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Abstract

Domain adaptation for question answering001
(QA) has recently shown impressive results002
for answering out-of-domain questions. Yet,003
a common challenge is to build approaches004
that are effective for niche domains with small005
text corpora. In this paper, we propose a novel006
framework called QADA for QA domain adap-007
tation. QADA has two components: (1) A008
question generation model is used to generate009
synthetic question-answer samples from the tar-010
get domain. Different from existing baselines,011
we enrich the samples via a novel pipeline for012
data augmentation: for questions, we intro-013
duce token-level augmentation (i.e., synonym014
replacement and token swapping), and, for con-015
texts, we develop hidden-space augmentation016
which learns to drop context spans via a cus-017
tom attentive sampling strategy. (2) The QA018
model is based on transformers. However, un-019
like existing approaches, we propose to train it020
via a novel attention-based contrastive adapta-021
tion. Here, we use the attention weights to sam-022
ple informative tokens for discrepancy estima-023
tion that helps the QA model separate answers024
and generalize across source and target domain.025
To the best of our knowledge, our work is the026
first in QA domain adaptation to leverage data027
augmentation and attention-based contrastive028
adaptation. Our evaluation shows that QADA029
achieves considerable improvements over state-030
of-the-art baselines for QA domain adaptation.031

1 Introduction032

Question answering (QA) is the task of finding033

answers for a given context and a given question.034

QA models are typically trained using data triplets035

consisting of context, question and answer. In the036

case of extractive QA, answers are represented as037

subspans in the context defined by a start position038

and an end position, while question and context039

are given as running text (e.g., Chen et al., 2017;040

Devlin et al., 2019; Seo et al., 2016; ?).041

A common challenge in extractive QA is that QA042

models often suffer from performance deterioration 043

upon deployment and thus make mistakes for user- 044

generated inputs. The underlying reason for such 045

deterioration can be traced back to the domain shift 046

between training data (from the source domain) 047

and test data (from the target domain) (Fisch et al., 048

2019; Hazen et al., 2019; Miller et al., 2020). 049

Common approaches to address domain shifts 050

in extractive QA are as follows. One approach 051

is to include target data samples during training 052

(Daumé III, 2007; Kamath et al., 2020). Another 053

approach is to generate synthetic QA samples for 054

the target domain, which are the used additionally 055

during training (Lee et al., 2020; Shakeri et al., 056

2020). However, these approaches typically re- 057

quire large amounts of target data. As such, they 058

tend to be ineffective in niche domains where cor- 059

pora sizes are limited (Fisch et al., 2019). Only 060

recently, a contrastive loss has been proposed to 061

handle domain adaptation in QA (Yue et al., 2021). 062

Several approaches have been used to address 063

issues related to insufficient data and generaliza- 064

tion in NLP tasks, yet outside of QA. For example, 065

token-level augmentation (e.g., token swapping) 066

has been to used for generating synthetic samples 067

(Kobayashi, 2018; Wei and Zou, 2019; Yu et al., 068

2018). Another approach is data augmentation in 069

the hidden space, which is supposed to learn more 070

generalizable features (Chen et al., 2020, 2021; 071

Verma et al., 2019; ?). However, to the best of our 072

knowledge, no work has previously used data aug- 073

mentation for QA domain adaptation. For domain 074

adaptation, there are approaches that encourage the 075

model to learn domain-invariant features via fea- 076

ture discriminators (Chen et al., 2018; Lee et al., 077

2019; Zhang et al., 2017), or adopt contrastive adap- 078

tation to regularize the discrepancy between source 079

and target domains (Kang et al., 2019; Yue et al., 080

2021). However, to the best of our knowledge, no 081

work has integrated the attention mechanism into 082

contrastive adaptation for QA domain adaption. 083
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In this paper, we propose a novel framework for084

QA domain adaptation in the context of small text085

corpora called QADA. Our QADA framework is086

designed to handle domain shifts and should thus087

answer out-of-domain questions. QADA has two088

components, namely a question generation (QG)089

model and a QA model: (1) The QG model is090

used to generate synthetic question-answer sam-091

ples from the target domain. Here, we integrate092

novel pipeline for data augmentation to enrich the093

samples. For questions, we introduce a token-level094

augmentation (i.e., synonym replacement and to-095

ken swapping), and, for contexts, we develop a096

hidden-space augmentation which learns to drop097

context spans via an attentive sampling strategy.098

(2) The QA model is implemented via transformers.099

Here, we propose to train the QA model via a novel100

attention-based contrastive adaptation. Specifically,101

we use the attention weights to sample informative102

tokens that help the QA model separate answers103

and generalize across source and target domain.104

Main contributions of our work are:1105

1. We propose a novel framework called QADA106

for domain adaptation in QA. QADA aims at107

answering out-of-domain question and should108

thus handle the domain shift upon deployment.109

Moreover, QADA is specifically designed for110

niche domains with small text corpora.111

2. To the best of our knowledge, QADA is the first112

work in QA domain adaptation that (i) leverages113

data augmentation on token-level and in the114

hidden space; (ii) integrates an attention-based115

feature sampling in contrastive adaptation.116

3. We demonstrate the effectiveness of QADA in117

settings where corpora are of limited size. Here,118

QADA achieves a considerably better perfor-119

mance than state-of-the-art baselines for QA120

domain adaptation.121

2 Related Work122

Extractive QA has achieved impressive progress in123

recent years (Devlin et al., 2019; Kratzwald et al.,124

2019; Lan et al., 2019; Zhang et al., 2020). Yet the125

accuracy of QA models can drop drastically under126

domain shifts; that is, when deployed in an unseen127

domain that differs from the training distribution128

(Fisch et al., 2019; Talmor and Berant, 2019).129

To overcome the above challenge, various ap-130

proaches for QA domain adaptation have been131

1The code for our QADA framework is in the supplements.
Upon publication, we will make it publicly available.

