answer tokens in X, X, rep-
resents all context and question tokens in X, X 4
and X ., denotes tokens of class cl (context, ques-
tion or answer) in the source batch X and target
batch Xy, respectively. Here, Aype is a hyperparam-
eter. Moreover, DMMP computes the discrepancy
using our scheme below. In Loy, the first term
maximizes the distance of answer tokens to other
input tokens, thereby improving answer extraction
(extraction term), while the second terms reduce
the intra-class discrepancy (discrepancy term).
MMD: The maximum mean discrepancy
(MMD) computes the proximity between prob-
abilistic distributions in the reproducing kernel



Hilbert space H using drawn samples (Gretton
et al., 2012). In our implementation, we compute
the discrepancy between the source and target dis-
tributions with empirical kernel mean embeddings
using sampled token features, where the Gaussian
kernel k is adopted to estimate the distance in H.

In previous research (Yue et al., 2021), the MMD
distance was computed with the empirical kernel
mean embeddings using a feature mapping ¢ (i.e.,
BERT encoder), where azgi) is the ¢-th sample from
the source batch X, and :U,E] ) is the j-th sample
from the target batch X;. However, simply using ¢
as in previous work (Yue et al., 2021) would return
the averaged feature of all relevant tokens in the
sample rather than informative class information
(i.e., features at the decision boundary which are
“hard” to predict).

Instead, we design an attention-based sampling
strategy. First, we leverage the attention weights
A € RH*LexLz from the input & of the encoder
of the QA model. Based on this, we compute a
probability distribution using the softmax ¢ and
sample an index from it. The corresponding feature
of the index from the QA encoder is used as the
class feature, i.e.,

H Ly

(@) = fenc(x); with i ~ U(% Z(Z Aj,k))7
k

J

&)
where feopc is the encoder of the QA model. As a
result, features are sampled proportionally to the
attention weights. This should reflect more rep-
resentative information of the token class for dis-
crepancy estimation. We apply the aforementioned
attention-based sampling to both context and ques-
tion features. For answers, we use feature averag-
ing, as we expect all answer tokens to be equally
important.

Illustration: We visualize an illustrative QA
sample in Figure 3 to explain the advantage of our
attention-based sampling for domain discrepancy
estimation. We visualize all token features and then
examine the extraction term from Eq. 4. We fur-
ther show the feature mapping ¢ from CAQA (Yue
et al., 2021) returning the average feature. In con-
trast, our ¢ focuses on the estimation of more in-
formative distances. As a result, our proposed
attention-based sampling strategy is more likely to
sample “harder” context tokens. These are closer
to the decision boundary, as such token positions
have higher weights in A. Owing to this choice
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Figure 3: Illustration of QA samples in feature space.
The token features are obtained from the last layer in
BERT-QA and visualized using principle component
analysis (PCA). Question tokens are in cyan, context
tokens in orange, and answer tokens in red. Shown are
the feature mappings ¢ from CAQA (Yue et al., 2021)
Vs. ours.

of ¢, QADA changes how we measure the answer-
context discrepancy, and, therefore, is more effec-
tive in separating answer tokens from other tokens.

4.4 Learning Algorithm

We incorporate the contrastive adaptation loss from
Eq. 4 into the original training objective. This gives
our overall loss

L= £qa + )\tokenﬁQADA7 (6)

where L, denotes the cross entropy loss for train-
ing the QA model and Aiken is @ hyperparameter
acting as a scaling factor for the contrastive term.

5 Experiments

Datasets: We use the following datasets (see Ap-
pendix A for details):

e For the source dataset D, we use SQUAD v1.1
(Rajpurkar et al., 2016).

* For target dataset Dy, we follow (Yue et al.,
2021) and select four datasets: HotpotQA (Yang
et al., 2018), Natural Questions (Kwiatkowski
et al., 2019), SearchQA (Dunn et al., 2017),
and TriviaQA (Joshi et al., 2017) from MRQA
2019 (Fisch et al., 2019). This selection makes
our results comparable with other works in QA
domain adaptation that also leverage QG (e.g.,
Lee et al., 2020; Shakeri et al., 2020).

Recall that we are interested in settings with cor-
pora of limited size. Hence, we proceed as follows:



.. HotpotQA  NaturalQ.  SearchQA TriviaQA
Approach Training data EM/FI EM/FI EM/FI EM/FI
Performance on target dev set w/o domain adaptation
Source only SQuAD 41.38/59.15 46.61/60.82  21.55/30.68  50.92/60.56
Performance on target dev set w domain adaptation
HCVAE SQuAD + 10k target contexts ~ 39.47/55.60  37.12/51.17 17.41/24.24  45.66/55.28
AQGen SQuAD + 10k target contexts ~ 45.64/60.81  44.81/58.81  31.75/39.34  51.74/60.75
QAGen2S SQuAD + 10k target contexts ~ 45.43/60.48  44.68/58.17  30.87/38.06  50.60/59.67
QAGen-T5 SQuAD + 10k target contexts ~ 46.70/61.99  46.99/61.12  32.02/38.58  54.63/63.00
CAQA SQuAD + 10k target contexts  46.98/62.09 47.66/61.53  35.57/42.86  55.36/63.57
QADA (ours) SQuAD + 10k target contexts ~ 47.94/63.45  49.03/62.60  36.58/44.03  55.58/63.72
Performance on target dev set w/ supervised training
Supervised (w/ target data) 10k target samples 49.52/66.56  54.88/68.10  60.20/66.96  54.63/60.73
Supervised (w/ target data)  All target samples 57.96/74.16  67.08/79.02  71.54/77.77 64.51/70.27

Table 1: Results of QA domain adaptation on target datasets.

From the target datasets, we randomly select 10k
context paragraphs that provide the unlabeled target
contexts a;fﬁg for question generation. In QADA,
QA pairs are subject to LM filtering, so that a max-
imum 5 questions per context are kept. For all
baselines, the same number of context paragraphs
is used with 5 QA pairs for each context.

Baselines: Baselines are chosen that allow for
QA domain adaptation with question generation,
so that the same data as in QADA are leveraged.
For this, we combine models for QG and QA. For
QG, we use hierarchical conditional VAE (HCVAE)
(Lee et al., 2020), AQGen & QAGen two-step (QA-
Gen2S) (Shakeri et al., 2020), QAGen-T5 & CAQA
(Yue et al., 2021). For QA, we use the uncased
base BERT-QA (Devlin et al., 2019). Details on
the baselines are in Appendix B.

Implementation: To limit the data size, we use
our proposed augmentation pipeline to generate
one augmented question per QA pair. The other
hyperparameters were tuned, that is, by empirically
searching for the best combination of all hyperpa-
rameters. Details are in appendix C.

Evaluation: To evaluate the predictions, we fol-
low (Lee et al., 2020; Shakeri et al., 2020; Yue
etal., 2021) and assess the exact matches (EM) and
the F1 score on the test data. All evaluations are
performed on the dev sets. Results are reported for
the best combination of hyperparameters.

6 Experimental Results

6.1 Overall Performance of Domain
Adaptation

Our main results for domain adaptation are in Ta-
ble 1. We distinguish three major groups: (1) With-
out domain adaptation. Here, we report a naive
baseline called “source only” for which train BERT-

QA isolely on SQuAD. (2) With domain adaptation.
This refers to the above baselines where domain
adaptation is achieved by combining both BERT-
QA and a QG model. These are also trained jointly
using both SQuAD and 10k target contexts. This
group also includes QADA. (3) With supervised
learning. These are trained with target samples
that, in an actual production setting, would be un-
available. Hence, this reflects an “upper bound”.