proposed, which can be categorized as follows. 132

(1) (Semi-)supervised adaptation uses partially la- 133

beled data from the target distribution for train- 134

ing (Kratzwald and Feuerriegel, 2019; Yang et al., 135

2017). (2) Unsupervised adaptation has access 136

to context and question information from the tar- 137

get domain, whereas answers are unavailable (Cao 138

et al., 2020; Chung et al., 2018). (3) Unsupervised 139

adaptation with question generation refers to set- 140

tings where only context paragraphs in the target 141

domain are available, but QA samples have to be 142

generated separately to train the QA model (Shak- 143

eri et al., 2020; Yue et al., 2021). In this paper, we 144

focus on the third category and study the problem 145

of QA domain adaptation via question generation. 146

Question generation for QA: Several ap- 147

proaches for QG have been developed to generate 148

synthetic questions in an end-to-end fashion (i.e., 149

seq2seq) (Du et al., 2017; Sun et al., 2018). Com- 150

bining both QG and QA can leverage the similarity 151

among both tasks and thus improve the QA per- 152

formance (Golub et al., 2017; Tang et al., 2017, 153

2018). Advanced QG models build upon hierar- 154

chical variational autoencoders and transformers 155

(Lee et al., 2020; Shakeri et al., 2020). For ex- 156

ample, QAGen-T5 (Raffel et al., 2019; Yue et al., 157

2021) extends two T5 transformers for generating 158

question-answer pairs. We later use the aforemen- 159

tioned QG models as part of our baselines. 160

Data augmentation for NLP: Data augmenta- 161

tion for NLP aims at improving the language under- 162

standing with diverse data samples. One approach 163

is to apply token-level augmentation and enrich 164

the training data with simple techniques (e.g., syn- 165

onym replacement, token swapping, etc.) (Wei and 166

Zou, 2019) or custom heuristics (McCoy et al., 167

2019). Alternatively, augmentation can be done in 168

the hidden space of the underlying model (Chen 169

et al., 2020). For example, one can drop (i.e., cut- 170

off) partial spans hidden layers in hidden space, 171

which aids generalization performance under distri- 172

butional shifts (Chen et al., 2021) but in NLP tasks 173

outside of QA. To the best of our knowledge, we 174

are the first to propose an augmentation pipeline 175

for QA data in which both token-level and hidden- 176

space augmentation are combined. 177

Contrastive learning for domain adaptation: 178

Contrastive learning is used to minimize distances 179

of same-class samples and maximize discrepancy 180

among classes (Hadsell et al., 2006). For this, dif- 181

ferent metrics are adopted to measure pair-wise 182
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distances (e.g., triplet loss) or domain distances183

with the maximum mean discrepancy (Cheng et al.,184

2016; Schroff et al., 2015). Contrastive learning185

can also be used for domain adaptation by reduc-186

ing the domain discrepancy: this “pulls together”187

intra-class features and “pushes apart” inter-class188

representations. Here, several applications are in189

computer vision Kang et al. (2019). In QA do-190

main adaptation, contrastive learning was applied191

with averaged token features in order to separate192

answer tokens and minimize the discrepancy be-193

tween source and target domain (Yue et al., 2021).194

However, our work is different in that we introduce195

a novel attention-based sampling strategy for con-196

trastive adaptation and in that we propose a finer197

contrastive loss (see details in Section 4.3).198

3 Setup199

We consider the following problem setup. As200

in (Shakeri et al., 2020; Yue et al., 2021), we study201

domain adaptation for QA with question genera-202

tion. We further assume a setting with limited text203

corpora. For notation, we denote the QG model via204

fqg, and the QA model via f .205

Training: Our research focuses on question an-206

swering under domain shift. Let Ds denote the207

source domain, and let Dt denote the (different)208

target domain. Then, labeled data from the source209

domain can be used for training, while, upon de-210

ployment, it should perform well on the data from211

the target domain. Specifically, training is two-fold:212

we first train a QG model and, following this, a QA213

model. The input data to each is as follows:214

• Labeled QA data: Training data is provided by215

labeled QA data Xs from the source domain216

Ds. Here, each sample x
(i)
s ∈ Xs is a triplet217

comprising a question x
(i)
s,q, a context x(i)

s,c, and218

an answer x(i)
s,a. As we consider extractive QA,219

the answer is represented by the start and end220

position in the context.221

• Unlabeled target contexts: We assume partial222

access to data from the target domain Dt, that223

is, only unlabeled contexts. The contexts are224

used later for question generation. Formally, we225

refer to the contexts via x
(i)
t,c (with x

(i)
t ∈ X

′
t226

where X
′
t is the data from the target domain). We227

further assume that the corpus of target contexts228

is of limited size (i.e., |X ′
t | is limited).229

Objective: Upon deployment, our goal is to max-230

imize the model performance on Xt in the target 231

domain Dt. Mathematically, this corresponds to 232

the optimization problem 233

f∗ = argmin
f

Lce(f ,Xt), (1) 234

where Lce is the cross entropy loss and f represents 235

the QA model. 236

4 The QADA Framework 237

4.1 Overview 238

Our proposed QADA framework has two major 239

components (see Figure 1): (1) question genera- 240

tion model with augmentation to enrich learning 241

with synthetic target samples; and a (2) QA model. 242

The QA model is trained with attention-based con- 243

trastive adaptation. 244

To address a domain shift upon deployment, we 245

use the two components for QA domain adapta- 246

tion as follows. In the first component (Sec. 4.2), 247

we use the unlabeled target data X
′
t and add syn- 248

thetic labels (QA pairs) via a QG model. Here, we 249

enrich the set of synthetic data via data augmen- 250

tation. In the second component (Sec. 4.3), we 251

train the QA model using both the source and the 252

synthetic target data with our attention-based con- 253

trastive adaptation, such that the learned features 254

should generalize across the source domain and the 255

target domain. 256

1. Question generation (with augmentation): We 257

use the unlabeled target contexts X
′
t , based on 258

which we build synthetic target data Xt. For- 259

mally, we generate QA pairs x(i)
t,q,x

(i)
t,a using fqg. 260

Each sample x
(i)
t ∈ Xt now contains the origi- 261

nal context and a pair of a synthetic question and 262

a synthetic answer. We additionally apply data 263

augmentation to enrich the target data. 264

2. QA model (with attention-based contrastive 265

adaptation): The QA model f takes the context 266

and question as input and outputs the answer, i.e., 267

it predicts x(i)
a = f(x

(i)
c ,x

(i)
q ). We train the QA 268

model f with the source data Xs from the source 269

domain Ds and the synthetic target data Xt from 270

the previous step. We impose regularization on 271

the answer extraction and further minimize the 272

discrepancy between source and target domain, 273

so that the learned features generalize well to the 274

target domain. 275
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Figure 1: Overview of our proposed QADA framework. A question generation model is used to generate QA pairs,
which are then augmented to enrich the synthetic data. The QA model is trained with attentive contrastive loss
designed to improve accuracy on the target domain upon deployment.

4.2 Question Generation (with Augmentation)276

QG model: We adopt QAGen-T5 (Yue et al., 2021)277

and use two separate T5 transformer models (Raf-278

fel et al., 2019) for question generation and an-279

swer generation. As in (Shakeri et al., 2020; Yue280

et al., 2021), QAGen-T5 takes a context xc as in-281

put. Then, it first generates a question xq, and then282

generates an answer xa conditioned on xc and xq.283

QAGen-T5 is trained on the source dataset with284

a negative log-likelihood loss using separate output285

probabilities in each step, i.e.,286

Lqg(X) =

|X|∑
i=1

− log pθt5
(
x
(i)
out

∣∣x(i)
in

)
, (2)287

where x(i)
in and x

(i)
out refer to the input and output of288

each QG step, respectively. To select diverse and289

consistent QA pairs from QAGen-T5, we adopt290

LM filtering (Shakeri et al., 2020) to select the best291

k QA pairs for each context (we use k = 5 with292

10k context paragraphs in our experiments).293

Data augmentation: We design a data augmen-294

tation pipeline to further enrich the training data295

based on the generated QA pairs. The augmen-296

tation pipeline is divided into two parts (see Fig-297

ure 2): (i) question augmentation and (ii) context298

augmentation. The former is done via token-level299

augmentation, while the latter is done via hidden-300

space augmentation as described below.301

Question augmentation: To perform augmenta- 302

tion of questions, we use synonym replacement and 303

random swaps on certain proportion of tokens. Syn- 304

onyms are randomly picked from a synonym dictio- 305

nary (i.e., WordNet; Miller, 1995), while swapping 306

is applied on two randomly chosen words in the 307

question. This simple augmentation is introduced 308

in order to provide syntactically diverse questions. 309

At the same time, by adding noise, it should encour- 310

age the QA model to capture robust information 311

in questions (see Wei and Zou, 2019). We control 312

the question augmentation by a token augmentation 313

ratio as a hyperparameter. It determines the percent- 314

age of tokens within questions that are changed. 315

We considered to use the above token-level aug- 316

mentation also for answers and/or contexts but 317

eventually discarded this idea: (1) token-level aug- 318

mentation undermines the original text style and 319

the underlying domain characteristics; (2) token 320

changes for contexts are likely to cause shifts 321

among answer spans. 322

Context augmentation: For context, we adopt 323

augmentation in the hidden space instead of token- 324

level augmentation. Here, we propose to use an 325

attentive context cutoff in the hidden space. Specif- 326

ically, we zero out sampled context spans in the 327

hidden space after each transformer layer in the 328

QA model. This is illustrated in Figure 2, where all 329

hidden states in the selected span along the input 330
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length are dropped (i.e., setting values to zero as331

shown by the white color). Thereby, our cutoff332

forces the QA model to attend to context informa-333

tion that is particularly relevant across all input334

positions and thus hinders it from learning redun-335

dant domain information.336

Formally,our attentive sampling strategy learns337

to select cutoff spans: we compute a probability338

distribution and sample a start position using the339

attention weights A ∈ RH×Lc×Lc in the context340

span from the previous transformer layer in the QA341

model. The probability of the i-th position as start342

position is computed via343

pi = σ

(
1

H

H∑
j

( Lc∑
k

Aj,k

))
i

, (3)344

where H is the number of attention heads, Lc is the345

context length, and σ denotes the softmax function.346

We compute the softmax of the averaged weights.347

We introduce a cutoff context ratio as a hyperpa-348

rameter. It determines the length of the cutoff (as349

compared to length of the original context).350

Eventually, the above procedure of question and351

context augmentation should improve the model352

capacity in question understanding and “cut off”353

spans in the hidden space. This thus encourages354

the QA model to reduce redundancy and capture355

relevant information for QA, i.e., from other posi-356

tions using self-attention.357

4.3 QA Model (with Attention-Based358

Contrastive Adaptation)359

For our QA model, we use BERT-QA, a trans-360

former with the self-attention (Devlin et al., 2019).361

To train it, we integrate a tailored attention-based362

contrastive adaptation. The idea is to measure the363

discrepancy between class features and then reduce364

the intra-class discrepancy between source and tar-365

get domains. Unlike domain adaptation in previous366

work (Kang et al., 2019; Yue et al., 2021), we con-367

sider the three sets of tokens (i.e., context, question,368

and answer) as different classes.369

Loss: We perform contrastive adaptation to re-370

duce the intra-class distances between source and371

target domains. We also maximize the inter-class372

distances between answer tokens and the other to-373

kens to improve answer extraction. For a mixed374

batch X with Xs and Xt representing the subset375
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Figure 2: Overview of the proposed augmentation
pipeline in QADA. Before feeding the input to QA
model, we perform (1) token-level augmentation for
questions and (2) hidden-space augmentation for con-
texts. The latter is done via an attentive context cutoff
that is performed in the hidden space after every trans-
former layer.

of source and target samples, the loss is 376

LQADA = −DMMD(Xa,Xcq)

+ λtype
∑
cl

DMMD(Xs,cl,Xt,cl) with

DMMD =
1

|Xs||Xs|

|Xs|∑
i=1

|Xs|∑
j=1

k(ϕ(x(i)
s ), ϕ(x(j)

s ))

+
1

|Xt||Xt|

|Xt|∑
i=1

|Xt|∑
j=1

k(ϕ(x
(i)
t ), ϕ(x

(j)
t ))

− 2

|Xs||Xt|

|Xs|∑
i=1

|Xt|∑
j=1

k(ϕ(x(i)
s ), ϕ(x

(j)
t )),

(4) 377

where Xa represents answer tokens in X , Xcq rep- 378

resents all context and question tokens in X , Xs,cl 379

and Xt,cl denotes tokens of class cl (context, ques- 380

tion or answer) in the source batch Xs and target 381

batch Xt, respectively. Here, λtype is a hyperparam- 382

eter. Moreover, DMMD computes the discrepancy 383

using our scheme below. In Lours, the first term 384

maximizes the distance of answer tokens to other 385

input tokens, thereby improving answer extraction 386

(extraction term), while the second terms reduce 387

the intra-class discrepancy (discrepancy term). 388

MMD: The maximum mean discrepancy 389

(MMD) computes the proximity between prob- 390

abilistic distributions in the reproducing kernel 391
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Hilbert space H using drawn samples (Gretton392