Overall, the domain adaptation baselines are out-
performed by our QADA across all target datasets.
Hence, this confirms the effectiveness of the pro-
posed framework using both data augmentation
and attention-based contrastive adaptation. In ad-
dition, we observe the following: (1) QADA has
performance improvements over CAQA by up to
2.87% and in 2.73 % in EM and F1 score, respec-
tively. (2) QADA achieves almost a similar mag-
nitude as supervised learning (with target data) for
three datasets. For SearchQA, our explanation for
the gap is that this is likely caused by the large
domain discrepancy and long context paragraphs.
(3) QADA has a comparatively small improvement
for TriviaQA, but outperforms supervised learn-
ing with 10k samples. As a potential reason, this
may indicate a small domain discrepancy between
SQuAD and TriviaQA, as the adaptation perfor-
mance may be limited due to the small domain
variation (see (Yue et al., 2021)).

Appendix D reports additional results for a sensi-
tivity analysis with different hyperparameters. This
confirms the robustness of our results. Appendix E
provides a qualitative analysis of QA samples.

6.2 Sensitivity Analysis for Token
Augmentation Ratio

Our QADA uses question augmentation where a
token augmentation ratio determines the percentage
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Figure 4: Sensitivity analysis of QA performance for
different token augmentation ratios (top) and different
context cutoffs (bottom).

of tokens that are changed. Figure 4 compares
different token augmentation ratios from 0 to 0.5.

Overall, we observe some variation but, impor-
tantly, the performance remains fairly robust for
different nonzero ratios. Moreover, we find compar-
atively large improvements for NaturalQuestions
and SearchQA. In the case of SearchQA, the EM
increases from 32.02 to 33.50, which corresponds
to an improvement by 4.6 %; the F1 score increases
from 38.58 to 40.64, which corresponds to an im-
provement by 5.3 %. In contrast, there are no im-
provements for HotpotQA and TriviaQA, thereby
suggesting that effectiveness of question augmen-
tation may be limited as the discrepancy between
source and target domain is too small (cf. (Yue
et al., 2021) for a discussion of the datasets).

6.3 Sensitivity Analysis for Context Cutoff
Ratio

Now we study the context cutoff ratio (see Fig-
ure 4). The context cutoff ratio determines the
relative context length of the span that we zero
out in the hidden-space augmentation for contexts
based on the attention. The range for context cutoff
ratio in our experiments is from 0 to 0.25.

Across different context cutoff ratios, we again
observe that the performance is — to a large ex-
tent — robust. We further find that tuning context
cutoff ratios can be particularly powerful for tar-
get datasets with comparatively small discrepancy
w.r.t. the source dataset. To show this, we use Triv-
1aQA and compare our QADA from above (with a
nonzero context cutoff ratio) against an implemen-

Extraction  Extraction +

term only discrepancy
Dataset EM /F1 EM /F1
HotpotQA 47.94/63.26  47.94/63.45
NaturalQ. 49.03/62.60  48.61/61.81
SearchQA 34.10/40.76  36.58/44.03
TriviaQA 55.05/63.31  55.58/63.72

Table 2: Results of QA adaptation with the extraction
term and the optional discrepancy term.

tation where the context cutoff ratio is set to zero. A
nonzero ratio leads to improvements by 1.14 % and
0.95 % in EM and F1, respectively. This suggests
that the context cutoff ratio improves the overall
capability of the system in retrieving context infor-
mation.

6.4 Ablation Study for Extraction vs.
Discrepancy Term

We now seek to understand the improvements due
to our attention-based contrastive adaptation. Here,
we perform an ablation study for the extraction
term and the discrepancy term (see Eq. 4). We
repeat the experiments in two variants (Table 2):
attentive-based contrastive adaptation with (1) only
the extraction term and (2) both terms.

We find improvements of different magnitude
when additionally including the discrepancy term
(with exception of a slight performance deteriora-
tion for NaturalQ.). The highest improvement us-
ing the discrepancy term is obtained for SearchQA.
As aresult, both EM and F1 score are improved by
7.3 % and 8.0 %, respectively. The results suggest
that the discrepancy term is especially effective for
settings with a comparatively large discrepancy be-
tween source/target datasets. In sum, the results
imply that the contrastive adaptation can lead to
improvements in discrepancy reduction.

7 Conclusion

In this paper, we propose a novel framework called
QADA for QA domain adaptation in the context of
small text corpora. QADA introduces: (1) question
generation with additional data augmentation to
generate and enrich synthetic QA data; and (2) an
attention-based contrastive adaptation for training
QA models to learn domain-invariant features that
generalize across source and target domain. Our ex-
periments demonstrate the effectiveness of QADA:
it achieves a superior performance over state-of-
the-art baselines in QA domain adaptation.
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Appendix
A Dataset Details

As the source dataset, we adopt SQuAD v1.1 (Ra-
jpurkar et al., 2016). SQuAD vl1.1 is a question-
answering dataset where context paragraphs origi-
nate from Wikipedia articles. The QA pairs were
then annotated by crowdworkers.
In our experiments, we adopt four other datasets

from MRQA (Fisch et al., 2019) as target datasets:
1. HotpotQA is a question-answering dataset with
multi-hop questions and supporting facts to pro-
mote reasoning in QA (Yang et al., 2018).
NaturalQuestions (Kwiatkowski et al., 2019)
builds upon real-world user questions. These
were then combined with Wikipedia articles as
context. The Wikipedia articles may or may not
contain the answer to each question.
TriviaQA (Joshi et al., 2017) is a question-
answering dataset containing evidence infor-
mation for reasoning in QA.

SearchQA (Dunn et al., 2017) was built based
on an existing dataset of QA pairs. The QA
pairs were then extended by contexts, which
were crawled through Google search.

B Baseline Details

We introduce five baselines which also involve QA
domain adaptation through question generation:

1. HCVAE uses a hierarchical variational autoen-
coder to encode contexts. Moreover, latent vari-
ables are sampled in the latent space to generate
output questions and answers (Lee et al., 2020).
AQGen uses a transformer architecture for
question generation. Here, answers are gen-
erated in the first step, followed by question
generation in the second step (Shakeri et al.,
2020).

. QAGen2S also uses a transformer model for
question generation model. QAGen2S first
generates the questions end-to-end and, sub-
sequently, generates answers conditioned on
question and context (Shakeri et al., 2020).
QAGen-TS5 adopts two TS5 transformers to gen-
erate question-answer pars in two steps. The
first TS transformer generates questions end-to-
end, followed by the answer generation using a
second T5 transformer (Yue et al., 2021).
. CAQA leverages QAGen-T5 for question gen-
eration but extends the learning algorithm.
Specifically, CAQA uses contrastive adaptation

12

to reduce domain discrepancy and promote an-
swer extraction for QA domain adaptation. (Yue
et al., 2021).

C Implementation Details

QG model: We train the question generation mod-
els on the source dataset. Then, the trained QG
models are used to generate QA pairs based on the
given input context. We implement and train AQ-
Gen and QAGen2S as in (Shakeri et al., 2020; Yue
et al., 2021), QG models are trained for 10 epochs
with the default settings when available. For gen-
erating synthetic data, we apply LM filtering for
QAGen-T5 and adopt roundtrip filtering for the
other QG models as in (Alberti et al., 2019). The
optimizer is set to AdamW without weight decay
and warmup. We validate the QG models based on
the SQuAD dev set to select the best QG model.

QA model: We train BERT-QA with a learning
rate of 3-107° for two epochs and a batch size of 16
using both QA data from both source domain and
the synthetic target samples. We use the AdamW
optimizer without linear warmup. We additionally
use Nvidia Apex for mixed precision training (Ka-
math et al., 2020; Yue et al., 2021). When using
HCVAE for question generation, we make use of
the results from (Yue et al., 2021).