et al., 2012). In our implementation, we compute393

the discrepancy between the source and target dis-394

tributions with empirical kernel mean embeddings395

using sampled token features, where the Gaussian396

kernel k is adopted to estimate the distance in H.397

In previous research (Yue et al., 2021), the MMD398

distance was computed with the empirical kernel399

mean embeddings using a feature mapping ϕ (i.e.,400

BERT encoder), where x(i)
s is the i-th sample from401

the source batch Xs, and x
(j)
t is the j-th sample402

from the target batch Xt. However, simply using ϕ403

as in previous work (Yue et al., 2021) would return404

the averaged feature of all relevant tokens in the405

sample rather than informative class information406

(i.e., features at the decision boundary which are407

“hard” to predict).408

Instead, we design an attention-based sampling409

strategy. First, we leverage the attention weights410

A ∈ RH×Lx×Lx from the input x of the encoder411

of the QA model. Based on this, we compute a412

probability distribution using the softmax σ and413

sample an index from it. The corresponding feature414

of the index from the QA encoder is used as the415

class feature, i.e.,416

ϕ(x) = fenc(x)i with i ∼ σ(
1

H

H∑
j

(

Lx∑
k

Aj,k)),

(5)417

where fenc is the encoder of the QA model. As a418

result, features are sampled proportionally to the419

attention weights. This should reflect more rep-420

resentative information of the token class for dis-421

crepancy estimation. We apply the aforementioned422

attention-based sampling to both context and ques-423

tion features. For answers, we use feature averag-424

ing, as we expect all answer tokens to be equally425

important.426

Illustration: We visualize an illustrative QA427

sample in Figure 3 to explain the advantage of our428

attention-based sampling for domain discrepancy429

estimation. We visualize all token features and then430

examine the extraction term from Eq. 4. We fur-431

ther show the feature mapping ϕ from CAQA (Yue432

et al., 2021) returning the average feature. In con-433

trast, our ϕ focuses on the estimation of more in-434

formative distances. As a result, our proposed435

attention-based sampling strategy is more likely to436

sample “harder” context tokens. These are closer437

to the decision boundary, as such token positions438

have higher weights in A. Owing to this choice439
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Figure 3: Illustration of QA samples in feature space.
The token features are obtained from the last layer in
BERT-QA and visualized using principle component
analysis (PCA). Question tokens are in cyan, context
tokens in orange, and answer tokens in red. Shown are
the feature mappings ϕ from CAQA (Yue et al., 2021)
vs. ours.

of ϕ, QADA changes how we measure the answer- 440

context discrepancy, and, therefore, is more effec- 441

tive in separating answer tokens from other tokens. 442

4.4 Learning Algorithm 443

We incorporate the contrastive adaptation loss from 444

Eq. 4 into the original training objective. This gives 445

our overall loss 446

L = Lqa + λtokenLQADA, (6) 447

where Lqa denotes the cross entropy loss for train- 448

ing the QA model and λtoken is a hyperparameter 449

acting as a scaling factor for the contrastive term. 450

5 Experiments 451

Datasets: We use the following datasets (see Ap- 452

pendix A for details): 453

• For the source dataset Ds, we use SQuAD v1.1 454

(Rajpurkar et al., 2016). 455

• For target dataset Dt, we follow (Yue et al., 456

2021) and select four datasets: HotpotQA (Yang 457

et al., 2018), Natural Questions (Kwiatkowski 458

et al., 2019), SearchQA (Dunn et al., 2017), 459

and TriviaQA (Joshi et al., 2017) from MRQA 460

2019 (Fisch et al., 2019). This selection makes 461

our results comparable with other works in QA 462

domain adaptation that also leverage QG (e.g., 463

Lee et al., 2020; Shakeri et al., 2020). 464

Recall that we are interested in settings with cor- 465

pora of limited size. Hence, we proceed as follows: 466
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Approach Training data HotpotQA NaturalQ. SearchQA TriviaQA
EM / F1 EM / F1 EM / F1 EM / F1

Performance on target dev set w/o domain adaptation
Source only SQuAD 41.38/59.15 46.61/60.82 21.55/30.68 50.92/60.56

Performance on target dev set w domain adaptation
HCVAE SQuAD + 10k target contexts 39.47/55.60 37.12/51.17 17.41/24.24 45.66/55.28
AQGen SQuAD + 10k target contexts 45.64/60.81 44.81/58.81 31.75/39.34 51.74/60.75
QAGen2S SQuAD + 10k target contexts 45.43/60.48 44.68/58.17 30.87/38.06 50.60/59.67
QAGen-T5 SQuAD + 10k target contexts 46.70/61.99 46.99/61.12 32.02/38.58 54.63/63.00
CAQA SQuAD + 10k target contexts 46.98/62.09 47.66/61.53 35.57/42.86 55.36/63.57
QADA (ours) SQuAD + 10k target contexts 47.94/63.45 49.03/62.60 36.58/44.03 55.58/63.72

Performance on target dev set w/ supervised training
Supervised (w/ target data) 10k target samples 49.52/66.56 54.88/68.10 60.20/66.96 54.63/60.73
Supervised (w/ target data) All target samples 57.96/74.76 67.08/79.02 71.54/77.77 64.51/70.27

Table 1: Results of QA domain adaptation on target datasets.

From the target datasets, we randomly select 10k467

context paragraphs that provide the unlabeled target468

contexts x
(i)
t,c for question generation. In QADA,469

QA pairs are subject to LM filtering, so that a max-470

imum 5 questions per context are kept. For all471

baselines, the same number of context paragraphs472

is used with 5 QA pairs for each context.473

Baselines: Baselines are chosen that allow for474

QA domain adaptation with question generation,475

so that the same data as in QADA are leveraged.476

For this, we combine models for QG and QA. For477

QG, we use hierarchical conditional VAE (HCVAE)478

(Lee et al., 2020), AQGen & QAGen two-step (QA-479

Gen2S) (Shakeri et al., 2020), QAGen-T5 & CAQA480

(Yue et al., 2021). For QA, we use the uncased481

base BERT-QA (Devlin et al., 2019). Details on482

the baselines are in Appendix B.483

Implementation: To limit the data size, we use484

our proposed augmentation pipeline to generate485

one augmented question per QA pair. The other486

hyperparameters were tuned, that is, by empirically487

searching for the best combination of all hyperpa-488

rameters. Details are in appendix C.489

Evaluation: To evaluate the predictions, we fol-490

low (Lee et al., 2020; Shakeri et al., 2020; Yue491

et al., 2021) and assess the exact matches (EM) and492

the F1 score on the test data. All evaluations are493

performed on the dev sets. Results are reported for494

the best combination of hyperparameters.495

6 Experimental Results496

6.1 Overall Performance of Domain497

Adaptation498

Our main results for domain adaptation are in Ta-499

ble 1. We distinguish three major groups: (1) With-500

out domain adaptation. Here, we report a naïve501

baseline called “source only” for which train BERT-502

QA isolely on SQuAD. (2) With domain adaptation. 503

This refers to the above baselines where domain 504

adaptation is achieved by combining both BERT- 505

QA and a QG model. These are also trained jointly 506

using both SQuAD and 10k target contexts. This 507

group also includes QADA. (3) With supervised 508

learning. These are trained with target samples 509

that, in an actual production setting, would be un- 510

available. Hence, this reflects an “upper bound”. 511

Overall, the domain adaptation baselines are out- 512

performed by our QADA across all target datasets. 513

Hence, this confirms the effectiveness of the pro- 514

posed framework using both data augmentation 515

and attention-based contrastive adaptation. In ad- 516

dition, we observe the following: (1) QADA has 517

performance improvements over CAQA by up to 518

2.87% and in 2.73% in EM and F1 score, respec- 519

tively. (2) QADA achieves almost a similar mag- 520

nitude as supervised learning (with target data) for 521

three datasets. For SearchQA, our explanation for 522

the gap is that this is likely caused by the large 523

domain discrepancy and long context paragraphs. 524

(3) QADA has a comparatively small improvement 525

for TriviaQA, but outperforms supervised learn- 526

ing with 10k samples. As a potential reason, this 527

may indicate a small domain discrepancy between 528

SQuAD and TriviaQA, as the adaptation perfor- 529

mance may be limited due to the small domain 530

variation (see (Yue et al., 2021)). 531

Appendix D reports additional results for a sensi- 532

tivity analysis with different hyperparameters. This 533

confirms the robustness of our results. Appendix E 534

provides a qualitative analysis of QA samples. 535

6.2 Sensitivity Analysis for Token 536

Augmentation Ratio 537

Our QADA uses question augmentation where a 538

token augmentation ratio determines the percentage 539
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Figure 4: Sensitivity analysis of QA performance for
different token augmentation ratios (top) and different
context cutoffs (bottom).

of tokens that are changed. Figure 4 compares540

different token augmentation ratios from 0 to 0.5.541

Overall, we observe some variation but, impor-542

tantly, the performance remains fairly robust for543

different nonzero ratios. Moreover, we find compar-544

atively large improvements for NaturalQuestions545

and SearchQA. In the case of SearchQA, the EM546

increases from 32.02 to 33.50, which corresponds547

to an improvement by 4.6%; the F1 score increases548

from 38.58 to 40.64, which corresponds to an im-549

provement by 5.3%. In contrast, there are no im-550

provements for HotpotQA and TriviaQA, thereby551

suggesting that effectiveness of question augmen-552

tation may be limited as the discrepancy between553

source and target domain is too small (cf. (Yue554

et al., 2021) for a discussion of the datasets).555

6.3 Sensitivity Analysis for Context Cutoff556

Ratio557

Now we study the context cutoff ratio (see Fig-558

ure 4). The context cutoff ratio determines the559

relative context length of the span that we zero560

out in the hidden-space augmentation for contexts561

based on the attention. The range for context cutoff562

ratio in our experiments is from 0 to 0.25.563

Across different context cutoff ratios, we again564

observe that the performance is – to a large ex-565

tent – robust. We further find that tuning context566

cutoff ratios can be particularly powerful for tar-567

get datasets with comparatively small discrepancy568

w.r.t. the source dataset. To show this, we use Triv-569

iaQA and compare our QADA from above (with a570

nonzero context cutoff ratio) against an implemen-571

Extraction Extraction +
term only discrepancy

Dataset EM / F1 EM / F1
HotpotQA 47.94/63.26 47.94/63.45
NaturalQ. 49.03/62.60 48.61/61.81
SearchQA 34.10/40.76 36.58/44.03
TriviaQA 55.05/63.31 55.58/63.72

Table 2: Results of QA adaptation with the extraction
term and the optional discrepancy term.

tation where the context cutoff ratio is set to zero. A 572

nonzero ratio leads to improvements by 1.14% and 573

0.95% in EM and F1, respectively. This suggests 574

that the context cutoff ratio improves the overall 575

capability of the system in retrieving context infor- 576

mation. 577

6.4 Ablation Study for Extraction vs. 578

Discrepancy Term 579

We now seek to understand the improvements due 580

to our attention-based contrastive adaptation. Here, 581

we perform an ablation study for the extraction 582

term and the discrepancy term (see Eq. 4). We 583

repeat the experiments in two variants (Table 2): 584

attentive-based contrastive adaptation with (1) only 585

the extraction term and (2) both terms. 586

We find improvements of different magnitude 587

when additionally including the discrepancy term 588

(with exception of a slight performance deteriora- 589

tion for NaturalQ.). The highest improvement us- 590

ing the discrepancy term is obtained for SearchQA. 591

As a result, both EM and F1 score are improved by 592

7.3% and 8.0%, respectively. The results suggest 593

that the discrepancy term is especially effective for 594

settings with a comparatively large discrepancy be- 595

tween source/target datasets. In sum, the results 596

imply that the contrastive adaptation can lead to 597

improvements in discrepancy reduction. 598

7 Conclusion 599

In this paper, we propose a novel framework called 600

QADA for QA domain adaptation in the context of 601

small text corpora. QADA introduces: (1) question 602

generation with additional data augmentation to 603

generate and enrich synthetic QA data; and (2) an 604

attention-based contrastive adaptation for training 605

QA models to learn domain-invariant features that 606

generalize across source and target domain. Our ex- 607

periments demonstrate the effectiveness of QADA: 608

it achieves a superior performance over state-of- 609

the-art baselines in QA domain adaptation. 610
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Appendix900