Hyperparameter for QADA: For our experi-
ments, we first searched for a combination of to-
ken augmentation ratio and context cutoff ratio,
followed by tuning both Aoken and Aype. Specifi-
cally, we empirically searched for the best combi-
nation across different ranges. For data augmen-
tation, we experimented with different token aug-
mentation ratios 7ken in [0,0.1,0.2,0.3,0.4, 0.5],
and we experimented with different context cutoff
ratios 7context in [0,0.05,0.1,0.15,0.2,0.25]. For
contrastive adaptation, we experimented with Aioken
in the range [1074,5-1074,1073,5- 1073, 1072]
and Aype from [0,0.01,0.05,0.1,0.5]. For Agken
and Aype, details are reported in Table 3 and Ta-
ble 4. Eventually, the best combination was se-
lected.

D Sensitivity Analysis of
Hyperparameters

To better understand the behavior of Aken and
Atype> We perform a sensitivity analysis where we
vary both hyperparameters. Detailed results for dif-
ferent hyperparameter combinations are presented
in Table 5 and Table 6, respectively.



Augmentation QADA
Ttoken  Tcontext EM/F1
HotpotQA 0 0.1 47.94/63.45
NaturalQ. 0.4 0.25  49.03/62.60
SearchQA 0.2 0.05  36.58/44.03
TriviaQA 0 0.2 55.58/63.72

Dataset

Table 3: Augmentation selection for the main results.

Hyperparam. QADA
)\token )\type EM/FI
HotpotQA 5-1072 0.05 47.94/63.45
NaturalQ. 5-107* 0  49.03/62.60
SearchQA 1072 0.5 36.58/44.03
TriviaQA  5-10"% 0.05 55.58/63.72

Dataset

Table 4: Hyperparameter selection for the main results.

First, we experiment with different A ke, val-
ues. For this, we temporarily exclude the discrep-
ancy term in the attention-based contrastive adap-
tation loss (i.e., Agype = 0). Here, we test Aggen in
[1074,5-107%,1073,5 - 1073,1072]. The results
are in Table 5. Second, we vary Agype. In doing so,
we keep the value of Agen fixed at the best value
from the first step. Here, the results are reported in
Table 6. We then select Aiken With the best perfor-
mance. This gives the results in the main analysis
(Table 1).

E Qualitative Analyis of QA Samples

We performed a qualitative analysis of the data
augmentation. For this, we report examples of syn-
thetic QA pairs that were generated during ques-
tion generation using out augmentation pipeline
for a given context. The examples for the different
datasets are in Tables 7 to 10. Here, the token aug-
mentation ratio was set to 0.1 for HotpotQA and
TriviaQA, and to 0.2 for SearchQA, and to 0.4 for
NaturalQuestions.

We make a few interesting observations. First,
we see more synonym replacements than token
swaps. This may be attributed to the short lengths
of questions (since token swaps involves twice as
many tokens. Second, the generated QA pairs ap-
pear similar to SQuAD in style. However, the aug-
mented questions tend to also incorporate terms
that are otherwise less frequent as well as more
word orders that are otherwise seen less commonly.
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Dataset Atype Atoken

1074 5.1074 1073 5-1073 1072
HotpotQA  Aype = 0 47.94/6326  47.55/63.03 47.62/63.31 46.53/61.99  46.50/62.02
NaturalQ.  Aype =0  48.91/62.63  49.03/62.60 48.55/62.11  48.78/62.36  48.33/61.87
SearchQA  Aype =0 32.95/39.73  33.92/40.73  31.94/38.76  33.62/40.69. 34.10/40.76
TriviaQA  Agpe =0 55.29/63.42  55.05/63.31  54.90/6331  55.05/63.27  54.96/63.24

Table 5: Results of QADA with different ke, values on target datasets.

Dataset Atoken Auype

0 0.01 0.05 0.1 0.5
HotpotQA  Aoken = 5- 1077 46.53/61.99 46.81/62.22 47.94/63.45 46.57/61.89 46.23/61.91
NaturalQ.  Awken = 5-107%  49.03/62.60 48.61/61.81 47.51/61.38 47.93/61.64  47.55/62.59
SearchQA Atoken = 1072 34.10/40.76  32.96/39.87 34.66/42.02 35.25/42.48  36.58/44.03
TriviaQA  Aoken = 5-107%  55.05/63.31 55.25/63.45 55.58/63.72 55.43/63.68 54.59/63.03

Table 6: Results of QADA based on the selected Aoken (from above) while varying different Ay, values. Best value
in bold.