A Dataset Details901

As the source dataset, we adopt SQuAD v1.1 (Ra-902

jpurkar et al., 2016). SQuAD v1.1 is a question-903

answering dataset where context paragraphs origi-904

nate from Wikipedia articles. The QA pairs were905

then annotated by crowdworkers.906

In our experiments, we adopt four other datasets907

from MRQA (Fisch et al., 2019) as target datasets:908

1. HotpotQA is a question-answering dataset with909

multi-hop questions and supporting facts to pro-910

mote reasoning in QA (Yang et al., 2018).911

2. NaturalQuestions (Kwiatkowski et al., 2019)912

builds upon real-world user questions. These913

were then combined with Wikipedia articles as914

context. The Wikipedia articles may or may not915

contain the answer to each question.916

3. TriviaQA (Joshi et al., 2017) is a question-917

answering dataset containing evidence infor-918

mation for reasoning in QA.919

4. SearchQA (Dunn et al., 2017) was built based920

on an existing dataset of QA pairs. The QA921

pairs were then extended by contexts, which922

were crawled through Google search.923

B Baseline Details924

We introduce five baselines which also involve QA925

domain adaptation through question generation:926

1. HCVAE uses a hierarchical variational autoen-927

coder to encode contexts. Moreover, latent vari-928

ables are sampled in the latent space to generate929

output questions and answers (Lee et al., 2020).930

2. AQGen uses a transformer architecture for931

question generation. Here, answers are gen-932

erated in the first step, followed by question933

generation in the second step (Shakeri et al.,934

2020).935

3. QAGen2S also uses a transformer model for936

question generation model. QAGen2S first937

generates the questions end-to-end and, sub-938

sequently, generates answers conditioned on939

question and context (Shakeri et al., 2020).940

4. QAGen-T5 adopts two T5 transformers to gen-941

erate question-answer pars in two steps. The942

first T5 transformer generates questions end-to-943

end, followed by the answer generation using a944

second T5 transformer (Yue et al., 2021).945

5. CAQA leverages QAGen-T5 for question gen-946

eration but extends the learning algorithm.947

Specifically, CAQA uses contrastive adaptation948

to reduce domain discrepancy and promote an- 949

swer extraction for QA domain adaptation. (Yue 950

et al., 2021). 951

C Implementation Details 952

QG model: We train the question generation mod- 953

els on the source dataset. Then, the trained QG 954

models are used to generate QA pairs based on the 955

given input context. We implement and train AQ- 956

Gen and QAGen2S as in (Shakeri et al., 2020; Yue 957

et al., 2021), QG models are trained for 10 epochs 958

with the default settings when available. For gen- 959

erating synthetic data, we apply LM filtering for 960

QAGen-T5 and adopt roundtrip filtering for the 961

other QG models as in (Alberti et al., 2019). The 962

optimizer is set to AdamW without weight decay 963

and warmup. We validate the QG models based on 964

the SQuAD dev set to select the best QG model. 965

QA model: We train BERT-QA with a learning 966

rate of 3·10−5 for two epochs and a batch size of 16 967

using both QA data from both source domain and 968

the synthetic target samples. We use the AdamW 969

optimizer without linear warmup. We additionally 970

use Nvidia Apex for mixed precision training (Ka- 971

math et al., 2020; Yue et al., 2021). When using 972

HCVAE for question generation, we make use of 973

the results from (Yue et al., 2021). 974

Hyperparameter for QADA: For our experi- 975

ments, we first searched for a combination of to- 976

ken augmentation ratio and context cutoff ratio, 977

followed by tuning both λtoken and λtype. Specifi- 978

cally, we empirically searched for the best combi- 979

nation across different ranges. For data augmen- 980

tation, we experimented with different token aug- 981

mentation ratios rtoken in [0, 0.1, 0.2, 0.3, 0.4, 0.5], 982

and we experimented with different context cutoff 983

ratios rcontext in [0, 0.05, 0.1, 0.15, 0.2, 0.25]. For 984

contrastive adaptation, we experimented with λtoken 985

in the range [10−4, 5 · 10−4, 10−3, 5 · 10−3, 10−2] 986

and λtype from [0, 0.01, 0.05, 0.1, 0.5]. For λtoken 987

and λtype, details are reported in Table 3 and Ta- 988

ble 4. Eventually, the best combination was se- 989

lected. 990

D Sensitivity Analysis of 991

Hyperparameters 992

To better understand the behavior of λtoken and 993

λtype, we perform a sensitivity analysis where we 994

vary both hyperparameters. Detailed results for dif- 995

ferent hyperparameter combinations are presented 996

in Table 5 and Table 6, respectively. 997
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Dataset Augmentation QADA
rtoken rcontext EM / F1

HotpotQA 0 0.1 47.94/63.45
NaturalQ. 0.4 0.25 49.03/62.60
SearchQA 0.2 0.05 36.58/44.03
TriviaQA 0 0.2 55.58/63.72

Table 3: Augmentation selection for the main results.

Dataset Hyperparam. QADA
λtoken λtype EM / F1

HotpotQA 5 · 10−3 0.05 47.94/63.45
NaturalQ. 5 · 10−4 0 49.03/62.60
SearchQA 10−2 0.5 36.58/44.03
TriviaQA 5 · 10−4 0.05 55.58/63.72

Table 4: Hyperparameter selection for the main results.

First, we experiment with different λtoken val-998

ues. For this, we temporarily exclude the discrep-999

ancy term in the attention-based contrastive adap-1000

tation loss (i.e., λtype = 0). Here, we test λtoken in1001

[10−4, 5 · 10−4, 10−3, 5 · 10−3, 10−2]. The results1002

are in Table 5. Second, we vary λtype. In doing so,1003

we keep the value of λtoken fixed at the best value1004

from the first step. Here, the results are reported in1005

Table 6. We then select λtoken with the best perfor-1006

mance. This gives the results in the main analysis1007

(Table 1).1008

E Qualitative Analyis of QA Samples1009

We performed a qualitative analysis of the data1010

augmentation. For this, we report examples of syn-1011

thetic QA pairs that were generated during ques-1012

tion generation using out augmentation pipeline1013

for a given context. The examples for the different1014

datasets are in Tables 7 to 10. Here, the token aug-1015

mentation ratio was set to 0.1 for HotpotQA and1016

TriviaQA, and to 0.2 for SearchQA, and to 0.4 for1017

NaturalQuestions.1018

We make a few interesting observations. First,1019

we see more synonym replacements than token1020

swaps. This may be attributed to the short lengths1021

of questions (since token swaps involves twice as1022

many tokens. Second, the generated QA pairs ap-1023

pear similar to SQuAD in style. However, the aug-1024

mented questions tend to also incorporate terms1025

that are otherwise less frequent as well as more1026

word orders that are otherwise seen less commonly.1027
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Dataset λtype λtoken

10−4 5 · 10−4 10−3 5 · 10−3 10−2

HotpotQA λtype = 0 47.94/63.26 47.55/63.03 47.62/63.31 46.53/61.99 46.50/62.02
NaturalQ. λtype = 0 48.91/62.63 49.03/62.60 48.55/62.11 48.78/62.36 48.33/61.87
SearchQA λtype = 0 32.95/39.73 33.92/40.73 31.94/38.76 33.62/40.69. 34.10/40.76
TriviaQA λtype = 0 55.29/63.42 55.05/63.31 54.90/63.31 55.05/63.27 54.96/63.24

Table 5: Results of QADA with different λtoken values on target datasets.

Dataset λtoken λtype

0 0.01 0.05 0.1 0.5
HotpotQA λtoken = 5 · 10−3 46.53/61.99 46.81/62.22 47.94/63.45 46.57/61.89 46.23/61.91
NaturalQ. λtoken = 5 · 10−4 49.03/62.60 48.61/61.81 47.51/61.38 47.93/61.64 47.55/62.59
SearchQA λtoken = 10−2 34.10/40.76 32.96/39.87 34.66/42.02 35.25/42.48 36.58/44.03
TriviaQA λtoken = 5 · 10−4 55.05/63.31 55.25/63.45 55.58/63.72 55.43/63.68 54.59/63.03

Table 6: Results of QADA based on the selected λtoken (from above) while varying different λtype values. Best value
in bold.
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Examples: HotpotQA
Context (given): Jim Conroy [SEP] James Conroy (born February 6, 1977) is an American voice
actor, television writer and actor. He is known for appearing on television shows, such as "Celebrity
Deathmatch", "Kenny the Shark" and "Fetch! with Ruff Ruffman,̈ radio commercials and video
games. He worked for companies such as WGBH, The Walt Disney Company and Discovery
Channel. [PAR] [TLE] Kenny the Shark [SEP] Kenny the Shark is an American animated television
series produced by Discovery Kids. The show premiered on NBC’s Discovery Kids on NBC from
November 1, 2003 and ended February 18, 2006 with two seasons and 26 episodes in total having
aired.

Question 1: How many episodes did the show have?
Augmented 1: How many sequence did the show have?
Answer 1: 26
Question 2: What is Jim Conroy’s birth date?
Augmented 2: What is jim conroys giving birth date?
Answer 2: February 6, 1977
Question 3: What is the name of the American animated television series?
Augmented 3: What is the name of the american revivify television series?
Answer 3: Kenny the Shark
Context (given): Gang of Youths [SEP] Gang of Youths are an Australian indie rock group consisting
of principal songwriter David Le’aupepe (lead vocals/guitar/piano), Max Dunn (bass guitar), Jung
Kim (keyboards/guitar), Joji Malani (lead guitar) and Donnie Borzestowski (drums). Their debut
album, "The Positions", peaked at No. 5 on the ARIA Albums Chart in May 2015 and was nominated
for multiple ARIA Awards. [PAR] [TLE] Let Me Be Clear [SEP] Let Me Be Clear is the debut
extended play by Australian alternative band Gang of Youths. The EP features 5 original tracks and
a cover of Joni Mitchell’s "Both Sides Now". It was released on 29 July 2016 and debuted at number
2 on the ARIA Charts.

Question 1: When was the song released?
Augmented 1: When was the song unblock?
Answer 1: 29 July 2016
Question 2: How many tracks are on the EP?
Augmented 2: How many trail are on the EP?
Answer 2: 5
Question 3: What is the name of the Australian indie rock group?
Augmented 3: What is the name of the Australian indie tilt group?
Answer 3: Gang of Youths

Table 7: Examples of QA pairs generated via our augmentation pipeline for HotpotQA.
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Examples: NaturalQuestions
Context (given): <P> Red blood cell distribution width ( RDW or RDW - CV or RCDW and RDW -
SD ) is a measure of the range of variation of red blood cell ( RBC ) volume that is reported as part
of a standard complete blood count . Usually red blood cells are a standard size of about 6 - 8 0̆3bcm
in diameter . Certain disorders , however , cause a significant variation in cell size . Higher RDW
values indicate greater variation in size . Normal reference range of RDW - CV in human red blood
cells is 11.5 - 14.5 % . If anemia is observed , RDW test results are often used together with mean
corpuscular volume ( MCV ) results to determine the possible causes of the anemia . It is mainly
used to differentiate an anemia of mixed causes from an anemia of a single cause . </P>.

Question 1: What do higher RDW values indicate?
Augmented 1: What do mellow RDW appreciate indicate?
Answer 1: Greater variation in size
Question 2: What is the measure of the range of variation of red blood cell volume?
Augmented 2: Variation is the measure of the range of what volume red blood cell of?
Answer 2: Red blood cell distribution width
Question 3: What is the normal reference range of RDW - CV in human red blood cells?
Augmented 3: What is the convention reference straddle of RDW resume in human being red blood
cadre?
Answer 3: 11.5 - 14.5 %
Context (given): <P> The original World Trade Center was a large complex of seven buildings in
Lower Manhattan , New York City , United States . It featured the landmark twin towers , which
opened on April 4 , 1973 , and were destroyed in 2001 during the September 11 attacks . At the time
of their completion , the “ Twin Towers ” – the original 1 World Trade Center , at 1,368 feet ( 417 m
) ; and 2 World Trade Center , at 1,362 feet ( 415.1 m ) – were the tallest buildings in the world .
Other buildings in the complex included the Marriott World Trade Center ( 3 WTC ) , 4 WTC , 5
WTC , 6 WTC , and 7 WTC . All were built between 1975 and 1985 , with a cost of $ 400 million (
$ 2,300,000,000 in 2014 dollars ) . The complex was located in New York City ’s Financial District
and contained 13,400,000 square feet ( 1,240,000 m ) of office space . </P>.