14



Examples: HotpotQA

Context (given): Jim Conroy [SEP] James Conroy (born February 6, 1977) is an American voice
actor, television writer and actor. He is known for appearing on television shows, such as "Celebrity
Deathmatch", "Kenny the Shark" and "Fetch! with Ruff Ruffmany radio commercials and video
games. He worked for companies such as WGBH, The Walt Disney Company and Discovery
Channel. [PAR] [TLE] Kenny the Shark [SEP] Kenny the Shark is an American animated television
series produced by Discovery Kids. The show premiered on NBC’s Discovery Kids on NBC from
November 1, 2003 and ended February 18, 2006 with two seasons and 26 episodes in total having
aired.

Question 1: How many episodes did the show have?

Augmented 1: How many sequence did the show have?

Answer 1: 26

Question 2: What is Jim Conroy’s birth date?

Augmented 2: What is jim conroys giving birth date?

Answer 2: February 6, 1977

Question 3: What is the name of the American animated television series?
Augmented 3: What is the name of the american revivify television series?
Answer 3: Kenny the Shark

Context (given): Gang of Youths [SEP] Gang of Youths are an Australian indie rock group consisting
of principal songwriter David Le’aupepe (lead vocals/guitar/piano), Max Dunn (bass guitar), Jung
Kim (keyboards/guitar), Joji Malani (lead guitar) and Donnie Borzestowski (drums). Their debut
album, "The Positions", peaked at No. 5 on the ARIA Albums Chart in May 2015 and was nominated
for multiple ARIA Awards. [PAR] [TLE] Let Me Be Clear [SEP] Let Me Be Clear is the debut
extended play by Australian alternative band Gang of Youths. The EP features 5 original tracks and
a cover of Joni Mitchell’s "Both Sides Now". It was released on 29 July 2016 and debuted at number
2 on the ARIA Charts.

Question 1: When was the song released?

Augmented 1: When was the song unblock?

Answer 1: 29 July 2016

Question 2: How many tracks are on the EP?

Augmented 2: How many trail are on the EP?

Answer 2: 5

Question 3: What is the name of the Australian indie rock group?
Augmented 3: What is the name of the Australian indie tilt group?
Answer 3: Gang of Youths

Table 7: Examples of QA pairs generated via our augmentation pipeline for HotpotQA.

15



Examples: NaturalQuestions

Context (given): <P> Red blood cell distribution width ( RDW or RDW - CV or RCDW and RDW -
SD ) is a measure of the range of variation of red blood cell ( RBC ) volume that is reported as part
of a standard complete blood count . Usually red blood cells are a standard size of about 6 - 8 03bcm
in diameter . Certain disorders , however , cause a significant variation in cell size . Higher RDW
values indicate greater variation in size . Normal reference range of RDW - CV in human red blood
cellsis 11.5 - 14.5 % . If anemia is observed , RDW test results are often used together with mean
corpuscular volume ( MCV ) results to determine the possible causes of the anemia . It is mainly
used to differentiate an anemia of mixed causes from an anemia of a single cause . </P>.

Question 1: What do higher RDW values indicate?

Augmented 1: What do mellow RDW appreciate indicate?

Answer 1: Greater variation in size

Question 2: What is the measure of the range of variation of red blood cell volume?

Augmented 2: Variation is the measure of the range of what volume red blood cell of?

Answer 2: Red blood cell distribution width

Question 3: What is the normal reference range of RDW - CV in human red blood cells?
Augmented 3: What is the convention reference straddle of RDW resume in human being red blood
cadre?