Question 1: What was the original height of the 1 World Trade Center?
Augmented 1: What was the master tallness of the globe trade wind center?
Answer 1: 1,368 feet
Question 2: How many meters of office space was in the complex?
Augmented 2: Of many meters the office space was in how complex?
Answer 2: 1,240,000
Question 3: When were the twin towers destroyed?
Augmented 3: When were the twin tower ruin?
Answer 3: 2001

Table 8: Examples of QA pairs generated via our augmentation pipeline for NaturalQuestions.
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Examples: SearchQA
Context (given): [DOC] [TLE] jeopardy/1333_Qs.txt at master jedoublen/jeopardy GitHub [PAR]
Number: 2. ANIMAL SONGS | British singer Robyn Hitchcock is known for his tunes about
these animals, including "Bass" & "Aquarium" | Fish. right: Matt. Wrong:. [DOC] [TLE] Robyn
Hitchcock - Wikipedia [PAR] Robyn Rowan Hitchcock (born 3 March 1953) is an English singer-
songwriter and guitarist. While primarily a vocalist and guitarist, he also plays harmonica, piano,
and bass guitar. ... Hitchcock’s lyrics tend to include surrealism, comedic elements, ... Hitchcock
released his solo debut, Black Snake Diamond Rle in 1981,... [DOC] [TLE] Positive Vibrations:
Softcore - fegMANIA! [PAR] An except from Positive Vibrations’ complete guide to the songs of
Robyn Hitchcock. ...

Question 1: What is the dance music of northeastern Argentina known as?
Augmented 1: What is the terpsichore music of northeasterly argentina known as?
Answer 1: Chaman
Question 2: What was Hitchcock’s solo debut called?
Augmented 2: What was Alfred Hitchcock solo debut called?
Answer 2: Black Snake Diamond Rle
Question 3: When did Hitchcock release his solo debut?
Augmented 3: When did Hitchcock release his solo introduction?
Answer 3: 1981
Context (given): [DOC] [TLE] Battle of Blood River - Wikipedia [PAR] The Battle of Blood
River is the name given for the battle fought between 470 Voortrekkers ("Pioneers"), led by Andries
Pretorius, and an estimated 15,000 21,000 Zulu attackers on the bank of the Ncome River on 16
December 1838, in what is today KwaZulu-Natal, South Africa. ... Casualties amounted to 3,000 of
king Dingane’s soldiers dead, including two... [DOC] [TLE] Battle of Blood River | South African
history | Britannica.com [PAR] Battle of Blood River, Blood River also known as Ncome River, (Dec.
... 16, 1838, a Boer force led by Andries Pretorius induced a Zulu attack on a Boer laager (protected
... defeated an army of Zulu warriors on the banks of the Ncome River. [DOC] [TLE] The Battle of
Blood River | South African History Online [PAR] On 16 December 1838 the Battle of Blood River
took place near the Ncome River in KwaZulu Natal. ... Towards a peoples history ... Voortrekkers
under the leadership of Andries Pretorius and the Zulu’s under the leadership of Dingane the Zulu
King. ...

Question 1: Who led the Boer force in the Battle of Blood River?
Augmented 1: Who take the afrikander force in the battle of blood river?
Answer 1: Andries Pretorius
Question 2: Who led the Boers to a huge victory over the Zulus?
Augmented 2: Who pass the Boers to a huge victory over the Zulu?
Answer 2: Andries Pretorius
Question 3: What was the name of Dingane’s generals?
Augmented 3: What was the name of Dinganes superior general?
Answer 3: Dambuza

Table 9: Examples of QA pairs generated via our augmentation pipeline for SearchQA.
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Examples: TriviaQA
Context (given): [DOC] [TLE] Spiers on Sport: the unjust sacking of Kenny Shiels (From ...Spiers
on Sport: the unjust sacking of Kenny Shiels (From HeraldScotland) [PAR] / Spiers on Sport ,
Graham Spiers [PAR] When a manager wins one of only four trophies collected by a football club
in 80 years, there has to be a degree of respect shown towards him, right? [PAR] When he also
works slavishly on all aspects of a club due to staffing limitations - training, recruiting, video-editing,
youth development etc - wouldn’t that admiration for him grow even greater? [PAR] Loading article
content [PAR] Kenny Shiels, sacked by Kilmarnock, is by no means perfect. But he has been a pretty
good manager at Rugby Park, whose dismissal is hard to fathom. [PAR] It transpires, too, that many
Kilmarnock supporters, contrary to what we might have been led to believe, are also peeved at their
manager’s sacking. A mob of them descended on Rugby Park the other evening to vent their spleen
at Michael Johnston, the club’s chairman. [PAR] I quite like and admire Johnston. He is a lawyer, a
bit old-school, who gets flack galore in his Killie role but always stands his ground. But this decision
seems quaint to me. [PAR] First, let’s look at Shiels’ record. He was Kilmarnock manager for two
seasons, during which the club lifted the Scottish League Cup and finished seventh and ninth in the
SPL. ...

Question 1: Where did most of Shiels’ felonies occur?
Augmented 1: Where did most of Shiels felonies go on?
Answer 1: Rugby Park
Question 2: What club did he manage?
Augmented 2: What society did he manage?
Answer 2: Kilmarnock
Question 3: Who is the chairman of the rugby club?
Augmented 3: Who is the president of the rugby club?
Answer 3: Michael Johnston
Context (given): [DOC] [TLE] Bagpuss and the little girl who owned him meet up for 40th
...Bagpuss and the little girl who owned him meet up for 40th birthday | Daily Mail Online [PAR] A
bit looser at the seams... but Emily STILL loves him: Bagpuss is reunited with the little girl who
owned him to celebrate the famous programme’s 40th birthday [PAR] Emily Firmin was 8-years-old
when she starred as the owner of Bagpuss [PAR] Her father Peter Firmin created the TV show which
was broadcast in 1974 [PAR] Now aged 48, she is still instantly recognisable as the same little girl
from the hit TV programme [PAR] To celebrate the 40th anniversary of the show, Ms Firmin has
been reunited with the famous cat at Canterbury Heritage Museum[DOC] [TLE] Bagpuss - The Intro
- SmallfilmsBagpuss - The Intro [PAR] The Intro [PAR] There was a little girl and her name was
Emily [PAR] And she had a shop [PAR] There it is [PAR] It was rather an unusual shop because
it didn’t sell anything [PAR] You see, everything in that shop window was a thing that somebody
had once lost [PAR] And Emily had found [PAR] And brought home to Bagpuss [PAR] Emily’s cat
Bagpuss [PAR] Saggy old cloth cat in the whole wide world [PAR] Well now, one day Emily found
a thing [PAR] ...

Question 1: How long was the show repeated in the UK?
Augmented 1: How recollective was the show repeated in the UK?
Answer 1: 1974
Question 2: What year did the show Bagpuss first air?
Augmented 2: What yr did the show Bagpuss first air?
Answer 2: 1974
Question 3: When was the series first broadcast?
Augmented 3: When was the series kickoff broadcast?
Answer 3: 1974

Table 10: Examples of QA pairs generated via our augmentation pipeline for TriviaQA.
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