Answer 3: 11.5-14.5 %

Context (given): <P> The original World Trade Center was a large complex of seven buildings in
Lower Manhattan , New York City , United States . It featured the landmark twin towers , which
opened on April 4, 1973 , and were destroyed in 2001 during the September 11 attacks . At the time
of their completion , the “ Twin Towers ~ — the original 1 World Trade Center , at 1,368 feet (417 m
) ; and 2 World Trade Center , at 1,362 feet ( 415.1 m ) — were the tallest buildings in the world .
Other buildings in the complex included the Marriott World Trade Center (3 WTC ) ,4 WTC, 5
WTC, 6 WTC, and 7 WTC . All were built between 1975 and 1985 , with a cost of $ 400 million (
$ 2,300,000,000 in 2014 dollars ) . The complex was located in New York City ’s Financial District
and contained 13,400,000 square feet ( 1,240,000 m ) of office space . </P>.

Question 1: What was the original height of the 1 World Trade Center?
Augmented 1: What was the master tallness of the globe trade wind center?
Answer 1: 1,368 feet

Question 2: How many meters of office space was in the complex?
Augmented 2: Of many meters the office space was in how complex?
Answer 2: 1,240,000

Question 3: When were the twin towers destroyed?

Augmented 3: When were the twin tower ruin?

Answer 3: 2001

Table 8: Examples of QA pairs generated via our augmentation pipeline for NaturalQuestions.
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Examples: SearchQA

Context (given): [DOC] [TLE] jeopardy/1333_Qs.txt at master jedoublen/jeopardy GitHub [PAR]
Number: 2. ANIMAL SONGS | British singer Robyn Hitchcock is known for his tunes about
these animals, including "Bass" & "Aquarium" | Fish. right: Matt. Wrong:. [DOC] [TLE] Robyn
Hitchcock - Wikipedia [PAR] Robyn Rowan Hitchcock (born 3 March 1953) is an English singer-
songwriter and guitarist. While primarily a vocalist and guitarist, he also plays harmonica, piano,
and bass guitar. ... Hitchcock’s lyrics tend to include surrealism, comedic elements, ... Hitchcock
released his solo debut, Black Snake Diamond Rle in 1981,... [DOC] [TLE] Positive Vibrations:
Softcore - fegMANIA! [PAR] An except from Positive Vibrations’ complete guide to the songs of
Robyn Hitchcock. ...

Question 1: What is the dance music of northeastern Argentina known as?
Augmented 1: What is the terpsichore music of northeasterly argentina known as?
Answer 1: Chaman

Question 2: What was Hitchcock’s solo debut called?

Augmented 2: What was Alfred Hitchcock solo debut called?

Answer 2: Black Snake Diamond Rle

Question 3: When did Hitchcock release his solo debut?

Augmented 3: When did Hitchcock release his solo introduction?

Answer 3: 1981

Context (given): [DOC] [TLE] Battle of Blood River - Wikipedia [PAR] The Battle of Blood
River is the name given for the battle fought between 470 Voortrekkers ("Pioneers"), led by Andries
Pretorius, and an estimated 15,000 21,000 Zulu attackers on the bank of the Ncome River on 16
December 1838, in what is today KwaZulu-Natal, South Africa. ... Casualties amounted to 3,000 of
king Dingane’s soldiers dead, including two... [DOC] [TLE] Battle of Blood River | South African
history | Britannica.com [PAR] Battle of Blood River, Blood River also known as Ncome River, (Dec.
... 16, 1838, a Boer force led by Andries Pretorius induced a Zulu attack on a Boer laager (protected
... defeated an army of Zulu warriors on the banks of the Ncome River. [DOC] [TLE] The Battle of
Blood River | South African History Online [PAR] On 16 December 1838 the Battle of Blood River
took place near the Ncome River in KwaZulu Natal. ... Towards a peoples history ... Voortrekkers
under the leadership of Andries Pretorius and the Zulu’s under the leadership of Dingane the Zulu
King. ...

Question 1: Who led the Boer force in the Battle of Blood River?
Augmented 1: Who take the afrikander force in the battle of blood river?
Answer 1: Andries Pretorius

Question 2: Who led the Boers to a huge victory over the Zulus?
Augmented 2: Who pass the Boers to a huge victory over the Zulu?
Answer 2: Andries Pretorius

Question 3: What was the name of Dingane’s generals?

Augmented 3: What was the name of Dinganes superior general?
Answer 3: Dambuza

Table 9: Examples of QA pairs generated via our augmentation pipeline for SearchQA.
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Examples: TriviaQA

Context (given): [DOC] [TLE] Spiers on Sport: the unjust sacking of Kenny Shiels (From ...Spiers
on Sport: the unjust sacking of Kenny Shiels (From HeraldScotland) [PAR] / Spiers on Sport ,
Graham Spiers [PAR] When a manager wins one of only four trophies collected by a football club
in 80 years, there has to be a degree of respect shown towards him, right? [PAR] When he also
works slavishly on all aspects of a club due to staffing limitations - training, recruiting, video-editing,
youth development etc - wouldn’t that admiration for him grow even greater? [PAR] Loading article
content [PAR] Kenny Shiels, sacked by Kilmarnock, is by no means perfect. But he has been a pretty
good manager at Rugby Park, whose dismissal is hard to fathom. [PAR] It transpires, too, that many
Kilmarnock supporters, contrary to what we might have been led to believe, are also peeved at their
manager’s sacking. A mob of them descended on Rugby Park the other evening to vent their spleen
at Michael Johnston, the club’s chairman. [PAR] I quite like and admire Johnston. He is a lawyer, a
bit old-school, who gets flack galore in his Killie role but always stands his ground. But this decision
seems quaint to me. [PAR] First, let’s look at Shiels’ record. He was Kilmarnock manager for two
seasons, during which the club lifted the Scottish League Cup and finished seventh and ninth in the
SPL. ...

Question 1: Where did most of Shiels’ felonies occur?
Augmented 1: Where did most of Shiels felonies go on?
Answer 1: Rugby Park

Question 2: What club did he manage?

Augmented 2: What society did he manage?

Answer 2: Kilmarnock

Question 3: Who is the chairman of the rugby club?
Augmented 3: Who is the president of the rugby club?
Answer 3: Michael Johnston

Context (given): [DOC] [TLE] Bagpuss and the little girl who owned him meet up for 40th
...Bagpuss and the little girl who owned him meet up for 40th birthday | Daily Mail Online [PAR] A
bit looser at the seams... but Emily STILL loves him: Bagpuss is reunited with the little girl who
owned him to celebrate the famous programme’s 40th birthday [PAR] Emily Firmin was 8-years-old
when she starred as the owner of Bagpuss [PAR] Her father Peter Firmin created the TV show which
was broadcast in 1974 [PAR] Now aged 48, she is still instantly recognisable as the same little girl
from the hit TV programme [PAR] To celebrate the 40th anniversary of the show, Ms Firmin has
been reunited with the famous cat at Canterbury Heritage Museum[DOC] [TLE] Bagpuss - The Intro
- SmallfilmsBagpuss - The Intro [PAR] The Intro [PAR] There was a little girl and her name was
Emily [PAR] And she had a shop [PAR] There it is [PAR] It was rather an unusual shop because
it didn’t sell anything [PAR] You see, everything in that shop window was a thing that somebody
had once lost [PAR] And Emily had found [PAR] And brought home to Bagpuss [PAR] Emily’s cat
Bagpuss [PAR] Saggy old cloth cat in the whole wide world [PAR] Well now, one day Emily found
a thing [PAR] ...

Question 1: How long was the show repeated in the UK?
Augmented 1: How recollective was the show repeated in the UK?
Answer 1: 1974

Question 2: What year did the show Bagpuss first air?
Augmented 2: What yr did the show Bagpuss first air?

Answer 2: 1974

Question 3: When was the series first broadcast?

Augmented 3: When was the series kickoff broadcast?

Answer 3: 1974

Table 10: Examples of QA pairs generated via our augmentation pipeline for TriviaQA.
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